WO2014065030A1 - 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法 - Google Patents
紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法 Download PDFInfo
- Publication number
- WO2014065030A1 WO2014065030A1 PCT/JP2013/074136 JP2013074136W WO2014065030A1 WO 2014065030 A1 WO2014065030 A1 WO 2014065030A1 JP 2013074136 W JP2013074136 W JP 2013074136W WO 2014065030 A1 WO2014065030 A1 WO 2014065030A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultraviolet light
- emitting layer
- target
- light emitting
- substrate
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J63/00—Cathode-ray or electron-stream lamps
- H01J63/06—Lamps with luminescent screen excited by the ray or stream
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/77742—Silicates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J63/00—Cathode-ray or electron-stream lamps
- H01J63/02—Details, e.g. electrode, gas filling, shape of vessel
- H01J63/04—Vessels provided with luminescent coatings; Selection of materials for the coatings
Definitions
- One aspect of the present invention relates to an ultraviolet light generation target, an electron beam excited ultraviolet light source, and a method for manufacturing the ultraviolet light generation target.
- Patent Document 1 describes that a single crystal containing praseodymium (Pr) is used as a material for a scintillator used in a PET apparatus.
- Patent Document 2 describes a technique related to an illumination system that realizes white light by converting the wavelength of light emitted from a light emitting diode by a phosphor.
- ultraviolet light sources such as mercury xenon lamps and deuterium lamps have been used as ultraviolet light sources.
- these ultraviolet light sources have low luminous efficiency, are large, and have problems in terms of stability and life.
- mercury xenon lamp there is concern about the environmental impact of mercury.
- an electron beam excitation ultraviolet light source having a structure that excites ultraviolet light by irradiating an electron beam to a target.
- Electron-excited ultraviolet light sources are expected to be used in the field of optical measurement that makes use of high stability, sterilization and disinfection that make use of low power consumption, or medical light sources and biochemical light sources that make use of high wavelength selectivity. Yes.
- the electron beam excitation ultraviolet light source has an advantage that power consumption is smaller than that of a mercury lamp or the like.
- the electron beam excitation ultraviolet light source can generate sufficiently intense ultraviolet light, and has a large area and uniform intensity by increasing the diameter of the electron beam irradiated to the target. Ultraviolet light can be output.
- An object of one aspect of the present invention is to provide a target for generating ultraviolet light, an electron beam-excited ultraviolet light source, and a method for manufacturing the target for generating ultraviolet light capable of increasing the efficiency of generating ultraviolet light.
- an ultraviolet light generation target includes a substrate that transmits ultraviolet light, a light-emitting layer that is provided on the substrate and generates ultraviolet light by receiving an electron beam.
- the light emitting layer includes an oxide crystal containing Lu and Si, which is powdery or granular and to which an activator is added.
- the present inventor has developed an oxide crystal containing Lu and Si to which an activator is added, for example, (Pr x Lu 1-x ) 2 Si 2 O 7 (Pr: LPS, where x is in the range of 0 ⁇ x ⁇ 1 ) And (Pr x Lu 1-x ) 2 SiO 5 (Pr: LSO, where x is 0 ⁇ x ⁇ 1), etc.
- an activator for example, (Pr x Lu 1-x ) 2 Si 2 O 7 (Pr: LPS, where x is in the range of 0 ⁇ x ⁇ 1 )
- Pr x Lu 1-x ) 2 SiO 5 Pr: LSO, where x is 0 ⁇ x ⁇ 1)
- an oxide crystal containing Lu and Si, to which an activator is added is made into a powder form or a granular form, and this is formed into a film form, thereby producing ultraviolet light. It has been found that the generation efficiency can be significantly increased. That is, according to the target for generating ultraviolet light according to one aspect of the present invention, since the light emitting layer is powdery or granular and includes oxide crystals containing Lu and Si to which an activator is added, Light generation efficiency can be effectively increased.
- the surface of the oxide crystal may be covered with a crystal melt layer that has been melted by heat treatment and solidified again.
- the oxide crystals and the oxide crystal and the substrate are fused to each other, so that sufficient mechanical strength of the light emitting layer can be obtained without using a binder, and the bonding between the light emitting layer and the substrate can be achieved.
- the strength can be increased and peeling of the light emitting layer can be suppressed.
- the oxide crystal may include at least one of LPS and LSO.
- the ultraviolet light generation target may have Pr as an activator.
- the substrate may be made of sapphire, quartz or quartz.
- transmits a board
- an electron beam excitation ultraviolet light source includes any one of the above ultraviolet light generation targets and an electron source that applies an electron beam to the ultraviolet light generation target. According to this electron beam excitation ultraviolet light source, the ultraviolet light generation efficiency can be increased by providing any one of the above ultraviolet light generation targets.
- a method for producing a target for generating ultraviolet light includes a substrate that transmits ultraviolet light through an oxide crystal containing Lu and Si, which is powdery or granular and to which an activator is added. By depositing on the oxide crystal and heat-treating the oxide crystal, the crystal surface is melted and solidified again to form a crystal melt layer. According to this method for producing an ultraviolet light generation target, the oxide crystal and the oxide crystal and the substrate are fused to each other by the crystal melting layer, so that sufficient mechanical strength of the light emitting layer can be obtained without using a binder. In addition, the bonding strength between the light emitting layer and the substrate can be increased to prevent the light emitting layer from peeling off.
- the heat treatment temperature may be 1000 ° C. or more and 2000 ° C. or less.
- the ultraviolet light generation efficiency can be increased.
- SEM electron microscope
- FIG. 1 is a schematic diagram showing an internal configuration of an electron beam excitation ultraviolet light source 10 according to the present embodiment.
- an electron source 12 and an extraction electrode 13 are disposed on the upper end side inside a vacuum evacuated glass container (electron tube) 11.
- an appropriate extraction voltage is applied between the electron source 12 and the extraction electrode 13 from the power supply unit 16
- the electron beam EB accelerated by the high voltage is emitted from the electron source 12.
- an electron source that emits a large area electron beam for example, a cold cathode such as a carbon nanotube or a hot cathode
- a cold cathode such as a carbon nanotube or a hot cathode
- an ultraviolet light generation target 20 is disposed on the lower end side inside the container 11.
- the ultraviolet light generation target 20 is set to a ground potential, for example, and a negative high voltage is applied to the electron source 12 from the power supply unit 16. Thereby, the electron beam EB emitted from the electron source 12 is irradiated to the ultraviolet light generation target 20.
- the ultraviolet light generation target 20 is excited by receiving this electron beam EB, and generates ultraviolet light UV.
- FIG. 2 is a side view showing the configuration of the ultraviolet light generation target 20.
- the ultraviolet light generation target 20 includes a substrate 21, a light emitting layer 22 provided on the substrate 21, and an aluminum film 23 provided on the light emitting layer 22.
- the substrate 21 is a plate-like member made of a material that transmits ultraviolet light.
- the substrate 21 is made of sapphire (Al 2 O 3 ), quartz (SiO 2 ), or quartz (rock crystal).
- the substrate 21 has a main surface 21a and a back surface 21b.
- a suitable thickness of the substrate 21 is 0.1 mm or more and 10 mm or less.
- the light emitting layer 22 is excited by receiving the electron beam EB shown in FIG. 1, and generates ultraviolet light UV.
- the light emitting layer 22 includes oxide crystals containing Lu and Si, which are powdery or granular and to which an activator is added.
- an oxide crystal for example, Lu 2 Si 2 O 7 (LPS) or Lu 2 SiO 5 (LSO) to which a rare earth element (Pr in one embodiment) is added as an activator is suitable.
- LPS Lu 2 Si 2 O 7
- LSO Lu 2 SiO 5
- the surface of the oxide crystal is covered with a crystal molten layer that has been melted and solidified again by heat treatment.
- the oxide crystal included in the light emitting layer 22 may be either single crystal or polycrystal, and both may be mixed. Further, different types of oxide crystals (for example, LPS and LSO) may be mixed.
- an ultraviolet light generation target that can be used as a high-power and high-stable ultraviolet light source in a wavelength range of 260 nm band useful for sterilization and analysis applications, and also as a large-area ultraviolet light source.
- action increases the reaction area of the oxide crystal and an electron beam by making the oxide crystal containing Lu and Si to which an activator is added into a powder or a granule. It is considered that the light extraction efficiency is increased.
- the surface of the oxide crystal is preferably covered with a crystal melt layer that has been melted and solidified again by heat treatment.
- a crystal melt layer that has been melted and solidified again by heat treatment.
- the light emitting layer 22 of the present embodiment can be formed by a method such as depositing powdery or granular oxide crystals on the substrate 21, the ultraviolet light generating target 20 having a large area can be easily produced. be able to.
- the substrate 22 is preferably made of sapphire, quartz or quartz. Thereby, when ultraviolet light permeate
- a sapphire substrate having a diameter of 12 mm and a thickness of 2 mm was prepared.
- a Pr: LPS polycrystal substrate was prepared, and this polycrystal substrate was pulverized using a mortar, whereby the Pr: LPS polycrystal was made powdery or granular.
- a light emitting layer was formed by depositing powdery or granular Pr: LPS polycrystals on a sapphire substrate by precipitation. Thereafter, an organic film (nitrocellulose) was formed on these light emitting layers, and an aluminum film was deposited on the organic film. Finally, these light emitting layers were baked to decompose and vaporize the organic film so that the aluminum film was in contact with the light emitting layer.
- the thickness of the light emitting layer after firing was 10 ⁇ m.
- FIG. 3 is a graph showing a spectrum of ultraviolet light obtained by irradiating an ultraviolet light generation target produced according to this example with an electron beam.
- FIG. 3 also shows a graph G12 for comparison.
- Graph G12 is an ultraviolet light spectrum obtained by irradiating an electron beam onto Pr: LPS polycrystalline substrate 102 having an aluminum film 101 deposited on the surface thereof as shown in FIG.
- the acceleration voltage of the electron beam was 10 kV
- the electron beam intensity (current amount) was 200 ⁇ A
- the electron beam diameter was 5 mm.
- the peak of ultraviolet light generated by irradiation with an electron beam compared to the Pr: LPS polycrystal substrate is remarkably increased (that is, the light emission efficiency is remarkably increased).
- the light emission intensity of the Pr: LPS polycrystalline substrate is almost zero over the entire wavelength range because the light emitting layer is cloudy and does not transmit ultraviolet light. Since the crystal structure of Pr: LPS polycrystal is monoclinic, it is difficult to produce a polycrystalline substrate that transmits ultraviolet light.
- the effect of making the polycrystal in powder form or granular form is that an activator-added Lu and Si-containing oxide crystal having a composition similar to that of the Pr: LPS polycrystal, for example, Pr: LSO polycrystal It is considered that it can be obtained similarly in the case of a single crystal as well as a polycrystal.
- a sapphire substrate having a diameter of 12 mm and a thickness of 2 mm was prepared.
- a Pr: LPS polycrystalline substrate was prepared, and this Pr: LPS polycrystalline substrate was pulverized using a mortar to produce a powdery or granular Pr: LPS polycrystalline.
- Pr: LPS polycrystal, pure water, and a potassium silicate (K 2 SiO 3 ) aqueous solution and a barium acetate aqueous solution as a binder material are mixed, the mixed solution is applied onto a sapphire substrate, and precipitated.
- a Pr: LPS polycrystal and a binder material were deposited on a sapphire substrate by the method to form a light emitting layer.
- an organic film nitrocellulose
- an aluminum film was formed on the organic film by vacuum deposition.
- the organic film was decomposed and vaporized by baking the light emitting layer at 350 ° C. in the atmosphere, so that the aluminum film was in contact with the light emitting layer.
- a sapphire substrate having a diameter of 12 mm and a thickness of 2 mm was prepared.
- a Pr: LPS polycrystalline substrate was prepared, and this Pr: LPS polycrystalline substrate was pulverized using a mortar to produce a powdery or granular Pr: LPS polycrystalline.
- Pr: LPS polycrystals and a solvent (ethanol) were mixed, the mixture was applied onto a sapphire substrate, and then the solvent was dried.
- Pr: LPS polycrystal was deposited on the sapphire substrate to form a light emitting layer.
- the light emitting layer was heat-treated in a reduced pressure atmosphere. In this heat treatment, the surface of the powdered or granular Pr: LPS polycrystal is melted to form a structure in which the crystal particles and the crystal particles and the surface of the sapphire substrate are fused to each other. Was done to strengthen.
- an organic film (nitrocellulose) was formed on the light emitting layer, and an aluminum film was formed on the organic film by vacuum deposition. Finally, the organic film was decomposed and vaporized by baking the light emitting layer at 350 ° C. in the atmosphere, so that the aluminum film was in contact with the light emitting layer.
- FIG. 5 is a graph showing changes over time in the light emission intensity of the light emitting layer formed using the binder and the light emission intensity of the light emitting layer formed by the heat treatment.
- the vertical axis indicates the normalized emission intensity (initial value is 1.0), and the horizontal axis indicates the electron beam irradiation time (unit: time) on a logarithmic scale.
- a graph G21 shows a graph of the light emitting layer formed using a binder, and a graph G22 shows a graph of the light emitting layer formed by heat treatment (1000 ° C., 2 hours).
- the acceleration voltage of the electron beam was 10 kV
- the intensity (current amount) of the electron beam was 20 ⁇ A.
- this light emitting layer When this light emitting layer is irradiated with a strong energy electron beam, the temperature rises and X-rays are generated, and the binder material is altered and decomposed due to the influence of the high temperature and X-rays.
- the altered binder material adhering to the crystal surface absorbs the ultraviolet light from the crystal, so that the amount of light emitted to the outside is considered to decrease.
- the binder material is not included in the light emitting layer, the binder material is not altered or decomposed, and the ultraviolet light transmittance is maintained for a relatively long time. It is done. Therefore, it is desirable to form the light emitting layer by heat treatment.
- FIGS. 6 to 9 are electron microscope (SEM) photographs taken of the state of the Pr: LPS polycrystalline particles in the light emitting layer.
- SEM electron microscope
- the Pr: LPS polycrystalline particles after the heat treatment are melted and solidified as compared with those before the heat treatment.
- the crystal melt layer melted and solidified again by the heat treatment covers the surface of the Pr: LPS polycrystalline particles.
- the adjacent Pr: LPS polycrystalline particles are fused to each other so that the Pr: LPS polycrystalline particles are firmly bonded to each other, so that the light emitting layer can be formed without using the binder described above. Mechanical strength can be increased.
- FIG.10 and FIG.11 is the electron microscope (SEM) photograph which image
- SEM electron microscope
- the Pr: LPS polycrystal cannot be completely removed, and Pr: LPS on the surface of the sapphire substrate. A crystal melt layer of LPS polycrystal remains.
- the Pr: LPS polycrystal is completely removed when the light emitting layer formed using the binder (not heat-treated) is peeled off. Only the surface of the sapphire substrate is visible.
- the effect of heat-treating the powdery or granular polycrystal as described above is that activator-added Lu and Si-containing oxide crystals having a composition similar to that of the Pr: LPS polycrystal, such as Pr: LSO polycrystal. It can be obtained in the same manner in the case of a crystal, and it can be obtained in the case of a single crystal as well as a polycrystal.
- the temperature of the heat treatment for the light emitting layer is 1500 ° C., but the temperature of the heat treatment is preferably 1000 ° C. or more, and preferably 2000 ° C. or less.
- the temperature of the heat treatment is 1000 ° C. or more, a crystal melt layer on the surface of the crystal particles is formed to a sufficient thickness, and the adhesion between the crystal particles and between the crystal particles and the substrate is increased. Peeling of the light emitting layer can be effectively prevented.
- the temperature of heat processing is 2000 degrees C or less, the change of a crystal structure can be suppressed and the fall of luminous efficiency can be prevented.
- deformation of the substrate particularly the sapphire substrate) can be prevented.
- Graphs G31 to G34 shown in FIG. 12 are graphs showing the spectrum of ultraviolet light obtained by irradiating an ultraviolet light generation target produced by setting the heat treatment conditions for the light emitting layer as follows. It is. Graph G31: In vacuum, 1000 ° C., 2 hours Graph G32: In vacuum, 1400 ° C., 2 hours Graph G33: In vacuum, 1500 ° C., 2 hours Graph G34: In air, 1400 ° C., 2 hours In addition, FIG. A graph G35 is also shown for comparison. Graph G35 is a graph showing a spectrum of ultraviolet light obtained by irradiating an ultraviolet light generation target having a light emitting layer formed using a binder with an electron beam.
- the acceleration voltage of the electron beam was 10 kV
- the electron beam intensity (current amount) was 200 ⁇ A
- the electron beam diameter was 5 mm.
- the vertical axis represents the emission intensity normalized with the ultraviolet emission peak intensity being 1.0
- the horizontal axis represents the wavelength (unit: nm). Referring to FIG. 12, it can be seen that the peak wavelength of ultraviolet light emission changes depending on the temperature and atmosphere during the heat treatment.
- the emission spectrum cannot be changed by only one type, but in the case of no binder (with heat treatment), the emission wavelength is changed by changing the atmosphere and temperature during the heat treatment. be able to. That is, it is possible to select an optimum wavelength suitable for the application by changing the heat treatment conditions.
- the production method of the ultraviolet light generation target, the electron beam excitation ultraviolet light source, and the ultraviolet light generation target according to one aspect of the present invention is not limited to the above-described embodiment, and various other modifications are possible.
- the aluminum film is vapor-deposited on the light emitting layer in the embodiment and each example, the aluminum film may be omitted in the embodiment and each example.
- the aluminum film functions as an antistatic conductive film, and may be a conductive film other than aluminum.
- the ultraviolet light generation efficiency can be increased.
- Electron beam excitation ultraviolet light source 11 ... Container, 12 ... Electron source, 13 ... Extraction electrode, 16 ... Power supply part, 20 ... Target for ultraviolet light generation, 21 ... Substrate, 21a ... Main surface, 21b ... Back surface, 22 ... Light emitting layer, 23 ... aluminum film, EB ... electron beam, UV ... ultraviolet light.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Luminescent Compositions (AREA)
- Discharge Lamps And Accessories Thereof (AREA)
Abstract
Description
続いて、上記実施形態の第1実施例について説明する。本実施例では、まず、直径12mm、厚さ2mmのサファイア基板を準備した。次に、Pr:LPS多結晶基板を準備し、乳鉢を用いてこの多結晶基板を粉砕することにより、Pr:LPS多結晶を粉末状又は粒状とした。続いて、粉末状又は粒状のPr:LPS多結晶を沈降法によりサファイア基板上に堆積させることにより、発光層を形成した。その後、これらの発光層の上に有機膜(ニトロセルロース)を形成し、その有機膜上にアルミニウム膜を蒸着した。最後に、これらの発光層を焼成することにより、有機膜を分解し気化させて、発光層にアルミニウム膜が接する構造とした。焼成後における発光層の厚さは、10μmであった。
続いて、上記実施形態の第2実施例について説明する。本実施例では、バインダを利用した発光層の形成と、バインダを利用しない、熱処理による発光層の形成とを説明する。
先ず、直径12mm、厚さ2mmのサファイア基板を準備した。次に、Pr:LPS多結晶基板を準備し、乳鉢を用いてこのPr:LPS多結晶基板を粉砕することにより、粉末状又は粒状のPr:LPS多結晶を作製した。
先ず、直径12mm、厚さ2mmのサファイア基板を準備した。次に、Pr:LPS多結晶基板を準備し、乳鉢を用いてこのPr:LPS多結晶基板を粉砕することにより、粉末状又は粒状のPr:LPS多結晶を作製した。
グラフG31:真空中、1000℃、2時間
グラフG32:真空中、1400℃、2時間
グラフG33:真空中、1500℃、2時間
グラフG34:大気中、1400℃、2時間
また、図12には、比較のためグラフG35が併せて示されている。グラフG35は、バインダを利用して形成された発光層を有する紫外光発生用ターゲットに電子線を照射して得られた紫外光のスペクトルを示すグラフである。これらのグラフG31~G35では、電子線の加速電圧を10kVとし、電子線の強さ(電流量)を200μAとし、電子線の径を5mmとした。図12において、縦軸は紫外発光ピーク強度を1.0として規格化された発光強度を示しており、横軸は波長(単位:nm)を示している。図12を参照すると、熱処理時の温度や雰囲気によって、紫外発光のピーク波長が変化することがわかる。
Claims (9)
- 紫外光を透過する基板と、
前記基板上に設けられ、電子線を受けて紫外光を発生する発光層と
を備え、
前記発光層が、粉末状または粒状であり付活剤が添加された、Lu及びSiを含有する酸化物結晶を含む、紫外光発生用ターゲット。 - 前記酸化物結晶の表面が、熱処理によって溶融し再び固化した結晶溶融層に覆われている、請求項1に記載の紫外光発生用ターゲット。
- 前記結晶溶融層によって、前記酸化物結晶同士、および前記酸化物結晶と前記基板とが互いに融着している、請求項2に記載の紫外光発生用ターゲット。
- 前記酸化物結晶がLPS及びLSOのうち少なくとも一つを含む、請求項1~3のいずれか一項に記載の紫外光発生用ターゲット。
- 前記付活剤がPrである、請求項4に記載の紫外光発生用ターゲット。
- 前記基板が、サファイア、石英または水晶から成る、請求項1~5のいずれか一項に記載の紫外光発生用ターゲット。
- 請求項1~6のいずれか一項に記載された紫外光発生用ターゲットと、
前記紫外光発生用ターゲットに電子線を与える電子源と、
を備える、電子線励起紫外光源。 - 粉末状または粒状であり付活剤が添加された、Lu及びSiを含有する酸化物結晶を、紫外光を透過する基板上に堆積させ、前記酸化物結晶に対して熱処理を行うことにより、前記酸化物結晶の表面を溶融し、再び固化させて結晶溶融層を形成する、紫外光発生用ターゲットの製造方法。
- 前記熱処理の温度が1000℃以上2000℃以下である、請求項8に記載の紫外光発生用ターゲットの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380055450.4A CN104736661B (zh) | 2012-10-23 | 2013-09-06 | 紫外光产生用靶、电子束激发紫外光源和紫外光产生用靶的制造方法 |
EP13849146.9A EP2913377B1 (en) | 2012-10-23 | 2013-09-06 | Target for ultraviolet light generation, electron beam-excited ultraviolet light source, and production method for target for ultraviolet light generation |
US14/437,345 US9852898B2 (en) | 2012-10-23 | 2013-09-06 | Target for ultraviolet light generation, electron beam-excited ultraviolet light source, and production method for target for ultraviolet light generation |
KR1020157010427A KR102107074B1 (ko) | 2012-10-23 | 2013-09-06 | 자외광 발생용 타겟, 전자선 여기 자외광원 및 자외광 발생용 타겟의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012233978A JP6029926B2 (ja) | 2012-10-23 | 2012-10-23 | 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法 |
JP2012-233978 | 2012-10-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014065030A1 true WO2014065030A1 (ja) | 2014-05-01 |
Family
ID=50544411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/074136 WO2014065030A1 (ja) | 2012-10-23 | 2013-09-06 | 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9852898B2 (ja) |
EP (1) | EP2913377B1 (ja) |
JP (1) | JP6029926B2 (ja) |
KR (1) | KR102107074B1 (ja) |
CN (1) | CN104736661B (ja) |
WO (1) | WO2014065030A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9976230B2 (en) * | 2014-09-19 | 2018-05-22 | Corning Incorporated | Method for forming a scratch resistant crystallized layer on a substrate and article formed therefrom |
CN108231532A (zh) * | 2017-12-31 | 2018-06-29 | 上海极优威光电科技有限公司 | 一种电子束激发荧光粉的深紫外光源 |
CN110028966A (zh) * | 2019-05-15 | 2019-07-19 | 山东大学 | 一种正硅酸盐基深紫外长余辉发光材料及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02225587A (ja) * | 1988-10-06 | 1990-09-07 | Schlumberger Overseas Sa | オルト珪酸ルテチウム単結晶シンチレータ検知器 |
JP2006049284A (ja) | 2004-06-29 | 2006-02-16 | Suga Test Instr Co Ltd | 耐候光試験用ランプ |
JP2006520836A (ja) | 2003-03-17 | 2006-09-14 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 放射源及び蛍光物質を有する照明システム |
WO2012006774A1 (zh) * | 2010-07-14 | 2012-01-19 | 海洋王照明科技股份有限公司 | 荧光粉层的制备方法 |
WO2012147744A1 (ja) * | 2011-04-25 | 2012-11-01 | 浜松ホトニクス株式会社 | 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法 |
JP2013053257A (ja) * | 2011-09-06 | 2013-03-21 | Shogen Koden Kofun Yugenkoshi | 波長変換構造及びその製造方法並びに該波長変換構造を含む発光装置 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5159079A (ja) * | 1974-11-20 | 1976-05-22 | Matsushita Electric Ind Co Ltd | Seriumufukatsukeisanrutechiumukeikotaino seizohoho |
US5846638A (en) * | 1988-08-30 | 1998-12-08 | Onyx Optics, Inc. | Composite optical and electro-optical devices |
JPH08285947A (ja) * | 1995-04-14 | 1996-11-01 | Hitachi Ltd | 電子検出装置及びこれを備えた電子顕微鏡 |
US5851428A (en) * | 1996-03-15 | 1998-12-22 | Kabushiki Kaisha Toshiba | Phosphor and manufacturing method thereof |
JP2002033080A (ja) * | 2000-07-14 | 2002-01-31 | Futaba Corp | 紫外線光源 |
DE10064086C1 (de) * | 2000-12-21 | 2002-04-25 | Consortium Elektrochem Ind | Verfahren zur Herstellung von Isocyanatoorganosilanen und bestimmte Isocyanatoorganosilane |
DE10132271A1 (de) * | 2001-07-04 | 2003-01-23 | Philips Corp Intellectual Pty | Kathodenstrahlröhre mit Anordnung zur Elektronenstrahlkontrolle |
JP4235748B2 (ja) | 2002-03-18 | 2009-03-11 | 株式会社日立プラズマパテントライセンシング | 表示装置 |
DE10238398A1 (de) | 2002-08-22 | 2004-02-26 | Philips Intellectual Property & Standards Gmbh | Vorrichtung zur Erzeugung von Bildern und/oder Projektionen |
EP1471128A1 (en) * | 2003-04-24 | 2004-10-27 | Fuji Photo Film Co., Ltd. | Stimulable cerium activated lutetium silicate phosphor |
JP2007514736A (ja) * | 2003-12-17 | 2007-06-07 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 紫外線放射ナノ粒子を用いた放射線治療および医学画像 |
RU2389835C2 (ru) * | 2004-11-08 | 2010-05-20 | Тохоку Текно Арч Ко., Лтд. | Pr-СОДЕРЖАЩИЙ СЦИНТИЛЛЯЦИОННЫЙ МОНОКРИСТАЛЛ, СПОСОБ ЕГО ПОЛУЧЕНИЯ, ДЕТЕКТОР ИЗЛУЧЕНИЯ И УСТРОЙСТВО ОБСЛЕДОВАНИЯ |
CN101084329A (zh) * | 2004-11-08 | 2007-12-05 | 东北泰克诺亚奇股份有限公司 | 含Pr的闪烁体用单晶及其制造方法和放射线检测器以及检查装置 |
US7825243B2 (en) * | 2005-06-03 | 2010-11-02 | Momentive Performance Materials Inc. | Process for the production of isocyanatosilane and silylisocyanurate |
JP2007294698A (ja) | 2006-04-26 | 2007-11-08 | Sumitomo Electric Ind Ltd | 紫外線ランプ及びこれを用いた露光装置 |
JP5176074B2 (ja) * | 2007-07-17 | 2013-04-03 | 日立化成株式会社 | シンチレータ用単結晶 |
WO2009031584A1 (ja) * | 2007-09-03 | 2009-03-12 | National University Corporation Kobe University | 深紫外半導体光デバイス |
FR2930673A1 (fr) | 2008-04-28 | 2009-10-30 | Saint Gobain | Lampe plane a emission par effet de champ et sa fabrication |
JP5712588B2 (ja) * | 2010-12-07 | 2015-05-07 | ウシオ電機株式会社 | 蛍光ランプおよびその製造方法 |
JP5580777B2 (ja) * | 2011-04-25 | 2014-08-27 | 浜松ホトニクス株式会社 | 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法 |
JP5572652B2 (ja) * | 2012-03-08 | 2014-08-13 | 双葉電子工業株式会社 | 蛍光発光装置と蛍光発光装置の蛍光体層の形成方法 |
JP5580865B2 (ja) * | 2012-10-23 | 2014-08-27 | 浜松ホトニクス株式会社 | 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法 |
-
2012
- 2012-10-23 JP JP2012233978A patent/JP6029926B2/ja not_active Expired - Fee Related
-
2013
- 2013-09-06 CN CN201380055450.4A patent/CN104736661B/zh not_active Expired - Fee Related
- 2013-09-06 WO PCT/JP2013/074136 patent/WO2014065030A1/ja active Application Filing
- 2013-09-06 KR KR1020157010427A patent/KR102107074B1/ko active IP Right Grant
- 2013-09-06 US US14/437,345 patent/US9852898B2/en not_active Expired - Fee Related
- 2013-09-06 EP EP13849146.9A patent/EP2913377B1/en not_active Not-in-force
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02225587A (ja) * | 1988-10-06 | 1990-09-07 | Schlumberger Overseas Sa | オルト珪酸ルテチウム単結晶シンチレータ検知器 |
JP2006520836A (ja) | 2003-03-17 | 2006-09-14 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 放射源及び蛍光物質を有する照明システム |
JP2006049284A (ja) | 2004-06-29 | 2006-02-16 | Suga Test Instr Co Ltd | 耐候光試験用ランプ |
WO2012006774A1 (zh) * | 2010-07-14 | 2012-01-19 | 海洋王照明科技股份有限公司 | 荧光粉层的制备方法 |
WO2012147744A1 (ja) * | 2011-04-25 | 2012-11-01 | 浜松ホトニクス株式会社 | 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法 |
JP2013053257A (ja) * | 2011-09-06 | 2013-03-21 | Shogen Koden Kofun Yugenkoshi | 波長変換構造及びその製造方法並びに該波長変換構造を含む発光装置 |
Non-Patent Citations (2)
Title |
---|
L PIDOL ET AL.: "Scintillation properties of Lu2Si207:Ce3+,a fast and efficient scintillator crystal", J. PHYS.; CONDENS. MATTER, vol. 15, 2003, pages 2091 - 2102, XP055254436 * |
See also references of EP2913377A4 |
Also Published As
Publication number | Publication date |
---|---|
US9852898B2 (en) | 2017-12-26 |
EP2913377A1 (en) | 2015-09-02 |
CN104736661A (zh) | 2015-06-24 |
EP2913377A4 (en) | 2016-08-03 |
JP6029926B2 (ja) | 2016-11-24 |
US20150270116A1 (en) | 2015-09-24 |
CN104736661B (zh) | 2017-10-24 |
EP2913377B1 (en) | 2017-10-04 |
KR102107074B1 (ko) | 2020-05-06 |
KR20150075088A (ko) | 2015-07-02 |
JP2014086257A (ja) | 2014-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5580866B2 (ja) | 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法 | |
US9240313B2 (en) | Target for ultraviolet light generation, electron beam-excited ultraviolet light source, and production method for target for ultraviolet light generation | |
JP5569987B2 (ja) | 紫外線発光材料及び紫外線光源 | |
JP5468079B2 (ja) | 真空紫外発光デバイス | |
JP5580932B2 (ja) | 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法 | |
JP6029926B2 (ja) | 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法 | |
JP5580777B2 (ja) | 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法 | |
US10381215B2 (en) | Target for ultraviolet light generation, and method for manufacturing same | |
JP2007039542A (ja) | 陽極、その製造方法及び蛍光ランプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13849146 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14437345 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157010427 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013849146 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013849146 Country of ref document: EP |