WO2014064748A1 - X線管装置 - Google Patents

X線管装置 Download PDF

Info

Publication number
WO2014064748A1
WO2014064748A1 PCT/JP2012/077215 JP2012077215W WO2014064748A1 WO 2014064748 A1 WO2014064748 A1 WO 2014064748A1 JP 2012077215 W JP2012077215 W JP 2012077215W WO 2014064748 A1 WO2014064748 A1 WO 2014064748A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
envelope
field relaxation
relaxation electrode
tip
Prior art date
Application number
PCT/JP2012/077215
Other languages
English (en)
French (fr)
Inventor
定 冨田
浮田 昌昭
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US14/437,491 priority Critical patent/US9437390B2/en
Priority to EP12886920.3A priority patent/EP2911179B1/en
Priority to CN201280076582.0A priority patent/CN104756222B/zh
Priority to JP2014543016A priority patent/JP5880727B2/ja
Priority to PCT/JP2012/077215 priority patent/WO2014064748A1/ja
Publication of WO2014064748A1 publication Critical patent/WO2014064748A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • H01J35/147Spot size control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • H01J35/153Spot position control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
    • H01J35/30Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof by deflection of the cathode ray
    • H01J35/305Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof by deflection of the cathode ray by using a rotating X-ray tube in conjunction therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/02Electrical arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/16Vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/16Vessels
    • H01J2235/165Shielding arrangements
    • H01J2235/168Shielding arrangements against charged particles

Definitions

  • the present invention relates to an X-ray tube apparatus, and more particularly to an X-ray tube apparatus provided with a magnetic field generator.
  • the X-ray tube apparatus disclosed in the above-mentioned U.S. Pat. No. 6,084,942 is provided with a cylindrical envelope, a cathode and an anode accommodated in the envelope, and an outer side of the cylindrical envelope.
  • the cathode is provided with, for example, an electron source that generates thermoelectrons, and electrons are generated by flowing a filament current. Further, when a negative high voltage is applied to the cathode and a positive high voltage is applied to the anode and the envelope, an electron beam is irradiated from the cathode toward the anode.
  • the magnetic field generator has a rectangular cross-sectional shape, and generates a magnetic field from the outside of the envelope at a position between the cathode and the anode by applying a deflection voltage. This deflects the electron beam toward the anode and focuses the electron beam on the edge of the anode that rotates with the envelope. X-rays are generated when the electron beam collides with the anode.
  • the magnetic field generator is brought close to the envelope so that the magnetic field is efficiently applied to the electron beam.
  • the potential difference between the envelope to which the high voltage (tube voltage) is applied and the magnetic field generator to which the deflection voltage is applied is large.
  • the generator is brought close to the envelope, electric field concentration occurs at the tip of the magnetic field generator and becomes the starting point of discharge.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to remove the magnetic field generator while suppressing the tip of the magnetic field generator from being the starting point of discharge.
  • An object of the present invention is to provide an X-ray tube apparatus that can be brought close to an envelope.
  • an X-ray tube apparatus includes a cathode that generates an electron beam, an anode that generates X-rays when the electron beam from the cathode collides, a cathode, A magnetic field generator for generating a magnetic field for converging and deflecting an electron beam from the cathode toward the anode; and a magnetic pole, including an envelope containing the anode inside, a magnetic pole disposed so as to face the envelope And an electric field relaxation electrode having a rounded outer surface.
  • the electric field relaxation electrode is disposed between the magnetic pole and the envelope and has a rounded outer surface, thereby providing an electric field. Since the rounded outer surface of the relaxation electrode is disposed between the magnetic pole (magnetic field generator) and the envelope, the electric field concentration at the tip of the magnetic pole facing the envelope can be reduced. As a result, even when the magnetic field generator is brought closer to the envelope, the electric field concentration that becomes the starting point of the discharge can be relaxed, so that the magnetic field generator is suppressed while suppressing the tip of the magnetic field generator to become the starting point of the discharging. Can be brought closer to the envelope. As a result, the magnetic field of the magnetic field generator can be efficiently applied to the electron beam, thereby reducing the size of the apparatus by reducing the size of the magnetic field generator itself and bringing the magnetic field generator closer to the envelope. The size of the apparatus can be reduced.
  • the rounded outer surface of the electric field relaxation electrode is disposed in the vicinity of the tip of the magnetic pole. If comprised in this way, when the electric field relaxation electrode is brought close to the envelope in a range where no discharge occurs with the envelope, the tip of the magnetic pole is arranged close to the vicinity of the outer surface of the electric field relaxation electrode. Therefore, the magnetic pole (magnetic field generator) can be brought closer to the envelope.
  • the tip of the magnetic pole has a shape having a corner
  • the electric field relaxation electrode is provided such that the rounded outer surface covers at least the corner of the tip of the magnetic pole.
  • the electric field relaxation electrode has a tip that intersects with each other at the corner of the magnetic pole and the corner of the magnetic pole. It is provided so as to cover the surface and the side surface. If comprised in this way, in addition to the corner
  • the electric field relaxation electrode is provided so as to surround and cover the corner portion and the tip surface of the magnetic pole without gap. If comprised in this way, an electric field relaxation electrode can relieve
  • the electric field relaxation electrode is made of a nonmagnetic metal. If comprised in this way, since it can suppress that the magnetic field which generate
  • the envelope has a cylindrical shape that accommodates the cathode and the anode, and the electric field relaxation electrode surrounds the periphery of the cylindrical envelope. Is provided in a ring shape. With this configuration, the cylindrical envelope is continuously surrounded by the annular electric field relaxation electrode without any breaks, so that the electric field concentration on the electric field relaxation electrode can be reduced.
  • the outer surface of the tip of the annular electric field relaxation electrode is formed in a rounded shape with a convex shape.
  • the outer surface of the tip of the annular electric field relaxation electrode is formed by a circular inner peripheral surface.
  • the electric field relaxation electrode is provided in an annular shape so as to surround the periphery of the envelope, preferably, a plurality of magnetic poles are provided at predetermined angular intervals around the envelope, and a plurality of electric field relaxation electrodes are provided.
  • One annular electric field relaxation electrode is provided so as to cover the magnetic poles.
  • the magnetic field generator includes an annular core and a plurality of magnetic poles arranged so as to protrude inward from the annular core, and a plurality of magnetic poles are provided on an outer peripheral portion of the annular electric field relaxation electrode.
  • a plurality of recesses for inserting the tip portion of the magnetic field are provided, and a plurality of magnetic poles are respectively inserted into the plurality of recesses of the annular electric field relaxation electrode, so that the tip portion of the magnetic pole is an annular electric field relaxation electrode. It is comprised so that it may be covered with. If comprised in this way, one cyclic
  • the annular electric field relaxation electrode is preferably concentrically with the envelope so as to surround the periphery of the envelope. Has been placed.
  • the distance between the envelope and the electric field relaxation electrode can be easily made constant. Therefore, the electric field concentration on the electric field relaxation electrode can be more effectively reduced.
  • the distance between the inner peripheral surface of the annular electric field relaxation electrode and the outer peripheral surface of the envelope is substantially constant. Is arranged. With this configuration, the electric field strength can be made substantially constant over the entire inner peripheral surface of the electric field relaxation electrode, so that the electric field concentration on the electric field relaxation electrode can be more effectively reduced.
  • the cylindrical envelope has a circular outer peripheral surface in a cross section in a direction orthogonal to the central axis of the envelope, and the inner peripheral surface of the annular electric field relaxation electrode is a circle. While having a shape, it arrange
  • the electric field relaxation electrode has a convex outer surface, and the convex outer surface of the electric field relaxation electrode has an arc-shaped portion covering the tip surface of the magnetic pole. Including. If comprised in this way, an electric field relaxation electrode can be easily formed also when forming the outer surface of an electric field relaxation electrode in convex shape normally according to the magnetic pole formed in a column shape.
  • the arc-shaped portion of the electric field relaxation electrode has a radius of curvature larger than one half of the length of the magnetic pole in the direction along the direction of the electron beam. If comprised in this way, it can form so that the front end surface of a magnetic pole may be covered with the circular arc-shaped part of an electric field relaxation electrode, Therefore The electric field concentration in the front-end
  • the outer surface of the tip of the electric field relaxation electrode has a shape corresponding to the outer shape of the envelope in the direction along the direction of the electron beam.
  • the envelope has a cylindrical shape with a circular cross section, and has an inclined surface that is inclined so that the outer diameter in the direction along the central axis is increased, and the tip of the electric field relaxation electrode is formed.
  • the outer surface has a cross-sectional shape in which a circular arc portion covering the tip surface of the magnetic pole and an inclined portion extending substantially parallel to the inclined surface are smoothly connected in a longitudinal section in a direction along the central axis of the envelope.
  • a coil is wound around the base of the magnetic pole, and the electric field relaxation electrode covers the tip of the magnetic pole where the coil is not wound. It is configured. If comprised in this way, even when providing an electric field relaxation electrode, an electric field relaxation electrode does not interfere with a coil. Further, as described above, in the present invention, the magnetic pole (magnetic field generator) can be brought close to the envelope, so that a coil for obtaining a desired magnetic field can be made small. For this reason, the miniaturized coil can be disposed only on the base side of the magnetic pole, and the magnetic pole can be easily covered with the electric field relaxation electrode.
  • the electric field relaxation electrode is disposed so as to cover at least the tip surface of the magnetic pole, and the distance between the outer surface of the electric field relaxation electrode and the tip surface of the magnetic pole is: It is less than or equal to the length of the magnetic pole in the direction along the direction of the electron beam.
  • the envelope has a cylindrical shape that houses the cathode and the anode in the axial center, and is configured to rotate integrally with the anode.
  • an X-ray tube apparatus capable of bringing a magnetic field generator closer to an envelope while suppressing the tip of the magnetic field generator from being a starting point of discharge. it can.
  • FIG. 3 is a schematic longitudinal sectional view showing the overall configuration of the X-ray tube apparatus according to the first embodiment of the present invention along the line 510-510 in FIG. 2;
  • FIG. 2 is a schematic cross-sectional view showing the overall configuration of the X-ray tube apparatus according to the first embodiment of the present invention, taken along line 500-500 in FIG. It is the elements on larger scale for demonstrating the electric field relaxation electrode of the X-ray tube apparatus shown in FIG.
  • FIG. 6 is a schematic longitudinal sectional view showing the overall configuration of the X-ray tube apparatus according to the second embodiment of the present invention, taken along line 610-610 in FIG. FIG.
  • FIG. 6 is a schematic cross-sectional view showing the overall configuration of the X-ray tube apparatus according to the second embodiment of the present invention, taken along line 600-600 in FIG. It is the elements on larger scale for demonstrating the electric field relaxation electrode of the X-ray tube apparatus shown in FIG. It is a schematic diagram which shows the simulation result of the electric field strength near the front-end
  • an X-ray tube apparatus 100 includes an electron source 1 that generates an electron beam, a target 2, an envelope 3 that accommodates the electron source 1 and the target 2, and an envelope.
  • a magnetic field generator 4 provided outside the container 3, and one electric field relaxation electrode 5 provided between the envelope 3 and the magnetic field generator 4.
  • the X-ray tube apparatus 100 is a rotary anode X-ray tube apparatus in which the target 2 rotates, and more specifically, an envelope in which the envelope 3 rotates integrally with the target 2. This is a rotary X-ray tube device.
  • the electron source 1 and the target 2 are examples of the “cathode” and the “anode” in the present invention, respectively.
  • the electron source 1 is fixedly attached to one end in the axial direction (A direction) of the envelope 3 via an insulating member 33.
  • the electron source 1 is disposed on the rotation shaft 3a of the envelope 3 and is configured to rotate integrally with the envelope 3 around the rotation shaft 3a.
  • the target 2 is integrally (fixed) attached to the other end in the axial direction (A direction) of the envelope 3 so as to face the electron source 1.
  • the target 2 has a disc shape that is inclined so that the edge 2a becomes thinner toward the outside.
  • the center of the disk-shaped target 2 coincides with the rotation shaft 3a of the envelope 3, and the target 2 is configured to rotate integrally with the envelope 3 around the rotation shaft 3a.
  • the target 2 and the electron source 1 are respectively connected to the positive and negative electrodes of the power supply unit 6.
  • a positive high voltage is applied to the target 2 and a negative high voltage is applied to the electron source 1
  • an electron beam is generated from the electron source 1 toward the target 2 along the rotation axis 3a (axial direction A).
  • the envelope 3 has a cylindrical shape that extends in the axial direction A about the rotation axis (center axis) 3a.
  • the cylindrical envelope 3 includes a cylindrical portion 31 at the center in the axial direction A and an inclined portion 32 that is inclined so that the diameter increases toward both ends in the axial direction A.
  • the envelope 3 is supported by a shaft 7 and a bearing 7a provided at both ends so as to be rotatable around a rotation axis (center axis) 3a.
  • the envelope 3 is rotationally driven by a motor (not shown) connected to the shaft 7.
  • One end of the envelope 3 is closed by a disk-shaped insulating member 33, and the other end of the envelope 3 is closed by the target 2.
  • the inside of the envelope 3 is evacuated.
  • the diameters of the insulating member 33 and the target 2 are the same, and the envelope 3 is symmetrical in a longitudinal section (cross section 510-510 in FIG. 2, see FIG. 1) along the rotation axis 3a (center axis). Yes.
  • the envelope 3 is made of a nonmagnetic metal material such as stainless steel (SUS), and the insulating member 33 is made of an insulating material such as ceramic.
  • the envelope 3 has the same potential as the target 2 to which a positive high voltage is applied.
  • the electron source 1 and the envelope 3 are insulated by an insulating member 33.
  • the diameter of the insulating member 33 is set to a size that can sufficiently insulate between the electron source 1 and the envelope 3.
  • the magnetic field generator 4 includes an annular core 4a, a plurality of magnetic poles 4b arranged so as to face the envelope 3, and a plurality of coils 4c wound around each magnetic pole 4b.
  • the magnetic field generator 4 has a function of generating a magnetic field for focusing and deflecting an electron beam from the electron source 1 toward the target 2.
  • the magnetic field generator 4 is arranged at a central position in the axial direction A with respect to the envelope 3, and is provided in an annular shape so as to surround the periphery of the cylindrical portion 31 of the envelope 3.
  • the core 4a has an annular shape concentric with the rotating shaft 3a of the envelope 3. Further, four magnetic poles 4b are arranged at equiangular intervals (about 90 degrees) so as to protrude inward from the annular core 4a surrounding the envelope 3 (cylindrical portion 31). Therefore, the four magnetic poles 4b face each other with the center of the core 4a (rotating shaft 3a) interposed therebetween.
  • the core 4a and the magnetic pole 4b are made of a high permeability magnetic material such as iron and are grounded. For this reason, a large potential difference is generated between the envelope 3 and the magnetic pole 4 b of the magnetic field generator 4.
  • each magnetic pole 4 b is formed in a prismatic shape having a tip surface 41, a corner portion 42 at the tip, and a side surface 43 orthogonal to the tip surface 41 at the corner portion 42.
  • the tip surface 41 of the magnetic pole 4b is formed in a square shape with one side length L1. Therefore, the corner portions 42 are provided at the four corners of the tip surface 41, respectively.
  • Side surface 43 has a length L2.
  • substantially half of the tip end side of the magnetic pole 4 b is covered with the electric field relaxation electrode 5.
  • a coil 4c is wound around substantially half of the base part side (core 4a side) of the magnetic pole 4b.
  • the magnetic field generator 4 generates a magnetic field from the tip of each magnetic pole 4b by energizing the coil 4c. As shown in FIG. 1, the electron beam traveling toward the target 2 along the axial direction A is focused and deflected by the action of the magnetic field generated from the magnetic field generator 4, and collides with the inclined edge 2 a of the target 2. As a result, X-rays are generated from the edge 2 a of the target 2 and are emitted to the outside from a window portion (not shown) of the envelope 3.
  • the electric field relaxation electrode 5 is provided to relax electric field concentration in the vicinity of the tip of the magnetic pole 4b. As shown in FIGS. 1 and 2, in the first embodiment, the electric field relaxation electrode 5 has an annular shape, is disposed between the four magnetic poles 4 b and the envelope 3, and is rounded. It has a shaped outer surface 5a.
  • the electric field relaxation electrode 5 is made of a nonmagnetic metal and has a solid inside.
  • the nonmagnetic metal used for the electric field relaxation electrode 5 is preferably a metal with a high withstand voltage, such as stainless steel (SUS) or titanium.
  • the electric field relaxation electrode 5 has a rounded outer surface 5a disposed in the vicinity of the tip of each magnetic pole 4b, and the corner 42, the tip surface 41, and the side surface 43 on the tip side of the magnetic pole 4b are formed without gaps. It is provided to surround and cover. The electric field relaxation electrode 5 is grounded to the ground via the magnetic pole 4b.
  • the electric field relaxation electrode 5 Is formed in a rounded shape with a convex shape.
  • the outer surface 5a of the electric field relaxation electrode 5 has a substantially U-shaped cross-sectional shape in which the arcuate portion 51 at the tip and the linear portion 52 extending along the side surface 43 of the magnetic pole 4b are smoothly continuous. Is formed.
  • the arcuate portion 51 at the tip has a radius of curvature R1 that is greater than one half (L1 / 2) of the length L1 in the direction along the direction of the electron beam of the magnetic pole 4b (axial direction A). Further, the distance D1 between the outer surface 5a at the tip of the electric field relaxation electrode 5 (outer surface of the arcuate portion 51) and the tip surface 41 of the magnetic pole 4b is not more than the length L1 in the axial direction A of the magnetic pole 4b.
  • the electric field relaxation electrode 5 has a circular shape so as to cover all four magnetic poles 4b in a cross section (cross section 500-500 in FIG. 1) in a direction orthogonal to the rotation axis (center axis) 3a.
  • the outer surface 5a at the tip of the electric field relaxation electrode 5 is formed by a circular inner peripheral surface.
  • the center of the annular electric field relaxation electrode 5 coincides with the rotation axis (center axis) 3 a of the envelope 3. Therefore, the annular electric field relaxation electrode 5 is concentrically arranged so as to surround the envelope 3 (cylindrical portion 31).
  • the inner peripheral surface (outer surface 5 a) of the electric field relaxation electrode 5 is arranged such that the distance D ⁇ b> 2 with the outer peripheral surface 31 a of the cylindrical portion 31 of the envelope 3 is substantially constant.
  • Four recesses 53 for inserting the tip portions of the four magnetic poles 4b are provided at equiangular intervals corresponding to the magnetic poles 4b on the outer peripheral portion of the electric field relaxation electrode 5. By inserting the four magnetic poles 4 b into the four recesses 53, the tip portions of the magnetic poles 4 b are covered with the annular electric field relaxation electrode 5.
  • the electric field relaxation electrode 5 is configured to cover the tip of the magnetic pole 4b around which the coil 4c is not wound.
  • the annular core 4a and the annular electric field relaxation electrode 5 have a divided structure connected by connecting portions 4d and 5b, respectively.
  • the connecting parts 4d and 5b have a fitting structure in which one is convex and the other is concave, and are screwed perpendicularly to the fitting direction with the connecting part 4d (5b) being fitted.
  • the divided core 4 a and the electric field relaxation electrode 5 are each provided in an annular shape around the envelope 3.
  • the core 4a is divided into two and the electric field relaxation electrode 5 is divided into four, but the number of divisions is not limited to this and is arbitrary.
  • the electric field relaxation electrode 5 disposed between the magnetic pole 4b and the envelope 3 and having the rounded outer surface 5a is provided. Since the rounded outer surface 5a is disposed between the magnetic pole 4b (magnetic field generator 4) and the envelope 3, electric field concentration at the tip of the magnetic pole 4b facing the envelope 3 can be reduced. . Thereby, even if the tip (magnetic pole 4b) of the magnetic field generator 4 is brought close to the envelope 3, the electric field concentration that becomes the starting point of the discharge can be relaxed, so that the tip of the magnetic field generator 4 becomes the starting point of the discharge. It is possible to bring the magnetic field generator 4 closer to the envelope 3 while suppressing this.
  • the size of the X-ray tube apparatus 100 can be reduced by reducing the size of the magnetic field generator 4 itself, and the magnetic field generator 4 can be reduced.
  • the X-ray tube apparatus 100 can be reduced in size by being brought close to the envelope 3.
  • the rounded outer surface 5a of the electric field relaxation electrode 5 is disposed in the vicinity of the tip of the magnetic pole 4b.
  • the electric field relaxation electrode 5 is provided so as to cover the corner 42 at the tip of the magnetic pole 4b, the tip surface 41, and the side surface 43. If comprised in this way, the corner
  • the electric field relaxation electrode 5 is provided so as to surround and cover the corner portion 42 and the tip surface 41 of the magnetic pole 4b without a gap. If comprised in this way, the electric field relaxation electrode 5 will completely cover the corner
  • the electric field relaxation electrode 5 is formed of a nonmagnetic metal. If comprised in this way, since it can suppress that the magnetic field generated by the magnetic field generator 4 is interrupted
  • the electric field relaxation electrode 5 is provided in an annular shape so as to surround the periphery of the cylindrical envelope 3. If comprised in this way, since the cylindrical envelope 3 is continuously surrounded by the annular electric field relaxation electrode 5 without a break, the electric field concentration on the electric field relaxation electrode 5 can be reduced.
  • the outer surface 5a at the tip of the electric field relaxation electrode 5 is formed in the longitudinal section (cross section 510-510 in FIG. 2) along the axial direction A of the cylindrical envelope 3.
  • the outer surface 5a at the tip of the electric field relaxation electrode 5 is formed in a circular shape in a cross section (500-500 cross section in FIG. 1) that is formed in a substantially round U-shape with a convex shape and orthogonal to the axial direction A.
  • the inner peripheral surface is formed. If comprised in this way, the electric field relaxation electrode 5 has the outer surface 5a rounded with respect to the envelope 3 in both the vertical cross section along the axial direction A, and the cross section orthogonal to the axial direction A. Therefore, the electric field concentration with respect to the electric field relaxation electrode 5 can be effectively reduced.
  • one annular electric field relaxation electrode 5 is provided so as to cover the plurality of magnetic poles 4b. If comprised in this way, only the one electric field relaxation electrode 5 will be provided, and the several magnetic pole 4b can be covered collectively, and compared with the case where the several electric field relaxation electrode 5 is provided separately, a number of parts increases. Can be suppressed.
  • the tip portion of the magnetic pole 4b has an annular electric field.
  • the electric field relaxation electrode 5 is configured to be covered with the relaxation electrode 5. If comprised in this way, the one cyclic
  • the annular electric field relaxation electrode 5 is concentrically arranged with respect to the envelope 3 so as to surround the periphery of the envelope 3.
  • the inner peripheral surface of the annular electric field relaxation electrode 5 is arranged such that the distance D2 between the outer peripheral surface 31a of the envelope 3 is substantially constant.
  • the electric field strength can be made substantially constant over the entire circumference of the inner peripheral surface (tip-side outer surface 5a) of the electric field relaxation electrode 5, so that the electric field concentration on the electric field relaxation electrode 5 is further effective. Can be relaxed.
  • the inner peripheral surface of the annular electric field relaxation electrode 5 has a circular shape in the cross section orthogonal to the axial direction A (cross section 500-500 in FIG. 1). It arrange
  • the arc-shaped portion 51 that covers the tip surface 41 of the magnetic pole 4 b is provided on the convex outer surface 5 a of the electric field relaxation electrode 5.
  • the electric field relaxation electrode 5 can be easily formed even when the outer surface 5a of the electric field relaxation electrode 5 is formed in a convex shape in accordance with the magnetic pole 4b formed in a columnar shape. .
  • the arc-shaped portion 51 of the electric field relaxation electrode 5 is made half of the length L1 of the magnetic pole 4b in the direction along the direction of the electron beam (axial direction A) ( L1 / 2) and a radius of curvature R1 larger than L1 / 2).
  • the arc-shaped portion 51 of the electric field relaxation electrode 5 can be formed so as to cover the tip surface 41 of the magnetic pole 4b, so that the electric field concentration at the tip of the magnetic pole 4b can be effectively reduced. it can.
  • the electric field relaxation electrode 5 is configured to cover the tip portion of the magnetic pole 4b around which the coil 4c is not wound. If comprised in this way, even when providing the electric field relaxation electrode 5, the electric field relaxation electrode 5 does not interfere with the coil 4c. Further, as described above, in the first embodiment, the magnetic pole 4b (magnetic field generator 4) can be brought close to the envelope 3, so that the coil 4c for obtaining a desired magnetic field can be reduced. For this reason, the miniaturized coil 4c can be disposed only on the base side of the magnetic pole 4b, and the magnetic field 4b can be easily covered with the electric field relaxation electrode 5.
  • the distance D1 between the outer surface 5a of the electric field relaxation electrode 5 and the tip surface 41 of the magnetic pole 4b is set in the direction along the direction of the electron beam (axial direction A).
  • the magnetic pole 4b is configured to have a length L1 or less.
  • the envelope 3 is formed in a cylindrical shape that houses the electron source 1 and the target 2 around the rotation shaft 3 a, and the envelope 3 is integrated with the target 2. And configured to rotate. If comprised in this way, envelope rotation which can relieve electric field concentration and bring magnetic field generator 4 closer to envelope 3 while suppressing the tip of magnetic field generator 4 from becoming the starting point of discharge A type of X-ray tube apparatus 100 can be obtained.
  • an X-ray tube apparatus 200 according to a second embodiment of the present invention will be described with reference to FIGS.
  • the outer surface 5 a of the electric field relaxation electrode 5 is formed in a substantially U-shaped cross-sectional shape
  • the outer surface 105 a of the electric field relaxation electrode 105 is formed in the shape of the envelope 3.
  • the example formed in the corresponding shape is demonstrated.
  • the same components as those in the X-ray tube apparatus 100 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the electric field relaxation electrode 105 of the X-ray tube apparatus 200 has a shape corresponding to the outer shape of the envelope 3 in the axial direction A.
  • the outer surface 105a at the tip of the electric field relaxation electrode 105 is a circle that covers the tip surface 41 of the magnetic pole 4b in a longitudinal section in the direction along the axial direction A of the envelope 3.
  • the arc-shaped portion 151 and the inclined portion 152 extending substantially parallel to the inclined surface 32a of the envelope 3 (the outer peripheral surface of the inclined portion 32) have a smoothly continuous cross-sectional shape.
  • the arcuate portion 151 has a radius of curvature R2 that is larger than one half (L1 / 2) of the length L1 of the magnetic pole 4b in the axial direction A.
  • the curvature radius R2 is larger than the curvature radius R1 of the arc-shaped portion 51 of the electric field relaxation electrode 5 according to the first embodiment.
  • the curvature radius R2 is set to a size such that the outer surface 105a is smoothly continuous with the end portions on the tip end side of the inclined portions 152 on both sides in the axial direction A.
  • the tip surface 41 of the magnetic pole 4b is disposed so as to approach the outer surface 105a at the tip of the electric field relaxation electrode 105, and the outer surface (arc-shaped) at the tip of the electric field relaxation electrode 105
  • the distance D3 between the outer surface 105a of the portion 151 and the tip surface 41 of the magnetic pole 4b is smaller than the distance D1 in the first embodiment.
  • the distance D3 is less than or equal to the length L1 in the axial direction A of the magnetic pole 4b.
  • the distance between the outer surface 105a at the tip of the arcuate portion 151 and the outer peripheral surface 31a of the cylindrical portion 31 of the envelope 3 is D4.
  • the inclined portion 152 is formed so as to be inclined at an inclination angle substantially equal to the inclination angle ⁇ of the inclined surface 32a of the envelope 3 (the outer peripheral surface of the inclined portion 32) and to extend substantially parallel to the inclined surface 32a.
  • the inclined portion 152 is correspondingly circular in the cross section along the rotation axis 3a (center axis). It is symmetrical with respect to the arcuate portion 151.
  • the distance between the inclined portion 152 (outer surface 105a) and the inclined surface 32a of the envelope 3 is substantially constant D5.
  • the inclined portion 152 has an end 153 on the opposite side to the arc-shaped portion 151 and is formed in a rounded smooth shape.
  • the electric field relaxation electrode 105 has four cross-sections (cross-section 600-600 in FIG. 5) in the direction orthogonal to the rotation axis (center axis) 3a, as in the first embodiment.
  • the outer surface 105a of the tip of the electric field relaxation electrode 105 (tip of the arcuate portion 151) is formed by a circular inner peripheral surface so as to cover all the two magnetic poles 4b.
  • the inner peripheral surface (outer surface 105a) of the electric field relaxation electrode 105 is arranged such that the distance D4 between the outer peripheral surface 31a of the cylindrical portion 31 of the envelope 3 is substantially constant.
  • the outer surface 105a at the tip of the electric field relaxation electrode 105 is formed in a shape corresponding to the outer shape of the envelope 3 in the axial direction A. If comprised in this way, since it can suppress that the distance D4 between the outer surface 105a of the electric field relaxation electrode 105 in the axial direction A and the outer peripheral surface of the envelope 3 changes, in the axial direction A The electric field concentration on the electric field relaxation electrode 105 can be effectively reduced.
  • the outer surface 105a at the tip of the electric field relaxation electrode 105 has an arcuate portion 151 that covers the tip surface 41 of the magnetic pole 4b in the longitudinal section in the axial direction A, and an envelope.
  • the three inclined surfaces 32a and the inclined portion 152 extending substantially in parallel are formed in a smoothly continuous cross-sectional shape. According to this configuration, the electric field concentration at the tip of the magnetic pole 4 b can be relaxed by the arc-shaped portion 151 of the electric field relaxation electrode 105, and the inclined portion 152 of the electric field relaxation electrode 105 smoothly continues to the arc-shaped portion 151.
  • the tip of the magnetic pole of the magnetic field generator in each of the X-ray tube apparatus 100 (Example 1) according to the first embodiment and the X-ray tube apparatus 200 (Example 2) according to the second embodiment The electric field strength was simulated in the region between the envelope.
  • a simulation was performed for an example (comparative example) in which the electric field relaxation electrode was not provided, and a comparison with the example was performed.
  • the simulation conditions such as the dimensions of the envelope and the magnetic pole and the potentials of the envelope 3 and the magnetic pole 4b are common to the first and second embodiments and the comparative example.
  • FIG. 7 shows the simulation result of Example 1.
  • the distance Dm (D1 + D2) from the front end surface 41 of the magnetic pole 4b of the magnetic field generator 4 to the outer peripheral surface 31a of the envelope 3 (cylindrical portion 31) was 10 mm.
  • FIG. 8 shows the simulation result of Example 2.
  • the distance Dm (D3 + D4) from the front end surface 41 of the magnetic pole 4b of the magnetic field generator 4 to the outer peripheral surface 31a of the envelope 3 (cylindrical part 31) was 10 mm.
  • Example 2 is different from Example 1 only in the shape of the electric field relaxation electrode.
  • Fig. 9 shows the simulation results of the comparative example.
  • the distance Dm from the tip surface 41 of the magnetic pole 4b of the magnetic field generator 4 to the outer peripheral surface 31a of the envelope 3 (cylindrical portion 31) was 15 mm.
  • the comparative example is different from the first and second embodiments in that the electric field relaxation electrode is not provided and the distance Dm is set larger than that in the first and second embodiments.
  • Example 7 the electric field strength showed the maximum at the outer surface 5a (P1) of the electric field relaxation electrode 5 in the vicinity of the corner portion 42 of the magnetic pole 4b, and became 12 kV / mm.
  • the electric field strength is maximum on the outer surface 5a (P2) in the vicinity of the boundary between the arc-shaped portion 151 and the inclined portion 152 of the electric field relaxation electrode 105, and 10.6 kV / mm. It became.
  • FIG. 9 in the comparative example, the electric field strength showed the maximum at the corner 42 (P3) at the tip of the magnetic pole 4b, which was 18.8 kV / mm.
  • Example 2 the second embodiment in which the electric field relaxation electrode was formed so as to correspond to the shape of the envelope.
  • the present invention is not limited to this.
  • the present invention may be applied to an X-ray tube apparatus other than the envelope rotating type, such as an anode rotating type X-ray tube apparatus in which only the envelope is fixed, or an anode fixing type X-ray tube apparatus.
  • the example which provided the U-shaped electric field relaxation electrode in the longitudinal cross section of an axial direction is shown, and in the said 2nd Embodiment, an arc-shaped part and an inclination part are shown in the longitudinal cross section of an axial direction.
  • the vertical cross-sectional shape of the electric field relaxation electrode may be a complete arc shape (such as a fan shape or a semicircular shape), or may be a curved surface shape other than the arc shape.
  • the electric field relaxation electrode may be formed so as to have a rounded outer surface so that electric field concentration at the corners can be relaxed.
  • the electric field relaxation electrode is shown to be formed so as to completely cover the corner portion, the tip surface, and the tip portion of the side surface of the magnetic pole. Not limited. In this invention, the corner
  • the electric field relaxation electrode is formed of a nonmagnetic metal material.
  • the present invention is not limited to this.
  • the electric field relaxation electrode may be formed of a nonmagnetic material other than metal.
  • the electric field relaxation electrode may be formed of a magnetic material as long as the magnetic field generated by the magnetic field generator can be applied to the electron beam.
  • the electric field relaxation electrode is formed in an annular shape in a cross section orthogonal to the axial direction so as to cover a plurality of electrodes.
  • the electric field relaxation electrode 205 may be individually provided for each of the plurality of magnetic poles 4b.
  • the electric field relaxation electrode is formed in an annular shape in the cross section orthogonal to the axial direction.
  • the present invention is not limited to this.
  • a field relaxation electrode having a shape other than a ring, such as a rounded rounded field relaxation electrode 305 may be provided. Note that only the inner peripheral surface of the electric field relaxation electrode 305 in FIG. 11 may be formed in a circular shape.
  • the example in which the annular electric field relaxation electrode is arranged concentrically with the cylindrical portion of the envelope in the cross section orthogonal to the axial direction is shown. Not limited to. In the present invention, the center of the electric field relaxation electrode may be shifted from the axial center of the cylindrical envelope.
  • the distance D2 (D4) between the inner peripheral surface of the annular electric field relaxation electrode and the outer surface of the envelope is the circumferential direction in the cross section orthogonal to the axial direction.
  • the electric field relaxation electrode may be formed so that the distance between the outer surface of the electric field relaxation electrode and the outer surface of the envelope varies depending on the position in the circumferential direction.
  • the distance between the outer surface 105a at the tip of the arc-shaped portion 151 and the outer peripheral surface 31a of the cylindrical portion 31 of the envelope 3 is D4, and the inclined portion 152 and the envelope 3
  • the electric field relaxation electrode may be formed so that the distance D4 and the distance D5 are equal.
  • the electric field relaxation electrode is provided so as to cover only the tip portion of the magnetic pole around which the coil is not wound, but the present invention is not limited to this. In this invention, you may form an electric field relaxation electrode so that the winding part of a coil may also be covered.
  • an example in which a solid-state electric field relaxation electrode is provided has been described.
  • the present invention is not limited to this.
  • an electric field relaxation electrode having a hollow structure may be provided.
  • the electric field relaxation electrode is such that the distance D1 (D3) between the outer surface of the electric field relaxation electrode and the tip surface of the magnetic pole is equal to or less than the length L1 of the magnetic pole in the axial direction.
  • the present invention is not limited to this.
  • the electric field relaxation electrode may be formed such that the distance between the outer surface of the electric field relaxation electrode and the tip surface of the magnetic pole is larger than the length of the magnetic pole in the axial direction.
  • the present invention is not limited to this.
  • the number of magnetic poles may be a plurality other than four. For example, two, six, or eight magnetic poles may be provided. As long as a desired magnetic field is obtained, the number of magnetic poles is not limited.
  • a prismatic magnetic pole is provided in the first and second embodiments, but the present invention is not limited to this.
  • a magnetic pole having a shape other than a prismatic shape such as a cylindrical shape may be provided.
  • the present invention is not limited to this. I can't.
  • an envelope having an inclined portion only on the target side and a cylindrical portion extending in the axial direction as it is may be provided on the electron source side.
  • the envelope may be provided by a material other than metal.
  • the envelope may be formed of an insulating material such as ceramic.
  • the present invention is not limited to this.
  • the diameters of the insulating member 33 and the target 2 may not be the same, and the envelope 3 may be asymmetric in the cross section along the rotation axis 3a (center axis).
  • the tip of the magnetic pole has been illustrated as having a corner, but the present invention is not limited to this.
  • the tip of the magnetic pole may not have a shape having a corner, but may have a shape having a radius of curvature smaller than L1 / 2.

Landscapes

  • X-Ray Techniques (AREA)

Abstract

 本発明のX線管装置(100)は、電子ビームを発生させる陰極(1)と、陰極からの電子ビームが衝突することによりX線を発生させる陽極(2)と、陰極および陽極を内部に収容する外囲器(3)と、外囲器と対向するように配置された磁極 (4b)を含み陰極から陽極に向かう電子ビームを集束及び偏向させるための磁場を発生させる磁場発生器(4)と、磁極と外囲器との間に配置され丸みを帯びた形状の外表面を有する電界緩和電極(5)とを備える。これにより、磁場発生器の先端が放電の起点となるのを抑制しながら磁場発生器を外囲器に近づけることができ、X線管装置の小型化が可能になるいう効果を奏する。

Description

X線管装置
 この発明は、X線管装置に関し、特に、磁場発生器を備えたX線管装置に関する。
 従来、磁場発生器を備えたX線管装置が知られている。このようなX線管装置は、たとえば、米国特許第6084942号明細書に開示されている。
 上記米国特許第6084942号明細書に開示されているX線管装置は、筒状の外囲器と、外囲器内に収容された陰極および陽極と、筒状の外囲器の外側に配置された磁場発生器とを備える。陰極には、例えば熱電子を発生する電子源が備えられており、フィラメント電流を流すことで電子が発生する。また、陰極に負の高電圧、陽極および外囲器に正の高電圧が印加されることにより、陰極から陽極に向けて電子ビームが照射される。磁場発生器は、矩形断面形状を有し、偏向電圧が印加されることにより、陰極と陽極との間の位置で、外囲器の外側から磁場を発生させる。これにより、陽極に向かう電子ビームを偏向させ、外囲器とともに回転する陽極の縁部に電子ビームを集束させる。そして、電子ビームが陽極に衝突することにより、X線が発生する。
米国特許第6084942号明細書
 ここで、X線管装置を小型化するためには、磁場発生器を外囲器に近づけて磁場を電子ビームに効率的に作用させるのが望ましい。しかしながら、上記米国特許第6084942号明細書のX線管装置では、高電圧(チューブ電圧)が印加される外囲器と偏向電圧が印加される磁場発生器との間の電位差が大きいため、磁場発生器を外囲器に近づけると、磁場発生器の先端に電界集中が生じて放電の起点となる。このため、上記米国特許第6084942号明細書のX線管装置では、放電の発生を防止可能な距離だけ外囲器から離間した位置に磁場発生器を配置する必要があり、磁場発生器を外囲器に近づけることが困難であるという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、磁場発生器の先端が放電の起点となるのを抑制しながら、磁場発生器を外囲器に近づけることが可能なX線管装置を提供することである。
 上記目的を達成するために、この発明の第1の局面におけるX線管装置は、電子ビームを発生させる陰極と、陰極からの電子ビームが衝突することによりX線を発生させる陽極と、陰極および陽極を内部に収容する外囲器と、外囲器と対向するように配置された磁極を含み、陰極から陽極に向かう電子ビームを集束、偏向させるための磁場を発生させる磁場発生器と、磁極と外囲器との間に配置され、丸みを帯びた形状の外表面を有する電界緩和電極とを備える。
 この発明の第1の局面によるX線管装置では、上記のように、磁極と外囲器との間に配置され、丸みを帯びた形状の外表面を有する電界緩和電極を設けることにより、電界緩和電極の丸みを帯びた形状の外表面が磁極(磁場発生器)と外囲器との間に配置されるので、外囲器と対向する磁極の先端における電界集中を緩和することができる。これにより、磁場発生器を外囲器に近づけたとしても放電の起点となる電界集中を緩和することができるため、磁場発生器の先端が放電の起点となるのを抑制しながら、磁場発生器を外囲器に近づけることができる。また、この結果、磁場発生器の磁場を電子ビームに効率的に作用させることができるので、磁場発生器自体の小型化による装置の小型化、および、磁場発生器を外囲器に近づけることによる装置の小型化を図ることができる。
 上記第1の局面によるX線管装置において、好ましくは、電界緩和電極の丸みを帯びた形状の外表面は、磁極の先端近傍に配置されている。このように構成すれば、外囲器との間で放電が生じない範囲で電界緩和電極を外囲器に近づけた場合に、磁極の先端が電界緩和電極の外表面近傍まで近づけて配置されるので、磁極(磁場発生器)を外囲器により近づけることができる。
 この場合、好ましくは、磁極の先端は、角部を有する形状であり、電界緩和電極は、丸みを帯びた形状の外表面が少なくとも磁極の先端の角部を覆うように設けられている。このように構成すれば、最も電界集中が生じ易い磁極(磁場発生器)の先端の角部を、電界緩和電極の丸みを帯びた外表面によって覆うことができるので、電界集中を効果的に緩和することができる。
 電界緩和電極の丸みを帯びた形状の外表面が少なくとも磁極の先端の角部を覆う構成において、好ましくは、電界緩和電極は、磁極の先端の角部と、磁極の角部において互いに交差する先端面および側面とを覆うように設けられている。このように構成すれば、磁極の先端の角部に加えて、磁極の先端面および側面も電界緩和電極の丸みを帯びた外表面によって覆うことができるので、より効果的に電界集中を緩和することができる。
 この場合、好ましくは、電界緩和電極は、磁極の先端の角部および先端面を隙間なく取り囲んで覆うように設けられている。このように構成すれば、電界緩和電極が磁極の先端の角部および先端面を完全に覆うことにより、より確実に電界集中を緩和することができる。
 上記第1の局面によるX線管装置において、好ましくは、電界緩和電極は、非磁性の金属により形成されている。このように構成すれば、磁場発生器により発生した磁場が電界緩和電極によって遮られるのを抑制することができるので、磁場発生器の磁場を電子ビームに効率的に作用させることができる。
 上記第1の局面によるX線管装置において、好ましくは、外囲器は、陰極および陽極を収容する筒状形状を有し、電界緩和電極は、筒状形状の外囲器の周囲を取り囲むように環状に設けられている。このように構成すれば、筒状形状の外囲器を環状の電界緩和電極により切れ目なく連続して取り囲むため、電界緩和電極に対する電界集中を緩和することができる。
 この場合、好ましくは、筒状の外囲器の中心軸線に沿った方向の縦断面において、環状の電界緩和電極の先端の外表面は、凸形状の丸みを帯びた形状に形成され、外囲器の中心軸線と直交する方向の横断面において、環状の電界緩和電極の先端の外表面は、円状の内周面により形成されている。このように構成すれば、外囲器の中心軸線に沿った方向の縦断面、および、中心軸線と直交する方向の横断面の両方において、電界緩和電極が外囲器に対して丸みを帯びた外表面を有するため、電界緩和電極に対する電界集中を効果的に緩和することができる。
 上記電界緩和電極が外囲器の周囲を取り囲むように環状に設けられる構成において、好ましくは、磁極は、外囲器の周囲に所定の角度間隔で複数設けられており、電界緩和電極は、複数の磁極を覆うように設けられた1つの環状の電界緩和電極を含む。このように構成すれば、1つの電界緩和電極を設けるだけで、複数の磁極をまとめて覆うことができ、複数の電界緩和電極を個別に設ける場合と比較して、部品点数が増加するのを抑制することができる。
 この場合、好ましくは、磁場発生器は、環状のコアと、環状のコアから内側に突出するように配置された複数の磁極とを含み、環状の電界緩和電極の外周部には、複数の磁極の先端部分を挿入するための複数の凹部が設けられており、環状の電界緩和電極の複数の凹部に、それぞれ、複数の磁極が挿入されることにより、磁極の先端部分が環状の電界緩和電極により覆われるように構成されている。このように構成すれば、容易かつ確実に、複数の磁極の先端部分を覆うように1つの環状の電界緩和電極を設けることができる。
 上記電界緩和電極が外囲器の周囲を取り囲むように環状に設けられる構成において、好ましくは、環状の電界緩和電極は、外囲器の周囲を取り囲むように、外囲器に対して同心状に配置されている。このように構成すれば、たとえば外囲器を中心軸回りに回転させる外囲器回転型のX線管装置を構成した場合にも、外囲器と電界緩和電極との間隔を容易に一定に保つことができるので、電界緩和電極に対する電界集中をより効果的に緩和することができる。
 上記電界緩和電極が外囲器の周囲を取り囲むように環状に設けられる構成において、好ましくは、環状の電界緩和電極の内周面は、外囲器の外周面との距離が略一定になるように配置されている。このように構成すれば、電界緩和電極の内周面の全周にわたって、電界強度を略一定にすることができるので、電界緩和電極に対する電界集中をさらに効果的に緩和することができる。
 この場合、好ましくは、筒状の外囲器は、外囲器の中心軸線と直交する方向の横断面において、円状の外周面を有し、環状の電界緩和電極の内周面は、円形状を有するとともに、外囲器の外周面との距離が略一定になるように配置されている。このように構成すれば、容易に、電界緩和電極の内周面と外囲器の外周面との距離を略一定に保つことができ、かつ、電界緩和電極の内周面を、周方向に沿って角部が全く存在しない丸みを帯びた形状(円形状)に形成することができる。
 上記第1の局面によるX線管装置において、好ましくは、電界緩和電極は、凸形状の外表面を有し、電界緩和電極の凸形状の外表面は、磁極の先端面を覆う円弧状部分を含む。このように構成すれば、通常、柱状に形成される磁極に合わせて、電界緩和電極の外表面を凸形状に形成する場合にも、容易に電界緩和電極を形成することができる。
 この場合、好ましくは、電界緩和電極の円弧状部分は、電子ビームの向きに沿った方向における磁極の長さの2分の1よりも大きい曲率半径を有する。このように構成すれば、電界緩和電極の円弧状部分によって、磁極の先端面を覆うように形成することができるので、磁極の先端における電界集中を効果的に緩和することができる。
 上記第1の局面によるX線管装置において、好ましくは、電界緩和電極の先端の外表面は、電子ビームの向きに沿った方向における外囲器の外形形状に対応する形状を有する。このように構成すれば、電子ビームの向きに沿った方向における、電界緩和電極の外表面と外囲器の外表面との間の距離が変化するのを抑制することができるので、電子ビームの向きに沿った方向における、電界緩和電極に対する電界集中を効果的に緩和することができる。
 この場合、好ましくは、外囲器は、円形断面の筒状形状を有するとともに、中心軸線に沿った方向の外側の直径が大きくなるように傾斜した傾斜面を有し、電界緩和電極の先端の外表面は、外囲器の中心軸線に沿った方向の縦断面において、磁極の先端面を覆う円弧状部分と、傾斜面と略平行に延びる傾斜部分とが滑らかに連続した断面形状を有する。このように構成すれば、電界緩和電極の円弧状部分によって磁極の先端における電界集中を緩和することができ、かつ、円弧状部分と滑らかに連続する電界緩和電極の傾斜部分が外囲器の傾斜面と略平行となるので、電界緩和電極の外表面における電界集中をさらに効果的に緩和することができる。
 上記第1の局面によるX線管装置において、好ましくは、磁極の根元部側には、コイルが巻回されており、電界緩和電極は、コイルが巻回されていない磁極の先端部分を覆うように構成されている。このように構成すれば、電界緩和電極を設ける場合にも電界緩和電極がコイルと干渉することがない。また、上記の通り、本発明では磁極(磁場発生器)を外囲器に近づけることができるので、所望の磁場を得るためのコイルを小さくすることができる。このため、小型化したコイルを磁極の根元側だけに配置することができ、容易に、電界緩和電極によって磁極を覆うことができる。
 上記第1の局面によるX線管装置において、好ましくは、電界緩和電極は、少なくとも磁極の先端面を覆うように配置され、電界緩和電極の外表面と磁極の先端面との間の距離は、電子ビームの向きに沿った方向における磁極の長さ以下である。このように構成すれば、電界緩和電極の外表面と磁極の先端面との間の距離が小さいほど、磁極を外囲器に近づけることができるので、磁極を外囲器に可及的に近づけることができる。これにより、磁場発生器の小型化およびX線管装置全体の小型化を図ることができる。
 上記第1の局面によるX線管装置において、好ましくは、外囲器は、陰極および陽極を軸中心に収納する筒状形状を有し、陽極と一体となって回転するように構成されている。このように構成すれば、磁場発生器の先端が放電の起点となるのを抑制しながら磁場発生器を外囲器に近づけることが可能な外囲器回転型のX線管装置を得ることができる。
 上記のように、本発明によれば、磁場発生器の先端が放電の起点となるのを抑制しながら、磁場発生器を外囲器に近づけることが可能なX線管装置を提供することができる。
図2の510-510線に沿った、本発明の第1実施形態によるX線管装置の全体構成を示す模式的な縦断面図である。 図1の500-500線に沿った、本発明の第1実施形態によるX線管装置の全体構成を示す模式的な横断面図である。 図1に示したX線管装置の電界緩和電極を説明するための部分拡大図である。 図5の610-610線に沿った、本発明の第2実施形態によるX線管装置の全体構成を示す模式的な縦断面図である。 図4の600-600線に沿った、本発明の第2実施形態によるX線管装置の全体構成を示す模式的な横断面図である。 図4に示したX線管装置の電界緩和電極を説明するための部分拡大図である。 本発明の実施例1による磁場発生器の磁極の先端近傍の電界強度のシミュレーション結果を示す模式図である。 本発明の実施例2による磁場発生器の磁極の先端近傍の電界強度のシミュレーション結果を示す模式図である。 比較例による磁場発生器の磁極の先端近傍の電界強度のシミュレーション結果を示す模式図である。 本発明の第1および第2実施形態の第1変形例によるX線管装置の電界緩和電極を説明するための模式図である。 本発明の第1および第2実施形態の第2変形例によるX線管装置の電界緩和電極を説明するための模式図である。
 以下、実施形態を図面に基づいて説明する。
(第1実施形態)
 まず、図1~図3を参照して、第1実施形態によるX線管装置100の構成について説明する。
 図1および図2に示すように、X線管装置100は、電子ビームを発生させる電子源1と、ターゲット2と、電子源1およびターゲット2を内部に収容する外囲器3と、外囲器3の外部に設けられた磁場発生器4と、外囲器3と磁場発生器4との間に設けられた1つの電界緩和電極5とを備えている。第1実施形態では、X線管装置100は、ターゲット2が回転する回転陽極型X線管装置であり、より具体的には、外囲器3がターゲット2と一体的に回転する外囲器回転型のX線管装置である。なお、電子源1およびターゲット2は、それぞれ、本発明の「陰極」および「陽極」の一例である。
 電子源1は、外囲器3の軸方向(A方向)の一端に、絶縁部材33を介して固定的に取り付けられている。また、電子源1は、外囲器3の回転軸3a上に配置され、回転軸3a回りに外囲器3と一体的に回転するように構成されている。
 ターゲット2は、外囲器3の軸方向(A方向)の他端に、電子源1と対向するようにして一体的(固定的)に取り付けられている。ターゲット2は、縁部2aが外側に向けて薄肉となるように傾斜した円板形状を有する。円盤形状のターゲット2の中心は、外囲器3の回転軸3aと一致しており、ターゲット2は、回転軸3a回りに外囲器3と一体的に回転するように構成されている。
 ターゲット2と電子源1とは、それぞれ、電源部6の正負極と接続されている。ターゲット2に正の高電圧が印加され、電子源1に負の高電圧が印加されることにより、電子源1から回転軸3a(軸方向A)に沿ってターゲット2に向かう電子ビームが発生する。
 外囲器3は、回転軸(中心軸)3aを中心に軸方向Aに延びる筒状形状を有する。筒状の外囲器3は、軸方向Aの中央部の円筒部31と、軸方向Aの両端に向けて直径が大きくなるように傾斜した傾斜部32とを有する。外囲器3は、両端に設けられたシャフト7および軸受7aによって回転軸(中心軸)3a回りに回転可能に支持されている。そして、外囲器3は、シャフト7に連結された図示しないモータによって回転駆動される。外囲器3の一端は、円板状の絶縁部材33によって塞がれており、外囲器3の他端は、ターゲット2によって塞がれている。そして、外囲器3の内部は真空排気されている。絶縁部材33とターゲット2との直径は同一であり、外囲器3は回転軸3a(中心軸)に沿った縦断面(図2の510-510断面、図1参照)において左右対称となっている。外囲器3は、ステンレス(SUS)などの非磁性の金属材料からなり、絶縁部材33は、セラミックなどの絶縁材料からなる。
 また、ターゲット2は外囲器3に一体的に取り付けられているため、外囲器3は、正の高電圧が印加されるターゲット2と同電位となる。これに対し、電子源1と外囲器3との間は、絶縁部材33によって絶縁されている。絶縁部材33の直径は、電子源1と外囲器3との間を十分に絶縁することが可能な大きさに設定されている。
 磁場発生器4は、環状のコア4aと、外囲器3と対向するように配置された複数の磁極4bと、それぞれの磁極4bに巻回された複数のコイル4cとを含んでいる。磁場発生器4は、電子源1からターゲット2に向かう電子ビームを集束、偏向させるための磁場を発生させる機能を有する。磁場発生器4は、外囲器3に対して軸方向Aの中央の位置に配置され、外囲器3の円筒部31の周囲を取り囲むように環状に設けられている。
 図1および図2に示すように、コア4aは、外囲器3の回転軸3aと同心の円環形状を有する。また、磁極4bは、外囲器3(円筒部31)を取り囲む環状のコア4aから内側に突出するようにして、等角度間隔(約90度)で4つ配置されている。このため、4つの磁極4bは、コア4aの中心(回転軸3a)を挟んで一対ずつ対向している。コア4aおよび磁極4bは、鉄などの高透磁率の磁性材料からなり、グランドに接地されている。このため、外囲器3と磁場発生器4の磁極4bとの間には、大きな電位差が発生する。
 図3に示すように、それぞれの磁極4bは、先端面41と、先端の角部42と、角部42において先端面41と直交する側面43とを有する角柱形状に形成されている。具体的には、磁極4bの先端面41は、1辺の長さがL1の正方形状に形成されている。したがって、角部42は先端面41の四隅にそれぞれ設けられている。側面43は、長さL2を有する。後述するように、磁極4bの先端側の略半分は、電界緩和電極5により覆われている。磁極4bの根元部側(コア4a側)の略半分には、コイル4cが巻回されている。磁場発生器4は、コイル4cへの通電によって各磁極4bの先端から磁場を発生させる。図1に示すように、磁場発生器4から発生した磁場の作用によって、軸方向Aに沿ってターゲット2に向かう電子ビームは集束および偏向され、ターゲット2の傾斜した縁部2aに衝突する。この結果、ターゲット2の縁部2aからX線が発生し、外囲器3の図示しない窓部から外部に放出される。
 電界緩和電極5は、磁極4bの先端近傍における電界集中を緩和するために設けられている。図1および図2に示すように、第1実施形態では、電界緩和電極5は、環状形状を有し、4つの磁極4bと外囲器3との間に配置されており、丸みを帯びた形状の外表面5aを有する。電界緩和電極5は、非磁性の金属により形成されており、内部は中実である。電界緩和電極5に用いる非磁性の金属としては、高耐電圧の金属が好ましく、たとえばステンレス(SUS)やチタンなどが好ましい。電界緩和電極5は、丸みを帯びた形状の外表面5aがそれぞれの磁極4bの先端近傍に配置され、かつ、磁極4bの先端側の角部42、先端面41、および、側面43を隙間なく取り囲んで覆うように設けられている。電界緩和電極5は、磁極4bを介してグランドに接地されている。
 より具体的には、図1および図3に示すように、外囲器3の回転軸(中心軸)3aに沿った方向の縦断面(図2の510-510断面)において、電界緩和電極5は、凸形状の丸みを帯びた形状に形成されている。第1実施形態では、電界緩和電極5の外表面5aは、先端の円弧状部分51と、磁極4bの側面43に沿って延びる直線状部52とが滑らかに連続した略U字状の断面形状に形成されている。先端の円弧状部分51は、磁極4bの電子ビームの向きに沿った方向(軸方向A)の長さL1の2分の1(L1/2)よりも大きい曲率半径R1を有する。また、電界緩和電極5の先端の外表面5a(円弧状部分51の外表面)と磁極4bの先端面41との間の距離D1は、磁極4bの軸方向Aの長さL1以下である。
 また、図2に示すように、回転軸(中心軸)3aと直交する方向の横断面(図1の500-500断面)において、電界緩和電極5は、4つの磁極4bを全て覆うように円環状に設けられ、電界緩和電極5の先端の外表面5aは、円状の内周面により形成されている。円環状の電界緩和電極5の中心は、外囲器3の回転軸(中心軸)3aに一致する。したがって、円環状の電界緩和電極5は、外囲器3(円筒部31)を取り囲むように同心円状に配置されている。また、電界緩和電極5の内周面(外表面5a)は、外囲器3の円筒部31の外周面31aとの距離D2が略一定になるように配置されている。電界緩和電極5の外周部には、4つの磁極4bの先端部分を挿入するための4つの凹部53が磁極4bに対応する等角度間隔で設けられている。4つの凹部53に4つの磁極4bがそれぞれ挿入されることにより、磁極4bの先端部分が環状の電界緩和電極5により覆われている。また、電界緩和電極5は、コイル4cが巻回されていない磁極4bの先端部分を覆うように構成されている。
 環状のコア4aおよび環状の電界緩和電極5は、それぞれ、連結部4dおよび5bで連結された分割構造を有する。連結部4dおよび5bは、一方が凸状、他方が凹状の嵌合構造となっており、連結部4d(5b)を嵌合させた状態で嵌合方向に対して垂直にねじ止めされる。これにより、分割されたコア4aおよび電界緩和電極5がそれぞれ外囲器3の周囲に環状に設けられる。なお、図2ではコア4aを2分割し、電界緩和電極5を4分割して図示しているが、分割数はこれに限定されず任意である。
 第1実施形態では、上記のように、磁極4bと外囲器3との間に配置され、丸みを帯びた形状の外表面5aを有する電界緩和電極5を設けることにより、電界緩和電極5の丸みを帯びた外表面5aが磁極4b(磁場発生器4)と外囲器3との間に配置されるので、外囲器3と対向する磁極4bの先端における電界集中を緩和することができる。これにより、磁場発生器4の先端(磁極4b)を外囲器3に近づけたとしても、放電の起点となる電界集中を緩和することができるため、磁場発生器4の先端が放電の起点となるのを抑制しながら磁場発生器4を外囲器3に近づけることができる。また、この結果、磁場発生器4の磁場を電子ビームに効率的に作用させることができるので、磁場発生器4自体の小型化によるX線管装置100の小型化、および、磁場発生器4を外囲器3に近づけることによるX線管装置100の小型化を図ることができる。
 また、第1実施形態では、上記のように、電界緩和電極5の丸みを帯びた形状の外表面5aを、磁極4bの先端近傍に配置する。このように構成すれば、外囲器3との間で放電が生じない範囲で電界緩和電極5を外囲器3に近づけた場合に、磁極4bの先端が電界緩和電極5の外表面5a近傍まで近づけて配置されるので、磁極4b(磁場発生器4)を外囲器3により近づけることができる。
 また、第1実施形態では、上記のように、電界緩和電極5を、磁極4bの先端の角部42と、先端面41および側面43とを覆うように設ける。このように構成すれば、電界集中が生じ易い磁極4b(磁場発生器4)の先端の角部42を、電界緩和電極5の丸みを帯びた外表面5aによって覆うことができる。また、磁極4bの先端の角部42に加えて、磁極4bの先端面41および側面43も電界緩和電極5の丸みを帯びた外表面5aによって覆うことができるので、より効果的に電界集中を緩和することができる。
 また、第1実施形態では、上記のように、電界緩和電極5を、磁極4bの先端の角部42および先端面41を隙間なく取り囲んで覆うように設ける。このように構成すれば、電界緩和電極5が磁極4bの先端の角部42および先端面41を完全に覆うことにより、より確実に電界集中を緩和することができる。
 また、第1実施形態では、上記のように、電界緩和電極5を、非磁性の金属により形成する。このように構成すれば、磁場発生器4により発生した磁場が電界緩和電極5によって遮られるのを抑制することができるので、磁場発生器4の磁場を電子ビームに効率的に作用させることができる。
 また、第1実施形態では、上記のように、電界緩和電極5を、筒状形状の外囲器3の周囲を取り囲むように環状に設ける。このように構成すれば、筒状形状の外囲器3を環状の電界緩和電極5により切れ目なく連続して取り囲むため、電界緩和電極5に対する電界集中を緩和することができる。
 また、第1実施形態では、上記のように、筒状の外囲器3の軸方向Aに沿う縦断面(図2の510-510断面)において、電界緩和電極5の先端の外表面5aを、凸形状の丸みを帯びた略U字状形状に形成し、軸方向Aと直交する横断面(図1の500-500断面)において、電界緩和電極5の先端の外表面5aを、円状の内周面により形成する。このように構成すれば、軸方向Aに沿う縦断面、および、軸方向Aと直交する横断面の両方において、電界緩和電極5が外囲器3に対して丸みを帯びた外表面5aを有するため、電界緩和電極5に対する電界集中を効果的に緩和することができる。
 また、第1実施形態では、上記のように、複数の磁極4bを覆うように、1つの環状の電界緩和電極5を設ける。このように構成すれば、1つの電界緩和電極5を設けるだけで、複数の磁極4bをまとめて覆うことができ、複数の電界緩和電極5を個別に設ける場合と比較して、部品点数が増加するのを抑制することができる。
 また、第1実施形態では、上記のように、環状の電界緩和電極5の外周部に設けた4つの凹部53に複数の磁極4bをそれぞれ挿入することにより、磁極4bの先端部分が環状の電界緩和電極5により覆われるように電界緩和電極5を構成する。このように構成すれば、容易かつ確実に、複数の磁極4bの先端部分を覆う1つの環状の電界緩和電極5を設けることができる。
 また、第1実施形態では、上記のように、環状の電界緩和電極5を、外囲器3の周囲を取り囲むように、外囲器3に対して同心状に配置する。このように構成すれば、外囲器回転型のX線管装置100を構成した場合にも、外囲器3と電界緩和電極5との間隔を容易に一定に保つことができるので、電界緩和電極5に対する電界集中をより効果的に緩和することができる。
 また、第1実施形態では、上記のように、環状の電界緩和電極5の内周面を、外囲器3の外周面31aとの距離D2が略一定になるように配置する。このように構成すれば、電界緩和電極5の内周面(先端側の外表面5a)の全周にわたって、電界強度を略一定にすることができるので、電界緩和電極5に対する電界集中をさらに効果的に緩和することができる。
 また、第1実施形態では、上記のように、軸方向Aと直交する横断面(図1の500-500断面)において、環状の電界緩和電極5の内周面を、円形状を有するとともに、外囲器3の外周面31aとの距離D2が略一定になるように配置する。このように構成すれば、容易に、電界緩和電極5の内周面と外囲器3の外周面31aとの距離D2を略一定に保つことができ、かつ、電界緩和電極5の内周面を、周方向に沿って角部が全く存在しない丸みを帯びた形状(円形状)に形成することができる。
 また、第1実施形態では、上記のように、電界緩和電極5の凸形状の外表面5aに、磁極4bの先端面41を覆う円弧状部分51を設ける。このように構成すれば、通常、柱状に形成される磁極4bに合わせて、電界緩和電極5の外表面5aを凸形状に形成する場合にも、容易に電界緩和電極5を形成することができる。
 また、第1実施形態では、上記のように、電界緩和電極5の円弧状部分51を、電子ビームの向きに沿った方向(軸方向A)における磁極4bの長さL1の2分の1(L1/2)よりも大きい曲率半径R1を有するように形成する。このように構成すれば、電界緩和電極5の円弧状部分51によって、磁極4bの先端面41を覆うように形成することができるので、磁極4bの先端における電界集中を効果的に緩和することができる。
 また、第1実施形態では、上記のように、電界緩和電極5を、コイル4cが巻回されていない磁極4bの先端部分を覆うように構成する。このように構成すれば、電界緩和電極5を設ける場合にも電界緩和電極5がコイル4cと干渉することがない。また、上記の通り、第1実施形態では磁極4b(磁場発生器4)を外囲器3に近づけることができるので、所望の磁場を得るためのコイル4cを小さくすることができる。このため、小型化したコイル4cを磁極4bの根元側だけに配置することができ、容易に、電界緩和電極5によって磁極4bを覆うことができる。
 また、第1実施形態では、上記のように、電界緩和電極5の外表面5aと磁極4bの先端面41との間の距離D1を、電子ビームの向きに沿った方向(軸方向A)における磁極4bの長さL1以下となるように構成する。このように構成すれば、外表面5aと磁極4bの先端面41との間の距離D1が小さいほど、磁極4bを外囲器3に近づけることができるので、磁極4bを外囲器3に可及的に近づけることができる。これにより、磁場発生器4の小型化およびX線管装置100全体の小型化を図ることができる。
 また、第1実施形態では、上記のように、回転軸3aを中心に電子源1およびターゲット2を収納する筒状形状に外囲器3を形成し、外囲器3をターゲット2と一体となって回転するように構成する。このように構成すれば、磁場発生器4の先端が放電の起点となるのを抑制しながら、電界集中を緩和して磁場発生器4を外囲器3に近づけることが可能な外囲器回転型のX線管装置100を得ることができる。
(第2実施形態)
 次に、図4~図6を参照して、本発明の第2実施形態によるX線管装置200について説明する。第2実施形態では、電界緩和電極5の外表面5aを略U字状の断面形状に形成した上記第1実施形態とは異なり、電界緩和電極105の外表面105aを外囲器3の形状に対応する形状に形成した例について説明する。なお、第2実施形態では、上記第1実施形態によるX線管装置100と同一の構成については同一符号を付し、説明を省略する。
 図4および図5に示すように、第2実施形態によるX線管装置200の電界緩和電極105は、軸方向Aにおける外囲器3の外形形状に対応する形状を有する。具体的には、図6に示すように、電界緩和電極105の先端の外表面105aは、外囲器3の軸方向Aに沿った方向の縦断面において、磁極4bの先端面41を覆う円弧状部分151と、外囲器3の傾斜面32a(傾斜部32の外周面)と略平行に延びる傾斜部分152と、が滑らかに連続した断面形状を有する。
 円弧状部分151は、磁極4bの軸方向Aの長さL1の2分の1(L1/2)よりも大きい曲率半径R2を有する。曲率半径R2は、上記第1実施形態による電界緩和電極5の円弧状部分51の曲率半径R1よりも大きい。曲率半径R2は、外表面105aが軸方向Aの両側の傾斜部分152の先端側端部と滑らかに連続するような大きさに設定されている。円弧状部分151の曲率半径が大きい分、磁極4bの先端面41が電界緩和電極105の先端の外表面105aに接近するように配置されており、電界緩和電極105の先端の外表面(円弧状部分151の外表面)105aと磁極4bの先端面41との間の距離D3は、上記第1実施形態における距離D1よりも小さい。距離D3は、磁極4bの軸方向Aの長さL1以下である。円弧状部分151の先端の外表面105aと、外囲器3の円筒部31の外周面31aとの距離はD4である。
 傾斜部分152は、外囲器3の傾斜面32a(傾斜部32の外周面)の傾斜角度θと略等しい傾斜角度で傾斜し、傾斜面32aと略平行に延びるように形成されている。なお、外囲器3は回転軸3a(中心軸)に沿った断面において左右対称となっているため、これに対応して、傾斜部分152も回転軸3a(中心軸)に沿った断面において円弧状部分151を挟んで左右対称となっている。これにより、傾斜部分152(外表面105a)と、外囲器3の傾斜面32aとの間の距離は、略一定のD5となっている。また、傾斜部分152は、円弧状部分151とは反対側の端部153も、丸みを帯びた滑らかな形状に形成されている。
 また、図5に示すように、電界緩和電極105は、上記第1実施形態と同様に、回転軸(中心軸)3aと直交する方向の横断面(図5の600-600断面)において、4つの磁極4bを全て覆うように円環状に設けられ、電界緩和電極105の先端(円弧状部分151の先端)の外表面105aは、円状の内周面により形成されている。そして、電界緩和電極105の内周面(外表面105a)は、外囲器3の円筒部31の外周面31aとの距離D4が略一定になるように配置されている。
 なお、第2実施形態のその他の構成は、上記第1実施形態と同様である。
 第2実施形態では、上記のように、電界緩和電極105の先端の外表面105aを、軸方向Aにおける外囲器3の外形形状に対応する形状に形成する。このように構成すれば、軸方向Aにおける、電界緩和電極105の外表面105aと外囲器3の外周面との間の距離D4が変化するのを抑制することができるので、軸方向Aにおける、電界緩和電極105に対する電界集中を効果的に緩和することができる。
 また、第2実施形態では、上記のように、電界緩和電極105の先端の外表面105aを、軸方向Aの縦断面において、磁極4bの先端面41を覆う円弧状部分151と、外囲器3の傾斜面32aと略平行に延びる傾斜部分152とが滑らかに連続した断面形状に形成する。このように構成すれば、電界緩和電極105の円弧状部分151によって磁極4bの先端における電界集中を緩和することができ、かつ、円弧状部分151と滑らかに連続する電界緩和電極105の傾斜部分152が外囲器3の傾斜面32aと略平行となるので、傾斜部分152と傾斜面32aとの間の電界を一様に近づけることができる。これにより、電界緩和電極105の外表面105aにおける電界集中をさらに効果的に緩和することができる。
(実施例)
 次に、図7~図9を参照して、本発明の効果を確認するために行った電界強度のシミュレーション(実施例)について説明する。
 実施例では、上記第1実施形態によるX線管装置100(実施例1)および上記第2実施形態によるX線管装置200(実施例2)のそれぞれにおける、磁場発生器の磁極の先端部と外囲器との間の領域における電界強度のシミュレーションを行った。また、比較例として、電界緩和電極を設けない場合の例(比較例)についてのシミュレーションを行い、実施例との比較を行った。外囲器および磁極の寸法、外囲器3および磁極4bの電位等のシミュレーション条件は、実施例1および2と比較例とで共通である。
 図7に実施例1のシミュレーション結果を示す。実施例1では、磁場発生器4の磁極4bの先端面41から外囲器3(円筒部31)の外周面31aまでの距離Dm(D1+D2)を、10mmとした。
 図8に実施例2のシミュレーション結果を示す。実施例2では、磁場発生器4の磁極4bの先端面41から外囲器3(円筒部31)の外周面31aまでの距離Dm(D3+D4)を、10mmとした。実施例2は、電界緩和電極の形状のみが上記実施例1とは異なる。
 図9に比較例のシミュレーション結果を示す。比較例では、磁場発生器4の磁極4bの先端面41から外囲器3(円筒部31)の外周面31aまでの距離Dmを、15mmとした。比較例は、電界緩和電極を設けていない点、および、実施例1および実施例2と比較して距離Dmを大きく設定している点で、上記実施例1および実施例2と異なる。
 図7に示すように、実施例1では、磁極4bの角部42近傍における電界緩和電極5の外表面5a(P1)において、電界強度が最大を示し、12kV/mmとなった。図8に示すように、実施例2では、電界緩和電極105の円弧状部分151と傾斜部分152との境界近傍における外表面5a(P2)において、電界強度が最大を示し、10.6kV/mmとなった。図9に示すように、比較例では、磁極4bの先端の角部42(P3)において、電界強度が最大を示し、18.8kV/mmとなった。なお、本実施例による条件設定では、電界強度20kV/mmの近傍で放電の可能性があり、10kV/mm前後であれば、十分に放電を防止することが可能である。
 上記の通り、比較例では、磁極4bの先端面41から外囲器3の外周面までの距離Dmを15mmまで離した状態でも、磁極4bの角部42で電界集中が生じて高い電界強度を示した。このため、比較例の条件下では、磁極4bの角部42を起点とする放電の発生を防止するため、磁極4bをDm(=15mm)以上外囲器3に近づけることは困難である。一方、実施例1および2では、距離Dmを10mmまで近づけても、10kV/mmを若干越える程度の電界強度に抑制することができている。このことから、電界緩和電極による磁極4bの先端における電界集中の緩和効果が確認され、磁極4bを外囲器3に近づけることが可能であることが確認された。
 また、実施例1と実施例2とを比較した結果、電界緩和電極の形状のみが異なる条件設定において、実施例2の方がより電界緩和電極の外表面における電界集中を緩和することができている。このことから、電界緩和電極を外囲器の形状と対応するように形成した実施例2(上記第2実施形態)の構成による、電界集中の緩和効果の向上が確認された。
 なお、今回開示された実施形態および実施例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態および実施例の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 たとえば、上記第1および第2実施形態では、外囲器回転型のX線管装置に本発明を適用した例を示したが、本発明はこれに限られない。たとえば、外囲器のみを固定した陽極回転型のX線管装置や、陽極固定型のX線管装置などの外囲器回転型以外のX線管装置に本発明を適用してもよい。
 また、上記第1実施形態では、軸方向の縦断面においてU字形状の電界緩和電極を設けた例を示し、上記第2実施形態では、軸方向の縦断面において円弧状部と傾斜部分とを含む電界緩和電極を設けた例を示したが、本発明はこれに限られない。たとえば、電界緩和電極の縦断面形状を完全な円弧状形状(扇状または半円状など)にしてもよいし、円弧状以外の曲面形状にしてもよい。電界緩和電極は、角部における電界集中を緩和することが可能なように、丸みを帯びた外表面を有するように形成されていればよい。
 また、上記第1および第2実施形態では、電界緩和電極が磁極の先端の角部、先端面および側面の先端側部分を完全に覆うように形成した例を示したが、本発明はこれに限られない。本発明では、磁極の先端の角部、先端面や側面が部分的に覆われていなくともよい。
 また、上記第1および第2実施形態では、電界緩和電極を非磁性の金属材料により形成した例を示したが、本発明はこれに限られない。本発明では、電界緩和電極を金属以外の非磁性材料により形成してもよい。また、磁場発生器による磁場を電子ビームに作用させることができれば、電界緩和電極を磁性材料により形成してもよい。
 また、上記第1および第2実施形態では、軸方向と直交する横断面において、電界緩和電極を環状に形成し、複数の電極を覆うように設けた例を示したが、本発明はこれに限られない。たとえば、図10に示す第1変形例のように、複数の磁極4bの各々に対して、電界緩和電極205を個別に設けてもよい。
 また、上記第1および第2実施形態では、軸方向と直交する横断面において、電界緩和電極を円環状に形成した例を示したが、本発明はこれに限られない。たとえば、図11に示す第2変形例のように、丸みを帯びた角丸形状の電界緩和電極305など、円環以外の形状の電界緩和電極を設けてもよい。なお、図11の電界緩和電極305において、内周面のみを円形状に形成してもよい。
 また、上記第1および第2実施形態では、軸方向と直交する横断面において、円環状の電界緩和電極を外囲器の円筒部と同心円状に配置した例を示したが、本発明はこれに限られない。本発明では、電界緩和電極の中心が筒状の外囲器の軸中心とずれていてもよい。
 また、上記第1および第2実施形態では、軸方向と直交する横断面において、円環状の電界緩和電極の内周面と外囲器の外表面との間の距離D2(D4)が周方向に略一定となるように構成した例を示したが、本発明はこれに限られない。本発明では、電界緩和電極の外表面と外囲器の外表面との間の距離が周方向の位置によって変化するように電界緩和電極を形成してもよい。
 また、上記第2実施形態では、円弧状部分151の先端の外表面105aと、外囲器3の円筒部31の外周面31aとの距離をD4とし、傾斜部分152と、外囲器3の傾斜面32aとの間の距離を略一定のD5とした例を示したが、本発明はこれに限られない。本発明では、距離D4と距離D5とが等しくなるように、電界緩和電極を形成してもよい。
 また、上記第1および第2実施形態では、コイルが巻回されていない磁極の先端部分のみを覆うように電界緩和電極を設けた例を示したが、本発明はこれに限られない。本発明では、コイルの巻回部分も覆うように電界緩和電極を形成してもよい。
 また、上記第1および第2実施形態では、中実構造の電界緩和電極を設けた例を示したが、本発明はこれに限られない。本発明では、中空構造の電界緩和電極を設けてもよい。
 また、上記第1および第2実施形態では、電界緩和電極の外表面と磁極の先端面との間の距離D1(D3)が、軸方向における磁極の長さL1以下となるように電界緩和電極を形成した例を示したが、本発明はこれに限られない。本発明では、電界緩和電極の外表面と磁極の先端面との間の距離が、軸方向における磁極の長さよりも大きくなるように電界緩和電極を形成してもよい。
 また、上記第1および第2実施形態では、4つの磁極を含む磁場発生器を設けた例を示したが、本発明はこれに限られない。本発明では、磁極の数は4つ以外の複数であってよく、たとえば2つ、6つまたは8つの磁極を設けてもよい。所望の磁場が得られれば、磁極の数はいくつでもよい。
 また、上記第1および第2実施形態では、角柱形状の磁極を設けた例を示したが、本発明はこれに限られない。本発明では、たとえば円柱形状などの角柱形状以外の形状の磁極を設けてもよい。
 また、上記第1および第2実施形態では、外囲器に、軸方向Aの両端に向けて直径が大きくなるように傾斜した傾斜部を設けた例を示したが、本発明はこれに限られない。たとえば、ターゲット側にのみ傾斜部を有し、電子源側には円筒部がそのまま軸方向に延びる形状の外囲器を設けてもよい。
 また、上記第1および第2実施形態では、ステンレスなどの金属材料からなる外囲器を設けた例を示したが、本発明はこれに限られない。本発明では、金属以外の材料により外囲器を設けてもよい。また、外囲器は、たとえばセラミックなどの絶縁材料により形成してもよい。
 また、上記第1および第2実施形態では、外囲器3は回転軸3a(中心軸)に沿った断面において左右対称となっている例を示したが、本発明はこれに限られない。本発明では、絶縁部材33とターゲット2との直径は同一ではなくてもよく、外囲器3は回転軸3a(中心軸)に沿った断面において左右非対称であってもよい。
 また、上記第1および第2実施形態では、磁極の先端は、角部を有する形状となっている例を示したが、本発明はこれに限られない。本発明では、磁極の先端は、角部を有する形状でなくてもよく、L1/2より小さい曲率半径を有する形状であってもよい。
 1 電子源(陰極)
 2 ターゲット(陽極)
 3 外囲器
 4 磁場発生器
 4a コア
 4b 磁極
 4c コイル
 5、105、205、305 電界緩和電極
 5a 外表面
 31a 外周面
 32a 傾斜面
 41 先端面
 42 角部
 43 側面
 51、151 円弧状部分
 53 凹部
 152 傾斜部分
 100、200 X線管装置

Claims (20)

  1.  電子ビームを発生させる陰極と、
     前記陰極からの電子ビームが衝突することによりX線を発生させる陽極と、
     前記陰極および前記陽極を内部に収容する外囲器と、
     前記外囲器と対向するように配置された磁極を含み、前記陰極から前記陽極に向かう電子ビームを集束、偏向させるための磁場を発生させる磁場発生器と、
     前記磁極と前記外囲器との間に配置され、丸みを帯びた形状の外表面を有する電界緩和電極とを備える、X線管装置。
  2.  前記電界緩和電極の丸みを帯びた形状の外表面は、前記磁極の先端近傍に配置されている、請求項1に記載のX線管装置。
  3.  前記磁極の先端は、角部を有する形状であり、
     前記電界緩和電極は、丸みを帯びた形状の外表面が少なくとも前記磁極の先端の角部を覆うように設けられている、請求項2に記載のX線管装置。
  4.  前記電界緩和電極は、前記磁極の先端の角部と、前記磁極の角部において互いに交差する先端面および側面とを覆うように設けられている、請求項3に記載のX線管装置。
  5.  前記電界緩和電極は、前記磁極の先端の角部および前記先端面を隙間なく取り囲んで覆うように設けられている、請求項4に記載のX線管装置。
  6.  前記電界緩和電極は、非磁性の金属により形成されている、請求項1に記載のX線管装置。
  7.  前記外囲器は、前記陰極および前記陽極を収容する筒状形状を有し、
     前記電界緩和電極は、筒状形状の前記外囲器の周囲を取り囲むように環状に設けられている、請求項1に記載のX線管装置。
  8.  前記筒状の外囲器の中心軸線に沿った方向の縦断面において、環状の前記電界緩和電極の先端の外表面は、凸形状の丸みを帯びた形状に形成され、
     前記外囲器の中心軸線と直交する方向の横断面において、環状の前記電界緩和電極の先端の外表面は、円状の内周面により形成されている、請求項7に記載のX線管装置。
  9.  前記磁極は、前記外囲器の周囲に所定の角度間隔で複数設けられており、
     前記電界緩和電極は、複数の前記磁極を覆うように設けられた1つの環状の前記電界緩和電極を含む、請求項7に記載のX線管装置。
  10.  前記磁場発生器は、環状のコアと、前記環状のコアから内側に突出するように配置された複数の前記磁極とを含み、
     前記環状の電界緩和電極の外周部には、前記複数の磁極の先端部分を挿入するための複数の凹部が設けられており、
     前記環状の電界緩和電極の複数の凹部に、それぞれ、前記複数の磁極が挿入されることにより、前記磁極の先端部分が前記環状の電界緩和電極により覆われるように構成されている、請求項9に記載のX線管装置。
  11.  前記環状の電界緩和電極は、前記外囲器の周囲を取り囲むように、前記外囲器に対して同心状に配置されている、請求項7に記載のX線管装置。
  12.  前記環状の電界緩和電極の内周面は、前記外囲器の外周面との距離が略一定になるように配置されている、請求項7に記載のX線管装置。
  13.  前記筒状の外囲器は、前記外囲器の中心軸線と直交する方向の横断面において、円状の外周面を有し、
     前記環状の電界緩和電極の内周面は、円形状を有するとともに、前記外囲器の外周面との距離が略一定になるように配置されている、請求項12に記載のX線管装置。
  14.  前記電界緩和電極は、凸形状の外表面を有し、
     前記電界緩和電極の凸形状の外表面は、前記磁極の先端面を覆う円弧状部分を含む、請求項1に記載のX線管装置。
  15.  前記電界緩和電極の円弧状部分は、電子ビームの向きに沿った方向における前記磁極の長さの2分の1よりも大きい曲率半径を有する、請求項14に記載のX線管装置。
  16.  前記電界緩和電極の先端の外表面は、電子ビームの向きに沿った方向における前記外囲器の外形形状に対応する形状を有する、請求項1に記載のX線管装置。
  17.  前記外囲器は、円形断面の筒状形状を有するとともに、中心軸線に沿った方向の外側の直径が大きくなるように傾斜した傾斜面を有し、
     前記電界緩和電極の先端の外表面は、前記外囲器の中心軸線に沿った方向の縦断面において、前記磁極の先端面を覆う円弧状部分と、前記傾斜面と略平行に延びる傾斜部分とが滑らかに連続した断面形状を有する、請求項16に記載のX線管装置。
  18.  前記磁極の根元部側には、コイルが巻回されており、
     前記電界緩和電極は、前記コイルが巻回されていない前記磁極の先端部分を覆うように構成されている、請求項1に記載のX線管装置。
  19.  前記電界緩和電極は、少なくとも前記磁極の先端面を覆うように配置され、
     前記電界緩和電極の外表面と前記磁極の先端面との間の距離は、電子ビームの向きに沿った方向における前記磁極の長さ以下である、請求項1に記載のX線管装置。
  20.  前記外囲器は、前記陰極および前記陽極を軸中心に収納する筒状形状を有し、前記陽極と一体となって回転するように構成されている、請求項1に記載のX線管装置。
PCT/JP2012/077215 2012-10-22 2012-10-22 X線管装置 WO2014064748A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/437,491 US9437390B2 (en) 2012-10-22 2012-10-22 X-ray tube device
EP12886920.3A EP2911179B1 (en) 2012-10-22 2012-10-22 X-ray tube device
CN201280076582.0A CN104756222B (zh) 2012-10-22 2012-10-22 X射线管装置
JP2014543016A JP5880727B2 (ja) 2012-10-22 2012-10-22 X線管装置
PCT/JP2012/077215 WO2014064748A1 (ja) 2012-10-22 2012-10-22 X線管装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/077215 WO2014064748A1 (ja) 2012-10-22 2012-10-22 X線管装置

Publications (1)

Publication Number Publication Date
WO2014064748A1 true WO2014064748A1 (ja) 2014-05-01

Family

ID=50544149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077215 WO2014064748A1 (ja) 2012-10-22 2012-10-22 X線管装置

Country Status (5)

Country Link
US (1) US9437390B2 (ja)
EP (1) EP2911179B1 (ja)
JP (1) JP5880727B2 (ja)
CN (1) CN104756222B (ja)
WO (1) WO2014064748A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105702543A (zh) * 2014-12-16 2016-06-22 株式会社东芝 X射线管装置
CN107408481A (zh) * 2015-03-09 2017-11-28 万睿视影像有限公司 具有用于聚焦的磁四极和用于转向的磁偶极的x射线管
US10181389B2 (en) 2013-10-29 2019-01-15 Varex Imaging Corporation X-ray tube having magnetic quadrupoles for focusing and collocated steering coils for steering

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016126969A (ja) * 2015-01-07 2016-07-11 株式会社東芝 X線管装置
CN105070625A (zh) * 2015-08-18 2015-11-18 上海宏精医疗器械有限公司 一种高效的x射线管装置
US11282668B2 (en) * 2016-03-31 2022-03-22 Nano-X Imaging Ltd. X-ray tube and a controller thereof
JP6667366B2 (ja) 2016-05-23 2020-03-18 キヤノン株式会社 X線発生管、x線発生装置、およびx線撮影システム
JP6636472B2 (ja) * 2017-02-28 2020-01-29 株式会社日立ハイテクノロジーズ 電子源およびそれを用いた電子線装置
CN108834301B (zh) * 2018-06-27 2020-03-24 中国原子能科学研究院 同步回旋加速器中旋转电容转子的电接触方法及其结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084942A (en) 1997-09-22 2000-07-04 Siemens Aktiengesellschaft Rotating bulb x-ray radiator with non-pumped coolant circulation
JP2009021182A (ja) * 2007-07-13 2009-01-29 Shimadzu Corp X線管装置
JP2009081108A (ja) * 2007-09-27 2009-04-16 Hitachi Medical Corp X線管
JP2010021010A (ja) * 2008-07-10 2010-01-28 Toshiba Corp 回転陽極型x線管装置
JP2010021011A (ja) * 2008-07-10 2010-01-28 Toshiba Corp 回転陽極型x線管装置
JP2010198744A (ja) * 2009-02-23 2010-09-09 Shimadzu Corp 外囲器回転型x線管装置
JP2012028133A (ja) * 2010-07-22 2012-02-09 Hamamatsu Photonics Kk X線管

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6975704B2 (en) * 2004-01-16 2005-12-13 Siemens Aktiengesellschaft X-ray tube with housing adapted to receive and hold an electron beam deflector
JP2006047206A (ja) 2004-08-06 2006-02-16 Shimadzu Corp 複合型顕微鏡
US7839979B2 (en) * 2006-10-13 2010-11-23 Koninklijke Philips Electronics N.V. Electron optical apparatus, X-ray emitting device and method of producing an electron beam
JP5458472B2 (ja) 2007-03-20 2014-04-02 株式会社島津製作所 X線管
CN101689465B (zh) * 2007-08-09 2012-05-16 株式会社岛津制作所 X射线管装置
JP5647607B2 (ja) * 2008-08-14 2015-01-07 コーニンクレッカ フィリップス エヌ ヴェ マルチセグメント陽極ターゲットを備えた回転陽極を有するx線管、及びそれを有するx線スキャナシステム
JP5216506B2 (ja) 2008-09-29 2013-06-19 株式会社東芝 回転陽極型x線管装置
JP5267150B2 (ja) 2009-01-20 2013-08-21 株式会社島津製作所 X線管装置
JP5212162B2 (ja) 2009-02-19 2013-06-19 株式会社島津製作所 X線撮像装置
JP2012043555A (ja) 2010-08-13 2012-03-01 Toshiba Corp 回転陽極型x線管及びx線管装置
JP5675987B2 (ja) * 2010-08-27 2015-02-25 ジーイー センシング アンド インスペクション テクノロジーズ ゲ−エムベーハー 高分解能x線装置用の微小焦点x線管
US8385507B2 (en) * 2010-10-26 2013-02-26 General Electric Company Apparatus and method for improved transient response in an electromagnetically controlled X-ray tube
US8284900B2 (en) * 2010-10-26 2012-10-09 General Electric Company Apparatus and method for improved transient response in an electromagnetically controlled X-ray tube
US8483361B2 (en) * 2010-12-22 2013-07-09 General Electric Company Anode target for an x-ray tube and method for controlling the x-ray tube

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084942A (en) 1997-09-22 2000-07-04 Siemens Aktiengesellschaft Rotating bulb x-ray radiator with non-pumped coolant circulation
JP2009021182A (ja) * 2007-07-13 2009-01-29 Shimadzu Corp X線管装置
JP2009081108A (ja) * 2007-09-27 2009-04-16 Hitachi Medical Corp X線管
JP2010021010A (ja) * 2008-07-10 2010-01-28 Toshiba Corp 回転陽極型x線管装置
JP2010021011A (ja) * 2008-07-10 2010-01-28 Toshiba Corp 回転陽極型x線管装置
JP2010198744A (ja) * 2009-02-23 2010-09-09 Shimadzu Corp 外囲器回転型x線管装置
JP2012028133A (ja) * 2010-07-22 2012-02-09 Hamamatsu Photonics Kk X線管

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10181389B2 (en) 2013-10-29 2019-01-15 Varex Imaging Corporation X-ray tube having magnetic quadrupoles for focusing and collocated steering coils for steering
CN105702543A (zh) * 2014-12-16 2016-06-22 株式会社东芝 X射线管装置
US9847207B2 (en) 2014-12-16 2017-12-19 Toshiba Electron Tubes & Devices Co., Ltd. X-ray tube assembly
CN107408481A (zh) * 2015-03-09 2017-11-28 万睿视影像有限公司 具有用于聚焦的磁四极和用于转向的磁偶极的x射线管
CN107408481B (zh) * 2015-03-09 2019-08-16 万睿视影像有限公司 具有用于聚焦的磁四极和用于转向的磁偶极的x射线管

Also Published As

Publication number Publication date
CN104756222B (zh) 2016-11-23
US9437390B2 (en) 2016-09-06
CN104756222A (zh) 2015-07-01
EP2911179B1 (en) 2017-11-29
JP5880727B2 (ja) 2016-03-09
JPWO2014064748A1 (ja) 2016-09-05
EP2911179A4 (en) 2016-08-31
US20150287565A1 (en) 2015-10-08
EP2911179A1 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5880727B2 (ja) X線管装置
US8213576B2 (en) X-ray tube apparatus
US20150303023A1 (en) X-Ray Tube with Rotating Anode Aperture
WO2014041639A1 (ja) X線管装置およびx線管装置の使用方法
WO2016136360A1 (ja) X線管装置
JP2016126969A (ja) X線管装置
JP2012234810A (ja) X線管およびx線管の動作方法
CN110942967B (zh) 一种x射线管
US9972473B2 (en) Envelope rotation type X-ray tube apparatus
JP2014229388A (ja) X線管
WO2016136373A1 (ja) X線管装置
CN104246964A (zh) X射线管
US20020186816A1 (en) X-ray tube, particularly rotating bulb x-ray tube
JP2011233365A (ja) 回転陽極型x線管及び回転陽極型x線管装置
JP2016186880A (ja) X線管
JP2008178235A (ja) プラズマモータ
JP2018060621A (ja) X線管
JP2018181768A (ja) X線管
JP2013232308A (ja) X線管
JP6202317B2 (ja) X線発生装置及びx線照射装置
JP2000223053A (ja) 静電レンズ
JP3490896B2 (ja) 陰極線管
JP2019036498A (ja) 回転陽極型のx線管
JP2008034137A (ja) X線管
JPS60160543A (ja) 電子銃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543016

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14437491

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012886920

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012886920

Country of ref document: EP