WO2014156625A1 - 立方晶窒化ホウ素焼結体の製造方法および立方晶窒化ホウ素焼結体 - Google Patents

立方晶窒化ホウ素焼結体の製造方法および立方晶窒化ホウ素焼結体 Download PDF

Info

Publication number
WO2014156625A1
WO2014156625A1 PCT/JP2014/056404 JP2014056404W WO2014156625A1 WO 2014156625 A1 WO2014156625 A1 WO 2014156625A1 JP 2014056404 W JP2014056404 W JP 2014056404W WO 2014156625 A1 WO2014156625 A1 WO 2014156625A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
boron nitride
cubic boron
particles
cbn
Prior art date
Application number
PCT/JP2014/056404
Other languages
English (en)
French (fr)
Inventor
松田 裕介
克己 岡村
力 平野
朋弘 深谷
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to EP14773327.3A priority Critical patent/EP2980046B1/en
Priority to KR1020157025472A priority patent/KR101811510B1/ko
Priority to CN201480018924.2A priority patent/CN105189408A/zh
Priority to US14/779,400 priority patent/US9522850B2/en
Priority to MX2015011068A priority patent/MX2015011068A/es
Publication of WO2014156625A1 publication Critical patent/WO2014156625A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62842Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/003Cubic boron nitrides only

Definitions

  • the present invention relates to a sintered body mainly containing cubic boron nitride (hereinafter also referred to as cBN). More particularly, the invention relates to a high cBN content sintered body having a particularly high cBN content.
  • cBN cubic boron nitride
  • cBN is known to have characteristics such as high hardness next to diamond, high thermal conductivity, and low affinity with iron-based materials, and the sintered body is used for cutting tools There is.
  • the cBN sintered body used for the cutting tool can be roughly classified into two compositions of a high cBN content sintered body and a low cBN content sintered body.
  • the content of cBN particles is high, and cBN particles are directly bonded to each other, and the remaining portion has a sintered structure which is bonded by a binder mainly composed of Co or Al.
  • the latter has a sintered body structure in which particles are bonded via a ceramic material such as TiN or TiC because the content of cBN particles is low and there are few sites where cBN particles are in contact with each other. .
  • Patent Document 1 discloses a cBN sintered body comprising 88 to 97% by volume of cBN, a binder phase, and an unavoidable impurity.
  • the high cBN content sintered body has a sintered structure in which cBN particles are directly bonded to each other as described above.
  • the sintered body structure in which cBN particles having high thermal conductivity are continuously bonded has an advantage of easily dissipating the heat generated by the friction with the work material at the time of cutting. Therefore, the high cBN content sintered body is suitable for cutting of cast iron and the like in which damage by thermal shock is dominant.
  • the high content of cBN particles having high hardness makes them suitable for cutting of sintered alloys in which mechanical wear is dominant.
  • Such a high cBN content sintered body is produced by mixing cBN particles and a binder, and sintering the mixture under pressure-temperature conditions in which cBN does not convert to hBN (hexagonal boron nitride).
  • hBN hexagonal boron nitride
  • the binder contains a component that promotes the bonding of the cBN particles, a portion (also called neck growth) where the cBN particles are directly bonded to each other is formed, and a strong sintered body structure can be obtained. It is considered.
  • the present invention has been made in view of the above-described present conditions, and an object thereof is to provide a cubic boron nitride sintered body having excellent wear resistance and fracture resistance.
  • the inventors of the present invention conducted intensive studies on the individual actions of the respective components constituting the sintered body structure in order to solve the above-mentioned problems, and it was found that the respective components constituting the binder were uniformly dispersed in the structure. Also, it has been found that, for each specific component, localizing at a specific location is more likely to exhibit the function of binding the entire sintered compact tissue. Then, based on the findings, the inventors further studied, and as a result, the specific component is localized at the grain boundaries of the cBN particles, and the other component is localized at the void portion where the cBN particles do not exist, It has been found that it is possible to construct a sinter structure that is dramatically enhanced, and the present invention has been completed.
  • the method for producing a cubic boron nitride sintered body according to the present invention is a method for producing a cubic boron nitride sintered body in which the content of cubic boron nitride particles is 80% by volume or more and 99% by volume or less.
  • a third step of obtaining a mixture, and a fourth step of sintering the mixture are characterized.
  • coated particles are preferably particles substantially entirely covered with the coating material.
  • the binder preferably contains at least one element selected from the group consisting of tungsten (W), cobalt (Co) and aluminum (Al).
  • the binder preferably further contains at least one element selected from the group consisting of carbon (C), nitrogen (N), boron (B) and oxygen (O).
  • the coating material preferably contains at least one element selected from the group consisting of chromium (Cr), nickel (Ni) and molybdenum (Mo).
  • the second step is preferably a step of covering the cubic boron nitride particles with the covering material by physical vapor deposition.
  • the cubic boron nitride sintered body of the present invention contains cubic boron nitride particles, a binder, and a covering material, and the content of the cubic boron nitride particles is 80% by volume or more and 99% by volume or less.
  • the binder contains at least one element selected from the group consisting of tungsten, cobalt and aluminum, and the content of the coating material is 0.1% by mass or more and 1.5% by mass or less, and the cubic crystal It is characterized in that boron nitride particles are coated with the coating material.
  • the cubic boron nitride particles are substantially covered with the covering material.
  • the binder preferably further contains at least one element selected from the group consisting of carbon, nitrogen, boron and oxygen.
  • the coating material preferably contains at least one element selected from the group consisting of chromium, nickel and molybdenum.
  • the content of the cubic boron nitride particles is preferably 85% by volume or more and 93% by volume or less.
  • the cubic boron nitride sintered body of the present invention has excellent wear resistance and fracture resistance.
  • Cubic boron nitride sintered body The cubic boron nitride sintered body (hereinafter also referred to as cBN sintered body) of the present embodiment contains cubic boron nitride particles (hereinafter also referred to as cBN particles) at a high content of 80% by volume or more, and the balance As a binder, including a coating material.
  • cBN sintered body can constitute a cutting tool suitable for cutting of a sintered alloy, cast iron or the like.
  • the cBN sintered body of the present embodiment can contain any other component as long as it contains the above components. For example, impurities may be contained.
  • the cBN sintered body of the present embodiment has a sintered body structure in which cBN particles are coated with a covering material containing a specific element.
  • the cBN sintered body of the present embodiment will be described with reference to FIGS. 1 and 2.
  • FIGS. 1 and 2 are diagrams schematically showing an example of an observation field when a cross section of a cBN sintered body is observed by, for example, a scanning transmission electron microscope (STEM) or the like.
  • FIG. 1 shows a cBN sintered body according to the present embodiment
  • FIG. 2 shows a conventional cBN sintered body.
  • the surface of cBN particles 1 is covered with a covering material 2. That is, the cBN particles 1 are coated particles. Therefore, the covering material 2 is uniformly distributed in the part (grain boundary) which cBN particle 1 comrades contact
  • a neck growth is formed between the particles, and the particles are bonded starting from this. Then, the void portion in which the cBN particles do not exist is filled with the bonding material 3.
  • the binder in the sintered body structure may be called a binder phase.
  • the coating material of the present embodiment is made of an element having a particularly strong action of promoting the growth of neck growth. Therefore, in the cBN sintered body of the present embodiment, the bonding strength between cBN particles is extremely high.
  • the cutting tool made of the cBN sintered body of the present embodiment can exhibit excellent wear resistance and can significantly reduce the incidence of defects in intermittent cutting.
  • That the element distribution in the sintered structure is in the above-mentioned state means that, for example, energy dispersive X-ray spectroscopy (EDS) is performed in the cross-sectional observation field of STEM to perform element mapping. It can be confirmed by At this time, for observation by STEM, it is preferable to use STEM High-Angle Annular Dark-field Scanning Transmission Electron Microscopy (HAADF-STEM).
  • HAADF-STEM STEM High-Angle Annular Dark-field Scanning Transmission Electron Microscopy
  • the cBN particles are contained in the cBN sintered body at a content of 80% by volume to 99% by volume.
  • the cBN particles are materials that exhibit excellent hardness and thermal conductivity, and when the content is in the above range, they exhibit sufficient tool life even under conditions where thermal shock is applied to the cutting edge as in intermittent cutting.
  • the cBN particle content is less than 80% by volume, the cBN particles may not be in sufficient contact with each other, and the thermal conductivity tends to decrease.
  • the content of cBN particles is preferably 85% by volume or more and 93% by volume or less.
  • volume% refers to the volume% of the powder consisting of cBN particles (hereinafter also referred to as cBN powder) used when producing the cBN sintered body within the above range (that is, 80 volume% or more and 99 volume%)
  • cBN powder cBN particles
  • the following can be realized by mixing with other raw materials. Moreover, it can also measure by cut
  • the cBN particles preferably have a small average particle diameter, and preferably have an average particle diameter of 5 ⁇ m or less. Further, from the viewpoint of enhancing the toughness of the sintered body structure, the average particle diameter of the cBN particles is preferably 0.5 ⁇ m or more. Furthermore, from the viewpoint of the balance between the strength and toughness of the sintered body structure, the average particle diameter of the cBN particles is more preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the binder according to the present embodiment is present in the sintered body tissue so as to fill the voids between the cBN particles, and has the function of holding and bonding the entire tissue.
  • a binder contains at least one element selected from the group consisting of tungsten (W), cobalt (Co) and aluminum (Al).
  • the binder preferably further contains at least one element selected from the group consisting of carbon (C), nitrogen (N), boron (B) and oxygen (O).
  • the binder may be composed of a single element of W, Co or Al, or may be composed of a mutual solid solution of these two or more elements.
  • it may be composed of a compound of one or more elements selected from W, Co and Al, and one or more elements selected from C, N, B and O. And the compound of this may be a solid solution.
  • WC As a compound or solid solution of one or more elements selected from W, Co and Al, and one or more elements selected from C, N, B and O, for example, WC, W 2 C, W 3 Co 3 C, CoWB, CoC, TiAlN, TiAlCrN, TiAlSiN, TiAlSiCrN, AlCrN, AlCrCN, AlCrVN, TiAlBN, TiAlBCN, AlN, AlCN, AlB 2 , Al 2 O 3 and the like can be mentioned.
  • Such a binder has high bond strength with cBN particles and is chemically stable, so that the wear resistance of the sintered body tool can be improved.
  • the binder content is preferably 2% by mass or more and 20% by mass or less.
  • the coating material of the present embodiment is composed of an element having a particularly strong action of promoting the growth of neck growth at the grain boundaries of cBN particles, and it should be called a bonding promoter.
  • the coating material preferably contains at least one element selected from the group consisting of chromium (Cr), nickel (Ni) and molybdenum (Mo). Conventionally, such an element group has been considered as a part of a bonding material, but this embodiment is characterized by using these as a coating material.
  • the covering material can contain other components as long as it contains the above elements. That is, it may be a compound containing the above-described elements, a solid solution thereof, or the like. Such compounds can include, for example, CrCo, Mo 2 C, NiC, NiAl, CrAl, CoCrAl the like.
  • the content of the covering material needs to be 0.1% by mass or more and 1.5% by mass or less with respect to the entire cBN sintered body. If the content of the covering material is less than 0.1% by mass, the neck growth may not sufficiently grow and the bonding strength may be insufficient. If it exceeds 1.5% by mass, the strength of the covering material itself is low. On the contrary, the toughness may be reduced.
  • the content of the coating material is more preferably 0.1% by mass or more and 1.0% by mass or less.
  • the coating material in the sintered body structure preferably has a mass content smaller than that of the binder, and the ratio of the coating to the whole binder is 0.1 mass% or more. It is preferable that it is mass% or less.
  • the covering material may constitute a covering layer on the surface of the cBN particles.
  • the covering layer may be a single layer or multiple layers.
  • the covering layer may be composed of a plurality of elements.
  • the cBN particles be substantially entirely covered by a covering material.
  • substantially coated on the entire surface indicates that the “coverage” measured as follows is 70% or more, and all the particle surface is necessarily coated. Does not indicate.
  • the coverage is calculated as follows. First, the cBN sintered body is cut, and the cross section is observed with a STEM at a magnification of 1000 to 10000. In the observation view image, a square circumscribing the cBN particles is drawn, and the square is divided into partial regions of at least 4 rows and 4 columns. Then, a partial region including the outer peripheral portion (outline) of the cBN particle is determined as a measurement point. At this time, an interface where cBN particles are in contact with each other and joined is also a contour line. In addition, it is preferable to adjust the magnification and the field of view so that the total number of measurement points is at least 10 or more.
  • EDS analysis is performed in the same field of view, and among the measurement points determined as described above, measurement points at which the concentration of the coating material element is detected at 0.1 mass% or more are counted. The percentage of the value obtained by dividing the counted measurement points by the total measurement points is taken as the "coverage".
  • cBN particles having a coverage of 70% or more are considered to be substantially covered by the covering material. Further, when it is possible to consider that 100 cBN particles arbitrarily selected in the sintered body are substantially covered on the entire surface, the cBN particles are substantially the entire surface over the entire sintered structure. Shall be considered as covered.
  • the coverage is preferably 80% or more, more preferably 90% or more.
  • a sample for cross-sectional observation can be produced using, for example, a focused ion beam system (FIB), a cross section polisher (CP), or the like.
  • FIB focused ion beam system
  • CP cross section polisher
  • coated particles substantially coated on the entire surface can be obtained, for example, by coating the particles using a publicly known physical vapor deposition (PVD) apparatus.
  • PVD physical vapor deposition
  • Physical vapor deposition is preferable as a method for coating particles from the viewpoint of forming a thin and uniform coating layer.
  • the cubic boron nitride sintered body of the present embodiment described above is manufactured by the following manufacturing method. That is, a cubic boron nitride sintered body manufactured by the following manufacturing method includes the above-described sintered body structure and exhibits excellent wear resistance and fracture resistance.
  • FIG. 3 is a flowchart showing the process of producing the cBN sintered body according to the present embodiment. As shown in FIG. 3, the manufacturing method of the present embodiment is characterized by including the first to fourth steps. Each step will be described below.
  • cBN particles are prepared. That is, cBN powder is prepared.
  • the average particle size of the cBN powder can be, for example, 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the particle size distribution of the cBN powder may be adjusted by appropriately performing classification or the like.
  • the coated particles are obtained by coating the cBN particles with a coating material (bond promoting material).
  • a coating material bond promoting material
  • a method of coating the cBN particles although a conventionally known method can be adopted, it is preferable to adopt a physical vapor deposition method. By using physical vapor deposition, the surface of the particles can be coated thinner and more uniformly.
  • a physical vapor deposition method a radio frequency (RF) sputtering method, a plating method, a beam vapor deposition method etc. can be mentioned, for example.
  • RF radio frequency
  • the coated particles obtained in the previous step and the binder are mixed to obtain a mixture.
  • the compounding ratio of the coated particles and the binder may be appropriately adjusted so that the cBN particles are contained at a predetermined content in the sintered body.
  • the mixing of the coated particles and the binder can be carried out by a conventionally known method, for example, by a grinder such as a ball mill or a mixer.
  • the mixture of the coated particles and the binder thus obtained is preferably degassed by heat treatment in a vacuum furnace.
  • the mixture obtained in the previous step is sintered to obtain a sintered body.
  • the cBN sintered body can be obtained by introducing the mixture into an ultrahigh pressure apparatus and holding a predetermined pressure and temperature for a predetermined time.
  • the pressure during ultra-high pressure sintering is preferably 5.0 GPa or more and 10.0 GPa or less.
  • the temperature at the time of ultra-high pressure sintering is preferably 1500 ° C. or more and 2000 ° C. or less, and the time required for the process of the ultra-high pressure sintering is preferably 5 minutes or more and 30 minutes or less.
  • the cBN sintered body according to the present embodiment can be obtained.
  • Example 1 ⁇ Production of cBN sintered body> The cBN sintered body was produced as follows. First, cBN powder having an average particle diameter of about 1.2 ⁇ m was prepared (first step). Next, a powder composed of coated particles was obtained by coating the surface of the cBN particles with a coating material Cr using an RF sputtering PVD apparatus (second step). At this time, the sputtering conditions were adjusted so that the ratio of the covering material (Cr) to the whole of the cBN sintered body was 0.6 mass%.
  • a mixture obtained by pulverizing and mixing WC powder, Co powder and Al powder was heat-treated at 1200 ° C. for 30 minutes in vacuum to obtain a compound.
  • the compound was pulverized by a planetary ball mill to obtain a powder of a binder.
  • the powder composed of the coated particles and the powder of the binder are blended so that the cBN particles content is 93% by volume in the cBN sintered body, and the pot made of Teflon (registered trademark) on the inner wall and Si 3 N
  • a mixed powder was obtained by uniformly mixing according to a ball mill mixing method using 4 ball media (third step).
  • degassing was performed by holding this mixed powder in a vacuum furnace at 900 ° C. for 20 minutes. After filling the mixed powder after degassing in a capsule made of Mo, cBN sintered body was obtained by holding it at a pressure of 6.5 GPa and a temperature of 1600 ° C. for 20 minutes using an ultrahigh pressure apparatus (fourth step) .
  • Comparative Example 1 A cBN sintered body according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the second step was not performed in the above-mentioned "Production of cBN sintered body". That is, the cBN sintered body according to Comparative Example 1 does not contain a covering material.
  • Examples 2 to 5 and Comparative Examples 2 and 3 Comparative Examples 2 to 5 and Comparative Examples 2 and 5 are the same as in “Production of cBN sintered body” in Example 1 except that the ratio of the covering material (Cr) to the entire cBN sintered body is changed to the numerical values shown in Table 1. CBN sintered bodies according to Examples 2 and 3 were obtained.
  • Comparative Example 4 In the above-mentioned "Production of cBN sintered body", the second step is not carried out, and in the third step, mixed powder is obtained by mixing the powder composed of cBN particles, the binder and the Cr powder. In the same manner as in Example 2, a cBN sintered body according to Comparative Example 4 was obtained. That is, although the cBN sintered body according to Comparative Example 4 contains an element that can be a covering material, the cBN particles are not covered with the element.
  • Examples 6 and 7 The cBN sintered bodies according to Examples 6 and 7 are obtained in the same manner as in Example 2 except that Ni and Mo are used instead of Cr in the second step in the above-mentioned "Production of cBN sintered body".
  • Examples 8 to 10 and Comparative Examples 5 to 9 The same as in Example 1 and Comparative Example 1 except that in the above-mentioned "Production of cBN Sintered Body", the cBN particle content in the sintered body is adjusted to the values shown in Table 1 in the third step. Thus, cBN sintered bodies according to Examples 8 to 10 and Comparative Examples 5 to 9 were obtained.
  • a cutting tool was produced using the cBN sintered bodies of the examples and comparative examples obtained as described above, and the cutting performance (wear resistance and fracture resistance) was evaluated. Specifically, the cBN sintered body manufactured above was brazed to a base material made of cemented carbide, and was formed into a predetermined shape to prepare a cutting tool.
  • the content (volume%) of cBN particles and the proportion (mass%) of the covering material were confirmed by the following method.
  • a smooth observation surface is created by surface processing, and the grain size of 10 nm can be identified by a scanning electron microscope (hereinafter referred to as SEM) of the structure of cubic boron nitride. The observation was performed with a field of view of 10,000 times. From the obtained SEM image, the proportion of cBN particles in the entire sintered body was determined by image processing. The proportion of the obtained area was considered to be distributed at the same proportion in the depth direction, and is shown in Table 1 as volume%.
  • the numerical value shown in the column of the cutting performance of Table 1 is a relative evaluation value on the basis of the drop-off amount of the cutting tool which concerns on the comparative example 1.
  • FIG. The relative evaluation value is a value calculated by multiplying 100 by the value obtained by dividing the dropout amount of the cutting tool according to Comparative Example 1 by the dropout amount of each cutting tool. That is, the larger the value, the smaller the dropout amount, and the better the wear resistance and the chipping resistance.
  • the composition contains cubic boron nitride particles, a binder, and a coating material, and the content of the cubic boron nitride particles is 80% by volume or more and 99% by volume or less, and the binder is tungsten And at least one element selected from the group consisting of cobalt and aluminum, and the content of the coating material is 0.1% by mass or more and 1.5% by mass or less, and the cubic boron nitride particles are the coating
  • the cutting tool using the cBN sintered body according to the embodiment coated with the material is superior in wear resistance and superior to the cutting tool using the cBN sintered body according to the comparative example not satisfying the conditions. It showed chipping resistance.

Abstract

優れた耐摩耗性および耐欠損性を有する立方晶窒化ホウ素焼結体を提供する。本発明の立方晶窒化ホウ素焼結体の製造方法は、立方晶窒化ホウ素粒子の含有率が80体積%以上99体積%以下である立方晶窒化ホウ素焼結体の製造方法であって、立方晶窒化ホウ素粒子を準備する第1の工程と、被覆材で該立方晶窒化ホウ素粒子を被覆することにより被覆粒子を得る第2の工程と、該被覆粒子と結合材とを混合することにより混合物を得る第3の工程と、該混合物を焼結する第4の工程と、を含むことを特徴とする。

Description

立方晶窒化ホウ素焼結体の製造方法および立方晶窒化ホウ素焼結体
  本発明は立方晶窒化ホウ素(以下、cBNとも記す。)を主体として含む焼結体に関する。さらに詳細には、特にcBNの含有量が高い、高cBN含有率焼結体に関する。
  cBNは、ダイヤモンドに次ぐ高い硬度を有するとともに、熱伝導率が高い、鉄系材料との親和性が低いなどの特徴を有することが知られており、その焼結体は切削工具に利用されている。
  切削工具に用いられるcBN焼結体には、大別すると、高cBN含有率焼結体と低cBN含有率焼結体との2種の組成がある。前者はcBN粒子の含有率が高く、cBN粒子同士が直接結合し、残部がCoやAlを主成分とする結合材で結合された焼結体組織を有するものである。これに対して、後者は、cBN粒子の含有率が低く、cBN粒子同士が接触する部位が少ないため、TiNやTiCのようなセラミックス材料を介して、粒子が結合された焼結体組織を有する。
  上記のような高cBN含有率焼結体として、たとえば、特許文献1には、88~97体積%のcBNと結合相と不可避不純物とからなるcBN焼結体が開示されている。
特開2004-331456号公報
  高cBN含有率焼結体は、上記のようにcBN粒子同士が直接結合した焼結体組織を有する。このように、熱伝導率が高いcBN粒子が連続して結合した焼結体組織とすることにより、切削加工時に被削材との摩擦によって生じる熱を放散しやすくなるという利点を有する。そのため、高cBN含有率焼結体は、熱衝撃による損傷が支配的な鋳鉄の切削加工などに好適である。また、高い硬度を有するcBN粒子の含有率が高いため、機械的な摩耗が支配的な焼結合金の切削加工にも適している。
  かかる高cBN含有率焼結体は、cBN粒子と結合材とを混合し、該混合物をcBNがhBN(六方晶窒化ホウ素)に変換しない圧力温度条件で焼結することにより製造されている。この際、結合材がcBN粒子同士の結合を促進する成分を含むことにより、cBN粒子同士が直接結合した部位(ネックグロースとも呼ばれる)が形成され、強固な焼結体組織を得ることができると考えられている。
  従来、結合材として、多種多様な元素や化合物が検討されてきた。そして、数種の元素または化合物を混合して結合材を構成することにより、各成分が相乗的に作用し、cBN粒子同士の結合を促進するとともに、焼結体組織全体を強固に結合できると考えられてきた。そのため、焼結前の混合物を得る際に、混合物中に結合材をより均一に分散させることによって、焼結体工具の耐摩耗性や耐欠損性の改善が図れるとの技術思想が定着しており、この思想に基づき分散プロセスの改良を軸として、焼結体工具の性能改善が続けられてきた。
  しかしながら、近年、被削材の硬度化、難削化が進むとともに、被削材の形状もより複雑化するなど、焼結体工具の使用条件は過酷化を極めている。特に複雑形状の加工は、断続切削となりやすく、機械的な摩耗や刃先の欠損によって工具寿命が低下するケースが増加している。そして、上述のような従来思想に基づく小幅な改良によっては、ユーザーの要求水準に追いつけていないのが現状である。さらに、従来思想に基づく改良効果は、ほぼ飽和状態に達しており、これ以上大幅な性能改善は望めない状況にある。
  本発明は、上記のような現状に鑑みなされたものであって、その目的とするところは、優れた耐摩耗性および耐欠損性を有する立方晶窒化ホウ素焼結体を提供することにある。
  本発明者らは、上記課題を解決すべく、焼結体組織を構成する各成分の個別の作用について鋭意研究を重ねたところ、結合材を構成する各成分を組織中に均一に分散させるよりも、特定の成分ごとに、特定の箇所に局在させる方が焼結体組織全体を結合する作用が発現しやすいことを知見した。そして、該知見に基づきさらに検討を重ねたところ、特定の成分をcBN粒子同士の粒界に局在させるとともに、cBN粒子の存在しない空隙部には他の成分を局在させることより、結合強度が飛躍的に高められた焼結体組織を構築できることを見出し、本発明を完成させるに至った。
  すなわち、本発明の立方晶窒化ホウ素焼結体の製造方法は、立方晶窒化ホウ素粒子の含有率が80体積%以上99体積%以下である立方晶窒化ホウ素焼結体の製造方法であって、立方晶窒化ホウ素粒子を準備する第1の工程と、被覆材で該立方晶窒化ホウ素粒子を被覆することにより被覆粒子を得る第2の工程と、該被覆粒子と結合材とを混合することにより混合物を得る第3の工程と、該混合物を焼結する第4の工程と、を含むことを特徴とする。
  ここで、上記被覆粒子は、上記被覆材で実質的に全面が被覆された粒子であることが好ましい。
  また、上記結合材は、タングステン(W)、コバルト(Co)およびアルミニウム(Al)からなる群より選ばれた少なくとも1種の元素を含むことが好ましい。また、上記結合材は、炭素(C)、窒素(N)、ホウ素(B)および酸素(O)からなる群より選ばれた少なくとも1種の元素をさらに含むことが好ましい。
  上記被覆材は、クロム(Cr)、ニッケル(Ni)およびモリブデン(Mo)からなる群より選ばれた少なくとも1種の元素を含むことが好ましい。
  さらに、上記第2の工程は、物理蒸着法により上記被覆材で上記立方晶窒化ホウ素粒子を被覆する工程であることが好ましい。
  そして、本発明の立方晶窒化ホウ素焼結体は、立方晶窒化ホウ素粒子と結合材と被覆材とを含み、該立方晶窒化ホウ素粒子の含有率が80体積%以上99体積%以下であり、該結合材は、タングステン、コバルトおよびアルミニウムからなる群より選ばれた少なくとも1種の元素を含み、該被覆材の含有率が0.1質量%以上1.5質量%以下であり、該立方晶窒化ホウ素粒子が該被覆材により被覆されてなることを特徴とする。
  ここで、上記立方晶窒化ホウ素焼結体は、上記立方晶窒化ホウ素粒子が上記被覆材により実質的に全面を被覆されてなることが好ましい。
  また、上記結合材は、炭素、窒素、ホウ素および酸素からなる群より選ばれた少なくとも1種の元素をさらに含むことが好ましい。
  また、上記被覆材は、クロム、ニッケルおよびモリブデンからなる群より選ばれた少なくとも1種の元素を含むことが好ましい。
  さらに、上記立方晶窒化ホウ素粒子の含有率が85体積%以上93体積%以下であることが好ましい。
  本発明の立方晶窒化ホウ素焼結体は、優れた耐摩耗性および耐欠損性を有する。
実施の形態に係る立方晶窒化ホウ素焼結体の焼結体組織の一例を示す模式図である。 従来の立方晶窒化ホウ素焼結体の焼結体組織の一例を示す模式図である。 実施の形態に係る立方晶窒化ホウ素焼結体の製造方法を示すフローチャートである。
  以下、本発明に係わる実施の形態について、さらに詳細に説明する。
  <立方晶窒化ホウ素焼結体>
  本実施の形態の立方晶窒化ホウ素焼結体(以下、cBN焼結体とも記す)は、立方晶窒化ホウ素粒子(以下、cBN粒子とも記す)を80体積%以上という高い含有率で含み、残部として結合材、被覆材を含むものである。かかるcBN焼結体は、焼結合金や鋳鉄などの切削加工に好適な切削工具を構成することができる。本実施の形態のcBN焼結体は、上記のような成分を含む限り他に任意の成分を含むことができ、たとえば、不純物などが含まれていたとしても何ら差し支えない。
  本実施の形態のcBN焼結体は、cBN粒子が特定の元素を含む被覆材によって被覆されてなる焼結体組織を有する。図1および2を参照して、本実施の形態のcBN焼結体を説明する。
  図1および2は、cBN焼結体の断面を、たとえば、走査型透過電子顕微鏡(STEM:Scanning Transmission Electron Microscope)などで観察した際の観察視野の一例を模式的に示す図である。図1は本実施の形態に係るcBN焼結体を示し、図2は従来のcBN焼結体を示す。
  図1に示すように、本実施の形態のcBN焼結体においては、cBN粒子1の表面が被覆材2によって被覆されている。すなわち、cBN粒子1が被覆粒子となっている。そのため、cBN粒子1同士が接触して接合している部位(粒界)には、被覆材2が一様に分布している。図示していないが被覆粒子同士が接触している部位には、粒子間にネックグロースが形成され、これを起点として粒子同士が結合している。そして、cBN粒子が存在しない空隙部は、結合材3によって満たされている。なお、焼結体組織中の結合材は結合相と呼ばれることもある。
  ここで、本実施の形態の被覆材は、後述するように、ネックグロースの成長を促進する作用が特に強い元素から構成されている。そのため、本実施の形態のcBN焼結体では、cBN粒子同士の結合力が極めて高い。これにより、本実施の形態のcBN焼結体からなる切削工具は、優れた耐摩耗性を示すとともに、断続切削における欠損の発生率を顕著に低減することができる。
  これに対して、図2に示す従来のcBN焼結体には、cBN粒子同士が接触して接合している部位(図2中、点線で示している)は存在するが、このような部位に、本実施の形態の被覆材のような元素はほとんど分布していない。これは、従来のcBN焼結体においては、被覆材と類似の元素を含んでいたとしても、それらは結合材と一体として取り扱われ、組織全体に均一に分散するように製造されているからである。このため、従来のcBN焼結体では、cBN粒子同士の結合力が弱く、たとえば、断続切削のように、大きな衝撃が繰り返し加わる条件下では、容易にcBN粒子同士の結合が解かれ、それを起点として亀裂が伝播することにより欠損を発生させる。
  焼結体組織において、元素の分布が上述した状態であることは、たとえば、STEMの断面観察視野において、エネルギー分散型X線分析(EDS:Energy  Dispersive  X-ray  Spectroscopy)を行ない、元素マッピングを行なうことにより確認することができる。この際、STEMによる観察は、STEM高角度散乱暗視野法(HAADF-STEM:High-Angle Annular Dark-field Scanning Transmission Electron Microscopy)を用いることが好ましい。
  以下、本実施の形態の立方晶窒化ホウ素焼結体を構成する各成分について説明する。
  <立方晶窒化ホウ素粒子>
  本実施の形態において、cBN粒子は80体積%以上99体積%以下の含有率でcBN焼結体に含まれている。cBN粒子は、優れた硬度と熱伝導率を示す材料であり、含有率が上記の範囲を占めることにより、断続切削のように刃先に熱衝撃が加わる条件下でも、十分な工具寿命を示す。ここで、cBN粒子の含有率が80体積%未満であると、cBN粒子同士が十分に接触できない場合があり、熱伝導率が低下する傾向にある。他方、99体積%を超えると、焼結体組織において、後述する結合材の存在量が過度に少なくなるため、靭性が低下する傾向にある。なお、cBN粒子の含有率は好ましくは85体積%以上93体積%以下である。
  ここで、このような体積%は、cBN焼結体を製造する際に用いるcBN粒子からなる粉末(以下、cBN粉末とも記す)の体積%を上記の範囲(すなわち、80体積%以上99体積%以下)として、その他原料と混合することにより、実現することができる。また、cBN焼結体を切断し、その断面をSTEMなどで観察することにより測定することもできる。
  また、cBN粒子は、焼結体組織の強度を高めるとの観点から、その平均粒径は小さいことが好ましく、5μm以下の平均粒径であることが好ましい。また、焼結体組織の靭性を高めるとの観点から、cBN粒子の平均粒径は0.5μm以上であることが好ましい。
さらに、焼結体組織の強度と靭性のバランスの観点からは、cBN粒子の平均粒径は1μm以上3μm以下であることがより好ましい。
  <結合材>
  本実施の形態の結合材は、焼結体組織中において、cBN粒子間の空隙を充填するように存在し、組織全体を保持、結合する作用を有するものである。かかる結合材は、タングステン(W)、コバルト(Co)およびアルミニウム(Al)からなる群より選ばれた少なくとも1種の元素を含むものである。そして、結合材は、炭素(C)、窒素(N)、ホウ素(B)および酸素(O)からなる群より選ばれた少なくとも1種の元素をさらに含むことが好ましい。
  すなわち、結合材は、W、CoまたはAlの単体の元素から構成されていてもよく、これら2種以上の元素の相互固溶体から構成されていてもよい。また、W、CoおよびAlから選ばれた1種以上の元素と、C、N、BおよびOから選ばれた1種以上の元素との化合物から構成されていてもよい。そして、これの化合物は、固溶体となっていてもよい。
  W、CoおよびAlから選ばれた1種以上の元素と、C、N、BおよびOから選ばれた1種以上の元素との化合物または固溶体としては、たとえば、WC、WC、W3Co3C、CoWB、CoC、TiAlN、TiAlCrN、TiAlSiN、TiAlSiCrN、AlCrN、AlCrCN、AlCrVN、TiAlBN、TiAlBCN、AlN、AlCN、AlB、Al23などを挙げることができる。なお、本実施の形態において上記のように化合物を化学式で表わす場合、原子比を特に限定しない限り、従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるものではない。たとえば単に「TiAlN」と記す場合、「Ti」と「Al」の原子比は1:1の場合のみに限られず、従来公知のあらゆる原子比が含まれるものとする。
  このような結合材はcBN粒子との結合力が高く、化学的にも安定であることから、焼結体工具の耐摩耗性を向上させることができる。なお、結合材の含有率は2質量%以上20質量%以下であることが好ましい。
  <被覆材>
  本実施の形態の被覆材は、cBN粒子同士の粒界においてネックグロースの成長を促進させる作用が特に強い元素から構成されるものであり、いわば結合促進材ともいうべきものである。
  かかる被覆材は、クロム(Cr)、ニッケル(Ni)およびモリブデン(Mo)からなる群より選ばれた少なくとも1種の元素を含むことが好ましい。従来、このような元素群は、結合材の一部として考えられてきたものであるが、本実施の形態は、これらをことさら被覆材として用いることに特徴を有する。被覆材は、上記のような元素を含む限り、他の成分を含むことができる。すなわち、上記のような元素を含む化合物やその固溶体などであってもよい。そのような化合物としては、たとえば、CrCo、Mo2C、NiC、NiAl、CrAl、CoCrAlなどを挙げることができる。
  被覆材の含有率はcBN焼結体全体に対して、0.1質量%以上1.5質量%以下であることを要する。被覆材の含有率が0.1質量%未満であると、ネックグロースが十分に成長せず結合強度が不十分となる場合があり、1.5質量%を超えると被覆材自体の強度が低いため、却って靭性が低下する場合がある。なお、被覆材の含有率はより好ましくは0.1質量%以上1.0質量%以下である。
  また、耐摩耗性の観点からは、焼結体組織中において被覆材は結合材よりも少ない質量含有率であることが好ましく、結合材全体に対する被覆材の占める割合は0.1質量%以上50質量%以下であることが好ましい。
  本実施の形態において、被覆材はcBN粒子の表面において被覆層を構成していてもよい。かかる被覆層は単層であってもよく、複層であってもよい。また、被覆層は複数の元素から構成されていてもよい。
  本実施の形態において、cBN粒子は実質的に全面が被覆材によって被覆されていることが好ましい。ここで、「実質的に全面が被覆されている」とは、次のようにして測定される「被覆率」が70%以上であることを示し、必ずしも粒子表面のすべてが被覆されていることを示すものではない。
  被覆率は、具体的には以下のようにして算出する。まず、cBN焼結体を切断し、該断面をSTEMを用いて1000~10000倍の倍率で観察する。観察視野画像においてcBN粒子に外接する四角形を描き、該四角形を少なくとも4行4列の部分領域に分割する。そして、cBN粒子の外周部(輪郭線)が含まれる部分領域を測定点として決定する。このとき、cBN粒子同士が接触して接合している界面も輪郭線とする。また、測定点の総数は少なくとも10点以上となるように、倍率と視野を調整することが好ましい。
  次に、同視野においてEDS分析を実行し、上記のようにして決定された測定点のうち、被覆材元素が0.1質量%以上の濃度で検出される測定点を計数する。計数された測定点を、総測定点で除した値の百分率を「被覆率」とする。
  そして、上記のように、被覆率が70%以上であるcBN粒子は被覆材により実質的に全面が被覆されているとみなすものとする。そして、さらに、焼結体において任意に選ばれた100個のcBN粒子が実質的に全面が被覆されているとみなすことができる場合は、焼結体組織全体にわたって、cBN粒子は実質的に全面が被覆されているとみなすものとする。なお、かかる被覆率は好ましくは80%以上であり、より好ましくは90%以上である。
  また、上記の測定において、断面観察用のサンプルは、たとえば、集束イオンビーム装置(FIB:Focused Ion Beam system)、クロスセクションポリッシャー装置(CP:Cross section Polisher)などを用いて作製することができる。
  上記のように、実質的に全面を被覆された被覆粒子は、たとえば、従来公知の物理蒸着(PVD)装置を用いて、粒子を被覆することにより得ることができる。物理蒸着法は、薄く均一な被覆層を形成するとの観点から、粒子を被覆する方法として好ましい。
  以上に説明した本実施の形態の立方晶窒化ホウ素焼結体は、以下のような製造方法によって製造される。すなわち、以下のような製造方法によって製造された立方晶窒化ホウ素焼結体は、上記のような焼結体組織を含み、優れた耐摩耗性および耐欠損性を示す。
  <立方晶窒化ホウ素焼結体の製造方法>
  図3は本実施の形態のcBN焼結体の製造過程を示すフローチャートである。図3に示すように、本実施の形態の製造方法は、第1の工程~第4の工程を含むことを特徴とする。以下、各工程について説明する。
  <第1の工程>
  第1の工程(S101)では、cBN粒子を準備する。すなわち、cBN粉末を準備する。cBN粉末の平均粒径は、たとえば、0.5μm以上5μm以下とすることができる。また、適宜分級などを行なうことにより、cBN粉末の粒度分布を調整してもよい。
  <第2の工程>
  第2の工程(S102)では、被覆材(結合促進材)でcBN粒子を被覆することにより被覆粒子を得る。ここで、cBN粒子を被覆する方法としては、従来公知の方法を採用することができるが、物理蒸着法を採用することが好ましい。物理蒸着法を用いることにより、粒子の表面をより薄くかつ均一に被覆することができる。ここで、物理蒸着法としては、たとえば、高周波(RF)スパッタリング法、めっき法、ビーム蒸着法などを挙げることができる。
  粒子を被覆する方法として、RFスパッタリング法を採用する場合、予備実験を行なって、スパッタリング時間と被覆量との検量線を作成し、該検量線に基づき、所定の被覆量となるように適宜条件を調整すればよい。
  <第3の工程>
  第3の工程(S103)では、先の工程で得られた被覆粒子と結合材とを混合して混合物を得る。ここで、結合材として複数の金属や化合物を用いる場合には、あらかじめ、それらを、たとえばボールミルなどを用いて、粉砕、混合しておくことが好ましい。被覆粒子と結合材との配合比率は、焼結体においてcBN粒子が所定の含有率で含まれるように適宜調整すればよい。被覆粒子と結合材との混合は、従来公知の方法で行うことができ、たとえば、ボールミルなどの粉砕機、混合機によって行なうことができる。
  このようにして得られた被覆粒子と結合材とからなる混合物は、真空炉で熱処理することにより、脱ガスしておくことが好ましい。
  <第4の工程>
  第4の工程(S104)では、先の工程で得られた混合物を焼結して焼結体を得る。具体的には、該混合物を超高圧装置に導入し、所定の圧力、温度を所定時間保持することによりcBN焼結体を得ることができる。
  超高圧焼結時の圧力は、5.0GPa以上10.0GPa以下であることが好ましい。
また、超高圧焼結時の温度は、1500℃以上2000℃以下である好ましく、超高圧焼結の処理に要する時間は、5分以上30分以下であることが好ましい。
  以上のようにして、本実施の形態に係るcBN焼結体を得ることができる。
  以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
  <実施例1>
  <cBN焼結体の製造>
  以下のようにして、cBN焼結体を作製した。まず、平均粒径1.2μm程度のcBN粉末を準備した(第1の工程)。次いで、RFスパッタリングPVD装置を用いて、被覆材であるCrでcBN粒子の表面を被覆することにより被覆粒子からなる粉末を得た(第2の工程)。このとき、cBN焼結体全体に対する被覆材(Cr)の占める割合が0.6質量%となるようにスパッタリング条件を調節した。
  次いで、WC粉末とCo粉末とAl粉末とを粉砕混合して得た混合物を、真空中において1200℃で30分間熱処理することにより化合物を得た。該化合物を遊星ボールミルで粉砕することにより、結合材の粉末を得た。
  次いで、被覆粒子からなる粉末と結合材の粉末とを、cBN焼結体においてcBN粒子の含有率が93体積%となるように配合し、内壁がテフロン(登録商標)製のポットとSi製のボールメディアを用いて、ボールミル混合法により均一に混合することにより混合粉末を得た(第3の工程)。
  さらに、この混合粉末を真空炉において900℃で20分間保持することにより、脱ガスを行なった。脱ガス後の混合粉末をMo製カプセルに充填後、超高圧装置を用いて、圧力6.5GPa、温度1600℃で20分間保持することにより、cBN焼結体を得た(第4の工程)。
  <比較例1>
  上述の「cBN焼結体の製造」において、第2の工程を実行しない以外は実施例1と同様にして、比較例1に係るcBN焼結体を得た。すなわち、比較例1に係るcBN焼結体は、被覆材を含有していない。
  <実施例2~5、比較例2および3>
  cBN焼結体全体に対する被覆材(Cr)の占める割合を、表1に示す数値とした以外は、実施例1の「cBN焼結体の製造」と同様にして、実施例2~5、比較例2および3に係るcBN焼結体を得た。
  <比較例4>
  上述の「cBN焼結体の製造」において、第2の工程を実行せず、第3の工程において、cBN粒子からなる粉末と結合材とCr粉末とを混合することにより混合粉末を得る以外は、実施例2と同様にして、比較例4に係るcBN焼結体を得た。すなわち、比較例4に係るcBN焼結体は、被覆材となり得る元素を含んでいるが、cBN粒子は該元素によって被覆されていない。
  <実施例6および7>
  上述の「cBN焼結体の製造」において、第2の工程でCrの代わりにNi、Moを使用した以外は、実施例2と同様にして実施例6および7に係るcBN焼結体を得た。
  <実施例8~10および比較例5~9>
  上述の「cBN焼結体の製造」において、第3の工程で焼結体におけるcBN粒子の含有率が表1に示す値となるように配合した以外は、実施例1および比較例1と同様にして、実施例8~10および比較例5~9に係るcBN焼結体を得た。
  <焼結体組織の分析>
  上記のようにして得られた被覆材を含有する各cBN焼結体に対して、STEM観察およびEDS分析を行ない、被覆材元素でマッピングを行なった。その結果、実施例1~10に係るcBN焼結体では、cBN粒子の輪郭が明瞭に確認できる程度にcBN粒子が被覆材によって被覆されていることが確認された。すなわち、cBN粒子同士の粒界にも被覆材が存在していることが確認された。また、上述の方法によって求めた被覆率は、いずれも70%以上であった。したがって、これらの焼結体において、cBN粒子は実質的に全面を被覆材によって被覆されていたとみなすことができる。
  これに対して、比較例4のcBN焼結体で、cBN粒子同士の粒界におけるCrの検出量は僅かであり、CrのマッピングによってはcBN粒子の輪郭は明瞭には確認できなかった。また、上述の方法によって求めた被覆率も70%に満たないものであった。
  <切削性能の評価>
  次に、上記のようにして得られた実施例および比較例のcBN焼結体を用いて切削工具を作製し、切削性能(耐摩耗性および耐欠損性)を評価した。具体的には、上記で製造されたcBN焼結体を超硬合金製の基材にロウ付けし、所定の形状に成型することにより切削工具を作製した。
  そして、各切削工具を用いて、焼結部品の弱断続切削を行なうことにより、切削性能を評価した。すなわち、下記の条件で切削加工を行ない、3km切削した時点の刃先の脱落量を比較することにより、耐摩耗性および耐欠損性を評価した。結果を表1に示す。
  <切削条件>
  被削材    :0.8C-2.0Cu-残Fe(JPMA記号:SMF4040)
  切削速度  :Vc=200m/min.
  送り量    :f=0.1mm/rev.
  切り込み量:ap=0.2mm
  湿式切削(切削液あり)。
Figure JPOXMLDOC01-appb-T000001
  表1中、cBN粒子の含有率(体積%)と被覆材の占める割合(質量%)は下記の方法で確認した。まず、cBN焼結体に対して、面出し加工により平滑な観察面を作成して立方晶窒化硼素の組織を走査型電子顕微鏡(以下、SEMと記す)により、10nmの粒径が識別可能な10、000倍の視野で観察を行った。得られたSEM画像からcBN粒子が焼結体全体に占める割合を画像処理より求めた。得られた面積の割合を、深さ方向にも同様の割合で分布していると見なし、体積%として表1に示した。画像処理では色の濃さによる二値化を実施したが、予め元素分析により黒色がcBN、灰色がAl及びCoの化合物、白色がWの化合物であることを特定しており、これに基づいてcBN粒子の含有率、結合材の領域及び形状の判定を行った。次に、上記平滑な観察面をエネルギー分散型X線分析(EDS)により元素分析を行い、被覆材の質量%を求め、表1に示した。
また、表1の切削性能の欄に示す数値は、比較例1に係る切削工具の脱落量を基準とした相対評価値である。この相対評価値は、比較例1に係る切削工具の脱落量を、それぞれの切削工具の脱落量で除した値に100を乗じて算出した値である。すなわち、この数値が大きいほど脱落量が少なく、耐摩耗性および耐欠損性が優れていることを示している。
  表1から明らかなように、立方晶窒化ホウ素粒子と結合材と被覆材とを含み、該立方晶窒化ホウ素粒子の含有率が80体積%以上99体積%以下であり、該結合材は、タングステン、コバルトおよびアルミニウムからなる群より選ばれた少なくとも1種の元素を含み、該被覆材の含有率が0.1質量%以上1.5質量%以下であり、該立方晶窒化ホウ素粒子が該被覆材により被覆されてなる、実施例に係るcBN焼結体を用いた切削工具は、かかる条件を満たさない比較例に係るcBN焼結体を用いた切削工具に比し、優れた耐摩耗性および耐欠損性を示した。
  以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。
  今回開示された実施の形態および実施例はすべての点において例示であって制限的なものではないと考えられるべきである。本発明の範囲は上述した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。
  1  cBN粒子、2  被覆材、3  結合材。

Claims (11)

  1.   立方晶窒化ホウ素粒子の含有率が80体積%以上99体積%以下である立方晶窒化ホウ素焼結体の製造方法であって、
      立方晶窒化ホウ素粒子を準備する第1の工程と、
      被覆材で前記立方晶窒化ホウ素粒子を被覆することにより被覆粒子を得る第2の工程と、
      前記被覆粒子と結合材とを混合することにより混合物を得る第3の工程と、
      前記混合物を焼結する第4の工程と、を含む立方晶窒化ホウ素焼結体の製造方法。
  2.   前記被覆粒子は、前記被覆材で実質的に全面が被覆された粒子である、請求項1に記載の立方晶窒化ホウ素焼結体の製造方法。
  3.   前記結合材は、タングステン、コバルトおよびアルミニウムからなる群より選ばれた少なくとも1種の元素を含む、請求項1または2に記載の立方晶窒化ホウ素焼結体の製造方法。
  4.   前記結合材は、炭素、窒素、ホウ素および酸素からなる群より選ばれた少なくとも1種の元素をさらに含む、請求項3に記載の立方晶窒化ホウ素焼結体の製造方法。
  5.   前記被覆材は、クロム、ニッケルおよびモリブデンからなる群より選ばれた少なくとも1種の元素を含む、請求項1~4のいずれか1項に記載の立方晶窒化ホウ素焼結体の製造方法。
  6.   前記第2の工程は、物理蒸着法により前記被覆材で前記立方晶窒化ホウ素粒子を被覆する工程である、請求項1~5のいずれか1項に記載の立方晶窒化ホウ素焼結体の製造方法。
  7.   立方晶窒化ホウ素粒子と結合材と被覆材とを含み、
      前記立方晶窒化ホウ素粒子の含有率が80体積%以上99体積%以下であり、
      前記結合材は、タングステン、コバルトおよびアルミニウムからなる群より選ばれた少なくとも1種の元素を含み、
      前記被覆材の含有率が0.1質量%以上1.5質量%以下であり、
      前記立方晶窒化ホウ素粒子が前記被覆材により被覆されてなる、立方晶窒化ホウ素焼結体。
  8.   前記立方晶窒化ホウ素粒子が前記被覆材により実質的に全面を被覆されてなる、請求項7に記載の立方晶窒化ホウ素焼結体。
  9.   前記結合材は、炭素、窒素、ホウ素および酸素からなる群より選ばれた少なくとも1種の元素をさらに含む、請求項7または8に記載の立方晶窒化ホウ素焼結体。
  10.   前記被覆材は、クロム、ニッケルおよびモリブデンからなる群より選ばれた少なくとも1種の元素を含む、請求項7~9のいずれか1項に記載の立方晶窒化ホウ素焼結体。
  11.   前記立方晶窒化ホウ素粒子の含有率が85体積%以上93体積%以下である、請求項7~10のいずれか1項に記載の立方晶窒化ホウ素焼結体。
PCT/JP2014/056404 2013-03-29 2014-03-12 立方晶窒化ホウ素焼結体の製造方法および立方晶窒化ホウ素焼結体 WO2014156625A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14773327.3A EP2980046B1 (en) 2013-03-29 2014-03-12 Method for manufacturing cubic boron nitride sintered body, and cubic boron nitride sintered body
KR1020157025472A KR101811510B1 (ko) 2013-03-29 2014-03-12 입방정 질화 붕소 소결체의 제조 방법 및 입방정 질화 붕소 소결체
CN201480018924.2A CN105189408A (zh) 2013-03-29 2014-03-12 立方氮化硼烧结体的制造方法和立方氮化硼烧结体
US14/779,400 US9522850B2 (en) 2013-03-29 2014-03-12 Method for manufacturing cubic boron nitride sintered body, and cubic boron nitride sintered body
MX2015011068A MX2015011068A (es) 2013-03-29 2014-03-12 Metodo para producir cuerpo sinterizado de nitruro de boro cubico, y cuerpo sinterizado de nitruro de boro cubico.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-073693 2013-03-29
JP2013073693A JP6095162B2 (ja) 2013-03-29 2013-03-29 立方晶窒化ホウ素焼結体

Publications (1)

Publication Number Publication Date
WO2014156625A1 true WO2014156625A1 (ja) 2014-10-02

Family

ID=51623608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056404 WO2014156625A1 (ja) 2013-03-29 2014-03-12 立方晶窒化ホウ素焼結体の製造方法および立方晶窒化ホウ素焼結体

Country Status (7)

Country Link
US (1) US9522850B2 (ja)
EP (1) EP2980046B1 (ja)
JP (1) JP6095162B2 (ja)
KR (1) KR101811510B1 (ja)
CN (1) CN105189408A (ja)
MX (1) MX2015011068A (ja)
WO (1) WO2014156625A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010500A (zh) * 2022-05-25 2022-09-06 山东鹏程陶瓷新材料科技有限公司 一种基于氮化硼的耐高温耐磨复合材料及其制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3021570C (en) 2016-04-20 2023-11-21 Mitsubishi Materials Corporation Drilling tip, drilling tool, and method of manufacturing drilling tip
JP6978445B2 (ja) 2016-06-29 2021-12-08 スミス インターナショナル インコーポレイテッド 立方プレスによるバインダーレスcBN焼結
EP3632878A4 (en) * 2017-05-26 2021-02-24 Sumitomo Electric Industries, Ltd. Sintered body and its production process
JP6683887B2 (ja) 2017-09-27 2020-04-22 日本特殊陶業株式会社 セラミックス焼結体、インサート、切削工具、及び摩擦攪拌接合用工具
WO2020005247A1 (en) * 2018-06-28 2020-01-02 Diamond Innovations, Inc. Pcbn sintered compact
KR102124566B1 (ko) * 2018-11-07 2020-06-18 일진다이아몬드(주) 고경도 cBN 소결체의 제조방법
CN114144392B (zh) * 2019-07-18 2023-06-02 住友电气工业株式会社 立方晶氮化硼烧结体
KR102318672B1 (ko) * 2019-10-29 2021-11-01 (주)에디코 입방정 질화붕소 입자 및 그 제조방법
CN111347153A (zh) * 2020-04-13 2020-06-30 富耐克超硬材料股份有限公司 一种搅拌摩擦焊用搅拌头
KR102551898B1 (ko) 2020-07-10 2023-07-05 베스트알 주식회사 초경합금용 금속 바인더, 이의 제조방법 및 이를 이용하여 제조된 초경합금
EP4190470A4 (en) * 2020-07-31 2024-01-03 Sumitomo Electric Industries CUBIC BORON NITRIDE SINTERED BODY AND CUTTING TOOL COMPRISING SAME
KR20230043853A (ko) * 2020-07-31 2023-03-31 스미토모덴키고교가부시키가이샤 입방정 질화붕소 소결체 및 그것을 포함하는 절삭 공구
JP7300063B1 (ja) 2021-10-01 2023-06-28 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860680A (ja) * 1981-10-07 1983-04-11 三菱マテリアル株式会社 切削および耐摩耗工具用高靭性窒化硼素基超高圧焼結材料
JPS61168569A (ja) * 1985-01-17 1986-07-30 昭和電工株式会社 立方晶窒化硼素焼結体の製造方法
JPH10182242A (ja) * 1996-10-31 1998-07-07 Sumitomo Electric Ind Ltd 高硬度高靱性焼結体
JP2004331456A (ja) 2003-05-08 2004-11-25 Tungaloy Corp 立方晶窒化硼素焼結体
WO2011111261A1 (ja) * 2010-03-12 2011-09-15 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具
WO2014065131A1 (ja) * 2012-10-26 2014-05-01 住友電工ハードメタル株式会社 立方晶窒化ホウ素焼結体およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605666B2 (ja) * 1982-03-23 1985-02-13 三菱マテリアル株式会社 切削工具用超高圧焼結材料
JP2826585B2 (ja) * 1989-05-17 1998-11-18 工業技術院長 立方晶窒化硼素含有無機複合焼結体の製造法
JP2686335B2 (ja) * 1990-01-05 1997-12-08 三菱重工業株式会社 工具用焼結材料
JPH0499805A (ja) * 1990-08-16 1992-03-31 Natl Inst For Res In Inorg Mater 耐摩耗性および耐溶着性のすぐれた複合硬質焼結材およびその製造法
KR100263594B1 (ko) * 1996-10-31 2000-08-01 오카야마 노리오 고경도 고인성 소결체
KR100459518B1 (ko) * 1996-12-03 2005-05-18 스미토모덴키고교가부시키가이샤 고압상형 질화붕소기 소결체
JP3573256B2 (ja) * 1998-07-27 2004-10-06 住友電気工業株式会社 Al2O3被覆cBN基焼結体切削工具
KR101252332B1 (ko) * 2006-06-12 2013-04-08 스미또모 덴꼬오 하드메탈 가부시끼가이샤 복합 소결체
EP2631027B1 (en) * 2010-10-18 2015-09-30 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered body and cubic boron nitride sintered body tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860680A (ja) * 1981-10-07 1983-04-11 三菱マテリアル株式会社 切削および耐摩耗工具用高靭性窒化硼素基超高圧焼結材料
JPS61168569A (ja) * 1985-01-17 1986-07-30 昭和電工株式会社 立方晶窒化硼素焼結体の製造方法
JPH10182242A (ja) * 1996-10-31 1998-07-07 Sumitomo Electric Ind Ltd 高硬度高靱性焼結体
JP2004331456A (ja) 2003-05-08 2004-11-25 Tungaloy Corp 立方晶窒化硼素焼結体
WO2011111261A1 (ja) * 2010-03-12 2011-09-15 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体工具
WO2014065131A1 (ja) * 2012-10-26 2014-05-01 住友電工ハードメタル株式会社 立方晶窒化ホウ素焼結体およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010500A (zh) * 2022-05-25 2022-09-06 山东鹏程陶瓷新材料科技有限公司 一种基于氮化硼的耐高温耐磨复合材料及其制备方法
CN115010500B (zh) * 2022-05-25 2023-08-15 山东鹏程陶瓷新材料科技有限公司 一种基于氮化硼的耐高温耐磨复合材料

Also Published As

Publication number Publication date
JP2014198637A (ja) 2014-10-23
KR101811510B1 (ko) 2017-12-21
KR20150119374A (ko) 2015-10-23
MX2015011068A (es) 2015-10-22
EP2980046B1 (en) 2020-04-29
US9522850B2 (en) 2016-12-20
JP6095162B2 (ja) 2017-03-15
CN105189408A (zh) 2015-12-23
EP2980046A1 (en) 2016-02-03
US20160052827A1 (en) 2016-02-25
EP2980046A4 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2014156625A1 (ja) 立方晶窒化ホウ素焼結体の製造方法および立方晶窒化ホウ素焼結体
JP6634647B2 (ja) 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
JP5305056B1 (ja) 立方晶窒化ほう素基焼結体製切削工具
JP6703757B2 (ja) サーメット、及び切削工具
JP5568827B2 (ja) 立方晶窒化硼素焼結体、及び立方晶窒化硼素焼結体工具
CN105283570B (zh) 金属陶瓷和切削工具
WO2012105710A1 (ja) cBN焼結体工具および被覆cBN焼結体工具
WO2014175419A1 (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体
JP6355124B2 (ja) 表面被覆窒化硼素焼結体工具
JP2010031308A (ja) サーメット
JPWO2020090280A1 (ja) 超硬合金、切削工具および超硬合金の製造方法
JPWO2018092369A1 (ja) 焼結体およびそれを含む切削工具
JP5971472B2 (ja) 硬質材料、硬質材料の製造方法、切削工具及び摩擦撹拌接合用ツール
CN104942555A (zh) 立方晶氮化硼基超高压烧结材料制切削工具
JP6098882B2 (ja) 耐欠損性にすぐれた立方晶窒化硼素焼結体切削工具
WO2014065131A1 (ja) 立方晶窒化ホウ素焼結体およびその製造方法
CN111801304B (zh) cBN烧结体及切削工具
JP2012041595A (ja) サーメット
JP6304615B1 (ja) 工具
WO2016114190A1 (ja) サーメット、切削工具、及びサーメットの製造方法
JP2024033530A (ja) 立方晶窒化硼素焼結体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018924.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773327

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/011068

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20157025472

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14779400

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014773327

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE