WO2017204152A1 - 立方晶窒化硼素焼結体切削工具 - Google Patents

立方晶窒化硼素焼結体切削工具 Download PDF

Info

Publication number
WO2017204152A1
WO2017204152A1 PCT/JP2017/019010 JP2017019010W WO2017204152A1 WO 2017204152 A1 WO2017204152 A1 WO 2017204152A1 JP 2017019010 W JP2017019010 W JP 2017019010W WO 2017204152 A1 WO2017204152 A1 WO 2017204152A1
Authority
WO
WIPO (PCT)
Prior art keywords
cbn
sintered body
compound
vol
binder phase
Prior art date
Application number
PCT/JP2017/019010
Other languages
English (en)
French (fr)
Inventor
雅大 矢野
史朗 小口
庸介 宮下
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201780027452.0A priority Critical patent/CN109070236B/zh
Priority to US16/303,540 priority patent/US11130713B2/en
Priority to JP2017540291A priority patent/JP6826326B2/ja
Priority to EP17802744.7A priority patent/EP3466573A4/en
Publication of WO2017204152A1 publication Critical patent/WO2017204152A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/32Titanium carbide nitride (TiCN)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • C04B2235/3869Aluminium oxynitrides, e.g. AlON, sialon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/722Nitrogen content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron

Definitions

  • the present invention relates to a cBN sintered body cutting tool in which a cubic base boron nitride (hereinafter, referred to as cBN) is used as a main component, and a cBN sintered body formed by sintering and molding this at an ultrahigh pressure and high temperature is used as a tool base.
  • cBN tool cubic base boron nitride
  • excellent in strength and toughness especially in cutting of high-hardness steel such as alloy steel and bearing steel, excellent in fracture resistance and excellent cutting over a long period of use.
  • the present invention relates to a cBN sintered body cutting tool capable of maintaining performance.
  • Patent Document 1 discloses that a binder includes a group 4a element, a group 5a element, a group 6a element nitride, carbide, boride, oxide, and solid solutions thereof in the periodic table.
  • CBN sintering containing at least one selected from the group consisting of at least one selected from the group consisting of simple substances, compounds, and solid solutions of Zr, Si, Hf, Ge, W, and Co, and an Al compound
  • the total weight of W and / or Co is less than 1 wt%
  • Si or Zr is 0.01 wt% or more and less than 0.5 wt%
  • Si / (Si + W + Co) or Zr / (Zr + W + Co ) is 0.05 or more and 1.0 or less
  • AlB 2 AlN is a compound of Al
  • By average particle size is 50nm or more 150nm or less
  • strength, cBN sintered body is disclosed having improved toughness.
  • the cBN sintered body contains cBN, an adiabatic phase, and a binder phase, and the adiabatic phase is one or more elements selected from the group consisting of Al, Si, Ti, and Zr. And one or more first compounds composed of one or more elements selected from the group consisting of N, C, O, and B.
  • the first compound is 1% by mass or more and 20% by mass in the cBN sintered body. %,
  • the cBN sintered body has a thermal conductivity of 70 W / m ⁇ K or less, which reduces the thermal conductivity of the tool base and the hardness of the tool base.
  • the cBN sintered compact tool which made improvement compatible is disclosed.
  • Patent Document 3 when the cBN content contained in the cBN sintered body is 80 vol% to 95 vol% or less, the binding phase other than cBN is cBN, Al, and periodic groups 4a, 5a, and 6a transition metals.
  • Japanese Patent No. 5189504 (B) Japanese Unexamined Patent Publication No. 2011-189421 (A) Japanese Patent Laid-Open No. 6-1666 (A)
  • Patent Document 1 as a binder, after containing a predetermined amount of W and / or Co, Si, or Zr, grain growth of a Ti compound or an Al compound is suppressed particularly by Si, and the average particle diameter of TiN and TiB 2 A cBN sintered body having improved fracture resistance and wear resistance by making the average particle diameters of AlB 2 and AlN within a predetermined range is disclosed. As shown in Table 1 of Patent Document 1, this sintered body is effective when the binder phase does not contain an oxide. However, when an oxide, particularly an Al oxide is included, Si reacts with inevitably mixed oxygen and Al oxide, and a compound composed of Al 2 O 3 and SiO 2 , for example, mullite (3Al 2 O 3. 2SiO 2 ) is easily formed.
  • mullite Al 2 O 3. 2SiO 2
  • Patent Document 2 when fine cBN grains are used, one or more elements selected from the group consisting of Al, Si, Ti, and Zr, and a group consisting of N, C, O, and B are disclosed.
  • a cBN sintered body is shown in which a first compound composed of one or more elements selected from the above is used as an adiabatic phase, and the thermal conductivity is 70 W / m ⁇ K or less.
  • This sintered body is effective in a cutting environment in which the temperature of the work material is insufficient due to the low ductility of chips when cutting a sintered alloy or the like.
  • the temperature of the cutting edge is high, chemical wear tends to progress, and the fracture resistance of the cBN sintered body decreases.
  • Patent Document 3 discloses that when the cBN content is 80 vol. To 95 vol. Or less, the binder phase other than cBN is cBN, Al, and at least one of group 4a, 5a, and 6a group transition metal oxides.
  • a cBN sintered body is shown in which cBN grains are firmly bonded to the binder phase by mainly comprising AlN, TiB 2 and Al 2 O 3 produced by the reaction.
  • the cBN grains react with Al and an oxide in order to firmly bond the cBN grains and the binder phase.
  • a reaction product is produced in contact with the cBN grains.
  • the reaction product has a size with which the influence on the size of the cBN grains cannot be ignored.
  • AlN which has a low hardness among reaction products, tends to propagate cracks in the grains.
  • the cBN grains that have the effect of preventing the propagation of cracks are fine, cracks that propagate in the vicinity of the cBN grains are easily induced to the large AlN grains in contact with the cBN grains and propagate in the AlN grains. , Decreasing the crack growth inhibiting effect of cBN grains. Thereby, the toughness of the cBN sintered body is lowered, and when used as a tool, the fracture resistance is lowered.
  • the object of the present invention is to prevent chipping or chipping of the tool edge even when cutting high-hardness steel that requires high-load cutting conditions. It is an object of the present invention to provide a cBN sintered body cutting tool which is less likely to occur and maintains excellent cutting performance over a long period of time.
  • the inventors of the present application have paid attention to the binder phase structure of the cBN sintered body constituting the cBN tool, and have conducted extensive research. As a result, the present inventors have found that the cBN sintered body uses fine cBN raw material powder.
  • the average particle size of cBN particles in the cBN sintered body is 0.5 ⁇ m or less, the Al compound contained in the binder phase is 1.0 vol% or more and 20 vol% or less, and the Al compound formed in the binder phase
  • the average particle size of the particles (that is, particles composed of the Al compound phase) is set to 300 nm or less, and the oxygen (O) content S O in the Al compound (phase) calculated from the element mapping image obtained by observation of the cross section
  • the value (atomic ratio) of the N content S N ratio S N / S O in the Al compound (phase) to be 1.1 or more and 5 or less, the Al compound (phase in the bonded phase in the sintered body) )
  • Hardness and thermal expansion By controlling the ratio of the amount of Al nitride and the amount of oxide of Al with different rates, the induction of fine propagation of cracks in the binder phase due to the high dispersion of the Al compound in the binder phase It has been found that a cBN sintered body having high
  • the cBN tool using the cBN sintered body as a tool base is excellent in toughness when cutting high-hardness steel in which a high load and high temperature are applied to the cutting edge, and is less prone to breakage, resulting in long-term use. They have found that they have excellent cutting performance.
  • the inventors of the present application have a ratio of the nitride of Al and the oxide of Al together with the particle size of the Al compound in the binder phase.
  • control is important. That is, in the production of a cBN sintered body in which the main component of the binder phase is ceramics, conventionally, a Ti compound that is highly reactive with cBN grains in addition to the Ti compound as the main binder phase and cBN powder in the cBN sintered body raw material powder.
  • reaction products such as AlN, TiB 2, and Al 2 O 3 inevitably occur in contact with the cBN grains instead of increasing the adhesion between cBN and the binder phase.
  • AlN which has a low hardness and a low coefficient of thermal expansion, has a cBN and cBN that form a strong network even when the main bonded phase is a metal bonded phase or the main bonded phase is a ceramic.
  • the grain size of AlN having low hardness does not increase. Therefore, when this is used as a tool, if the cracks that originate from the AlN grains exposed on the surface or the cracks that have progressed propagate through the interior of the AlN grains, the propagation is likely to be hindered by nearby cBN grains.
  • the effect on the toughness of the cBN sintered body was small.
  • the main component of the binder phase is ceramic and the cBN content is less than 80 vol%, the region of the binder phase surrounded by adjacent cBN grains becomes wide. Therefore, the particle size of AlN generated in contact with the cBN grains is likely to be large, and when cBN grains having a small particle size are used, the influence on the size of the cBN grains cannot be ignored. Propagates easily through the grains. Furthermore, if the cBN grains that have an effect of preventing the propagation of cracks are fine, the cracks that propagate in the vicinity of the cBN grains are induced in the large AlN grains that are in contact with the cBN grains, and the crack growth of the cBN grains is suppressed.
  • the inventors of the present application when using fine cBN grain raw material, react the molecules of the raw material compound one layer at a time on the surface of the cBN grain in advance, for example, ALD (Atomic Layer Deposition. This is a method of forming a film by repeatedly purging with Ar or nitrogen, which is a kind of CVD method.) After forming an extremely thin AlN film by the method, etc., and then heating it under vacuum Using the treated cBN raw material, ball mill mixing is performed together with the pretreated cBN raw material and the binder phase forming component, and the AlN is mixed into the binder phase component while peeling off from the cBN grains.
  • ALD Atomic Layer Deposition.
  • cBN particles Furthermore, by applying such pretreatment to the cBN particles, impurity components such as oxygen adhering to and adsorbing on the surface of the cBN particles are diffused in the AlN film and trapped in the AlN film. It has been found that cBN particles having a high surface cleanliness from which impurity components such as oxygen are removed. And as a result, it discovered that the adhesion strength of a cBN grain and a binder phase was improved, and a cBN sintered compact with high toughness can be obtained.
  • the cBN tool produced from this cBN sintered body exhibits excellent toughness and fracture resistance in cutting of high hardness steel in which a high load and high temperature are applied to the cutting edge.
  • This invention is made
  • the ratio of the nitrogen (N) content S N contained in the Al compound to the oxygen (O) content S 2 O (value of S N / S O , where the atomic ratio) is 1.1 or more and 5 or less.
  • Cubic boron nitride sintered body cutting tool characterized by (2) The cubic boron nitride sintered body cutting tool according to (1), wherein a content ratio of the cubic boron nitride particles in the sintered body is 45 vol% or more and 80 vol% or less. (3) The cubic boron nitride sintered body cutting tool according to (1), wherein the content ratio of the cubic boron nitride particles in the sintered body is 70 vol% or more and 80 vol% or less.
  • the present invention relates to a cBN sintered body cutting tool having a sintered body containing cBN particles and a binder phase as a tool base.
  • the average particle size of the cBN particles is 0.5 ⁇ m or less and occupies the cBN sintered body.
  • the content ratio of the cBN particles is 35 vol% or more and 80 vol% or less
  • the binder phase contains 1 vol% or more and 20 vol% or less of Al compound
  • the average particle diameter of the Al compound present in the binder phase is 300 nm or less.
  • oxygen (O) the value of the ratio S N / S O of nitrogen (N) content S N contained in the Al compound to the content of S O contained in the Al compound (area ratio) is 1.1 Since the above is 5 or less, the oxygen (O) content in the cBN sintered body is reduced, and the average particle diameter of the Al compound formed in the cBN sintered body can be reduced. CBN particles in the body and in the binder phase The local and excessive reaction can be suppressed, the adhesion strength of the interface between the cBN particles and the binder phase can be improved, and a cBN sintered body having high toughness can be obtained.
  • the cBN tool of one aspect of the present invention produced from this cBN sintered body (hereinafter referred to as “cBN tool of the present invention”) is used for cutting high-hardness steel in which a high load and high temperature are applied to the cutting edge. Excellent toughness, fracture resistance, and wear resistance can be exhibited.
  • An example of a binarized image obtained by extracting a cBN particle portion from a secondary electron image obtained by observing the cross-sectional structure of the cBN sintered body of the present invention with an SEM is shown.
  • the black portion in the binarized image corresponds to cBN particles.
  • An example of the elemental mapping image of nitrogen (N) contained in the Al compound by AES of the cross section of the cBN sintered body of the present invention (a portion where the Al mapping image and nitrogen (N) overlap) is shown. That is, it is a mapping image of a portion (black portion) where the Al element and the nitrogen element of AES overlap.
  • the area ratio of the black portion to the total area of the mapping image shown in FIG. 2 is 8.30 area%.
  • An example of the elemental mapping image of oxygen (O) contained in the Al compound by AES of the cross section of the cBN sintered body of the present invention (the portion where the Al mapping image and oxygen (O) overlap) is shown. That is, it is a mapping image of a portion (black portion) where the Al element and oxygen element of AES overlap.
  • the area ratio of the black portion to the total area of the mapping image shown in FIG. 3 is 3.67 area%.
  • Average particle size of cBN particles The average particle size of cBN particles in the cBN sintered body of the present invention cBN tool is 0.5 ⁇ m or less. This is because cBN sintering is achieved by increasing the interface between the cBN particles and the binder phase in the cBN sintered body. This is to increase the toughness of the body and improve the fracture resistance of the cBN tool.
  • the present invention not only suppresses chipping and chipping caused by the uneven shape of the cutting edge caused by cBN particles falling off the tool surface during use of the tool, but also combines with cBN particles generated by stress applied to the cutting edge during tool use.
  • the average particle size of the cBN particles in the cBN sintered body of the present invention cBN tool is in the range of 0.5 ⁇ m or less, and preferably in the range of 0.05 to 0.35 ⁇ m.
  • the average particle size of the cBN particles can be determined as follows.
  • the cross-sectional structure of the cBN sintered body is observed with a SEM, and a secondary electron image is obtained.
  • the portion of cBN particles in the obtained image is extracted by image processing as shown in FIG. 1, and the portion of cBN particles in the image for calculating the average particle size based on the maximum length of each particle determined by image analysis is obtained.
  • the image is displayed in monochrome with 256 gradations of 0, black, and 255, and the pixel value of the cBN particle portion and the binder phase portion.
  • Binarization processing is performed so that the cBN grains become black using an image of pixel values with a pixel value ratio of 2 or more.
  • the portion corresponding to the cBN grains (black portion) in the image obtained after the binarization processing is subjected to particle analysis, and the obtained maximum length is set as the maximum length of each particle, which is set as the diameter of each particle.
  • the maximum length for example, a value of a larger length from two lengths obtained by calculating the ferret diameter for one cBN particle is set as the maximum length, and the value is set as the diameter of each particle. .
  • a graph was drawn with the volume percentage [%] on the vertical axis and the diameter [ ⁇ m] on the horizontal axis, and cBN in one image obtained with a volume percentage of 50%.
  • the average value of the particles was defined as the average particle size [ ⁇ m] of cBN obtained by processing at least three secondary electron images with a magnification of 20,000 obtained by SEM.
  • a length ( ⁇ m) per pixel is set using a scale value known in advance by SEM.
  • a visual field region of about 5.0 ⁇ m ⁇ 3.0 ⁇ m is desirable when the average particle size of cBN particles is 0.3 ⁇ m.
  • the cBN sintered body is usually composed of cBN particles as a hard phase component and a binder phase component.
  • the content ratio of the cBN particles in the cBN sintered body is less than 35 vol%, the sintered body is hard. Due to the small amount of material, the hardness as a cBN tool is not sufficient.
  • the ratio of the binder phase in the sintered body is relatively reduced, and the effect of improving toughness exhibited by the binder phase cannot be sufficiently obtained.
  • the content ratio of the cBN particles in the cBN sintered body is in the range of 35 vol% or more and 80 vol% or less.
  • the content ratio of the cBN particles in the more preferable cBN sintered body is 45 vol% or more and 80 vol% or less.
  • An even more preferable content of cBN particles in the cBN sintered body is 70 vol% or more and 80 vol% or less.
  • the content ratio of cBN particles in the cBN sintered body is determined by observing the cross-sectional structure of the cBN sintered body by SEM, extracting the cBN particle portion in the obtained secondary electron image by image processing, and analyzing the cBN particles by image analysis.
  • the area occupied by cBN particles is calculated, the ratio occupied by cBN particles in one image is determined, and the average value of values determined by processing at least three images is determined as the content ratio of cBN particles.
  • an observation region used for image processing for example, when the average particle size of cBN particles is 0.3 ⁇ m, a visual field region of about 5.0 ⁇ m ⁇ 3.0 ⁇ m is desirable.
  • Al compound in binder phase of cBN sintered body 1 vol of Al compound contained in the binder phase of the cBN sintered body (for example, Al 2 O 3 and AlN, or in addition to these, one or more of AlON, SiAlON and AlB 2 ) If the amount is less than%, the reaction between the cBN grains and the binder phase is small, and the interfacial adhesion strength between the cBN and the binder phase cannot be obtained sufficiently. Since the amount of Al compound contained in is excessive, the hardness of the sintered body is lowered and the fracture resistance is lowered. Therefore, the Al compound contained in the binder phase of the cBN sintered body is 1 vol% or more and 20 vol% or less.
  • the content of the Al compound in the binder phase of the cBN sintered body is the content ratio of the Al compound (phase) in the binder phase.
  • Average particle size of the Al compound in the binder phase The average particle size of the Al compound existing in the binder phase (for example, Al 2 O 3 and AlN, or in addition to these, one or more of AlON, SiAlON and AlB 2 ) is 300 nm. If it exceeds, cracks starting from Al compound particles in the binder phase are likely to be generated and propagated, so that the toughness of the cBN sintered body is lowered. Therefore, the average particle diameter of the Al compound present in the binder phase is 300 nm or less, and preferably 150 nm or less.
  • the minimum value of the particle diameter of the Al compound measured in the present invention was set to 10 nm.
  • an Al mapping image is obtained from the cross-sectional structure of the cBN sintered body using Auger Electron Spectroscopy (AES).
  • AES Auger Electron Spectroscopy
  • the Al compound portion in the obtained image is extracted by image processing, and the average particle diameter is calculated based on the maximum length of each particle determined by image analysis.
  • the maximum length can be obtained by obtaining the ferret diameter of each particle.
  • the Al compounds that are considered to be in contact are separated using a process that separates the parts that are considered to be in contact with each other, for example, watershed, which is one of image processing operations. .
  • the maximum length of each particle obtained from the Al mapping image is used as the diameter of each particle. Based on the volume of each particle calculated from this diameter, the vertical axis is the volume percentage [%], the horizontal axis is the diameter [ ⁇ m], and the graph is drawn to obtain the value of 50% for the volume percentage.
  • the average particle size of the compound was determined, and the average value of values obtained by processing at least three images of the Al mapping image obtained by AES at a magnification of 20,000 was defined as the average particle size [ ⁇ m] of the Al compound.
  • a length ( ⁇ m) per pixel is set using a scale value known in advance by AES. As an observation area used for image processing, a visual field area of about 5.0 ⁇ m ⁇ 3.0 ⁇ m is desirable.
  • Ratio of nitrogen (N) content S N contained in the Al compound to oxygen (O) content S 2 O contained in the Al compound value of S N / S O , but area ratio: When the ratio of the nitrogen (N) content contained in the Al compound to the oxygen (O) content contained in the Al compound (value of S N / S O , but the area ratio) is less than 1.1
  • the proportion of Al nitride that induces propagating cracks occupies less in the binder phase, and the cracks do not propagate finely in the binder phase and progress linearly, resulting in a decrease in the toughness of the cBN sintered body. To do.
  • the ratio of the nitrogen (N) content contained in the Al compound to the oxygen (O) content S 2 O contained in the Al compound is 1. 1 to 5 Preferably, it is 2 or more and 4.5 or less.
  • Measuring method of ratio of nitrogen (N) content contained in Al compound to oxygen (O) content S 2 O contained in Al compound (value of S N / S O. Area ratio): The ratio of the nitrogen (N) content contained in the Al compound to the oxygen (O) content S 2 O contained in the Al compound was measured to measure the value S N / S O of the produced cBN sintered body.
  • the cross-sectional structure is observed using Auger Electron Spectroscopy (AES) to obtain an Al mapping image, a nitrogen (N) mapping image, and an oxygen (O) mapping image.
  • AES Auger Electron Spectroscopy
  • Ratio of nitrogen (N) content S N contained in Al compound to oxygen (O) content S 2 O contained in Al compound is an average value of values obtained by processing at least three images S N / S Calculated as O (however, area ratio).
  • a visual field area of about 5.0 ⁇ m ⁇ 3.0 ⁇ m is desirable.
  • cBN particles that were pretreated on the surface of the cBN particles were used as the cBN raw material.
  • cBN particles that were pretreated on the surface of the cBN particles were used.
  • an AlN film was formed on the surface of cBN particles.
  • cBN particles are charged into a fluidized bed furnace, the temperature inside the furnace is raised to about 350 ° C., Ar + Al (CH 3 ) 3 gas inflow process, Ar gas purge process, Ar + NH 3 gas inflow process, Ar gas purge The process was defined as one cycle, and this cycle was repeated until the desired AlN film thickness was obtained.
  • an AlN film having a thickness of about 10 nm can be formed on the cBN particle surface.
  • the cBN particles having an AlN film having a predetermined thickness formed thereon are heated at about 1000 ° C. under vacuum to diffuse impurity elements such as oxygen on the cBN surface into the AlN film. Captured.
  • the surface cleaning in which the AlN film in which the impurity element is trapped is separated from the cBN surface by the subsequent ball mill mixing, and the impurity components such as oxygen adsorbed on the cBN surface are removed. High-degree cBN particles can be obtained.
  • cBN grains having an AlN film thickness of 10 nm and 35 nm were prepared, respectively, and cBN powder with an AlN film heated at about 1000 ° C. under vacuum.
  • heat treatment was performed at about 400 ° C. in addition to about 1000 ° C. to prepare cBN powder with an AlN film having different surface cleanliness.
  • CBN particle powder having an average particle diameter of 0.5 ⁇ m or less pretreated as described above, and TiN powder, TiC powder, Al powder, TiAl 3 powder, Al powder having an average particle diameter in the range of 0.3 to 0.9 ⁇ m.
  • a molded body subjected to the above heat treatment was prepared separately, and a support piece made of WC-based cemented carbide having Co: 8 mass%, WC: remaining composition, and diameter: 50 mm ⁇ thickness: 2 mm, In a superposed state, it is charged into a normal ultra-high pressure sintering apparatus, and under normal conditions of pressure: 3 to 10 GPa, eg 5 GPa, temperature: 1400 ° C., holding time: 30 minutes, ultra-high pressure and high temperature sintering
  • cBN sintered bodies hereinafter referred to as “the sintered bodies of the present invention” 1 to 15 of the present invention shown in Table 2 were produced.
  • the main purpose of the heat treatment applied to the molded body is to remove the solvent during wet mixing. Moreover, it is preferable to prevent the raw material powder from being oxidized in the steps up to the ultra-high pressure sintering, and it is preferable to carry out the handling in a non-oxidizing protective atmosphere.
  • the cBN particle powder having an average particle size of 0.5 ⁇ m or less which has been subjected to the pretreatment shown in Table 1, the cBN particle powder having an average particle size of about 1.5 ⁇ m and outside the conditions defined in the present invention, for forming a binder phase TiN powder, TiC powder, Al powder, TiAl 3 powder, Al 2 O 3 powder, AlN powder, Si 3 N 4 powder having an average particle diameter in the range of 0.3 to 0.9 ⁇ m as a raw material powder, and heat treatment CBN particle powder having an average particle diameter of 0.5 ⁇ m or less, TiN powder having an average particle diameter in the range of 0.3 to 0.9 ⁇ m, TiC powder, Al powder, TiAl 3 powder, Al 2 O 3 powder, AlN powder, Si 3 N 4 powder, cBN when the total amount of some raw material powders selected from these raw material powders and cBN particle powder is 100 vol% Content ratio of particle powder Was 21 to 85 vol%, wet-mixed and dried.
  • a molded body is prepared under the same conditions as the sintered bodies 1 to 15 of the present invention, heat-treated, and this molded body is sintered at ultrahigh pressure and high temperature under the same conditions as the sintered bodies 1 to 15 of the present invention.
  • CBN sintered bodies of comparative examples hereinafter referred to as “comparative sintered bodies” 1 to 11 shown in Table 3 were produced.
  • Comparative example sintered bodies 1 to 5 are cBN sintered bodies using raw powders that have not been heat-treated, and comparative example sintered bodies 6 and 11 are cBN sintered bodies whose cBN content is outside the conditions specified in the present invention.
  • Bodies, comparative example sintered bodies 7 and 9 are cBN sintered bodies outside the conditions specified in the present invention, in which the Al compound contained after adjusting the proportion of Al and Al compounds in the raw material to make a cBN sintered body
  • Comparative example sintered body 8 is a cBN sintered body whose cBN particle size is outside the conditions specified in the present invention
  • comparative example sintered body 10 is a cBN sintered body after increasing the proportion of AlN in the raw material.
  • ratio of nitrogen (N) content S N contained in the Al compound in the binder phase to oxygen (O) content S O contained in the Al compound in the binder phase is outside conditions defined by the present invention cBN sintered body.
  • the cross sections of the sintered bodies 1 to 15 of the present invention and the sintered bodies 1 to 11 of the comparative examples were polished, and Al mapping image and nitrogen (N) mapping were performed using Auger Electron Spectroscopy (AES).
  • AES Auger Electron Spectroscopy
  • O oxygen
  • Tables 2 and 3 show the results.
  • the binder phase composition of the cBN sintered body was measured by XRD (X-ray Diffraction) analysis of the cBN sintered body.
  • tissue of a cBN sintered compact is observed by SEM, and a secondary electron image is obtained.
  • a portion of cBN particles in the obtained image is binarized and extracted by image processing as shown in FIG. 1, and the maximum length of each cBN particle is obtained by image analysis, which is used as the diameter of each cBN particle.
  • a graph is drawn with the vertical axis representing the integrated volume ratio (volume%) and the horizontal axis representing the diameter ( ⁇ m), and the diameter at which the integrated volume ratio is 50 volume% is defined as cBN.
  • the average particle size ( ⁇ m) of cBN particles was defined as the particle size of the particles, and the average value of values obtained by processing at least three secondary electron images of 20,000 magnification obtained by SEM.
  • a visual field region of about 5.0 ⁇ m ⁇ 3.0 ⁇ m is desirable when the average particle size of cBN particles is 0.3 ⁇ m.
  • the upper and lower surfaces of the sintered bodies 1 to 15 of the present invention and the sintered bodies 1 to 11 of the comparative examples were polished using a diamond grindstone, divided by a wire electric discharge machine, and further Co: 5 mass %, TaC: 5% by mass, WC: The remaining composition and the brazed part (corner part) of the insert body made of WC-based cemented carbide having the shape of ISO standard CNGA120408, in mass%, Cu: 26%, Ti : 5%, Ag: Brazing using a brazing material of Ag alloy having the remaining composition, and further subjecting the upper and lower surfaces and outer periphery to a honing process to provide an ISO standard CNGA120408 insert shape according to the present invention.
  • Sintered body cutting tools hereinafter referred to as “the tool of the present invention”
  • comparative cBN sintered body cutting tools hereinafter referred to as “comparative example tools”
  • the average particle size of the cBN particles in the cBN sintered body of the present invention is 0.5 ⁇ m or less, and the content of the cBN particles in the cBN sintered body is 35 vol% or more and 80 vol% or less.
  • the binder phase 1.0 vol% or more and 20 vol% or less of Al compound is contained, the average particle size of the Al compound present in the binder phase is 300 nm or less, and the value of S N / S O ( (Area ratio) is 1.1 or more and 5 or less, so there is little generation and progress of cracks starting from Al compound particles, and local and excessive reaction in the bonded phase with cBN particles in the sintered body is suppressed.
  • the tools 1 to 15 of the present invention have a long tool life in cutting of high hardness steel in which the cutting edge becomes high temperature and a high load acts, and the cutting edge does not cause a fatal defect only by chipping. Exhibits excellent toughness and fracture resistance.
  • the comparative cutting tools 1 to 11 do not satisfy the conditions defined in the present invention for the cBN sintered body, it is clear that all of them cause fatal defects in a relatively short time and reach the lifetime. is there.
  • the cBN tool of the present invention since the cBN tool of the present invention has excellent fracture resistance, it can be applied not only to cutting hardened steel but also to cutting under various cutting conditions. In addition, it is possible to respond satisfactorily to labor saving, energy saving, and cost reduction of cutting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

cBN粒子と結合相とを含む焼結体を工具基体とするcBN焼結体切削工具において、前記cBN粒子の平均粒径は0.5μm以下であり、かつ、前記cBN粒子が前記焼結体に占める含有割合は35vol%以上80vol%以下であり、前記結合相中には、1.0vol%以上20vol%以下のAl化合物が含有され、結合相中に存在するAl化合物の平均粒径は300nm以下であり、Al化合物中に含有される酸素(O)含有量Sに対するAl化合物中に含有される窒素(N)含有量Sの比率(S/Sの値。ただし、面積比)は1.1以上5以下であるcBN焼結体切削工具。

Description

立方晶窒化硼素焼結体切削工具
 本願発明は、立方晶窒化硼素(以下、cBNで示す)を主成分として、これを超高圧、高温下にて焼結成形してなるcBN焼結体を工具基体としたcBN焼結体切削工具(以下、「cBN工具」と称する)に関し、強度や靭性にすぐれ、特に、合金鋼、軸受鋼等の高硬度鋼の切削加工において、耐欠損性にすぐれ、長期の使用に亘ってすぐれた切削性能を維持し得るcBN焼結体切削工具に関するものである。
 本願は、2016年5月23日に、日本に出願された特願2016-102676号に基づき優先権を主張し、その内容をここに援用する。
 従来、高硬度鋼の切削工具としては、cBN焼結体を工具基体としたcBN焼結体切削工具等が知られており、工具寿命の向上を目的として種々の提案がなされている。
 例えば、特許文献1には、結合材として、周期律表第4a族元素、第5a族元素、第6a族元素の窒化物、炭化物、硼化物、酸化物、およびこれらの固溶体からなる群の中から選択された少なくとも一種と、Zr、Si、Hf、Ge、W、Coの単体、化合物、および固溶体からなる群の中から選択された少なくとも1種と、Alの化合物とを含有するcBN焼結体において、W及び/又はCoの合計重量が1重量%未満であり、かつ、Si又はZrが0.01重量%以上0.5重量%未満であり、Si/(Si+W+Co)又はZr/(Zr+W+Co)が0.05以上1.0以下であり、さらに、Tiの化合物であるTiN、TiBの平均粒径が100nm以上400nm以下であるとともに、Alの化合物であるAlB、AlNの平均粒径が50nm以上150nm以下であることによって、強度、靭性を向上させたcBN焼結体が開示されている。
 また、例えば、特許文献2には、cBN焼結体がcBNと断熱相と結合相とを含有し、断熱相はAl、Si、Ti、およびZrからなる群より選択される1種以上の元素と、N、C、O、およびBからなる群より選択される1種以上の元素とからなる第1化合物を1種以上含み該第1化合物はcBN焼結体中に1質量%以上20質量%以下含まれ、かつ100nm未満の平均粒子径を有し、cBN焼結体は70W/m・K以下の熱伝導率であることにより、工具基体の熱伝導率の低下と工具基体の硬度の向上とを両立させたcBN焼結体工具が開示されている。
 また、例えば、特許文献3には、cBN焼結体に含まれるcBN含有量が80vol%~95vol%以下において、cBN以外の結合相がcBNとAlと周期律4a、5a、6a族遷移金属の酸化物のうちの少なくとも一種との反応により生成されるAlNとTiBとAlを主体とすることにより、cBN粒が結合相と強固に結合したcBN焼結体が開示されている。
日本国特許第5189504号公報(B) 日本国特開2011-189421号公報(A) 日本国特開平6-1666号公報(A)
 特許文献1には、結合材として、W及び/又はCo、Si又はZrを所定量含有した上で、特にSiによりTi化合物やAl化合物の粒成長を抑制し、TiN、TiBの平均粒径、AlB、AlNの平均粒径を所定範囲内とすることで、耐欠損性、耐摩耗性を改善したcBN焼結体が開示されている。この焼結体では、特許文献1の表1に示されるように、結合相には酸化物を含まない場合には効果ある。しかし、酸化物、特にAlの酸化物を含む場合、Siは不可避で混入する酸素とAl酸化物と反応し、AlとSiOからからなる化合物、例えば、ムライト(3Al・2SiO)を形成しやすくなる。また、Ti化合物やAl化合物の粒径制御が困難となる。さらに、結合相中に生じる粗大なAlとSiOからなる化合物が起点となって、クラックが発生・進展しやすく、cBN焼結体の靭性が低下する。
 また、特許文献2には、微粒のcBN粒を用いた場合、Al、Si、Ti、およびZrからなる群より選択される1種以上の元素と、N、C、O、およびBからなる群より選択される1種以上の元素とからなる第1化合物を断熱相とし、熱伝導率を70W/m・K以下とするcBN焼結体が示されている。この焼結体では、焼結合金などの切削において、切り屑の低延性により、被削材の温度が不十分な切削環境においては効果がある。しかし、焼結合金に比べて工具刃先が高温になる高硬度鋼の場合、刃先の温度上昇が高く、化学的な摩耗が進展しやすく、cBN焼結体の耐欠損性が低下する。
 また、特許文献3には、cBN含有量が80vol~95vol以下において、cBN以外の結合相がcBNとAlと周期律表第4a、5a、6a族遷移金属の酸化物のうちの少なくとも一種との反応により生成されるAlNとTiBとAlを主体とすることにより、cBN粒が結合相と強固に結合したcBN焼結体が示されている。この焼結体では、cBN粒と結合相とを強固に結合させるために、cBN粒がAlと酸化物と反応するようにしている。その結果、cBN粒に接するように反応生成物が生じる。cBN含有量が多い場合は、隣り合うcBN粒で囲まれた結合相の領域は狭く、cBN粒に比べて粒径の小さい反応生成物であるため影響は少ない。しかし、cBN含有量が少なくなると、隣り合うcBN粒で囲まれた結合相の領域は広くなるため、cBN粒に接するように生じる反応生成物の粒径は大きくなりやすくなる。この大きな反応生成物は、cBN焼結体を工具として使用するにあたり、工具表面のcBN粒子が脱落して生じる刃先の凹凸形状を起点とする欠損を生じる原因となる場合がある。また、チッピングを抑制するため、粒径の小さなcBN粒を用いる際には、cBN粒の大きさに対して影響が無視できない大きさの反応生成物となる。特に反応生成物の中でも硬さが低いAlNはクラックが粒内を伝播し易い。さらに、クラックの伝播を妨げる効果のあるcBN粒が微粒であると、cBN粒近傍に伝播してくるクラックは、cBN粒に接した大きなAlN粒へクラックが誘導されAlN粒内を伝播し易くなり、cBN粒のクラック進展抑制効果を低下させる。これにより、cBN焼結体の靭性は低下し、工具として使用した場合、耐欠損性が低下する。また、原料として周期律表第4a、5a、6a族遷移金属酸化物を用いる場合、cBN含有量が少なくなり、その上で、cBN焼結体中の結合相の占める割合が多くなると、焼結体中に占める周期律表第4a、5a、6a族遷移金属酸化物の量も多くなる。そうすると、cBN粒と接しない該酸化物が結合相内で反応する割合が高くなり、結合相中に酸化物が多く含まれる領域が増える。そのため、結合相を構成する成分の分散性が悪くなり、cBN焼結体の硬さや靭性を低下させ、結果として、工具として使用した場合、耐欠損性が低下する。
 そこで、本願発明が解決しようとする技術的課題、すなわち、本願発明の目的は、高負荷な切削条件が要求される高硬度鋼の切削加工を行った場合においても、工具刃先の欠けや欠損が生じにくく、長期に亘って、すぐれた切削性能を維持するcBN焼結体切削工具を提供することにある。
 本願発明者らは、前記課題を解決するため、cBN工具を構成するcBN焼結体の結合相組織に着目し、鋭意研究したところ、微粒のcBN原料粉末を用いたcBN焼結体であって、cBN焼結体におけるcBN粒子の平均粒径を0.5μm以下とし、結合相中に含有されるAl化合物を1.0vol%以上20vol%以下とし、かつ、結合相中に形成されるAl化合物(即ち、Al化合物相からなる粒子)の平均粒径を300nm以下とし、さらに、組織断面の観察より得られる元素マッピング像から算出するAl化合物(相)中の酸素(O)含有量Sに対するAl化合物(相)中のN含有量Sの比率S/Sの値(原子比)を1.1以上5以下とすることにより、焼結体中の結合相内のAl化合物(相)において硬さや熱膨張率が異なるAlの窒化物の量とAlの酸化物の量の割合を制御し、結合相中のAlの化合物の高分散による結合相中でのクラックの細かな伝播の誘導を強くすることで、靭性の高いcBN焼結体が得ることができることを見出した。
 したがって、前記cBN焼結体を工具基体とした用いたcBN工具は、刃先に高負荷および高温が加わる高硬度鋼の切削時において靱性にすぐれ、欠損が発生しにくく、その結果、長期の使用に亘ってすぐれた切削性能を発揮することを見出したのである。
 そして、本願発明者らは、前記靱性、耐欠損性にすぐれたcBN焼結体を得るためには、結合相中のAl化合物の粒径とともに、Alの窒化物とAlの酸化物の割合の制御が重要であることを見出した。
 つまり、結合相の主成分がセラミックスであるcBN焼結体の製造に際し、従来は、cBN焼結体原料粉末に主結合相としてのTi化合物とcBN粉末以外にcBN粒との反応性に富むTiやAlを用いることで、cBNと結合相との付着力を強めるかわりに、AlNやTiBやAlといった反応生成物がcBN粒に接するように不可避的に生じていた。
 この反応生成物の中でも硬さが低く熱膨張率の小さいAlNは、cBNとcBNが強固にネットワークをつくる主結合相が金属結合相の場合や主結合相がセラミックスの場合であっても、cBN含有量が80vol%以上であって隣り合うcBN粒で囲まれた結合相領域が狭い条件下では、硬さの低いAlNの粒径は大きくならない。そのため、これを工具として用いた時、表面に露出したAlN粒が起点として生じるクラックや進展してきたクラックがAlN粒内部を伝播し進行する場合、近傍のcBN粒によって伝搬が妨げられる可能性が高く、cBN焼結体の靭性への影響は小さかった。しかし、結合相の主成分がセラミックスでcBN含有量が80vol%より少なくなると、隣り合うcBN粒で囲まれた結合相の領域は広くなる。そのため、cBN粒に接して生じるAlNの粒径は大きく生成しやすく、粒径の小さなcBN粒を用いる際、cBN粒の大きさに対して影響が無視できない大きさとなり、伝播してきたクラックはAlN粒内を伝播し進展し易くなる。さらに、クラックの伝播を妨げる効果のあるcBN粒が微粒であると、cBN粒近傍に伝播してくるクラックは、cBN粒に接した大きなAlN粒内へクラックが誘導され、cBN粒のクラック進展抑制効果を低下させるため、cBN焼結体の靭性に悪影響を及ぼすことになる。
 そこで、本願発明者らは、微粒のcBN粒原料を用いる場合、あらかじめcBN粒表面に、例えば、ALD(Atomic Layer Deposition。真空チャンバ内の基材に、原料化合物の分子を一層ごとに反応させ、Arや窒素によるパージを繰り返し行うことで成膜する方法で、CVD法の一種である。)法等により、極めて薄い膜厚のAlN膜を成膜し、その後、これを真空下で加熱する前処理を施したcBN原料を用い、その前処理を施したcBN原料と結合相形成成分と共にボールミル混合を行い、結合相成分中へAlNをcBN粒から剥がしながら混合させ、結合相中へAlNを細かく高分散することにより、硬さの低いAlNにて結合相中を伝播するクラックの経路を細かく誘導することができることを見出した。さらに、結合相成分にAlの化合物でも硬さと熱膨張率が窒化物と大きく異なる酸化物を細かく高分散し、加えて、これら結合相中のAlの窒化物と酸化物の比率を制御することにより、結合相内のクラックの進展経路の増大と硬さの低いAlの窒化物へのクラック進展を誘導させ、靭性の高いcBN焼結体が得ることを見出したのである。
 さらに、cBN粒子へこのような前処理を施すことにより、cBN粒子表面に付着・吸着している酸素等の不純物成分をAlN膜中に拡散させ、AlN膜中に捕捉させるため、cBN表面に吸着している酸素等の不純物成分が除去された表面清浄度の高いcBN粒子となることを見出した。そして、その結果、cBN粒と結合相との付着強度を向上させ、靭性の高いcBN焼結体が得ることができることを見出したのである。
 このcBN焼結体から作製したcBN工具は、刃先に高負荷および高温が加わる高硬度鋼の切削加工において、すぐれた靱性と耐欠損性を発揮する。
 本願発明は、前記知見に基づいてなされたものであって、以下の態様を有する。
 (1)立方晶窒化硼素粒子と結合相とを含む焼結体を工具基体とする立方晶窒化硼素焼結体切削工具において、
 (a)前記立方晶窒化硼素粒子の平均粒径は0.5μm以下であり、かつ、前記立方晶窒化硼素粒子が前記焼結体に占める含有割合は35vol%以上80vol%以下であり、
 (b)前記結合相中には、1.0vol%以上20vol%以下のAl化合物が含有され、結合相中に存在するAl化合物の平均粒径は300nm以下であり、Al化合物中に含有される酸素(O)含有量Sに対するAl化合物中に含有される窒素(N)含有量Sの比率(S/Sの値。ただし、原子比)は1.1以上5以下であることを特徴とする立方晶窒化硼素焼結体切削工具。 (2)前記立方晶窒化硼素粒子が前記焼結体に占める含有割合は45vol%以上80vol%以下であることを特徴とする前記(1)に記載の立方晶窒化硼素焼結体切削工具。
 (3)前記立方晶窒化硼素粒子が前記焼結体に占める含有割合は70vol%以上80vol%以下であることを特徴とする前記(1)に記載の立方晶窒化硼素焼結体切削工具。
 (4)前記立方晶窒化硼素粒子の平均粒径は0.05μm以上であることを特徴とする前記(1)から(3)のいずれか一つに記載の立方晶窒化硼素焼結体切削工具。
 (5)結合相中に存在するAl化合物の平均粒径は10nm以上であることを特徴とする前記(1)から(4)のいずれか一つに記載の立方晶窒化硼素焼結体切削工具。
 本願発明は、cBN粒子と結合相とを含む焼結体を工具基体とするcBN焼結体切削工具において、cBN粒子の平均粒径は0.5μm以下であり、かつ、cBN焼結体に占めるcBN粒子の含有割合は35vol%以上80vol%以下であり、結合相中には、1vol%以上20vol%以下のAl化合物が含有され、結合相中に存在するAl化合物の平均粒径は300nm以下であり、Al化合物中に含有される酸素(O)含有量Sに対するAl化合物中に含有される窒素(N)含有量Sの比率S/Sの値(面積比)は1.1以上5以下であって、cBN焼結体中の酸素(O)含有量の低減が図られ、cBN焼結体中に形成されるAl化合物の平均粒径を小さくすることができるため、焼結体中のcBN粒子と結合相における局所的かつ過剰な反応を抑制し、cBN粒子と結合相との界面付着強度を向上させ、靭性の高いcBN焼結体が得ることができる。
 その結果、このcBN焼結体から作製した本願発明の一態様のcBN工具(以下、「本願発明のcBN工具」と称する)は、刃先に高負荷および高温が加わる高硬度鋼の切削加工において、すぐれた靱性、耐欠損性、耐摩耗性を発揮することができる。
本願発明のcBN焼結体の断面組織をSEMにて観察して得た二次電子像から、cBN粒子部分を抜き出した2値化像の一例を示す。2値化像中で黒の部分はcBN粒子に相当する。 本願発明のcBN焼結体断面のAESによるAl化合物中に含有される窒素(N)の元素マッピング画像(Alマッピング像と窒素(N)が重なる部分)の一例を示す。すなわち、AESのAl元素と窒素元素が重なる部位(黒の部分)のマッピング像である。図2に示されるマッピング像の全面積に対する黒の部分の面積比率は8.30area%である。 本願発明のcBN焼結体断面のAESによるAl化合物中に含有される酸素(O)の元素マッピング画像(Alマッピング像と酸素(O)が重なる部分)の一例を示す。すなわち、AESのAl元素と酸素元素が重なる部位(黒の部分)のマッピング像である。図3に示されるマッピング像の全面積に対する黒の部分の面積比率は3.67area%である。
 本願発明を実施するための形態の一部として、本願発明の構成について、以下に説明する。
cBN粒子の平均粒径:
 本願発明cBN工具のcBN焼結体におけるcBN粒子の平均粒径は、0.5μm以下とするが、これは、cBN焼結体におけるcBN粒子と結合相との界面を増やすことによって、cBN焼結体の靱性を高め、cBN工具の耐欠損性を向上させるためである。
 本願発明では、工具使用中に工具表面のcBN粒子が脱落して生じる刃先の凹凸形状を起点とする欠損、チッピングを抑制するだけでなく、工具使用中に刃先に加わる応力により生じるcBN粒子と結合相との界面から進展するクラック、あるいはcBN粒子が割れて進展するクラックの伝播を抑制することができ、その結果、cBN工具の耐欠損性を高めることができる。
 したがって、本願発明cBN工具のcBN焼結体におけるcBN粒子の平均粒径は、0.5μm以下の範囲とするが、好ましくは、0.05~0.35μmの範囲とする。
 ここで、cBN粒子の平均粒径は、以下のとおりにして求めることができる。
cBN焼結体の断面組織をSEMにてcBN焼結体組織を観察し、二次電子像を得る。得られた画像内のcBN粒子の部分を図1に示すように画像処理にて抜き出し、画像解析より求めた各粒子の最大長を基に平均粒径を算出する
画像内のcBN粒子の部分を画像処理にて抜き出すにあたり、cBN粒子と結合相とを明確に判断するため、画像は0を黒、255を白の256階調のモノクロで表示し、cBN粒子部分の画素値と結合相部分の画素値の比が2以上となる画素値の像を用いてcBN粒が黒となるように2値化処理を行う。
 cBN粒子部分や結合相部分の画素値を求めるための領域として、0.5μm×0.5μm程度の領域内の平均値より求め、少なくとも同一画像内から異なる3個所より求めた平均の値を各々のコントラストとすることが望ましい。
 なお、2値化処理後はcBN粒同士が接触していると考えられる部分を切り離すような処理、例えば画像処理操作の1つであるwatershed(ウォーターシェッド)を用いて接触していると思われるcBN粒同士を分離する。
 2値化処理後に得られた画像内のcBN粒にあたる部分(黒の部分)を粒子解析し、求めた最大長を各粒子の最大長とし、それを各粒子の直径とする。最大長を求める粒子解析としては、例えば1つのcBN粒子に対してフェレ径を算出することより得られる2つの長さから大きい長さの値を最大長とし、その値を各粒子の直径とする。この直径より計算し求めた各粒子の体積を基に縦軸を体積百分率[%]、横軸を直径[μm]としてグラフを描画させ、体積百分率が50%の値を取得した1画像におけるcBN粒子の平均粒径とし、SEMで得られた倍率20、000の二次電子像の少なくとも3画像を処理し求めた値の平均値をcBNの平均粒径[μm]とした。粒子解析を行う際には、あらかじめSEMにより分かっているスケールの値を用いて、1ピクセル当たりの長さ(μm)を設定しておく。画像処理に用いる観察領域として、cBN粒子の平均粒径が0.3μmの場合、5.0μm×3.0μm程度の視野領域が望ましい。
cBN焼結体に占めるcBN粒子の含有割合:
 cBN焼結体は、通常、硬質相成分としてのcBN粒子と結合相成分からなるが、本願発明では、cBN焼結体に占めるcBN粒子の含有割合が35vol%未満では、焼結体中に硬質物質が少ないことで、cBN工具としての硬さが十分ではない。一方、80vol%以上となると、相対的に焼結体中の結合相の割合が少なくなり、結合相が奏する靱性向上の効果が十分に得られない。そのため、本願発明のcBN焼結体が所定の硬さと所定の靱性を備えるためには、cBN焼結体に占めるcBN粒子の含有割合は、35vol%以上80vol%以下の範囲とする。
 より好ましいcBN焼結体に占めるcBN粒子の含有割合は、45vol%以上80vol%以下である。さらにより好ましいcBN焼結体に占めるcBN粒子の含有割合は、70vol%以上80vol%以下である。
 cBN焼結体に占めるcBN粒子の含有割合は、cBN焼結体の断面組織をSEMによって観察し、得られた二次電子像内のcBN粒子の部分を画像処理によって抜き出し、画像解析によってcBN粒子が占める面積を算出し、1画像内のcBN粒子が占める割合を求め、少なくとも3画像を処理し求めた値の平均値をcBN粒子の含有割合として求める。画像処理に用いる観察領域として、例えば、cBN粒子の平均粒径0.3μmの場合、5.0μm×3.0μm程度の視野領域が望ましい。
cBN焼結体の結合相中のAl化合物の含有量:
 cBN焼結体の結合相中に含有されるAl化合物(例えば、AlとAlNの二種、あるいはこれらに加えてさらにAlON、SiAlONおよびAlBのうちの一種または二種以上)が1vol%未満であるとcBN粒と結合相の反応が少なく、cBNと結合相との界面付着強度が十分に得られないため、焼結体の強度が低下し、一方、20vol%を超えると結合相に含まれるAl化合物量が過剰になるため、焼結体の硬さが低下するとともに耐欠損性が低下する。
 したがって、cBN焼結体の結合相中に含有されるAl化合物は1vol%以上20vol%以下とする。
 cBN焼結体の結合相中のAl化合物の含有量は、結合相に占めるAl化合物(相)の含有割合である。
結合相中のAl化合物の平均粒径:
 結合相中に存在するAl化合物(例えば、AlとAlNの二種、あるいはこれらに加えてさらにAlON、SiAlONおよびAlBのうちの一種または二種以上)の平均粒径が、300nmを超えると、結合相中のAl化合物粒子を起点とするクラックの発生や進展を生じやすくなるため、cBN焼結体の靱性が低下する。
 したがって、結合相中に存在するAl化合物の平均粒径は300nm以下とするが、好ましくは、150nm以下である。
 なお、Al化合物の粒径が10nm未満になると測定限界を超えること、また、Al化合物の粒径が10nm未満であればcBN焼結体の特性に大きな悪影響を及ぼさないことから、平均粒径を求めるために本願発明で測定するAl化合物の粒径の最小値は10nmとした。
 Al化合物の平均粒径測定のため、cBN焼結体の断面組織をオージェ電子分光法(Auger Electron Spectroscopy:AES)を用いて、Alマッピング像を得る。得られた画像内のAl化合物の部分を画像処理にて抜き出し、画像解析より求めた各粒子の最大長を基に平均粒径を算出する。画像解析としては、例えば、各粒子のフェレ径を求めることで最大長を求めることができる。
 なお、Al化合物同士が接触していると考えられる部分を切り離すような処理、例えば画像処理操作の1つであるwatershed(ウォーターシェッド)を用いて接触していると思われるAl化合物同士を分離する。
 Al化合物の平均粒径の算出は、まずAlマッピング像より求めた各粒子の最大長を、各粒子の直径とする。この直径より計算し求めた各粒子の体積を基に縦軸を体積百分率[%]、横軸を直径[μm]としてグラフを描画させ、体積百分率が50%の値を取得した1画像におけるAl化合物の平均粒径とし、AESで得られた倍率20、000のAlマッピング像の少なくとも3画像を処理し求めた値の平均値をAl化合物の平均粒径[μm]とした。粒子解析を行う際には、あらかじめAESにより分かっているスケールの値を用いて、1ピクセル当たりの長さ(μm)を設定しておく。画像処理に用いる観察領域としては、5.0μm×3.0μm程度の視野領域が望ましい。
Al化合物中に含有される酸素(O)含有量Sに対するAl化合物中に含有される窒素(N)含有量Sの比率(S/Sの値。ただし、面積比):
 Al化合物に含有される酸素(O)含有量に対するAl化合物中に含有される窒素(N)含有量の比率(S/Sの値。ただし、面積比)が1.1未満であると、伝播するクラックを誘導するAlの窒化物が結合相中を占める割合が少なくなり、クラックは結合相中を細かく伝播せず、直線的に進展し、その結果、cBN焼結体の靭性が低下する。一方、S/Sの値が5を超えると、cBN焼結体中のAl化合物量が増え、硬さ低下により耐欠損性が低下する。
 したがって、Al化合物中に含有される酸素(O)含有量Sに対するAl化合物中に含有される窒素(N)含有量の比率(S/Sの値。ただし、面積比)は1.1以上5以下とする。好ましくは、2以上4.5以下である。
Al化合物中に含有される酸素(O)含有量Sに対するAl化合物中に含有される窒素(N)含有量の比率(S/Sの値。面積比)の測定方法:
 Al化合物中に含有される酸素(O)含有量Sに対するAl化合物中に含有される窒素(N)含有量の比率S/Sの値の測定のため、作製したcBN焼結体の断面組織をオージェ電子分光法(Auger Electron Spectroscopy:AES)を用いて観察し、Alのマッピング像と窒素(N)のマッピング像と酸素(O)マッピング像を得る。得られた各画像においてAlマッピング像と窒素(N)が重なる部分、Alマッピング像と酸素(O)が重なる部分を図2や図3に示すように画像処理にて抜き出し、画像解析によって面積を算出し、1画像内で各々が占める割合を求める。求めた値を用いて、Al化合物中に含有される酸素(O)含有量SO1に対するAl化合物中に含有される窒素(N)含有量SN1の比率SN1/SO1の値を算出する。少なくとも3画像を処理し求めた値の平均値をAl化合物中に含有される酸素(O)含有量Sに対するAl化合物中に含有される窒素(N)含有量Sの比率S/S(ただし、面積比)として求める。画像処理に用いる観察領域として、5.0μm×3.0μm程度の視野領域が望ましい。
 以下に、本願発明のcBN焼結体切削工具を実施例に基づいて具体的に説明する。
 本実施例のcBN焼結体の製造では、cBN原料としては、cBN粒子表面に前処理を施したcBN粒子を使用した。
 まず、例えば、ALD法において、cBN粒子表面にAlN膜を成膜した。成膜にあたっては、流動層炉内にcBN粒子を装入し、炉内を350℃程度に昇温し、Ar+Al(CHガス流入工程、Arガスパージ工程、Ar+NHガス流入工程、Arガスパージ工程を1サイクルとして、このサイクルを所望のAlN膜厚になるまで繰り返し行った。例えば、60分かけて成膜することにより、膜厚10nm程度のAlN膜を、cBN粒子表面に被覆形成することができる。
 次いで、所定の厚さのAlN膜をその表面に形成したcBN粒子を、真空下で約1000℃にて加熱して、cBN表面の酸素等の不純物元素をAlN膜中に拡散させ、AlN膜中に捕捉した。
 このような熱処理を施すことにより、この後のボールミル混合により、不純物元素が捕捉された前記AlN膜をcBN表面から剥離させ、cBN表面に吸着している酸素等の不純物成分が除去された表面清浄度の高いcBN粒子とすることができる。
 表1に示すように、AlN膜の膜厚が10nmと35nmのcBN粒を各々準備し、真空下で約1000℃にて加熱したAlN膜付きcBN粉とした。なお、膜厚10nmについては熱処理を約1000℃以外に、約400℃で処理し表面清浄度の異なるAlN膜付きcBN粉を用意した。
 上記のように前処理した平均粒径0.5μm以下のcBN粒子粉末と、0.3~0.9μmの範囲内の平均粒径を有するTiN粉末、TiC粉末、Al粉末、TiAl粉末、Al粉末、Si粉末を結合相形成用原料粉末として用意し、これら原料粉末の中から選ばれたいくつかの原料粉末とcBN粒子粉末の合量を100vol%としたときのcBN粒子粉末の含有割合が35~80vol%となるように配合し、湿式混合し、乾燥した。
 その後、油圧プレスにて成形圧1MPaで直径:50mm×厚さ:1.5mmの寸法にプレス成形し、ついでこの成形体を、圧力:1Paの真空雰囲気中、1000~1300℃の範囲内の所定温度に30~60分間保持して熱処理した。
 ついで、上記熱処理を施した成形体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:3~10GPa、例えば5GPa、温度:1400℃、保持時間:30分間の条件で超高圧高温焼結することにより、表2に示す本願発明のcBN焼結体(以下、「本発明焼結体」という)1~15を作製した。
 なお、成形体に施す熱処理は、湿式混合時の溶媒を除去することが主な目的である。
 また、上記作製工程は超高圧焼結までの工程において原料粉末の酸化を防止することが好ましく、具体的には非酸化性の保護雰囲気中での取り扱いを実施することが好ましい。
 比較のため、表1に示す前処理を施した平均粒径0.5μm以下のcBN粒子粉末、平均粒径が約1.5μmと本願発明で規定する条件外のcBN粒子粉末、結合相形成用原料粉末である0.3~0.9μmの範囲内の平均粒径を有するTiN粉末、TiC粉末、Al粉末、TiAl粉末、Al粉末、AlN粉末、Si粉末と、熱処理を施していない平均粒径0.5μm以下のcBN粒子粉末、結合相形成用原料粉末である0.3~0.9μmの範囲内の平均粒径を有するTiN粉末、TiC粉末、Al粉末、TiAl粉末、Al粉末、AlN粉末、Si粉末を用意し、これら原料粉末の中から選ばれたいくつかの原料粉末とcBN粒子粉末の合量を100vol%としたときのcBN粒子粉末の含有割合が21~85vol%となるように配合し、湿式混合し、乾燥した。
 その後、本発明焼結体1~15と同様な条件で成形体を作製し、熱処理し、この成形体を、本発明焼結体1~15と同様な条件で超高圧高温焼結することにより、表3に示す比較例のcBN焼結体(以下、「比較例焼結体」という)1~11を作製した。
 比較例焼結体1~5は、熱処理を施さなかった原料粉を使用したcBN焼結体、比較例焼結体6と11は、cBN含有量が本願発明で規定する条件外のcBN焼結体、比較例焼結体7と9は、原料中のAlやAl化合物の占める割合を調節しcBN焼結体とした後に含まれるAl化合物が本願発明で規定する条件外のcBN焼結体、比較例焼結体8は、cBN粒径が本願発明で規定する条件外のcBN焼結体、比較例焼結体10は、原料中のAlNの占める割合を増やしcBN焼結体とした後の結合相中のAl化合物中に含有される酸素(O)含有量Sに対する結合相中のAl化合物中に含有される窒素(N)含有量Sの比率が本願発明で規定する条件外のcBN焼結体である。
Figure JPOXMLDOC01-appb-T000001
 前記本発明焼結体1~15および比較例焼結体1~11について、その断面を研磨し、オージェ電子分光法(Auger Electron Spectroscopy:AES)を用いて、Alマッピング像と窒素(N)マッピング像と酸素(O)マッピング像を取得することにより、cBN焼結体の結合相に占めるAlの含有割合、結合相中のAl化合物の平均粒径、Al化合物中の酸素(O)含有量Sに対するAl化合物中に含有される窒素(N)含有量Sの比率S/Sの値(面積比)を測定した。
 表2、表3にその結果を示す。
 なお、cBN焼結体の結合相組成は、cBN焼結体のXRD(X-ray Diffraction)分析により測定した。
 また、cBN焼結体におけるcBN粒子の平均粒径、cBN粒子の含有割合については、cBN焼結体の断面組織をSEMにて観察し、二次電子像を得る。得られた画像内のcBN粒子の部分を図1に示すように画像処理にて二値化して抜き出し、画像解析によって各cBN粒子の最大長を求め、それを各cBN粒子の直径とし、この直径より計算し求めた各粒子の容積を基に縦軸を積算容積割合(容積%)、横軸を直径(μm)としてグラフを描画させ、積算容積割合が50容積%の値となる直径をcBN粒子の粒径とし、SEMで得られた倍率20、000の二次電子像の少なくとも3画像を処理し求めた値の平均値をcBN粒子の平均粒径(μm)とした。
 なお、画像処理に用いる観察領域として、cBN粒子の平均粒径が0.3μmの場合、5.0μm×3.0μm程度の視野領域が望ましい。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 ついで、前記本発明焼結体1~15および比較例焼結体1~11の焼結体上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて分割し、さらに、Co:5質量%、TaC:5質量%、WC:残りの組成およびISO規格CNGA120408の形状をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、さらに上下面および外周研磨、ホーニング加工を施すことによりISO規格CNGA120408のインサート形状をもった本願発明のcBN焼結体切削工具(以下、「本発明工具」という)1~15および比較例のcBN焼結体切削工具(以下、「比較例工具」という)1~11をそれぞれ作製した。
 つぎに、前記各種の切削工具を、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明切削工具1~15、比較例工具1~11について、以下に示す切削条件で断続切削加工試験を実施した。
 被削材:JIS・SCr420の浸炭焼入れ材(硬さ:HRC61)の長さ方向等間隔8本縦溝入り丸棒、
 切削速度:200 m/min.、
 切り込み:0.10 mm、
 送り:0.10 mm/rev.、
 条件:乾式
 切削工具の刃先がチッピングあるいは欠損に至るまでの断続回数を工具寿命とし、断続回数500回毎に刃先を観察し、刃先の欠損有無を確認した。
 表4に、試験結果を示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示される結果から、本願発明のcBN焼結体中のcBN粒子の平均粒径は0.5μm以下の微粒で、cBN焼結体に占めるcBN粒子の含有割合は35vol%以上80vol%以下であり、結合相中には、1.0vol%以上20vol%以下のAl化合物が含有され、結合相中に存在するAl化合物の平均粒径は300nm以下であり、S/Sの値(面積比)は1.1以上5以下であることから、Al化合物粒子を起点とするクラックの発生や進展が少なく、また焼結体中のcBN粒子と結合相における局所的かつ過剰な反応が抑制され酸化物が少ないため、cBN粒子と結合相との界面付着強度が向上し、靭性にすぐれる。
 したがって、本発明工具1~15は、刃先が高温になり、また、高負荷が作用する高硬度鋼の切削加工において、いずれも長寿命で、かつ刃先はチッピングのみで致命的な欠損を生じず、すぐれた靱性、耐欠損性を発揮する。
 これに対して、比較切削工具1~11は、cBN焼結体が本願発明で規定する条件を満たしていないため、いずれも比較的短時間で致命的な欠損を生じ寿命に至ることが明らかである。
 前述のように、本願発明のcBN工具は、耐欠損性にすぐれることから、高硬度鋼の切削はもちろんのこと、さまざまな切削条件の切削に適用可能であり、切削加工装置の高性能化ならびに切削加工の省力化および省エネ化、低コスト化に十分満足に対応できる。

Claims (5)

  1.  立方晶窒化硼素粒子と結合相とを含む焼結体を工具基体とする立方晶窒化硼素焼結体切削工具において、
     (a)前記立方晶窒化硼素粒子の平均粒径は0.5μm以下であり、かつ、前記立方晶窒化硼素粒子が前記焼結体に占める含有割合は35vol%以上80vol%以下であり、
     (b)前記結合相中には、1.0vol%以上20vol%以下のAl化合物が含有され、結合相中に存在するAl化合物の平均粒径は300nm以下であり、Al化合物中に含有される酸素O含有量Sに対するAl化合物中に含有される窒素N含有量Sの面積比としての比率S/Sの値は1.1以上5以下であることを特徴とする立方晶窒化硼素焼結体切削工具。
  2.  前記立方晶窒化硼素粒子が前記焼結体に占める含有割合は45vol%以上80vol%以下であることを特徴とする請求項1に記載の立方晶窒化硼素焼結体切削工具。
  3.  前記立方晶窒化硼素粒子が前記焼結体に占める含有割合は70vol%以上80vol%以下であることを特徴とする請求項1に記載の立方晶窒化硼素焼結体切削工具。
  4.  前記立方晶窒化硼素粒子の平均粒径は0.05μm以上0.35μm以下であることを特徴とする請求項1から請求項3のいずれか一項に記載の立方晶窒化硼素焼結体切削工具。
  5.  結合相中に存在するAl化合物の平均粒径は10nm以上であることを特徴とする請求項1から請求項4のいずれか一項に記載の立方晶窒化硼素焼結体切削工具。
PCT/JP2017/019010 2016-05-23 2017-05-22 立方晶窒化硼素焼結体切削工具 WO2017204152A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780027452.0A CN109070236B (zh) 2016-05-23 2017-05-22 立方晶氮化硼烧结体切削工具
US16/303,540 US11130713B2 (en) 2016-05-23 2017-05-22 Cubic boron nitride sintered material cutting tool
JP2017540291A JP6826326B2 (ja) 2016-05-23 2017-05-22 立方晶窒化硼素焼結体切削工具
EP17802744.7A EP3466573A4 (en) 2016-05-23 2017-05-22 TOOL FOR CUTTING A SINTERED CUBIC BORNITRIDE BODY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016102676 2016-05-23
JP2016-102676 2016-05-23

Publications (1)

Publication Number Publication Date
WO2017204152A1 true WO2017204152A1 (ja) 2017-11-30

Family

ID=60411284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019010 WO2017204152A1 (ja) 2016-05-23 2017-05-22 立方晶窒化硼素焼結体切削工具

Country Status (5)

Country Link
US (1) US11130713B2 (ja)
EP (1) EP3466573A4 (ja)
JP (1) JP6826326B2 (ja)
CN (1) CN109070236B (ja)
WO (1) WO2017204152A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001990A (ja) * 2018-07-02 2020-01-09 三菱マテリアル株式会社 cBN焼結体および切削工具
JP2020050559A (ja) * 2018-09-28 2020-04-02 三菱マテリアル株式会社 cBN焼結体および切削工具
JP2020059621A (ja) * 2018-10-09 2020-04-16 三菱マテリアル株式会社 立方晶窒化ほう素基焼結体および切削工具

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111057925B (zh) * 2019-12-31 2021-08-20 富耐克超硬材料股份有限公司 聚晶金刚石立方氮化硼复合片及其制备方法
WO2022091257A1 (ja) * 2020-10-28 2022-05-05 住友電工ハードメタル株式会社 立方晶窒化ホウ素焼結体、立方晶窒化ホウ素焼結体を備える工具及び立方晶窒化ホウ素焼結体の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060320A1 (ja) * 2013-10-22 2015-04-30 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
WO2015147249A1 (ja) * 2014-03-28 2015-10-01 三菱マテリアル株式会社 立方晶窒化硼素焼結体切削工具
WO2016084929A1 (ja) * 2014-11-27 2016-06-02 三菱マテリアル株式会社 立方晶窒化ほう素基焼結体および立方晶窒化ほう素基焼結体製切削工具

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061666A (ja) 1992-06-18 1994-01-11 Kyocera Corp 立方晶窒化硼素質焼結体およびその製造方法
JP2000247746A (ja) * 1999-02-26 2000-09-12 Kyocera Corp 立方晶窒化硼素質焼結体切削工具
US20080016785A1 (en) 2005-04-14 2008-01-24 Satoru Kukino Cbn Sintered Body and Cutting Tool Using Same
EP2108632B1 (en) 2007-01-30 2017-05-10 Sumitomo Electric Hardmetal Corp. Sintered composite material
JP2011189421A (ja) * 2010-03-12 2011-09-29 Sumitomo Electric Hardmetal Corp 立方晶窒化硼素焼結体工具
JP5305056B1 (ja) 2012-05-16 2013-10-02 三菱マテリアル株式会社 立方晶窒化ほう素基焼結体製切削工具
JP5988430B2 (ja) 2012-10-26 2016-09-07 住友電工ハードメタル株式会社 立方晶窒化ホウ素焼結体およびその製造方法
JP6032409B2 (ja) 2012-10-26 2016-11-30 三菱マテリアル株式会社 立方晶窒化ほう素基超高圧焼結体を工具基体とする切削工具、表面被覆切削工具
GB201307800D0 (en) 2013-04-30 2013-06-12 Element Six Ltd PCBN material, method for making same, tools comprising same and method of using same
CN104858458B (zh) 2014-02-26 2018-09-14 三菱综合材料株式会社 耐异常损伤性和耐磨损性优异的表面包覆切削工具
JP6853951B2 (ja) * 2017-03-01 2021-04-07 三菱マテリアル株式会社 cBN焼結体および切削工具
JP7015979B2 (ja) * 2018-03-14 2022-02-04 三菱マテリアル株式会社 cBN焼結体および切削工具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060320A1 (ja) * 2013-10-22 2015-04-30 株式会社タンガロイ 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
WO2015147249A1 (ja) * 2014-03-28 2015-10-01 三菱マテリアル株式会社 立方晶窒化硼素焼結体切削工具
WO2016084929A1 (ja) * 2014-11-27 2016-06-02 三菱マテリアル株式会社 立方晶窒化ほう素基焼結体および立方晶窒化ほう素基焼結体製切削工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3466573A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001990A (ja) * 2018-07-02 2020-01-09 三菱マテリアル株式会社 cBN焼結体および切削工具
JP7137119B2 (ja) 2018-07-02 2022-09-14 三菱マテリアル株式会社 cBN焼結体および切削工具
JP2020050559A (ja) * 2018-09-28 2020-04-02 三菱マテリアル株式会社 cBN焼結体および切削工具
JP7096977B2 (ja) 2018-09-28 2022-07-07 三菱マテリアル株式会社 cBN焼結体および切削工具
JP2020059621A (ja) * 2018-10-09 2020-04-16 三菱マテリアル株式会社 立方晶窒化ほう素基焼結体および切削工具
JP7161670B2 (ja) 2018-10-09 2022-10-27 三菱マテリアル株式会社 立方晶窒化ほう素基焼結体および切削工具

Also Published As

Publication number Publication date
US20200317584A1 (en) 2020-10-08
US11130713B2 (en) 2021-09-28
JP6826326B2 (ja) 2021-02-03
CN109070236B (zh) 2020-07-03
EP3466573A1 (en) 2019-04-10
CN109070236A (zh) 2018-12-21
JPWO2017204152A1 (ja) 2019-05-16
EP3466573A4 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
WO2017204152A1 (ja) 立方晶窒化硼素焼結体切削工具
JP5305056B1 (ja) 立方晶窒化ほう素基焼結体製切削工具
JP6637664B2 (ja) 立方晶窒化硼素焼結体切削工具
JP5614460B2 (ja) cBN焼結体工具および被覆cBN焼結体工具
JP6343888B2 (ja) 耐欠損性にすぐれた立方晶窒化硼素焼結体切削工具
EP2752265B1 (en) Cutting tool made of cubic boron nitride-based sintered material
KR102503602B1 (ko) 입방정 질화붕소기 소결체 및 입방정 질화붕소기 소결체제 절삭 공구
JP6032409B2 (ja) 立方晶窒化ほう素基超高圧焼結体を工具基体とする切削工具、表面被覆切削工具
JP6575858B2 (ja) 耐欠損性にすぐれた立方晶窒化硼素焼結体切削工具
JP2011212832A (ja) 立方晶窒化ほう素基超高圧焼結材料製切削工具
JP2009067637A (ja) 立方晶窒化硼素焼結体及びその製造方法
JP6198142B2 (ja) 立方晶窒化ホウ素基超高圧焼結材料製切削工具
JP2007084382A (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体、並びにそれらからなる焼入鋼用切削工具
JP6098882B2 (ja) 耐欠損性にすぐれた立方晶窒化硼素焼結体切削工具
JP6968341B2 (ja) 微細構造組織を有する立方晶窒化ほう素基焼結体および切削工具
US8741797B2 (en) Composite body including a nitride material, a carbide material, and an amorphous phase material
JP2004026555A (ja) 立方晶窒化ホウ素含有焼結体およびその製造方法
JP5804448B2 (ja) 立方晶窒化ほう素基超高圧焼結体およびこれを工具基体とする切削工具、表面被覆切削工具
JP7096977B2 (ja) cBN焼結体および切削工具
JP2010228088A (ja) 表面被覆切削工具
JP2005248309A (ja) 超硬合金および被覆超硬合金
JP2020001990A (ja) cBN焼結体および切削工具
JP2019107768A (ja) 立方晶窒化硼素焼結体切削工具
JP2009114469A (ja) Wc基超硬合金及び硬質皮膜被覆部材
JP2001247369A (ja) 切削工具およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017540291

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017802744

Country of ref document: EP

Effective date: 20190102