WO2012006774A1 - 荧光粉层的制备方法 - Google Patents

荧光粉层的制备方法 Download PDF

Info

Publication number
WO2012006774A1
WO2012006774A1 PCT/CN2010/075139 CN2010075139W WO2012006774A1 WO 2012006774 A1 WO2012006774 A1 WO 2012006774A1 CN 2010075139 W CN2010075139 W CN 2010075139W WO 2012006774 A1 WO2012006774 A1 WO 2012006774A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor layer
glass
substrate
phosphor
plate
Prior art date
Application number
PCT/CN2010/075139
Other languages
English (en)
French (fr)
Inventor
周明杰
马文波
刘玉刚
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to PCT/CN2010/075139 priority Critical patent/WO2012006774A1/zh
Priority to US13/810,058 priority patent/US8747681B2/en
Priority to CN2010800680151A priority patent/CN103069581A/zh
Priority to JP2013518926A priority patent/JP5487362B2/ja
Priority to EP10854569.0A priority patent/EP2595201A4/en
Publication of WO2012006774A1 publication Critical patent/WO2012006774A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil

Definitions

  • the invention relates to a method for preparing a phosphor layer, in particular to a method for preparing a non-planar phosphor layer which can be used for packaging FED devices and LED devices.
  • the structure of the phosphor is an important factor affecting the luminous efficiency of various types of electric light sources.
  • the flat phosphor layer is a commonly used phosphor structure for many electric light source devices.
  • a phosphor is coated on a planar anode material to form a phosphor layer, which emits light under the electron beam accelerated bombardment of the cathode.
  • the LED light source is also an important packaging method by using a flat phosphor layer.
  • studies have shown that a non-planar phosphor layer having a concave-convex structure on the surface can improve the packaged FED device and LED device by increasing the area of the phosphor layer per unit area compared with the flat phosphor layer. Luminous efficiency.
  • the preparation process of the phosphor layer is mainly a precipitation method, a screen printing method, and a spin coating method. These processes can only prepare a flat phosphor layer on a flat surface, and it is difficult to obtain uniformity and uniformity. A good non-planar phosphor layer. Therefore, there is an urgent need to develop a method for preparing a non-planar phosphor layer.
  • the technical problem to be solved by the present invention is to provide a method for preparing a phosphor layer which has good uniformity and uniformity and can improve the luminous efficiency of a light-emitting device.
  • a technical solution to solve the technical problem of the present invention is to provide a method for preparing a phosphor layer, which comprises the following steps:
  • Step 1 coating a phosphor layer on one surface of the flat transparent substrate
  • Step 2 processing a surface of a sheet to form a spatial curved surface shape
  • Step 3 placing the plate of the second step on the substrate coated with the phosphor layer in the first step, and the side having the space curved shape on the plate faces the substrate, and sandwiching the phosphor layer on the substrate Between the material and the sheet;
  • Step 4 heating the substrate and softening it, and then applying pressure to the plate, so that the phosphor layer sandwiched between the substrate and the plate forms a layer of phosphor having the same curved shape as the plate under pressure. After cooling, a phosphor layer on the substrate is obtained.
  • the transparent substrate is glass or a transparent resin or an organic glass.
  • the glass has high transparency in the visible light band, and the glass has a softening temperature of less than 1000 °C. Preferably, the glass has a softening temperature of less than 600 °C.
  • the phosphor layer thickness is controlled between 10 ⁇ m and 80 ⁇ m, and the phosphor is applied by screen printing, or sedimentation or spraying.
  • the material of the plate is ceramic or quartz glass or metal, and the processing process is machining or etching.
  • the material of the plate material is glass or transparent resin or plexiglass, and the processing process is machining or etching.
  • a method for preparing a phosphor layer of the present invention can design a surface shape of a phosphor layer to obtain a phosphor layer having a set curved surface shape and good uniformity and uniformity.
  • the method for preparing the phosphor layer of the present invention can obtain a non-planar phosphor layer structure on the surface of the glass or inside the glass by designing the surface shape of the mold or the glass plate, and the non-planar phosphor layer can increase the phosphor in the unit area.
  • the coated area inside, thereby increasing the effective excited area of the phosphor in a unit area, and using it for the packaging of a light-emitting device such as an LED or an FED, can effectively improve the luminous efficiency of the light-emitting device.
  • FIG. 1 is a flow chart showing a method of preparing a phosphor layer of the present invention
  • Example 2 is a schematic view of a phosphor layer on a glass surface prepared in Example 1 of the present invention
  • Example 3 is a schematic view of a phosphor layer located inside a glass prepared in Example 2 of the present invention.
  • FIG. 1 shows a flow of a method for preparing a phosphor layer according to the present invention.
  • the preparation method comprises the following steps:
  • Step S01 coating a phosphor layer on one surface of the flat transparent substrate
  • Step S02 processing a surface of a board to form a desired space curved surface shape
  • Step S03 placing the plate of step S02 on the substrate coated with the phosphor layer in step S01, the surface having the curved shape on the plate facing the substrate, sandwiching the phosphor layer on the substrate and the plate between;
  • Step S04 heating the substrate and softening it, and then applying pressure to the plate, so that the phosphor layer sandwiched between the substrate and the plate forms a layer of phosphor having the same curved shape as the plate under pressure. After cooling, a phosphor layer on the substrate is obtained.
  • the transparent substrate is glass or a transparent resin or an organic glass.
  • the transparent substrate is glass
  • the glass has high transparency in the visible light range, and the glass has a softening temperature of less than 1000 °C.
  • the glass sheet has a softening temperature of less than 600 °C.
  • the phosphor layer thickness is controlled to be 10 ⁇ m or more and 80 ⁇ m or less, and the phosphor is applied by screen printing, or sedimentation or spray coating.
  • the material of the plate material is ceramic or quartz glass or metal, and the processing process is machining or etching.
  • the sheet material is glass or a transparent resin or an organic glass, and the sheet material is made of the same material as the substrate, and the processing is machining or etching. Therefore, in step S04, the substrate and the sheet are heated to soften the substrate and the sheet, and after applying pressure, a phosphor layer between the substrate and the sheet and having the same curved shape as the sheet is obtained. .
  • the fluorescent layering may be located on the surface of the glass sheet or may be located inside the glass sheet.
  • the phosphor material used for the phosphor layer may be any phosphor material that does not react with glass at a glass softening temperature, and may be a phosphor suitable for being excited by a cathode ray, such as Y 2 SiO 5 :Tb phosphor, Y 2 O 3 : Eu phosphor or the like, which may also be a phosphor suitable for light wave excitation, such as YAG:Ce phosphor, silicate phosphor, and the like.
  • the non-planar phosphor layer has a spatial curved shape.
  • the shape of the curved surface can be designed according to various requirements, and can be arranged by a plurality of convex or concave structures, or can be any disordered spatial curved surface.
  • the preparation method of the non-planar phosphor layer of the present invention can design the surface shape of the phosphor layer to obtain a phosphor layer having a set curved surface shape and good uniformity and uniformity.
  • the non-planar phosphor layer of the present invention can be prepared by designing a surface shape of a mold or a glass plate to obtain a non-planar phosphor layer structure on a glass surface or a glass interior, and the non-planar phosphor layer can increase fluorescence.
  • the coating area of the powder in the unit area increases the effective excited area of the phosphor in a unit area, and is used for packaging of a light-emitting device such as an LED or an FED, thereby effectively improving the luminous efficiency of the light-emitting device.
  • the glass used is a glass of sodium borosilicate system, the glass is ground and polished to a thickness of 3 mm, and the phosphor is Y 2 SiO 5 :Tb.
  • a process for preparing a non-planar Y 2 SiO 5 :Tb phosphor layer is shown in FIG. 2, and a 50 ⁇ m thick phosphor layer 102 is first coated on the prepared glass plate 101 by a screen printing technique.
  • a ceramic piece 103 is prepared, a surface 104 having a periodic recessed structure is formed on the ceramic piece 103 by a mechanical process, a ceramic piece 103 is placed on the upper portion of the phosphor, and the whole is placed on the other ceramic plate 105 in the glass.
  • a height-adjustable barrier 106 is placed around the panel 101, and a weight 107 is placed over the ceramic sheet 103.
  • the barrier 106 serves to control the final thickness of the glass after heat softening and under the pressure of the weight 107.
  • the glass plate 101 having the phosphor layer, the ceramic piece 103, the ceramic plate 105, the barrier 106 and the weight 107 are carefully placed in a high-temperature electric furnace, heated to 790 ° C, and kept for 150 minutes to make the glass plate 101 in the ceramic piece.
  • the molding of 103 is softened under the molding, and the phosphor enters the glass plate 101, and a non-planar phosphor layer 108 having the same curved shape as that of the ceramic sheet 103 is formed on the surface of the glass.
  • This non-planar phosphor layer can be used for packaging of FED devices, which can enhance the luminous efficiency of FED devices due to the increased phosphor coating area per unit area.
  • the glass used is a sodium lithium zinc silicon system glass, the glass is ground and polished to a thickness of 2 mm, and the phosphor is a YAG:Ce system phosphor using a commercially available commercial phosphor.
  • the process for preparing the non-planar YAG:Ce phosphor layer is as shown in FIG. 3. First, a 20 ⁇ m thick phosphor layer 202 is coated on the prepared glass plate 201 by a sedimentation technique.
  • a disordered rough surface 204 is formed thereon by etching, a flat glass 203 having a rough surface is placed on the upper portion of the phosphor, and the whole is placed on another ceramic plate.
  • an adjustable height barrier 206 is placed around the glass sheet, and then a weight 207 is placed over the ceramic sheet. The barrier 206 functions to control the final thickness of the glass after heat softening and under the weight of the weight 207.
  • the glass plate 201 having the phosphor layer, the glass plate 203 having the rough surface, the ceramic plate 205, the barrier 206 and the weight 207 are carefully placed in a high-temperature electric furnace, heated to 600 ° C, and kept for 100 minutes to make the glass plate 201 softens, and under the action of gravity pressure, the upper and lower glass are combined, and the phosphor layer is formed under the pressure of the upper glass and has the same spatial curved shape, so that the non-planar phosphor layer 208 located inside the glass is obtained. .
  • Such a non-planar phosphor layer can be used for an LED package, which can enhance the luminous efficiency of the LED due to an increase in the phosphor coating area per unit area.

Abstract

一种荧光粉层(108,208)的制备方法,其包括如下步骤:步骤1:在平板状透明基材(101,201)的一个表面上涂敷一层荧光粉层(102,202);步骤2:在一板材(103,203)表面加工形成空间曲面形状(104,204);步骤3:在步骤1中的涂敷有荧光粉层(102,202)的基材(101,201)上放置步骤2的板材(103,203),且所述板材(103,203)上的具有空间曲面形状(104,204)的一面朝向所述基材(101,201),并将荧光粉层(102,202)夹在基材(101,201)和板材(103,203)之间;步骤4:加热所述基材(101,201)并使其软化,再给板材(103,203)施加压力,使夹在基材(101,201)和板材(103,203)之间的荧光粉层(102,202)在压力作用下形成一层和板材(103,203)具有相同曲面形状的荧光粉层(108,208),待冷却后,即得到位于基材(101,201)上的荧光粉层(108,208)。

Description

荧光粉层的制备方法 技术领域
本发明涉及一种荧光粉层的制备方法,具体涉及一种可用于封装FED器件和LED器件的非平面荧光粉层的制备方法。
背景技术
荧光粉的结构是影响各类电光源发光效率的重要因素。平板状的荧光粉层是目前许多电光源器件常用的荧光粉结构,例如在FED器件中,荧光粉涂覆在平面的阳极材料上形成荧光粉层,其在阴极发射的电子束加速轰击下发光;又如LED光源,采用平板状的荧光粉层对其进行封装也是一种重要的封装方式。目前有研究表明,表面具有凹凸结构的非平面荧光粉层和平板状的荧光粉层相比,由于在单位面积上增加了荧光粉层的面积,因此能够改善其所封装的FED器件和LED器件的发光效率。
然而,目前荧光粉层的制备工艺主要为沉淀法、丝网印刷法和旋转涂覆法,这些工艺只能在平整的表面上制备平板状的荧光粉层,难以制得一致性和均匀性较好的非平面荧光粉层。因此,急需研究出一种非平面荧光粉层的制备方法。
技术问题
本发明所要解决的技术问题是提供一种具有一致性和均匀性良好的且能提高发光器件发光效率的荧光粉层的制备方法。
技术解决方案
解决本发明技术问题的技术方案是:提供一种荧光粉层的制备方法,其包括如下步骤:
步骤一:在平板状透明基材的一个表面上涂覆一层荧光粉层;
步骤二:在一板材表面加工形成空间曲面形状;
步骤三:在步骤一中的涂覆有荧光粉层的基材上放置步骤二的板材,且所述板材上的具有空间曲面形状的一面朝向所述基材,并将荧光粉层夹在基材和板材之间;
步骤四:加热所述基材并使其软化,再给板材施加压力,使夹在基材和板材之间的荧光粉层在压力作用下形成一层和板材具有相同曲面形状的荧光粉层,待冷却后,即得到位于基材上的荧光粉层。
在本发明的方法的步骤一中,所述透明基材为玻璃或者透明树脂或者有机玻璃。
在步骤一中,所述玻璃在可见光波段具有高透明度,所述玻璃的软化温度为小于1000℃。优选地,所述玻璃的软化温度为小于600℃。
在步骤一中,所述荧光粉层厚度控制在10μm到80μm之间,所述荧光粉的涂覆方式是丝网印刷、或沉降或喷涂方式。
在步骤二中,所述板材的材质为陶瓷或石英玻璃或金属,所述加工工艺为机械加工或刻蚀。
在步骤二中,所述板材的材质为玻璃或者透明树脂或者有机玻璃,所述加工工艺为机械加工或刻蚀。
有益效果
相较于现有技术,本发明的一种荧光粉层的制备方法能够对荧光粉层的面形进行设计,得到具有设定曲面形状且一致性、均匀性良好的荧光粉层。本发明的荧光粉层的制备方法可以通过设计模具或玻璃板的表面形状,制得位于玻璃表面或玻璃内部的非平面荧光粉层结构,非平面状的荧光粉层可以增加荧光粉在单位面积内的涂覆面积,从而增加荧光粉在单位面积内的有效被激发面积,将其用于LED、FED等发光器件的封装,能够有效提高发光器件的发光效率。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明荧光粉层的制备方法的流程图;
图2是本发明实施例1制备的位于玻璃表面的荧光粉层的示意图;
图3是本发明实施例2制备的位于玻璃内部的荧光粉层的示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,图1显示了本发明一种荧光粉层的制备方法的流程,该制备方法包括如下步骤:
步骤S01:在平板状透明基材的一个表面上涂覆一层荧光粉层;
步骤S02:在一板材表面加工形成所需的空间曲面形状;
步骤S03:在步骤S01中的涂覆有荧光粉层的基材上放置步骤S02的板材,所述板材上的具有曲面形状的一面朝向所述基材,将荧光粉层夹在基材和板材之间;
步骤S04:加热所述基材并使其软化,再给板材施加压力,使夹在基材和板材之间的荧光粉层在压力作用下形成一层和板材具有相同曲面形状的荧光粉层,待冷却后,即得到位于基材上的荧光粉层。
在步骤S01中,所述透明基材为玻璃或者透明树脂或者有机玻璃。优选地,所述透明基材为玻璃,所述玻璃在可见光波段具有高透明度,所述玻璃的软化温度为小于1000℃。优选地,所述玻璃板的软化温度为小于600℃。所述荧光粉层厚度控制在10μm以上且80μm以下,所述荧光粉的涂覆方式是丝网印刷、或沉降或喷涂方式。
在步骤S02中,所述板材的材质为陶瓷或石英玻璃或金属,所述加工工艺为机械加工或刻蚀。
或者,在步骤S02中,所述板材为玻璃或者透明树脂或者有机玻璃,所述板材与所述基材为相同材料制成,所述加工为机械加工或刻蚀。从而,在步骤S04中,加热基材和板材使所述基材和板材软化,施加压力后,即得到位于所述基材和板材之间的且与所述板材的曲面形状相同的荧光粉层。
具体地,根据本发明的一种荧光粉层的制备方法,该的荧光分层可以位于玻璃板的表面,也可以位于玻璃板的内部。
所述荧光粉层所用的荧光粉材料可以选择在玻璃软化温度下不与玻璃发生反应的任意荧光粉材料,其可为适合被阴极射线激发的荧光粉,例如Y2SiO5:Tb荧光粉、Y2O3:Eu荧光粉等,其还可为适合光波激发的荧光粉,例如YAG:Ce荧光粉、硅酸盐荧光粉等。所述非平面荧光粉层具有空间曲面形状。所述曲面形状可以根据各种需求进行设计,其可以由多个凸起状或凹陷状的结构周期排列而成,也可为任意无序的空间曲面。
采用本发明的一种非平面荧光粉层的制备方法能够对荧光粉层的面形进行设计,得到具有设定曲面形状且一致性、均匀性良好的荧光粉层。本发明的非平面荧光粉层的制备工艺,可以通过设计模具或玻璃板的表面面形,制得位于玻璃表面或玻璃内部的非平面荧光粉层结构,非平面状的荧光粉层可以增加荧光粉在单位面积内的涂覆面积,从而增加荧光粉在单位面积内的有效被激发面积,将其用于LED、FED等发光器件的封装,能够有效提高发光器件的发光效率。
以下通过多个实施例来举例说明本发明荧光粉层的不同制备方法以及其他特征等。
实施例1
在本实施例中,所用的玻璃组成为钠硼硅体系的玻璃,将玻璃打磨、抛光,厚度控制在3mm,荧光粉采用Y2SiO5:Tb。制备非平面Y2SiO5:Tb荧光粉层的工艺流程如图2所示,首先利用丝网印刷技术在所制得的玻璃板101上涂覆一层50μm厚的荧光粉层102。同时准备一块陶瓷片103,利用机械加工的方法在陶瓷片103上形成具有周期性凹陷结构的表面104,在荧光粉上部放置陶瓷片103,将其整体放在另一陶瓷平板105上,在玻璃板101四周放置可调节高度的阻隔物106,然后在陶瓷片103上放一重物107,阻隔物106的作用在于控制玻璃在加热软化后和在重物107的压力下玻璃的最终厚度。将具有荧光粉层的玻璃板101,陶瓷片103、陶瓷平板105、阻隔物106及重物107一起小心的放入高温电炉中,加热到790℃,保温150分钟,使玻璃板101在陶瓷片103的模压下软化,荧光粉进入玻璃板101中,在玻璃表面形成与陶瓷片103具有相同曲面形状的非平面荧光粉层108。这种非平面荧光粉层可用于FED器件的封装,由于增大了单位面积的荧光粉涂覆面积,其能够增强FED器件的发光效率。
实施例2
在本实施例中,所用的玻璃组成为钠锂锌硅体系的玻璃,将玻璃打磨、抛光,厚度控制在2mm,荧光粉采用YAG:Ce体系荧光粉采用市售商业荧光粉。制备非平面YAG:Ce荧光粉层的工艺流程如图3所示,首先利用沉降技术在所制得的玻璃板201上涂覆一层20μm厚的荧光粉层202。同时准备另一块厚度为3mm的平板玻璃203,利用刻蚀的方法在其上形成无序的粗糙表面204,在荧光粉上部放置具有粗糙表面的平板玻璃203,将其整体放在另一陶瓷平板205上,在玻璃板四周放置可调节高度的阻隔物206,然后在陶瓷片上放一重物207,阻隔物206的作用在于控制玻璃在加热软化后和在重物207的压力下玻璃的最终厚度。将具有荧光粉层的玻璃板201,具有粗糙表面的玻璃板203、陶瓷平板205、阻隔物206及重物207一起小心的放入高温电炉中,加热到600℃,保温100分钟,使玻璃板201软化,并在重力压力的作用下,上下玻璃结合在一起,荧光粉层在上方玻璃的压力下形成和其具有相同空间曲面形状的形状,这样就得到位于玻璃内部的非平面荧光粉层208。这种非平面荧光粉层可用于LED封装,由于增大了单位面积的荧光粉涂覆面积,其能够增强LED的发光效率。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种荧光粉层的制备方法,其包括如下步骤:
    步骤一:在平板状透明基材的一个表面上涂覆一层荧光粉层;
    步骤二:在一板材表面加工形成空间曲面形状;
    步骤三:在步骤一中的涂覆有荧光粉层的基材上放置步骤二的板材,且所述板材上的具有空间曲面形状的一面朝向所述基材,并将荧光粉层夹在基材和板材之间;
    步骤四:加热所述基材并使其软化,再给板材施加压力,使夹在基材和板材之间的荧光粉层在压力作用下形成一层和板材具有相同曲面形状的荧光粉层,待冷却后,即得到位于基材上的荧光粉层。
  2. 如权利要求1所述的荧光粉层的制备方法,其特征在于:在步骤一中,所述透明基材为玻璃或者透明树脂或者有机玻璃。
  3. 如权利要求2所述的荧光粉层的制备方法,其特征在于:在步骤一中,所述玻璃的软化温度为小于1000℃。
  4. 如权利要求3所述的荧光粉层的制备方法,其特征在于:所述玻璃的软化温度为小于600℃。
  5. 如权利要求1所述的荧光粉层的制备方法,其特征在于:在步骤一中,所述荧光粉层厚度控制在10μm到80μm之间,所述荧光粉的涂覆方式是丝网印刷、或沉降或喷涂方式。
  6. 如权利要求1所述的荧光粉层的制备方法,其特征在于:在步骤二中,所述板材的材质为陶瓷或石英玻璃或金属,所述加工工艺为机械加工或刻蚀。
  7. 如权利要求1所述的荧光粉层的制备方法,其特征在于:在步骤二中,所述板材的材质为玻璃或者透明树脂或者有机玻璃,所述加工工艺为机械加工或刻蚀。
PCT/CN2010/075139 2010-07-14 2010-07-14 荧光粉层的制备方法 WO2012006774A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2010/075139 WO2012006774A1 (zh) 2010-07-14 2010-07-14 荧光粉层的制备方法
US13/810,058 US8747681B2 (en) 2010-07-14 2010-07-14 Preparation method of fluorescent powder layer
CN2010800680151A CN103069581A (zh) 2010-07-14 2010-07-14 荧光粉层的制备方法
JP2013518926A JP5487362B2 (ja) 2010-07-14 2010-07-14 蛍光粉層の作成方法
EP10854569.0A EP2595201A4 (en) 2010-07-14 2010-07-14 METHOD OF MANUFACTURING FLUORESCENT POWDER LAYER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/075139 WO2012006774A1 (zh) 2010-07-14 2010-07-14 荧光粉层的制备方法

Publications (1)

Publication Number Publication Date
WO2012006774A1 true WO2012006774A1 (zh) 2012-01-19

Family

ID=45468873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075139 WO2012006774A1 (zh) 2010-07-14 2010-07-14 荧光粉层的制备方法

Country Status (5)

Country Link
US (1) US8747681B2 (zh)
EP (1) EP2595201A4 (zh)
JP (1) JP5487362B2 (zh)
CN (1) CN103069581A (zh)
WO (1) WO2012006774A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367599A (zh) * 2012-04-03 2013-10-23 展晶科技(深圳)有限公司 发光二极管封装结构的制造方法
WO2014065027A1 (ja) * 2012-10-23 2014-05-01 浜松ホトニクス株式会社 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法
WO2014065030A1 (ja) * 2012-10-23 2014-05-01 浜松ホトニクス株式会社 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1624945A (zh) * 2003-12-04 2005-06-08 日东电工株式会社 制造光半导体器件的方法
JP2008078659A (ja) * 2006-09-21 2008-04-03 Samsung Electro Mech Co Ltd Ledパッケージの製造方法及び白色光源モジュールの製造方法
CN101582475A (zh) * 2008-12-29 2009-11-18 佛山市国星光电股份有限公司 在led芯片上涂布荧光粉层的方法及led器件的制造
CN201439880U (zh) * 2009-08-04 2010-04-21 北京京东方光电科技有限公司 发光二极管、背光模组和液晶显示器
CN101728151A (zh) * 2009-12-31 2010-06-09 海洋王照明科技股份有限公司 场发射光源及其制作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032852A (ja) * 1989-05-31 1991-01-09 Pioneer Electron Corp レンチキュラー型蛍光体スクリーン
JPH04298946A (ja) * 1991-02-28 1992-10-22 Mitsubishi Electric Corp 光源用表示管
JP2002075253A (ja) * 2000-08-30 2002-03-15 Kyocera Corp 平面型ディスプレイ用正面板およびそれを用いた平面型ディスプレイ
TW200927679A (en) * 2007-12-20 2009-07-01 E Pin Industry Optical Co Ltd Molded fluorescent glass lens and method of manufacturing thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1624945A (zh) * 2003-12-04 2005-06-08 日东电工株式会社 制造光半导体器件的方法
JP2008078659A (ja) * 2006-09-21 2008-04-03 Samsung Electro Mech Co Ltd Ledパッケージの製造方法及び白色光源モジュールの製造方法
CN101582475A (zh) * 2008-12-29 2009-11-18 佛山市国星光电股份有限公司 在led芯片上涂布荧光粉层的方法及led器件的制造
CN201439880U (zh) * 2009-08-04 2010-04-21 北京京东方光电科技有限公司 发光二极管、背光模组和液晶显示器
CN101728151A (zh) * 2009-12-31 2010-06-09 海洋王照明科技股份有限公司 场发射光源及其制作方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367599A (zh) * 2012-04-03 2013-10-23 展晶科技(深圳)有限公司 发光二极管封装结构的制造方法
WO2014065027A1 (ja) * 2012-10-23 2014-05-01 浜松ホトニクス株式会社 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法
WO2014065030A1 (ja) * 2012-10-23 2014-05-01 浜松ホトニクス株式会社 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法
CN104736661A (zh) * 2012-10-23 2015-06-24 浜松光子学株式会社 紫外光产生用靶、电子束激发紫外光源和紫外光产生用靶的制造方法
US9728393B2 (en) 2012-10-23 2017-08-08 Hamamatsu Photonics K.K. Target for ultraviolet light generation, electron beam-excited ultraviolet light source, and production method for target for ultraviolet light generation
US9852898B2 (en) 2012-10-23 2017-12-26 Hamamatsu Photonics K.K. Target for ultraviolet light generation, electron beam-excited ultraviolet light source, and production method for target for ultraviolet light generation

Also Published As

Publication number Publication date
CN103069581A (zh) 2013-04-24
JP5487362B2 (ja) 2014-05-07
JP2013535527A (ja) 2013-09-12
EP2595201A4 (en) 2015-12-16
US20130112654A1 (en) 2013-05-09
US8747681B2 (en) 2014-06-10
EP2595201A1 (en) 2013-05-22

Similar Documents

Publication Publication Date Title
US9768407B2 (en) Substrate-sealing method, frit and electronic device
KR100385414B1 (ko) 발광소자용 기판, 발광소자 및 발광소자의 제조방법
TW201000421A (en) Method of sealing a glass envelope
WO2012006774A1 (zh) 荧光粉层的制备方法
CN102001825B (zh) 一种用于平板显示器的无碱玻璃及其熔制工艺
CN107631272B (zh) 一种波长转换装置及其制备方法
WO2017118384A1 (zh) 一种点光源及其透镜的制备方法
CN105693108A (zh) 一种反射式荧光玻璃光转换组件的制备及应用
WO2011035483A1 (zh) 半导体发光器件及其封装方法
JP2013506011A (ja) 発光ガラス及びその製造方法、並びに発光装置
CN102361056A (zh) 高亮度大功率发光二极管及其制造方法
JP2002008524A (ja) プラズマディスプレイパネル基板用リブの製造方法
JP2013177253A (ja) ディスプレイ装置の前面板用のガラス基板の強度を高める方法
JP2016169141A (ja) 支持ガラス基板及びこれを用いた積層体
CN1257523C (zh) 等离子显示面板用阻挡肋条材料
CN108367973A (zh) 蓝宝石复合基材及其制造方法
CN107331759A (zh) 免有机胶的晶圆级封装方法和led倒装芯片封装体
WO2011113208A1 (zh) 一种玻璃基材发光元件、其制造及其发光方法
WO2011035474A1 (zh) 发光玻璃、其制造方法及发光装置
KR101647764B1 (ko) 인광체에 대한 개선
JP5635103B2 (ja) 発光ガラス及びその製造方法、並びに発光装置
Leng et al. Tailoring the efficient laser‐absorption‐melting behavior of Bi2O3‐B2O3‐ZnO‐Nd2O3 glass for the OLED encapsulation
CN110875416B (zh) 一种led与薄膜的制备方法
JP7146753B2 (ja) 可撓性有機elパネル
WO2012037733A1 (zh) 一种场发射阳极板、场发射光源及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068015.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854569

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010854569

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010854569

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13810058

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013518926

Country of ref document: JP

Kind code of ref document: A