WO2014061779A1 - 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子 - Google Patents

組成物、液晶配向処理剤、液晶配向膜および液晶表示素子 Download PDF

Info

Publication number
WO2014061779A1
WO2014061779A1 PCT/JP2013/078314 JP2013078314W WO2014061779A1 WO 2014061779 A1 WO2014061779 A1 WO 2014061779A1 JP 2013078314 W JP2013078314 W JP 2013078314W WO 2014061779 A1 WO2014061779 A1 WO 2014061779A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
formula
group
composition
carbon atoms
Prior art date
Application number
PCT/JP2013/078314
Other languages
English (en)
French (fr)
Inventor
徳俊 三木
橋本 淳
耕平 後藤
保坂 和義
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020177005972A priority Critical patent/KR20170027886A/ko
Priority to JP2014542192A priority patent/JP5950137B2/ja
Priority to KR1020157012504A priority patent/KR20150070288A/ko
Priority to CN201380065916.9A priority patent/CN104854193B/zh
Publication of WO2014061779A1 publication Critical patent/WO2014061779A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1089Polyisoimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Definitions

  • the present invention relates to a composition used for forming a resin film, a liquid crystal alignment treatment agent used in the production of a liquid crystal display element, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display element using the liquid crystal alignment film. Is.
  • a resin film made of an organic material such as a polymer material is widely used as an interlayer insulating film or a protective film in an electronic device because of its ease of formation and insulation performance.
  • a resin film made of an organic material is used as a liquid crystal alignment film.
  • polyimide-based organic films with excellent durability are used as resin films used industrially.
  • This polyimide organic film is formed from a composition containing a polyimide precursor, polyamic acid or polyimide. That is, the polyimide organic film is formed by applying a composition containing polyamic acid or polyimide onto a substrate and performing a baking process.
  • these compositions usually use a solvent having a high boiling point such as N-methyl-2-pyrrolidone (also referred to as NMP) or ⁇ -butyrolactone (also referred to as ⁇ -BL), the temperature is about 200 to 300 ° C. It is necessary to bake at a high temperature (for example, refer to Patent Document 1).
  • the baking process requires baking at a high temperature among the processes for manufacturing a liquid crystal display element for the reasons described above. This is because even in a liquid crystal alignment treatment agent containing a polyimide polymer and polysiloxane, NMP or ⁇ -BL is used as a solvent to dissolve the polyimide polymer. Necessary. However, when a plastic substrate that is thin and lightweight but has low heat resistance is used instead of a normal glass substrate as the substrate of the liquid crystal display element, firing at a lower temperature is required.
  • the liquid crystal alignment film is formed by applying a liquid crystal alignment treatment agent to the substrate and then baking the coating film. At that time, the liquid crystal alignment treatment agent wets and spreads on the substrate for the purpose of enhancing the coating properties (also referred to as coating properties) of the liquid crystal alignment film, that is, suppressing the occurrence of pinholes associated with repellency. It is demanded to raise.
  • a liquid crystal alignment treatment agent wets and spreads on the substrate for the purpose of enhancing the coating properties (also referred to as coating properties) of the liquid crystal alignment film, that is, suppressing the occurrence of pinholes associated with repellency. It is demanded to raise.
  • a resin film obtained from a composition containing a polyimide-based polymer and polysiloxane has a higher chemical stability than a resin film obtained from a composition not containing polysiloxane.
  • it is also used for interlayer insulating films and protective films in other electronic devices. Even in these films, it is necessary to form a resin film by baking at a low temperature and to improve the coatability of the resin film. By performing firing at a low temperature, the energy cost in production can be reduced. Moreover, the improvement of applicability can suppress the occurrence of pinholes accompanying the repelling on the resin film.
  • an object of this invention is to provide the composition which has the said characteristic. That is, an object of the present invention is to provide a composition capable of forming a resin film by baking at a low temperature in a composition containing a polyimide-based polymer and polysiloxane. And when forming a resin film, it aims at providing the composition which can suppress generation
  • production of the pinhole accompanying a repelling. Another object of the present invention is to provide a liquid crystal aligning agent that can form a liquid crystal aligning film by firing at a low temperature in the liquid crystal aligning agent using the above composition.
  • An object of the present invention is to provide a liquid crystal alignment film that meets the above requirements. That is, it aims at providing the liquid crystal aligning film which can be formed by baking at low temperature, and providing the liquid crystal aligning film which can suppress the alignment defect accompanying a pinhole. Furthermore, an object of the present invention is to provide a liquid crystal display device provided with a liquid crystal alignment film that meets the above-described requirements.
  • the present inventor has selected from a solvent having a specific structure, a polyimide precursor obtained by reacting a diamine component containing a diamine compound having a carboxyl group and a tetracarboxylic dianhydride component, or a polyimide.
  • a composition containing at least one kind of polymer and a polysiloxane having a specific structure is extremely effective for achieving the above object, and has completed the present invention.
  • a composition comprising the following component (A), component (B) and component (C):
  • (A) component At least one solvent selected from the following formula [1a] or formula [1b].
  • X 1 represents an alkyl group having 1 to 3 carbon atoms
  • X 2 represents an alkyl group having 1 to 3 carbon atoms
  • Component At least one polymer selected from a polyimide precursor or a polyimide obtained by reacting a diamine component containing a diamine compound having a carboxyl group and a tetracarboxylic dianhydride component.
  • Component (C) a polysiloxane obtained by polycondensation of an alkoxysilane containing any one of the alkoxysilanes represented by the following formula [A1], formula [A2] or formula [A3].
  • a 1 represents an aliphatic hydrocarbon, a benzene ring, a cyclohexane ring, a heterocyclic ring or an organic group having 8 to 35 carbon atoms having a steroid structure
  • a 2 represents a hydrogen atom or 1 to 5 represents an alkyl group
  • a 3 represents an alkyl group having 1 to 5 carbon atoms
  • m represents an integer of 1 or 2
  • n represents an integer of 0 to 2
  • p represents an integer of 0 to 3.
  • B 1 represents a C 2-12 organic group having a vinyl group, an epoxy group, an amino group, a mercapto group, an isocyanate group, a methacryl group, an acrylic group, a ureido group or a cinnamoyl group
  • 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • B 3 represents an alkyl group having 1 to 5 carbon atoms
  • m represents an integer of 1 or 2
  • n represents an integer of 0 to 2, respectively.
  • P represents an integer of 0 to 3, where m + n + p is 4.
  • D 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • D 2 represents an alkyl group having 1 to 5 carbon atoms
  • n represents an integer of 0 to 3
  • the diamine compound having a carboxyl group as the component (B) is a diamine compound having a structure represented by the following formula [2], as described in (1) or (2) above Composition.
  • a represents an integer of 0 to 4.
  • a represents an integer of 0 to 4
  • n represents an integer of 1 to 4.
  • Y represents the structure of Formula [2b-1], Formula [2b-2], Formula [2b-3], Formula [2b-4], or Formula [2b-5] below, m represents an integer of 1 to 4).
  • a represents an integer of 0 to 4
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15) ), —O—, —CH 2 O—, —COO— or —OCO—
  • Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15)
  • Y 3 represents a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—
  • Y 4 represents a benzene ring, A divalent cyclic group selected from a cyclohexane ring or a heterocyclic ring, or a divalent organic group having 12 to 25 carbon atoms having a steroid skeleton, wherein any hydrogen atom on the cyclic group has 1 to 3 carbon atoms
  • Y 5 represents a divalent cyclic group selected from benzene ring, cyclohexane ring or a heterocyclic ring, any hydrogen atom on these cyclic group
  • carbon atoms 1 May be substituted with an alkyl group having 1 to 3, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom
  • n is 0
  • Y 6 represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • Y 7 represents an alkyl group having 8 to 22 carbon atoms.
  • Y 8 and Y 9 are each independently a hydrocarbon having 1 to 6 carbon atoms.
  • a group of formula [2b During 5], Y 10 is an alkyl group having 1 to 8 carbon atoms).
  • the tetracarboxylic dianhydride component of the component (B) is a compound represented by the following formula [3], according to any one of (1) to (6) above Composition.
  • Z 1 is a group having at least one structure selected from the following formulas [3a] to [3j]).
  • Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
  • Z 6 and Z 7 are A hydrogen atom or a methyl group, which may be the same or different.
  • the alkoxysilane represented by the formula [A2] of the component (C) is allyltriethoxysilane, allyltrimethoxysilane, diethoxymethylvinylsilane, dimethoxymethylvinylsilane, triethoxyvinylsilane, vinyltrimethoxysilane, vinyltris ( It is at least one selected from 2-methoxyethoxy) silane, 3- (triethoxysilyl) propyl methacrylate, 3- (trimethoxysilyl) propyl acrylate or 3- (trimethoxysilyl) propyl methacrylate (1)
  • the alkoxysilane represented by the formula [A2] of the component (C) is 3-glycidyloxypropyl (dimethoxy) methylsilane, 3-glycidyloxypropyl (diethoxy) methylsilane, 3-glycidyloxypropyltrimethoxysilane or 2
  • the polysiloxane as the component (C) is a polysiloxane obtained by polycondensation of alkoxysilanes represented by the formulas [A1], [A2] and [A3]. (1) The composition according to any one of (9) above.
  • the component (D) contains at least one solvent of N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone as the component (D).
  • the composition in any one of.
  • component (E) 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol
  • component (E) 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol
  • a liquid crystal display element comprising the liquid crystal alignment film according to (15) or (16).
  • a liquid crystal composition having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates.
  • a liquid crystal display element comprising the liquid crystal alignment film according to (18).
  • a liquid crystal alignment film having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable group that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates.
  • a liquid crystal display element comprising the liquid crystal alignment film according to (20).
  • Solvent having a specific structure of the present invention at least one polymer selected from a polyimide precursor or polyimide obtained by reacting a diamine component containing a diamine compound having a carboxyl group and a tetracarboxylic dianhydride component, and a specific
  • a composition containing a polysiloxane having a structure can form a resin film by baking at a low temperature. Moreover, when the composition of the present invention is applied to a substrate, it is possible to suppress the generation of pinholes accompanying the repelling on the resin film.
  • the liquid crystal alignment treatment agent comprising the composition of the present invention can form a liquid crystal alignment film by baking at a low temperature.
  • this liquid crystal aligning agent can suppress the generation of pinholes accompanying the repelling on the liquid crystal alignment film. Therefore, the liquid crystal display element having the liquid crystal alignment film obtained thereby has no alignment defect and becomes a highly reliable liquid crystal display element.
  • the present invention uses the following components (A), (B) and (C) containing a composition, a liquid crystal aligning agent, a resin film obtained using the composition, and the liquid crystal aligning agent.
  • the obtained liquid crystal alignment film is a liquid crystal display element having the liquid crystal alignment film.
  • X 1 represents an alkyl group having 1 to 4 carbon atoms
  • X 2 represents an alkyl group having 1 to 4 carbon atoms
  • Component (B) At least one polymer selected from a polyimide precursor or polyimide obtained by reacting a diamine component containing a diamine compound having a carboxyl group and a tetracarboxylic dianhydride component (also referred to as a specific polymer). ).
  • a 1 represents an aliphatic hydrocarbon, a benzene ring, a cyclohexane ring, a heterocyclic ring or an organic group having 8 to 35 carbon atoms having a steroid structure
  • a 2 represents a hydrogen atom or 1 to 5 represents an alkyl group
  • a 3 represents an alkyl group having 1 to 5 carbon atoms
  • m represents an integer of 1 or 2
  • n represents an integer of 0 to 2
  • p represents an integer of 0 to 3.
  • B 1 represents a C 2-12 organic group having a vinyl group, an epoxy group, an amino group, a mercapto group, an isocyanate group, a methacryl group, an acrylic group, a ureido group or a cinnamoyl group
  • 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • B 3 represents an alkyl group having 1 to 5 carbon atoms
  • m represents an integer of 1 or 2
  • n represents an integer of 0 to 2, respectively.
  • P represents an integer of 0 to 3, where m + n + p is 4.
  • D 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • D 2 represents an alkyl group having 1 to 5 carbon atoms
  • n represents an integer of 0 to 3
  • the specific solvent of the present invention usually has a lower boiling point compared to NMP and ⁇ -BL, which are solvents used in a composition containing a polyimide polymer, and can dissolve the specific polymer of the present invention.
  • the specific polysiloxane of the present invention can be dissolved not only in a solvent having a high boiling point such as NMP or ⁇ -BL but also in the specific solvent of the present invention, a general alcohol solvent or a glycol solvent. Therefore, the composition of this invention can form a resin film by baking at low temperature.
  • the composition of the present invention can be obtained by mixing a specific polysiloxane or a polymer solution of a specific polysiloxane with a polymer solution in which a specific polymer is dissolved in a specific solvent, such as NMP or ⁇ -BL. Therefore, the compatibility between the solvent and the specific polysiloxane or the polymer solution of the specific polysiloxane is high. Therefore, when this composition is applied to the substrate, it is possible to suppress the generation of pinholes accompanying the repelling on the resin film.
  • a specific solvent such as NMP or ⁇ -BL
  • the specific solvent of the present invention usually has a lower surface tension as a solvent than a solvent such as NMP or ⁇ -BL used for a composition having a polyimide polymer. Therefore, the composition using the specific solvent has high wettability to the substrate. Therefore, it is possible to suppress the generation of pinholes accompanying the repelling on the resin film.
  • the composition of the present invention can form a resin film by baking at a low temperature, and further suppresses the generation of pinholes accompanying repelling on the resin film when applied to a substrate. be able to. Moreover, also in the liquid crystal aligning agent obtained from the composition of this invention, the effect mentioned above is acquired for the same reason.
  • the specific solvent which is the component (A) of the present invention is at least one solvent selected from the following formula [1a] or [1b].
  • X 1 represents an alkyl group having 1 to 3 carbon atoms.
  • X 2 represents an alkyl group having 1 to 3 carbon atoms).
  • the specific solvent of the present invention can form a resin film or a liquid crystal alignment film by baking at a low temperature as described above, and further, a composition or a liquid crystal using the composition in order to enhance the effect of increasing the wettability to the substrate. It is preferably 50 to 100% by mass of the total solvent contained in the alignment treatment agent. Among these, 55 to 100% by mass is preferable. More preferred is 55 to 95% by mass.
  • the more the amount of the specific solvent of the present invention in the entire solvent in the composition or the liquid crystal alignment treatment agent using the composition the more the effect of the present invention, that is, the resin film or the liquid crystal alignment film is formed by baking at a low temperature.
  • wetting and spreading of the coating solution to the substrate is enhanced, and a resin film or a liquid crystal alignment film having excellent coating properties can be obtained.
  • the specific polymer which is the component (B) of the present invention is at least one selected from a polyimide precursor or a polyimide obtained by reacting a diamine component containing a diamine compound having a carboxyl group and a tetracarboxylic dianhydride component. The polymer.
  • the polyimide precursor has a structure represented by the following formula [A].
  • R 1 is a tetravalent organic group
  • R 2 is a divalent organic group having a carboxyl group
  • a 1 and A 2 are a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • Each of A 3 and A 4 represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acetyl group, and may be the same or different
  • n is Indicates a positive integer).
  • the diamine component is a diamine compound having two primary or secondary amino groups in the molecule
  • the tetracarboxylic acid component is a tetracarboxylic acid compound, tetracarboxylic dianhydride, dicarboxylic acid dihalide compound,
  • a dicarboxylic acid dialkyl ester compound or a dialkyl ester dihalide compound may be mentioned.
  • the specific polymer of the present invention is relatively simple by using a diamine compound having a carboxyl group represented by the following formula [B] and a tetracarboxylic dianhydride represented by the following formula [C] as raw materials. From the reason that it is obtained, a polyamic acid having a structural formula of a repeating unit represented by the following formula [D] or a polyimide obtained by imidizing the polyamic acid is preferable.
  • R 1 and R 2 are as defined in formula [A]).
  • the polymer of the formula [D] obtained above is added to the alkyl group having 1 to 8 carbon atoms of A 1 and A 2 represented by the formula [A] and the formula [A] by a usual synthesis method. It is also possible to introduce an alkyl group having 1 to 5 carbon atoms or an acetyl group of A 3 and A 4 shown.
  • the diamine compound having a carboxyl group of the present invention is a diamine compound having a structure represented by the following formula [2] in the molecule.
  • a represents an integer of 0 to 4. Especially, the integer of 0 or 1 is preferable from the point of the availability of a raw material or the ease of a synthesis
  • diamine compound having a structure represented by the formula [2] include a structure represented by the following formula [2a].
  • a represents an integer of 0 to 4. Among these, 0 or 1 is preferable from the viewpoint of availability of raw materials and ease of synthesis.
  • n represents an integer of 1 to 4. Among these, 1 is preferable from the viewpoint of ease of synthesis.
  • a diamine compound represented by the formula [2a] can be obtained by synthesizing a dinitro compound represented by the following formula [2a-A], further reducing the nitro group and converting it to an amino group.
  • a represents an integer of 0 to 4 and n represents an integer of 1 to 4).
  • the method for reducing the dinitro group of the dinitro compound represented by the formula [2a-A] is not particularly limited, and is usually palladium-carbon in a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane or an alcohol solvent, There is a method in which platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, or the like is used as a catalyst and reacted in hydrogen gas, hydrazine, or hydrogen chloride.
  • Examples of the diamine compound having a carboxyl group of the present invention further include structures represented by the following formulas [2a-1] to [2a-4].
  • a 1 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, — O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—.
  • a single bond —CH 2 —, —C (CH 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH —, —NHCO—, —COO— or —OCO— is preferred. More preferred is a single bond, —CH 2 —, —C (CH 3 ) 2 —, —O—, —CO—, —NH— or —N (CH 3 ) —.
  • n 1 and m 2 each represent an integer of 0 to 4, and m 1 + m 2 represents an integer of 1 to 4. Among them, m 1 + m 2 is 1 or 2 are preferred.
  • n 3 and m 4 each represent an integer of 1 to 5. Of these, 1 or 2 is preferable from the viewpoint of ease of synthesis.
  • a 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms. Of these, a linear alkyl group having 1 to 3 carbon atoms is preferable.
  • m 5 represents an integer of 1 to 5. Of these, 1 or 2 is preferable.
  • a 3 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, — O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—.
  • a single bond —CH 2 —, —C (CH 3 ) 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 — , —COO— or —OCO— is preferable. More preferred is —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO— or —OCO—.
  • m 6 represents an integer of 1 to 4. Of these, 1 is preferable from the viewpoint of ease of synthesis.
  • the diamine compound having a carboxyl group of the present invention is preferably 20 mol% to 100 mol%, more preferably 30 mol% to 100 mol%, based on the total diamine component.
  • the diamine compound having a carboxyl group described above has properties such as the solubility of the specific polymer of the present invention in a solvent, the coating property of the composition, the orientation of the liquid crystal when it is used as a liquid crystal alignment film, the voltage holding ratio, and the accumulated charge. Depending on the situation, one kind or a mixture of two or more kinds can be used.
  • a diamine compound represented by the following formula [2b] (also referred to as a second diamine compound) can be used as the second diamine compound.
  • Y represents the structure of Formula [2b-1], Formula [2b-2], Formula [2b-3], Formula [2b-4], or Formula [2b-5] below, m represents an integer of 0 to 4).
  • a represents an integer of 0 to 4. Especially, the integer of 0 or 1 is preferable from the point of the availability of a raw material or the ease of a synthesis
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. Indicates. Among these, from the viewpoint of availability of raw materials and ease of synthesis, a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO -Is preferred.
  • a single bond — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15).
  • a single bond or — (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
  • a single bond — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or —COO— is preferable from the viewpoint of ease of synthesis. More preferred is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • Y 4 is a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms.
  • Y 4 may be a divalent organic group selected from organic groups having 12 to 25 carbon atoms having a steroid skeleton. Of these, an organic group having 12 to 25 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton is preferable from the viewpoint of ease of synthesis.
  • Y 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms. And an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Of these, a benzene ring or a cyclohexane ring is preferable.
  • n represents an integer of 0 to 4.
  • Y 6 represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. Indicates.
  • an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
  • Y 8 and Y 9 each independently represent a hydrocarbon group having 1 to 6 carbon atoms.
  • Y 10 represents an alkyl group having 1 to 8 carbon atoms.
  • Y is at least selected from Formula [2b-1], Formula [2b-2], Formula [2b-3], Formula [2b-4], or Formula [2b-5].
  • 1 represents a substituent of one structure, and m represents an integer of 0 to 4.
  • the method for reducing the dinitro group of the dinitro compound represented by the formula [2b-A] is not particularly limited, and is usually palladium-carbon in a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane or an alcohol solvent.
  • a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane or an alcohol solvent.
  • platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, or the like is used as a catalyst and reacted in hydrogen gas, hydrazine, or hydrogen chloride.
  • the second diamine represented by the formula [2b] includes m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,6-diaminotoluene, 2,4-diaminophenol, 3,5- In addition to diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, and 4,6-diaminoresorcinol, diamine compounds having structures represented by the following formulas [2b-6] to [2b-46] Can be mentioned.
  • a 1 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group).
  • R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or CH 2 OCO—
  • R 2 represents carbon An alkyl group, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group represented by formulas 1 to 22).
  • R 3 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or — CH 2 - indicates
  • R 4 represents an alkyl group, alkoxy group, fluorine-containing alkyl group or fluorine-containing alkoxy group of 1 to 22 carbon atoms).
  • R 5 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, — CH 2 — or —O—
  • R 6 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group).
  • R 7 represents an alkyl group having 3 to 12 carbon atoms. Note that the cis-trans isomerism of 1,4-cyclohexylene is the trans isomer. preferable).
  • R 8 represents an alkyl group having 3 to 12 carbon atoms.
  • the cis-trans isomerism of 1,4-cyclohexylene is the trans isomer. preferable).
  • B 4 represents an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom
  • B 3 represents a 1,4-cyclohexylene group or a 1,4-phenylene group
  • B 2 represents an oxygen atom or —COO— * (where a bond marked with “*” binds to B 3 )
  • B 1 represents an oxygen atom or —COO— * (where “*” bond marked with represents a (CH 2) bind to a 2).
  • a 1 represents an integer of 0 or 1
  • a 2 represents an integer of 2 ⁇ 10
  • a 3 is 0 or 1 Indicates an integer).
  • the composition using the diamine compound in which the substituent Y in the formula [2b] is represented by the formula [2b-2] increases the hydrophobicity of the resin film. be able to. Further, when the liquid crystal alignment film is used, the pretilt angle of the liquid crystal can be increased. At that time, for the purpose of enhancing these effects, among the above diamine compounds, diamines represented by the formula [2b-28] to the formula [2b-39] or the formula [2b-42] to the formula [2b-46] are used. It is preferable to use a compound.
  • diamine compounds represented by the formulas [2b-24] to [2b-39] or the formulas [2b-42] to [2b-46].
  • these diamine compounds are 5 mol% or more and 80 mol% or less of the whole diamine component. More preferably, these diamine compounds are 5 mol% or more and 60 mol% or less of the whole diamine component from the viewpoint of the coating properties of the composition and the liquid crystal alignment treatment agent and the electric characteristics as the liquid crystal alignment film. Especially preferably, it is 10 mol% or more and 60 mol% or less of the whole diamine component.
  • the second diamine compound of the present invention depends on properties such as solubility and coating properties of the specific polymer of the present invention in a solvent, liquid crystal alignment in the case of forming a liquid crystal alignment film, voltage holding ratio, accumulated charge, etc.
  • properties such as solubility and coating properties of the specific polymer of the present invention in a solvent, liquid crystal alignment in the case of forming a liquid crystal alignment film, voltage holding ratio, accumulated charge, etc.
  • One type or a mixture of two or more types can be used.
  • the specific polymer of the present invention includes a diamine compound having a carboxyl group in the molecule represented by the formula [2a], the formula [2a-1] to the formula [2a-4], as long as the effects of the present invention are not impaired.
  • other diamine compounds also referred to as other diamine compounds
  • Specific examples of other diamine compounds are shown below, but are not limited to these examples.
  • diamine compounds include 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3,3 ′.
  • diamine compounds examples include those having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring or a heterocyclic ring in the diamine side chain, and those having a macrocyclic substituent composed of these. .
  • diamine compounds represented by the following formulas [DA1] to [DA13] can be exemplified.
  • a 1 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or —NH—
  • a 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms).
  • p represents an integer of 1 to 10).
  • diamine compounds represented by the following formulas [DA8] to [DA13] can also be used as other diamine compounds.
  • n represents an integer of 1 to 5
  • a diamine compound represented by the following formula [DA14] can also be used as long as the effects of the present invention are not impaired.
  • a 1 represents —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ).
  • a 3 is a hydrocarbon group, A 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— or —O (CH 2 ) m — (m is an integer of 1 to 5), A 4 is a nitrogen-containing aromatic heterocycle, and n is 1 to 4 is an integer).
  • diamine compounds represented by the following formulas [DA15] and [DA16] can also be used.
  • the above-mentioned other diamine compounds depend on properties such as solubility of the specific polymer of the present invention in a solvent, coating properties of the composition, liquid crystal alignment in the case of a liquid crystal alignment film, voltage holding ratio, accumulated charge, etc.
  • properties such as solubility of the specific polymer of the present invention in a solvent, coating properties of the composition, liquid crystal alignment in the case of a liquid crystal alignment film, voltage holding ratio, accumulated charge, etc.
  • One kind or a mixture of two or more kinds may be used.
  • tetracarboxylic dianhydride component examples include a tetracarboxylic acid anhydride represented by the following formula [3] or a tetracarboxylic acid derivative thereof (specific tetracarboxylic dianhydride component). Also called).
  • Z 1 is a group having at least one structure selected from the following formulas [3a] to [3j].
  • Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
  • Z 6 and Z 7 represent a hydrogen atom or a methyl group, and may be the same or different.
  • Z 1 is represented by the formula [3] from the viewpoint of ease of synthesis and polymerization reactivity when producing a polymer.
  • 3a] Formula [3c], Formula [3d], Formula [3e], Formula [3f] or Formula [3g] is preferable.
  • the specific tetracarboxylic acid component of the present invention is preferably 1 mol% or more of the total tetracarboxylic acid component. More preferred is 5 mol% or more, and particularly preferred is 10 mol% or more.
  • the usage-amount is 20 mol% or more of the whole tetracarboxylic dianhydride component, By doing so, a desired effect can be obtained. Preferably, it is 30 mol% or more.
  • all of the tetracarboxylic dianhydride component may be a tetracarboxylic dianhydride component having a structure of the formula [3e], the formula [3f], or the formula [3g].
  • tetracarboxylic dianhydride components other than a specific tetracarboxylic dianhydride component can be used for the specific polymer of this invention.
  • examples of other tetracarboxylic dianhydride components include the following tetracarboxylic acid compounds, tetracarboxylic dianhydrides, dicarboxylic acid dihalide compounds, dicarboxylic acid dialkyl ester compounds, and dialkyl ester dihalide compounds.
  • the specific tetracarboxylic dianhydride component and other tetracarboxylic acid components are the solubility of the specific polymer of the present invention in the solvent, the coating property of the composition, the liquid crystal alignment property when the liquid crystal alignment film is used, and the voltage holding. Depending on the characteristics such as rate and accumulated charge, one kind or a mixture of two or more kinds may be used.
  • the method for synthesizing the specific polymer is not particularly limited. Usually, it is obtained by reacting a diamine component with a tetracarboxylic dianhydride component. In general, at least one tetracarboxylic dianhydride component selected from the group consisting of tetracarboxylic acids and derivatives thereof is reacted with a diamine component consisting of one or more diamine compounds to form a polyamic acid. Get.
  • a method of obtaining polyamic acid by polycondensation of tetracarboxylic dianhydride and primary or secondary diamine compound, dehydration polycondensation reaction of tetracarboxylic acid and primary or secondary diamine compound Or a polycarboxylic acid dihalide and a primary or secondary diamine compound are polycondensed to obtain a polyamic acid.
  • a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group with a primary or secondary diamine compound, a dicarboxylic acid dihalide obtained by dialkyl esterifying a carboxylic acid group and a primary a method of polycondensation with a secondary diamine compound or a method of converting a carboxyl group of a polyamic acid into an ester is used.
  • polyimide In order to obtain polyimide, a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
  • the reaction between the diamine component and the tetracarboxylic acid component is usually carried out with the diamine component and the tetracarboxylic acid component in an organic solvent.
  • the organic solvent used in that case is not particularly limited as long as the specific solvent which is the component (A) of the present invention and the generated polyimide precursor are dissolved.
  • Examples of the solvent other than the specific solvent of the present invention include the following solvents. N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone Cyclohexanone, cyclopentanone or 4-hydroxy-4-methyl-2-pentanone.
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid component is dispersed or dissolved in the organic solvent as it is.
  • a method of adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic acid component in an organic solvent a method of alternately adding a tetracarboxylic acid component and a diamine component, etc. Any of these methods may be used.
  • the polymerization temperature can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
  • the polyimide of the present invention is a polyimide obtained by ring closure of the polyimide precursor, and in this polyimide, the ring closure rate of the amic acid group (also referred to as imidization rate) is not necessarily 100%. It can be arbitrarily adjusted according to the purpose.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
  • the catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has a basicity appropriate for advancing the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a solvent and precipitated.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating.
  • the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
  • the molecular weight of the specific polymer of the present invention is the weight average measured by the GPC (Gel Permeation Chromatography) method in consideration of the strength of the resin film or liquid crystal alignment film obtained therefrom, the workability during film formation, and the film property.
  • the molecular weight is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • the specific polysiloxane which is the component (C) of the present invention is obtained by polycondensing an alkoxysilane containing any one of the alkoxysilanes represented by the formula [A1], the formula [A2] or the formula [A3]. Polysiloxane.
  • the alkoxysilane represented by the formula [A1] of the present invention is an alkoxysilane represented by the following formula [A1].
  • a 1 is an organic group having 8 to 35 carbon atoms having an aliphatic hydrocarbon, a benzene ring, a cyclohexane ring, a heterocyclic ring or a steroid structure.
  • a 2 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Of these, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable.
  • a 3 each represents an alkyl group having 1 to 5 carbon atoms. Of these, alkyl groups having 1 to 3 carbon atoms are preferred from the viewpoint of polycondensation reactivity.
  • m is an integer of 1 or 2. Among these, 1 is preferable from the viewpoint of synthesis.
  • n is an integer of 0-2.
  • p is an integer of 0 to 3.
  • an integer of 1 to 3 is preferable from the viewpoint of polycondensation reactivity. More preferably, it is 2 or 3.
  • alkoxysilane represented by the formula [A1] include octyltrimethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxy.
  • Silane pentyltriethoxysilane, heptadecyltrimethoxysilane, heptadecyltriethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, nonadecyltrimethoxysilane, nonadecyltriethoxysilane, isooctyltriethoxysilane, phenethyltriethoxysilane Silane, pentafluorophenylpropyltrimethoxysilane, m-styrylethyltrimethoxysilane, p-styrylethyltrimethoxysilane, 1- Off triethoxysilane, 1-naphthyl trimethoxysilane, triethoxy-1H, IH, 2H, 2H-tridecafluoro -n- octy
  • alkoxysilanes represented by the following formulas [A1-1] to [A1-32] can also be used.
  • R 1 represents an alkyl group having 1 to 5 carbon atoms, respectively).
  • R 1 represents an alkyl group having 1 to 5 carbon atoms
  • R 2 represents —O—, —COO—, —OCO—, —CONH—, respectively.
  • R 3 represents An alkyl group having 1 to 12 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group).
  • R 1 represents an alkyl group having 1 to 5 carbon atoms
  • R 2 represents —O—, —COO—, —OCO—, —CONH—, respectively.
  • R 3 represents C 1-12 alkyl group, alkoxy group, fluorine-containing alkyl group, fluorine-containing alkoxy group, fluorine group, cyano group, trifluoromethane group, nitro group, azo group, formyl group, acetyl group, acetoxy group or hydroxyl group ).
  • R 1 represents an alkyl group having 1 to 5 carbon atoms
  • R 2 represents —O—, —COO—, —OCO—, —CONH—, respectively.
  • R 3 represents An alkyl group having 1 to 12 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group).
  • R 1 represents an alkyl group having 1 to 5 carbon atoms
  • B 4 represents an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom
  • B 3 represents 1,4-cyclohexylene group or 1,4-phenylene group
  • B 2 represents an oxygen atom or COO— * (where a bond marked with “*” is bonded to B 3 );
  • 1 is an oxygen atom or COO- * (where a bond marked with “*” is bonded to (CH 2 ) a 2 ).
  • a 1 represents an integer of 0 or 1
  • a 2 represents an integer of 2 ⁇ 10
  • a 3 represents an integer of 0 or 1).
  • the alkoxysilane represented by the above formula [A1] is the strength of the resin film or the liquid crystal alignment film, the workability when these films are formed, and the liquid crystal alignment, the voltage holding ratio, and the accumulated charge when the liquid crystal alignment film is formed. Depending on the characteristics, one kind or a mixture of two or more kinds can be used.
  • the alkoxysilane represented by the formula [A2] of the present invention is an alkoxysilane represented by the following formula [A2].
  • B 1 is a C 2-12 organic group having a vinyl group, an epoxy group, an amino group, a mercapto group, an isocyanate group, a methacryl group, an acrylic group, a ureido group or a cinnamoyl group.
  • a vinyl group, an epoxy group, an amino group, a methacryl group, an acrylic group, or a ureido group is preferable from the viewpoint of availability. More preferably, they are a methacryl group, an acryl group, or a ureido group.
  • B 2 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Of these, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable.
  • B 3 is an alkyl group having 1 to 5 carbon atoms. Of these, alkyl groups having 1 to 3 carbon atoms are preferred from the viewpoint of polycondensation reactivity.
  • m is an integer of 1 or 2. Among these, 1 is preferable from the viewpoint of synthesis.
  • n is an integer of 0-2.
  • p is an integer of 0 to 3.
  • an integer of 1 to 3 is preferable from the viewpoint of polycondensation reactivity. More preferably, it is 2 or 3.
  • alkoxysilane represented by the formula [A2] include allyltriethoxysilane, allyltrimethoxysilane, diethoxymethylvinylsilane, dimethoxymethylvinylsilane, triethoxyvinylsilane, vinyltrimethoxysilane, vinyltris (2-methoxyethoxy) Silane, m-styrylethyltriethoxysilane, p-styrylethyltriethoxysilane, m-styrylmethyltriethoxysilane, p-styrylmethyltriethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltri Methoxysilane, diethoxy (3-glycidyloxypropyl) methylsilane, 3-glycidyloxypropyl (dimethoxy) methylsilane, 3-glycidyloxypropyltri
  • the alkoxysilane represented by the above formula [A2] is the strength of the resin film or the liquid crystal alignment film, the workability when these films are formed, and the liquid crystal alignment, the voltage holding ratio, and the accumulated charge when the liquid crystal alignment film is formed. Depending on the characteristics, one kind or a mixture of two or more kinds can be used.
  • the alkoxysilane represented by the formula [A3] of the present invention is an alkoxysilane represented by the following formula [A].
  • D 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and these may be substituted with a halogen atom, a nitrogen atom, an oxygen atom, or a sulfur atom. Of these, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable.
  • each D 2 is an alkyl group having 1 to 5 carbon atoms.
  • alkyl groups having 1 to 3 carbon atoms are preferred from the viewpoint of polycondensation reactivity.
  • n is an integer of 0 to 3.
  • alkoxysilane represented by the formula [A3] include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane.
  • examples of the alkoxysilane in which n is 0 include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane.
  • the alkoxysilane represented by the above formula [A3] is the strength of the resin film or the liquid crystal alignment film, the workability when these films are formed, and the liquid crystal alignment, the voltage holding ratio, and the accumulated charge when the liquid crystal alignment film is formed. Depending on the characteristics, one kind or a mixture of two or more kinds can be used.
  • the specific polysiloxane of the present invention is a polysiloxane obtained by polycondensation of an alkoxysilane containing any one of the alkoxysilanes represented by the formula [A1], the formula [A2] or the formula [A3]. Polysiloxanes obtained by polycondensation of alkoxysilanes containing a plurality of these alkoxysilanes are preferred.
  • alkoxysilane containing two types of the formula [A1] and the formula [A2], the formula [A1] and the formula [A3], the formula [A2] and the formula [A3], and the formula [A1] Polysiloxanes obtained by polycondensation of alkoxysilanes containing three types of the formulas [A2] and [A3].
  • alkoxysilanes containing two types of the formula [A1] and the formula [A2], the formula [A1] and the formula [A3], or the formula [A1], the formula [A2] and the formula [A3] 3 Alkoxysilanes containing seeds are preferred.
  • alkoxysilane represented by the formula [A1], formula [A2] or formula [A3] is used to obtain the specific polysiloxane of the present invention.
  • the alkoxysilane represented by the formula [A1] is preferably 1 to 40 mol%, more preferably 1 to 30 mol% in all alkoxysilanes.
  • the alkoxysilane represented by the formula [A2] is preferably 1 to 70 mol%, more preferably 1 to 60 mol% in all alkoxysilanes.
  • the alkoxysilane represented by the formula [A3] is preferably 1 to 99 mol%, more preferably 1 to 80 mol% in all alkoxysilanes.
  • the method for obtaining the specific polysiloxane used in the present invention is not particularly limited.
  • the specific polysiloxane in the present invention is obtained by polymerizing an alkoxysilane containing any one of the alkoxysilanes represented by the formula [A1], the formula [A2] or the formula [A3] in an organic solvent, or the formula It can be obtained by polymerizing a plurality of types of alkoxysilanes in an organic solvent from the alkoxysilanes represented by [A1], formula [A2], and formula [A3].
  • the specific polysiloxane of the present invention can be obtained as a solution obtained by polycondensation of alkoxysilane and uniformly dissolved in an organic solvent.
  • the method for polycondensing the specific polysiloxane of the present invention is not particularly limited. Among them, for example, a method of hydrolyzing and polycondensating alkoxysilane in the specific solvent, alcohol solvent or glycol solvent of the present invention can be mentioned. At that time, the hydrolysis / polycondensation reaction may be partially hydrolyzed or completely hydrolyzed. In the case of complete hydrolysis, it is theoretically necessary to add 0.5 times the molar amount of water of all alkoxy groups in the alkoxysilane, but usually an excess amount of water is added more than 0.5 times the molar amount. It is preferable.
  • the amount of water used in the hydrolysis / polycondensation reaction can be appropriately selected according to the purpose, but 0.5% of all alkoxy groups in the alkoxysilane can be selected. A molar amount of ⁇ 2.5 times is preferable.
  • acidic compounds such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, succinic acid, maleic acid or fumaric acid, alkaline substances such as ammonia, methylamine, ethylamine, ethanolamine or triethylamine
  • a compound or a catalyst such as a metal salt such as hydrochloric acid, nitric acid or nitric acid can be used.
  • the hydrolysis / polycondensation reaction can be promoted by heating the solution in which the alkoxysilane is dissolved. At that time, the heating temperature and the heating time can be appropriately selected according to the purpose. For example, conditions such as heating and stirring at 50 ° C. for 24 hours and then heating and stirring for 1 hour under reflux can be mentioned.
  • another method for polycondensation includes a method in which a polycondensation reaction is performed by heating a mixture of alkoxysilane, an organic solvent and oxalic acid.
  • oxalic acid is added to the specific solvent or alcohol solvent of the present invention to prepare a oxalic acid solution, and then the alkoxysilane is mixed while the solution is heated.
  • the amount of oxalic acid used in the above reaction is preferably 0.2 to 2.0 mol with respect to 1 mol of all alkoxy groups in the alkoxysilane.
  • This reaction can be carried out at a solution temperature of 50 to 180 ° C., but is preferably carried out under reflux for several tens of minutes to several tens of hours so as not to cause evaporation or volatilization of the solvent.
  • the polycondensation reaction for obtaining the specific polysiloxane of the present invention when a plurality of alkoxysilanes represented by the formulas [A1], [A2] and [A3] are used, a mixture in which a plurality of alkoxysilanes are mixed in advance.
  • the reaction may be carried out while sequentially adding a plurality of types of alkoxysilanes.
  • the solvent used for the polycondensation reaction of alkoxysilane is not particularly limited as long as it can dissolve alkoxysilane. Moreover, even if it is a solvent in which an alkoxysilane does not melt
  • alcohol is generally generated by the polycondensation reaction of alkoxysilane, and therefore, an alcohol solvent, a glycol solvent, a glycol ether solvent, or an organic solvent that is compatible with alcohol is used. .
  • solvent used in such a polycondensation reaction include alcohol solvents such as methanol, ethanol, propanol, butanol or diacetone alcohol, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hexylene glycol, 1, 3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,2-pentanediol, 1,3-pentanediol, 1,4 -Glucol solvents such as pentanediol, 1,5-pentanediol, 2,4-pentanediol, 2,3-pentanediol or 1,6-hexanediol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, Lenglycol monopropyl ether, ethylene glycol monobutyl,
  • the specific solvent of the present invention is preferably used in preparing the composition of the present invention or the liquid crystal aligning agent using the composition.
  • one or more of the above solvents can be used in the polycondensation reaction.
  • the concentration of silicon atoms contained in all alkoxysilanes charged as a raw material in terms of SiO 2 is 20% by mass or less. preferable. In particular, the content is preferably 5 to 15% by mass.
  • the polycondensation solution of the specific polysiloxane obtained by the above method may be used as it is as the solution of the specific polysiloxane of the component (C) of the present invention or, if necessary, obtained by the above method.
  • the polycondensation solution of the specific polysiloxane may be concentrated, diluted by adding a solvent, or substituted with another solvent to obtain a solution of the specific polysiloxane of component (C).
  • the solvent used for dilution by adding the above solvent may be a solvent used for the polycondensation reaction, the specific solvent of the present invention, or another solvent.
  • the additive solvent is not particularly limited as long as the specific polysiloxane is uniformly dissolved, and one or more kinds can be arbitrarily selected and used.
  • examples of such an additive solvent include ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ester solvents such as methyl acetate, ethyl acetate, and ethyl lactate, in addition to the solvents used in the polycondensation reaction.
  • the specific polysiloxane of component (C) distills off the alcohol generated during the polycondensation reaction of the specific polysiloxane at normal pressure or reduced pressure before mixing with the specific polymer of component (B). It is preferable.
  • composition of the present invention or a liquid crystal alignment treatment agent using the composition is a coating solution for forming a resin film or a liquid crystal alignment film (also collectively referred to as a resin film), and includes a specific solvent, a specific polymer, and a specific polymer. It is a coating solution for forming a resin film containing siloxane.
  • the polymer of the present invention in the composition or the liquid crystal alignment treatment agent using the composition represents a specific polymer and a specific polysiloxane.
  • the content of the specific polysiloxane in the composition of the present invention or the liquid crystal aligning agent using the same is preferably 0.1 to 90 parts by mass with respect to 100 parts by mass of the specific polymer component.
  • 1-70 mass parts is more preferable with respect to 100 mass parts of specific polymers.
  • Particularly preferred is 5 to 60 parts by mass.
  • All of the polymer components in the composition of the present invention or the liquid crystal aligning agent using the same may be the polymer of the present invention, and other polymers other than the polymer of the present invention may be used. May be mixed. In that case, the content of the other polymer is 0.5 to 15% by mass, preferably 1 to 10% by mass, of the polymer of the present invention.
  • examples of other polymers include polyimide precursors or polyimides that do not use the diamine compound having the carboxyl group, the second diamine compound, or the specific tetracarboxylic acid component.
  • a polyimide precursor and a polymer other than polyimide specifically, an acrylic polymer, a methacrylic polymer, polystyrene, polyamide, or the like can be given.
  • the organic solvent in the composition of the present invention or the liquid crystal alignment treatment agent using the composition may have an organic solvent content of 70 to 99.9% by mass from the viewpoint of forming a uniform resin film by coating. preferable. This content can be appropriately changed depending on the film thickness of the target resin film or liquid crystal alignment film.
  • All of the organic solvents in the organic solvent used in the composition of the present invention or the liquid crystal alignment treatment agent using the composition may be the specific solvent of the present invention.
  • An organic solvent may be mixed.
  • the specific solvent of the present invention is preferably 50 to 100% by mass of the total solvent contained in the composition or the liquid crystal aligning agent. Among these, 55 to 100% by mass is preferable. More preferred is 55 to 95% by mass.
  • the other organic solvent is not particularly limited as long as it is an organic solvent capable of dissolving the specific polymer and the specific polysiloxane. Specific examples are given below.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or ⁇ -butyllactone (also referred to as component (D) above) is preferably used.
  • components (D) are preferably 1 to 50% by mass of the whole organic solvent contained in the composition or the liquid crystal aligning agent using the same. Among these, 1 to 40% by mass is preferable. A more preferred range is 1 to 30% by mass, and a further more preferred range is 5 to 30% by mass.
  • the composition of this invention or the liquid-crystal aligning agent using it is a coating film of the resin film or liquid crystal aligning film at the time of apply
  • An organic solvent that improves the property and surface smoothness, that is, a poor solvent can be used.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Ethane All, 1,2-propanediol, 1,3-propan
  • components (E) are preferably 1 to 50% by mass of the total organic solvent contained in the composition or the liquid crystal aligning agent using the composition. Among these, 1 to 45% by mass is preferable. A more preferred range is 5 to 45% by mass, and a further more preferred range is 5 to 40% by mass.
  • the composition of the present invention or the liquid crystal alignment treatment agent using the same is a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, and a hydroxyalkyl group.
  • a crosslinkable compound having at least one substituent selected from the group consisting of lower alkoxyalkyl groups, or a crosslinkable compound having a polymerizable unsaturated bond may be introduced. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl , Triglycidyl-p-
  • the crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4].
  • n represents an integer of 1 to 3).
  • n represents an integer of 1 to 3
  • n represents an integer of 1 to 3
  • n represents 1 to 100 Indicates an integer
  • n represents an integer of 1 to 10).
  • the crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5].
  • n represents an integer of 1 to 10
  • n represents an integer of 1 to 10
  • n represents an integer of 1 to 100, and in the formula [5-37], n represents an integer of 1 to 10).
  • polysiloxanes having at least one structure represented by the following formulas [5-38] to [5-40] can also be mentioned.
  • R 1 , R 2 , R 3 , R 4 and R 5 each independently represents a structure represented by the formula [5], a hydrogen atom, a hydroxyl group, An alkyl group having 1 to 10 carbon atoms, an alkoxyl group, an aliphatic ring or an aromatic ring, and at least one of them represents a structure represented by the formula [5]).
  • n represents an integer of 1 to 10).
  • Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine resin, a urea resin, a guanamine resin, and a glycoluril such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group or an alkoxymethyl group or both can be used.
  • the melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per
  • Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring.
  • Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol.
  • crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol.
  • Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol Di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin Di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl
  • E 1 represents a cyclohexane ring, bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, a group selected from the group consisting of an anthracene ring or phenanthrene ring
  • E 2 Represents a group selected from the following formula [7a] or [7b], and n represents an integer of 1 to 4.
  • crosslinkable compound used for the composition of this invention or the liquid-crystal aligning agent using the same may be one type, and may combine two or more types.
  • the content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all the polymer components.
  • the amount is more preferably 0.1 to 100 parts by weight, and most preferably 1 to 50 parts by weight, based on 100 parts by weight of all polymer components.
  • a compound that promotes charge transfer in a liquid crystal alignment film and promotes charge release of a liquid crystal cell using the liquid crystal alignment film when a liquid crystal alignment film using the liquid crystal alignment treatment agent using the composition of the present invention is formed It is preferable to add nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156], which are described on pages 69 to 73 of International Publication No. WO2011 / 132751 (published 2011.10.27). .
  • This amine compound may be added directly to the composition, but it may be added after a solution having a concentration of 0.1% by mass to 10% by mass, preferably 1% by mass to 7% by mass with an appropriate solvent.
  • the solvent is not particularly limited as long as it is an organic solvent that dissolves the above-described polymer.
  • coating the composition or the liquid crystal aligning agent using the composition of the present invention or a liquid crystal aligning agent using the same is used.
  • a compound that improves the uniformity and surface smoothness of the film can be used.
  • a compound that improves the adhesion between the resin coating or the liquid crystal alignment film and the substrate can also be used.
  • Examples of compounds that improve the film thickness uniformity and surface smoothness of the resin coating or the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink, Inc.), Florard FC430, FC431 (or above) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.).
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of all the polymer components contained in the composition or the liquid crystal aligning agent. 1 part by mass.
  • the compound that improves the adhesion between the resin coating or the liquid crystal alignment film and the substrate include the functional silane-containing compounds and epoxy group-containing compounds shown below.
  • the amount is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of all the polymer components contained in the composition or the liquid crystal aligning agent using the composition. More preferably, it is 1 to 20 parts by mass. If the amount is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected. If the amount exceeds 30 parts by mass, the storage stability of the composition or the liquid crystal alignment treatment agent using the composition may be deteriorated.
  • composition of the present invention or a liquid crystal aligning agent using the same is in close contact with the above-mentioned poor solvent, crosslinkable compound, resin film or liquid crystal alignment film, the compound for improving the film thickness uniformity and surface smoothness, and the substrate.
  • a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant or conductivity of the resin film or the liquid crystal alignment film may be added as long as the effects of the present invention are not impaired. Good.
  • the composition of the present invention can be used as a resin film after coating and baking on a substrate.
  • a substrate used in this case a glass substrate, a silicon wafer, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used depending on a target device.
  • the coating method of the composition is not particularly limited, but industrially, there are methods such as a dipping method, a roll coater method, a slit coater method, a spinner method, a spray method, screen printing, offset printing, flexographic printing, or an inkjet method. It is common. You may use these according to the objective.
  • the composition After the composition is applied on the substrate, it is 50 to 250 ° C., preferably 80 to 200 ° C., more preferably 80 to 150 ° C. by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven.
  • the solvent can be evaporated to form a resin film.
  • the thickness of the resin film after firing can be adjusted to 0.01 to 100 ⁇ m depending on the purpose.
  • the liquid crystal alignment treatment agent using the composition of the present invention can be used as a liquid crystal alignment film by applying alignment treatment by rubbing treatment or light irradiation after coating and baking on a substrate.
  • it can be used as a liquid crystal alignment film without alignment treatment.
  • the substrate used at this time is not particularly limited as long as it is a highly transparent substrate.
  • a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed.
  • an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method of screen printing, offset printing, flexographic printing, an inkjet method, or the like is generally used.
  • Examples of other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose.
  • the liquid crystal alignment treatment agent After the liquid crystal alignment treatment agent is applied on the substrate, it is 50 to 250 ° C., preferably 80 to 200 ° C., more preferably 80 to 200 ° C. by a heating means such as a hot plate, a heat circulation oven or an IR (infrared) oven.
  • the solvent can be evaporated at 150 ° C. to obtain a liquid crystal alignment film. If the thickness of the liquid crystal alignment film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm.
  • the fired liquid crystal alignment film is treated by rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method and then preparing a liquid crystal cell by a known method.
  • a method for manufacturing a liquid crystal cell prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and place the other side of the liquid crystal alignment film on the other side. And a method of sealing the substrate by injecting liquid crystal under reduced pressure, or a method of bonding the substrate after dropping the liquid crystal on the surface of the liquid crystal alignment film on which the spacers are dispersed, and the like.
  • the liquid-crystal aligning agent of this invention has a liquid-crystal layer between a pair of board
  • the liquid crystal composition is also preferably used for a liquid crystal display device produced through a step of polymerizing a polymerizable compound by at least one of irradiation with active energy rays and heating while applying a voltage between electrodes.
  • ultraviolet rays are suitable as the active energy ray.
  • the wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C. Further, ultraviolet irradiation and heating may be performed simultaneously.
  • the above liquid crystal display element controls the pretilt of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method.
  • a PSA method a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer and an ultraviolet ray is applied to the photopolymerizable compound.
  • the pretilt of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when the polymer is formed is stored even after the voltage is removed, the pretilt of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer.
  • the PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt by the rubbing process.
  • a liquid crystal cell is prepared after obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method, and a polymerizable compound is produced by at least one of irradiation with ultraviolet rays and heating.
  • the orientation of the liquid crystal molecules can be controlled by polymerizing.
  • a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded and the liquid crystal is injected under reduced pressure, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed.
  • the substrate is bonded and sealed.
  • a polymerizable compound that is polymerized by heat or ultraviolet irradiation is mixed.
  • the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule.
  • the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component.
  • the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the orientation of the liquid crystal cannot be controlled, and when it exceeds 10 parts by mass, the amount of the unreacted polymerizable compound increases and the liquid crystal display element. The seizure characteristics of the steel deteriorate.
  • the polymerizable compound After producing the liquid crystal cell, the polymerizable compound is polymerized by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of the liquid crystal molecules can be controlled.
  • the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and is polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferably used for a liquid crystal display device manufactured through a step of disposing a liquid crystal alignment film containing a group and applying a voltage between the electrodes.
  • ultraviolet rays are suitable as the active energy ray.
  • the wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm.
  • the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C. Further, ultraviolet irradiation and heating may be performed simultaneously.
  • liquid crystal aligning agent of the present invention contains a specific compound having a double bond site that reacts by heat or ultraviolet irradiation, the alignment of liquid crystal molecules can be controlled by at least one of ultraviolet irradiation and heating. it can.
  • liquid crystal cell production prepare a pair of substrates on which a liquid crystal alignment film is formed, spread spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside.
  • Examples include a method in which the other substrate is attached and liquid crystal is injected under reduced pressure and sealing is performed, or a method in which the substrate is attached and sealed after the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed.
  • the orientation of the liquid crystal molecules can be controlled by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell.
  • the liquid crystal display device manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television.
  • Component (A) of the present invention (specific solvent))
  • PGME Propylene glycol monomethyl ether (solvent represented by the formula [1a-1] of the present invention)
  • MCS ethylene glycol monomethyl ether (solvent represented by the formula [1b-1] of the present invention)
  • ECS ethylene glycol monoethyl ether (solvent represented by the formula [1b-2] of the present invention)
  • PCS ethylene glycol monopropyl ether (solvent represented by the formula [1b-3] of the present invention)
  • BCS Ethylene glycol monobutyl ether
  • the imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder was put into an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, ⁇ 5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane)). (Mixed product) (0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum).
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • polyimide precursor and polyimide The specific polymers (polyimide precursor and polyimide) of the present invention are shown in Table 1.
  • the alkoxysilane monomer (A) represented by the formula [A1] of the present invention (amount obtained: 12.2 g, yield) : 43%).
  • polysiloxane polysiloxane solution
  • polysiloxane solution polysiloxane solution
  • Tables 3 to 5 show the compositions and liquid crystal aligning agents of the present invention.
  • evaluation of applicability of the composition and liquid crystal alignment treatment agent evaluation of ink jet coatability of the liquid crystal alignment treatment agent
  • Preparation of liquid crystal cell (normal cell) evaluation of liquid crystal alignment (normal cell)
  • Preparation of liquid crystal alignment (normal cell) Preparation of liquid crystal cell and evaluation of liquid crystal alignment (PSA cell)” and “Evaluation of voltage holding ratio” .
  • the conditions are as follows.
  • the pinhole of the obtained resin film was evaluated. Evaluation of the pinhole of the resin film was performed by visually observing the resin film under a sodium lamp. Specifically, the number of pinholes confirmed on the resin film was counted, and the smaller the number of pinholes, the better the evaluation.
  • the composition obtained by the Example and comparative example of this invention can be used for a liquid-crystal aligning agent. Therefore, the result of the coatability of the resin film obtained in the present example and the comparative example is also the result of the printability of the liquid crystal alignment film. Tables 6 to 8 show the number of pinholes in the resin film (liquid crystal alignment film) obtained in Examples and Comparative Examples.
  • the surface of the ITO substrate was rubbed using a rayon cloth with a rubbing apparatus having a roll diameter of 120 mm under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.1 mm.
  • liquid crystal aligning agent (1) to the liquid crystal aligning agent (3) obtained in Examples 1 to 3 the liquid crystal aligning agent (28) to the liquid crystal aligning agent obtained in Comparative Examples 1 to 3
  • nematic liquid crystal MLC-2003 (manufactured by Merck Japan) was used as the liquid crystal.
  • nematic liquid crystal (MLC-6608) manufactured by Merck Japan
  • This substrate with a liquid crystal alignment film was combined with a 6 ⁇ m spacer sandwiched with the liquid crystal alignment film surface inside, and an empty cell was prepared by adhering the periphery with a sealant.
  • a nematic liquid crystal (MLC-6608) (manufactured by Merck Japan) was added to the empty cell by a reduced pressure injection method, and a polymerizable compound (1) represented by the following formula was added to 100% by mass of the nematic liquid crystal (MLC-6608). Liquid crystal mixed with 0.3% by mass of the polymerizable compound (1) was injected, and the injection port was sealed to obtain a liquid crystal cell.
  • PGME (10.5 g) was added to the polyamic acid solution (1) (12.0 g) having a resin solid concentration of 10.0% by mass obtained by the synthesis method of Synthesis Example 1, and the mixture was stirred at 25 ° C. for 1 hour. .
  • a polysiloxane solution (7) (2.50 g) having a SiO 2 equivalent concentration of 12% by mass obtained by the synthesis method of Synthesis Example 23 was added, and the mixture was stirred at 25 ° C. for 2 hours. 1) was obtained.
  • no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (1) was used for evaluation also as a liquid-crystal aligning agent (1).
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • PGME (10.5 g) and ⁇ -BL (1.27 g) were added to the polyamic acid solution (1) (10.5 g) having a resin solid content concentration of 10.0% by mass obtained by the synthesis method of Synthesis Example 1. , And stirred at 25 ° C. for 1 hour.
  • the polysiloxane solution (7) (4.71 g) having a SiO 2 equivalent concentration of 12% by mass obtained by the synthesis method of Synthesis Example 23 was added, and the mixture was stirred at 25 ° C. for 2 hours. 2) was obtained.
  • no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (2) was used for evaluation also as a liquid-crystal aligning agent (2).
  • evaluation of applicability of composition and liquid crystal aligning agent “Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • Example 3 PGME (28.0 g) and NMP (4.20 g) were added to the polyimide powder (2) (1.34 g) obtained by the synthesis method of Synthesis Example 2, and dissolved by stirring at 70 ° C. for 24 hours. .
  • a polysiloxane solution (7) (11.2 g) having a SiO 2 equivalent concentration of 12% by mass obtained by the synthesis method of Synthesis Example 23 was added, and the mixture was stirred at 25 ° C. for 2 hours. 3) was obtained.
  • no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (3) was used for evaluation also as a liquid-crystal aligning agent (3).
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • PGME (11.8 g) was added to the polyamic acid solution (3) (13.5 g) having a resin solid content concentration of 10.0% by mass obtained by the synthesis method of Synthesis Example 3, and the mixture was stirred at 25 ° C. for 1 hour. .
  • a polysiloxane solution (5) (2.81 g) having a SiO 2 equivalent concentration of 12% by mass obtained by the synthesis method of Synthesis Example 21 was added, and the mixture was stirred at 25 ° C. for 2 hours. 4) was obtained.
  • no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (4) was used for evaluation also as a liquid-crystal aligning agent (4).
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) ”,“ Evaluation of liquid crystal alignment (normal cell) ”and“ Evaluation of voltage holding ratio ”.
  • PGME (10.1 g) and ⁇ -BL (2.66 g) were added to a polyamic acid solution (3) (8.50 g) having a resin solid content concentration of 10.0% by mass obtained by the synthesis method of Synthesis Example 3. , And stirred at 25 ° C. for 1 hour.
  • a polysiloxane solution (1) (7.08 g) having a SiO 2 equivalent concentration of 12% by mass obtained by the synthesis method of Synthesis Example 17 was added and stirred at 25 ° C. for 2 hours to obtain a composition ( 5) was obtained.
  • this composition no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (5) was used for evaluation also as a liquid-crystal aligning agent (5).
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • Example 6 The polyamic acid solution (3) (15.0 g) having a resin solid content concentration of 10.0% by mass obtained by the synthesis method of Synthesis Example 3 was added to PGME (3.56 g), ⁇ -BL (2.61 g), BCS. (5.22 g) was added, and the mixture was stirred at 25 ° C. for 1 hour. To this solution, the polysiloxane solution (5) (1.39 g) having a SiO 2 equivalent concentration of 12% by mass obtained by the synthesis method of Synthesis Example 21 was added, and the mixture was stirred at 25 ° C. for 2 hours. 6) was obtained.
  • this composition no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (6) was used for evaluation also as a liquid-crystal aligning agent (6). Using the obtained composition (6) and liquid crystal aligning agent (6), under the above-mentioned conditions, "Evaluation of applicability of composition and liquid crystal aligning agent”, “Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • Example 7 PGME (35.0 g) was added to the polyimide powder (4) (1.65 g) obtained by the synthesis method of Synthesis Example 4, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, the polysiloxane solution (1) (9.17 g) having a SiO 2 equivalent concentration of 12% by mass obtained by the synthesis method of Synthesis Example 17 was added, and the mixture was stirred at 25 ° C. for 2 hours. 7) was obtained. In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution. In addition, this composition (7) was used for evaluation also as a liquid-crystal aligning agent (7).
  • composition (7) and liquid crystal aligning agent (7) under the conditions described above, “Evaluation of applicability of composition and liquid crystal aligning agent”, “Preparation of liquid crystal cell (normal cell) ”,“ Evaluation of liquid crystal alignment (normal cell) ”,“ Preparation of liquid crystal cell and evaluation of liquid crystal alignment (PSA cell) ”and“ Evaluation of voltage holding ratio ”.
  • this composition (8) was used for evaluation also as a liquid-crystal aligning agent (8).
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • this composition (9) was used for evaluation also as a liquid-crystal aligning agent (9).
  • this composition (9) was used for evaluation also as a liquid-crystal aligning agent (9).
  • “evaluation of ink-jet coating property of liquid crystal aligning agent” was performed under the above-described conditions.
  • this composition (10) was used for evaluation also as a liquid-crystal aligning agent (10).
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • Example 11 MCS (20.8 g), NEP (6.17 g), and BCS (10.3 g) were added to the polyimide powder (5) (2.10 g) obtained by the synthesis method of Synthesis Example 5, and 24 ° C. at 24 ° C. Stir for hours to dissolve.
  • a polysiloxane solution (2) (4.38 g) having a SiO 2 equivalent concentration of 12% by mass obtained by the synthesis method of Synthesis Example 18 was added and stirred at 25 ° C. for 2 hours to obtain a composition ( 11) was obtained.
  • this composition no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (11) was used for evaluation also as a liquid-crystal aligning agent (11).
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • PGME (24.6 g), ⁇ -BL (13.3 g), and BCS (4.44 g) were added to the polyimide powder (5) (2.55 g) obtained by the synthesis method of Synthesis Example 5, and the mixture was heated to 70 ° C. And stirred for 24 hours to dissolve.
  • no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (12) was used for evaluation also as a liquid-crystal aligning agent (12).
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) "," Evaluation of liquid crystal alignment (normal cell) "and” Preparation of liquid crystal cell and evaluation of liquid crystal alignment (PSA cell) ".
  • PGME (32.4 g) was added to the polyimide powder (6) (1.35 g) obtained by the synthesis method of Synthesis Example 6 and dissolved by stirring at 70 ° C. for 24 hours.
  • a polysiloxane solution (5) (11.3 g) having a SiO 2 equivalent concentration of 12% by mass obtained by the synthesis method of Synthesis Example 21 was added, and the mixture was stirred at 25 ° C. for 2 hours. 13) was obtained.
  • this composition no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (13) was used for evaluation also as a liquid-crystal aligning agent (13).
  • PGME (33.2 g) and ⁇ -BL (4.11 g) were added to the polyimide powder (6) (2.10 g) obtained by the synthesis method of Synthesis Example 6 and dissolved by stirring at 70 ° C. for 24 hours. I let you. To this solution, a polysiloxane solution (7) (4.38 g) having a SiO 2 equivalent concentration of 12% by mass obtained by the synthesis method of Synthesis Example 23 was added, and the mixture was stirred at 25 ° C. for 2 hours. 14) was obtained. In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (14) was used for evaluation also as a liquid-crystal aligning agent (14).
  • liquid crystal aligning agent 14
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) "," Evaluation of liquid crystal alignment (normal cell) "and” Preparation of liquid crystal cell and evaluation of liquid crystal alignment (PSA cell) ".
  • this composition (15) was used for evaluation also as a liquid-crystal aligning agent (15).
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • Example 17 ECS (20.9 g), NMP (8.26 g), and BCS (8.26 g) were added to the polyimide powder (7) (2.11 g) obtained by the synthesis method of Synthesis Example 7, and 24 ° C. at 24 ° C. Stir for hours to dissolve.
  • a polysiloxane solution (3) (4.40 g) having a SiO 2 equivalent concentration of 12% by mass obtained by the synthesis method of Synthesis Example 19 was added, and the mixture was stirred at 25 ° C. for 2 hours. 17) was obtained.
  • no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (17) was used for evaluation also as a liquid-crystal aligning agent (17).
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • PGME (37.9 g) and ⁇ -BL (4.44 g) were added to the polyimide powder (8) (2.55 g) obtained by the synthesis method of Synthesis Example 8, and dissolved by stirring at 70 ° C. for 24 hours. I let you. To this solution was added a polysiloxane solution (6) (2.36 g) having a SiO 2 equivalent concentration of 12% by mass obtained by the synthesis method of Synthesis Example 22, and the mixture was stirred at 25 ° C. for 2 hours. 18) was obtained. In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (18) was used for evaluation also as a liquid-crystal aligning agent (18).
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • Example 19 MCS (27.8 g), ⁇ -BL (1.96 g), and BCS (3.92 g) were added to the polyimide powder (8) (1.75 g) obtained by the synthesis method of Synthesis Example 8, and the mixture was heated to 70 ° C. And stirred for 24 hours to dissolve. To this solution, the polysiloxane solution (2) (6.25 g) having a SiO 2 equivalent concentration of 12% by mass obtained by the synthesis method of Synthesis Example 18 was added, and the mixture was stirred at 25 ° C. for 2 hours. 19) was obtained. In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (19) was used for evaluation also as a liquid-crystal aligning agent (19).
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • PGME (26.5 g) and ⁇ -BL (3.85 g) were added to the polyimide powder (9) (1.35 g) obtained by the synthesis method of Synthesis Example 9 and dissolved by stirring at 70 ° C. for 24 hours. I let you. To this solution was added a polysiloxane solution (5) (9.20 g) having a SiO 2 equivalent concentration of 12% by mass obtained by the synthesis method of Synthesis Example 21, and the mixture was stirred at 25 ° C. for 2 hours. 20) was obtained. In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (20) was used for evaluation also as a liquid-crystal aligning agent (20).
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • this composition (21) was used for evaluation also as a liquid-crystal aligning agent (21).
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • this composition (22) was used for evaluation also as a liquid-crystal aligning agent (22).
  • liquid-crystal aligning agent (22) was used for evaluation also as a liquid-crystal aligning agent (22).
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • PGME (30.8 g) and ⁇ -BL (3.82 g) were added to the polyimide powder (11) (1.95 g) obtained by the synthesis method of Synthesis Example 11, and dissolved by stirring at 70 ° C. for 24 hours. I let you. To this solution, a polysiloxane solution (1) (4.06 g) having a SiO 2 equivalent concentration of 12% by mass obtained by the synthesis method of Synthesis Example 17 was added, and the mixture was stirred at 25 ° C. for 2 hours. 23) was obtained. In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (23) was used for evaluation also as a liquid-crystal aligning agent (23).
  • liquid-crystal aligning agent 23
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell)”
  • evaluation of liquid crystal alignment normal cell
  • PGME (32.3 g) and ⁇ -BL (4.25 g) were added to the polyimide powder (11) (1.90 g) obtained by the synthesis method of Synthesis Example 11, and dissolved by stirring at 70 ° C. for 24 hours. I let you. To this solution was added a polysiloxane solution (6) (6.79 g) having a SiO 2 equivalent concentration of 12% by mass obtained by the synthesis method of Synthesis Example 22, and the mixture was stirred at 25 ° C. for 2 hours. 24) was obtained. In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (24) was used for evaluation also as a liquid-crystal aligning agent (24).
  • a liquid-crystal aligning agent 24
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • this composition (25) was used for evaluation also as a liquid-crystal aligning agent (25).
  • liquid-crystal aligning agent 25
  • evaluation of applicability of composition and liquid crystal aligning agent and "Preparation of liquid crystal cell (ordinary cell)” And “Evaluation of liquid crystal alignment (normal cell)”.
  • PGME (25.5 g) and ⁇ -BL (3.82 g) were added to the polyimide powder (12) (1.22 g) obtained by the synthesis method of Synthesis Example 12, and dissolved by stirring at 70 ° C. for 24 hours. I let you. To this solution was added a polysiloxane solution (5) (10.2 g) having a SiO 2 equivalent concentration of 12% by mass obtained by the synthesis method of Synthesis Example 21, and the mixture was stirred at 25 ° C. for 2 hours. 26) was obtained. In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (26) was used for evaluation also as a liquid-crystal aligning agent (26).
  • liquid-crystal aligning agent 26
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) "," Evaluation of liquid crystal alignment (normal cell) "and” Preparation of liquid crystal cell and evaluation of liquid crystal alignment (PSA cell) ".
  • Example 27 MCS (28.4 g), ⁇ -BL (2.18 g), and BCS (10.9 g) were added to the polyimide powder (12) (2.50 g) obtained by the synthesis method of Synthesis Example 12, and the mixture was heated to 70 ° C. And stirred for 24 hours to dissolve. To this solution, a polysiloxane solution (2) (2.31 g) having a SiO 2 equivalent concentration of 12% by mass obtained by the synthesis method of Synthesis Example 18 was added, and the mixture was stirred at 25 ° C. for 2 hours. 27) was obtained. In this composition, no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (27) was used for evaluation also as a liquid-crystal aligning agent (27).
  • a liquid-crystal aligning agent 27
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • this composition (28) was used for evaluation also as a liquid-crystal aligning agent (28).
  • liquid-crystal aligning agent 28
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (ordinary cell)”
  • evaluation of liquid crystal alignment normal cell
  • this composition (29) was used for evaluation also as a liquid-crystal aligning agent (29).
  • a liquid-crystal aligning agent 29
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • this composition (30) was used for evaluation also as a liquid-crystal aligning agent (30).
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • this composition (31) was used for evaluation also as a liquid-crystal aligning agent (31).
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) ”,“ Evaluation of liquid crystal alignment (normal cell) ”and“ Evaluation of voltage holding ratio ”.
  • this composition (32) was used for evaluation also as a liquid-crystal aligning agent (32).
  • liquid-crystal aligning agent (32) was used for evaluation also as a liquid-crystal aligning agent (32).
  • evaluation of applicability of composition and liquid crystal aligning agent "Preparation of liquid crystal cell (normal cell) And “Evaluation of liquid crystal alignment (normal cell)”.
  • NMP (35.0 g) was added to the polyimide powder (4) (1.65 g) obtained by the synthesis method of Synthesis Example 4, and dissolved by stirring at 70 ° C. for 24 hours.
  • the polysiloxane solution (1) (9.17 g) having a SiO 2 equivalent concentration of 12% by mass obtained by the synthesis method of Synthesis Example 17 was added, and the mixture was stirred at 25 ° C. for 2 hours. 33) was obtained.
  • this composition no abnormality such as turbidity and generation of precipitates was observed, and it was confirmed that the composition was a uniform solution.
  • this composition (33) was used for evaluation also as a liquid-crystal aligning agent (33).
  • * 3 Indicates the proportion of the polymer in the composition (liquid crystal aligning agent).
  • compositions of the examples of the present invention exhibit a uniform coating property that does not cause pinholes due to repelling when applied to a substrate, compared to the compositions of the comparative examples. It was. Specifically, comparison with compositions using the same polyimide precursor or solvent-soluble polyimide, that is, comparison between Example 1 and Comparative Example 1, Comparative Example 2 or Comparative Example 3, Example 4 and It is a comparison with Comparative Example 4 or Comparative Example 5 and a comparison between Example 7 and Comparative Example 6.
  • the same result was obtained for the liquid crystal alignment film obtained from the liquid crystal aligning agent using the composition of the present invention.
  • comparison with a liquid crystal alignment treatment agent using the same polyimide precursor or solvent-soluble polyimide that is, comparison between Example 1 and Comparative Example 1, Comparative Example 2 or Comparative Example 3, Example 4 and Comparative Example 4 or Comparative Example 5, and Example 7 and Comparative Example 6.
  • a liquid crystal alignment treatment agent using a polyimide precursor or a solvent-soluble polyimide obtained by using a diamine compound having a side chain as a diamine component a pinhole is not generated in the same manner as described above. The coating property was shown.
  • the liquid crystal cell obtained from the liquid crystal alignment treatment agent using the composition of the present invention is the liquid crystal cell obtained from the liquid crystal alignment treatment agent using the composition of the comparative example. Compared with, no alignment defects due to pinholes were observed, and uniform liquid crystal alignment was obtained. Specifically, comparison with a liquid crystal alignment treatment agent using the same polyimide precursor or solvent-soluble polyimide, that is, comparison between Example 1 and Comparative Example 1, Comparative Example 2 or Comparative Example 3, Example 4 and Comparative Example 4 or Comparative Example 5, and Example 7 and Comparative Example 6.
  • the liquid crystal cell obtained from the liquid crystal aligning agent using the composition of the present invention is compared with the liquid crystal cell obtained from the liquid crystal aligning agent using the composition of the comparative example. Showed a high value. Specifically, a comparison with a liquid crystal aligning agent using the same polyimide precursor or solvent-soluble polyimide, that is, a comparison between Example 4 and Comparative Example 4, and Example 7 and Comparative Example 6 It is a comparison.
  • composition of the present invention can provide a resin film having a uniform coating property that does not generate pinholes accompanying repelling when applied to a substrate. Moreover, the same result can be obtained also with the liquid-crystal aligning agent using the composition of this invention.
  • the liquid crystal aligning agent of the present invention can obtain a liquid crystal cell in which alignment defects due to pinholes accompanying repelling do not occur.
  • the same result can be obtained even with a liquid crystal alignment treatment agent using a polyimide precursor or a solvent-soluble polyimide obtained by using a diamine compound having a side chain as a diamine component.
  • the liquid crystal aligning agent of the present invention is a liquid crystal display element that switches between a liquid crystal transmission state (also referred to as a transparent state) and a scattering state, that is, a polymer dispersed liquid crystal (PDLC (Polymer Dispersed Liquid Crystal). ) And polymer network liquid crystal (PNLC (Polymer Network Liquid Crystal)) is also useful.
  • PDLC Polymer Dispersed liquid crystal
  • PNLC polymer network liquid crystal
  • This reverse type element is a liquid crystal display for display using a glass substrate, or a plastic substrate such as PET (polyethylene terephthalate) or an acrylic substrate, and a light control for controlling transmission and blocking of light.
  • PET polyethylene terephthalate
  • liquid crystal aligning agent of the present invention can exhibit a high voltage holding ratio even when firing at a low temperature.
  • the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability, and can be suitably used for a large-screen, high-definition liquid crystal television, etc. It is useful for a device, a TFT liquid crystal device, particularly a vertical alignment type liquid crystal display device.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention is also useful for a liquid crystal display element that needs to be irradiated with ultraviolet rays when producing a liquid crystal display element. That is, a liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes, and containing a polymerizable compound that is polymerized by at least one of active energy rays and heat between the pair of substrates, A liquid crystal display element manufactured through a step of polymerizing the polymerizable compound while applying a voltage between the electrodes, and further comprising a liquid crystal layer between a pair of substrates provided with electrodes, A liquid crystal produced by placing a liquid crystal alignment film containing a polymerizable group that polymerizes at least one of active energy rays and heat between substrates and polymerizing the polymerizable group while applying a voltage between the electrodes. It is also useful for display elements.

Abstract

下記の(A)成分、(B)成分および(C)成分を含有する組成物。 (A)成分:下記の式[1a]または式[1b]から選ばれる少なくとも1種の溶媒。(式[1a]中、Xは炭素数1~3のアルキル基を示し、式[1b]中、Xは炭素数1~3のアルキル基を示す)。 (B)成分:カルボキシル基を有するジアミン化合物を含むジアミン成分とテトラカルボン酸二無水物成分とを反応させて得られるポリイミド前駆体またはポリイミドから選ばれる少なくとも1種の重合体。 (C)成分:下記の式[A1]、式[A2]または式[A3]で示されるアルコキシシランのいずれか1種を含むアルコキシシランを重縮合させて得られるポリシロキサン。

Description

組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
 本発明は、樹脂被膜の形成に用いられる組成物、液晶表示素子の製造において用いられる液晶配向処理剤、この液晶配向処理剤から得られる液晶配向膜およびこの液晶配向膜を使用した液晶表示素子に関するものである。
 高分子材料など有機材料からなる樹脂被膜は、形成の容易さや絶縁性能などが着目され、電子デバイスにおける層間絶縁膜や保護膜などとして、広く用いられている。なかでも、表示デバイスとして良く知られた液晶表示素子では、有機材料からなる樹脂被膜が液晶配向膜として使用されている。
 現在、工業的に利用されている樹脂被膜は、耐久性に優れたポリイミド系の有機膜が用いられている。このポリイミド系の有機膜は、ポリイミド前駆体のポリアミド酸やポリイミドを含む組成物から形成される。すなわち、ポリイミド系の有機膜は、ポリアミド酸やポリイミドを含む組成物を基板に塗布し、焼成プロセスを経て形成される。その際、通常、これら組成物には、N-メチル-2-ピロリドン(NMPともいう)やγ-ブチロラクトン(γ-BLともいう)などの高沸点の溶媒を用いるため、200~300℃程度の高い温度で焼成する必要がある(例えば、特許文献1参照)。
 近年、ポリイミド系のポリマー(ポリイミド前駆体やポリイミドのことをいう)とポリシロキサンとを含む組成物から形成された樹脂被膜が、層間絶縁膜や保護膜、さらには、液晶配向膜に用いられている。特に、液晶表示素子の長期駆動に伴う信頼性を改善させるため、ポリイミド系のポリマーとポリシロキサンとを含む液晶配向処理剤および液晶配向膜が提案されている(例えば、特許文献2参照)。
特開平09-278724号公報 特開2010-097007号公報
 ポリイミド系のポリマーを含む液晶配向処理剤を用いて液晶配向膜を形成する際、その焼成プロセスは、上述した理由で、液晶表示素子を製造するプロセスの中でも高温での焼成が必要となる。これは、ポリイミド系のポリマーとポリシロキサンとを含む液晶配向処理剤であっても、ポリイミド系のポリマーを溶解するためにNMPやγ-BLを溶媒に用いていることから、高温での焼成が必要となる。しかしながら、液晶表示素子の基板を通常のガラス基板に代えて、薄くて軽量であるが耐熱性が低いプラスチック基板を用いる場合には、より低温での焼成が求められている。同様に、高温での焼成に伴う液晶表示素子のカラーフィルターの色特性の劣化を抑制するため、さらには、液晶表示素子の製造におけるエネルギーコストを削減するためにも、低温での焼成が必要となる。
 また、一般的に用いられている溶媒であるNMPやγ-BLに、ポリイミド系のポリマーを溶解させたポリマー溶液とポリシロキサンから得られる液晶配向処理剤は、極性の高いNMPやγ-BLと疎水性の高いポリシロキサンとの相溶性が悪くなる。それにより、この液晶配向処理剤を基板に塗布する際、液晶配向膜上に、はじきに伴うピンホールが発生しやすくなる。すなわち、従来のポリイミド系のポリマーとポリシロキサンとを含む液晶配向処理剤では、ピンホールに伴う配向欠陥が起こりやすくなる。
 さらに、液晶配向膜は、液晶配向処理剤を基板に塗布し、次いで、塗膜を焼成することにより形成される。その際、液晶配向膜の塗膜性(塗布性ともいう)を高めること、すなわち、はじきに伴うピンホールの発生を抑制することを目的に、基板に対して、液晶配向処理剤の濡れ拡がり性を高めることが求められている。
 ポリイミド系のポリマーとポリシロキサンとを含む組成物から得られる樹脂被膜は、ポリシロキサンを含まない組成物から得られる樹脂被膜に対して、化学的な安定性が高くなることから、液晶配向膜の他に、その他電子デバイスにおける層間絶縁膜や保護膜などにも用いられている。これらの膜においても、低温での焼成による樹脂被膜の形成や樹脂被膜の塗布性の向上が必要となる。低温で焼成を行うことで、製造におけるエネルギーコストを低減することができる。また、塗布性の向上により、樹脂被膜上のはじきに伴うピンホールの発生を抑制することができる。
 そこで本発明は、上記特性を兼ね備えた組成物を提供することを目的とする。すなわち本発明は、ポリイミド系のポリマーとポリシロキサンとを含む組成物において、低温での焼成によって樹脂被膜を形成できる組成物を提供することを目的とする。そして、樹脂被膜を形成する際に、はじきに伴うピンホールの発生を抑制することができる組成物を提供することを目的とする。
 また、本発明は、上述の組成物を用いた液晶配向処理剤において、低温での焼成によって液晶配向膜を形成できる液晶配向処理剤を提供することを目的とする。そして、液晶配向膜を形成する際に、はじきに伴うピンホールの発生を抑制することができる液晶配向処理剤を提供することを目的とする。
 そして本発明は、上述の要求に対応した液晶配向膜を提供することを目的とする。すなわち、低温での焼成によって形成できる液晶配向膜を提供することおよびピンホールに伴う配向欠陥を抑制することができる液晶配向膜を提供することを目的とする。
 さらに本発明は、上述の要求に対応した液晶配向膜を備えた液晶表示素子を提供することを目的とする。
 本発明者は、鋭意研究を行った結果、特定構造を有する溶媒、カルボキシル基を有するジアミン化合物を含むジアミン成分とテトラカルボン酸二無水物成分とを反応させて得られるポリイミド前駆体またはポリイミドから選ばれる少なくとも1種の重合体および特定構造のポリシロキサンを含有する組成物が、上記の目的を達成するために極めて有効であることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の要旨を有するものである。
(1)下記の(A)成分、(B)成分および(C)成分を含有することを特徴とする組成物。
 (A)成分:下記の式[1a]または式[1b]から選ばれる少なくとも1種の溶媒。
Figure JPOXMLDOC01-appb-C000011
(式[1a]中、Xは炭素数1~3のアルキル基を示し、式[1b]中、Xは炭素数1~3のアルキル基を示す)。
 (B)成分:カルボキシル基を有するジアミン化合物を含むジアミン成分とテトラカルボン酸二無水物成分とを反応させて得られるポリイミド前駆体またはポリイミドから選ばれる少なくとも1種の重合体。
 (C)成分:下記の式[A1]、式[A2]または式[A3]で示されるアルコキシシランのいずれか1種を含むアルコキシシランを重縮合させて得られるポリシロキサン。
Figure JPOXMLDOC01-appb-C000012
(式[A1]中、Aは脂肪族炭化水素、ベンゼン環、シクロヘキサン環、複素環またはステロイド構造を有する炭素数8~35の有機基を示し、Aはそれぞれ水素原子または炭素数1~5のアルキル基を示し、Aはそれぞれ炭素数1~5のアルキル基を示し、mは1または2の整数を示し、nは0~2の整数を示し、pは0~3の整数を示す。ただし、m+n+pは4である)。
Figure JPOXMLDOC01-appb-C000013
(式[A2]中、Bはビニル基、エポキシ基、アミノ基、メルカプト基、イソシアネート基、メタクリル基、アクリル基、ウレイド基またはシンナモイル基を有する炭素数2~12の有機基を示し、Bはそれぞれ水素原子または炭素数1~5のアルキル基を示し、Bはそれぞれ炭素数1~5のアルキル基を示し、mは1または2の整数を示し、nは0~2の整数を示し、pは0~3の整数を示す。ただし、m+n+pは4である)。
Figure JPOXMLDOC01-appb-C000014
(式[A3]中、Dはそれぞれ水素原子または炭素数1~5のアルキル基を示し、Dは炭素数1~5のアルキル基を示し、nは0~3の整数を示す)。
(2)前記(A)成分が、組成物に含まれる溶媒全体の50~100質量%であることを特徴とする上記(1)に記載の組成物。
(3)前記(B)成分のカルボキシル基を有するジアミン化合物が、下記の式[2]で示される構造を有するジアミン化合物であることを特徴とする上記(1)または上記(2)に記載の組成物。
Figure JPOXMLDOC01-appb-C000015
(式[2]中、aは0~4の整数を示す)。
(4)前記(B)成分のカルボキシル基を有するジアミン化合物が、下記の式[2a]で示される構造のジアミン化合物であることを特徴とする上記(1)または上記(2)に記載の組成物。
Figure JPOXMLDOC01-appb-C000016
(式[2a]中、aは0~4の整数を示し、nは1~4の整数を示す)。
(5)前記カルボキシル基を有するジアミン化合物が、前記(B)成分中に用いられる全ジアミン中の20モル%~100モル%であることを特徴とする上記(3)または上記(4)に記載の組成物。
(6)前記(B)成分のジアミン成分に、下記の式[2b]で示される構造から選ばれる少なくとも1種のジアミン化合物を含むことを特徴とする上記(1)~上記(5)のいずれか一項に記載の組成物。
Figure JPOXMLDOC01-appb-C000017
(式[2b]中、Yは下記の式[2b-1]、式[2b-2]、式[2b-3]、式[2b-4]または式[2b-5]の構造を示し、mは1~4の整数を示す)。
Figure JPOXMLDOC01-appb-C000018
(式[2b-1]中、aは0~4の整数を示し、式[2b-2]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-を示し、Yは単結合または-(CH-(bは1~15の整数である)を示し、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-を示し、Yはベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基、またはステロイド骨格を有する炭素数12~25の2価の有機基を示し、前記環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、Yはベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、nは0~4の整数を示し、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~18のフッ素含有アルコキシル基を示し、式[2b-3]中、Yは炭素数8~22のアルキル基を示し、式[2b-4]中、YおよびYはそれぞれ独立して炭素数1~6の炭化水素基を示し、式[2b-5]中、Y10は炭素数1~8のアルキル基を示す)。
(7)前記(B)成分のテトラカルボン酸二無水物成分が、下記の式[3]で示される化合物であることを特徴とする上記(1)~上記(6)のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000019
(式[3]中、Zは下記の式[3a]~式[3j]から選ばれる少なくとも1種の構造の基である)。
Figure JPOXMLDOC01-appb-C000020
(式[3a]中、Z~Zは水素原子、メチル基、塩素原子またはベンゼン環を示し、それぞれ同じであっても異なってもよく、式[3g]中、ZおよびZは水素原子またはメチル基を示し、それぞれ同じであっても異なってもよい)。
(8)前記(C)成分の式[A2]で示されるアルコキシシランが、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、ジメトキシメチルビニルシラン、トリエトキシビニルシラン、ビニルトリメトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、3-(トリエトキシシリル)プロピルメタクリレート、3-(トリメトキシシリル)プロピルアクリレートまたは3-(トリメトキシシリル)プロピルメタクリレートから選ばれる少なくとも1種であることを特徴とする上記(1)~上記(7)のいずれかに記載の組成物。
(9)前記(C)成分の式[A2]で示されるアルコキシシランが、3-グリシジルオキシプロピル(ジメトキシ)メチルシラン、3-グリシジルオキシプロピル(ジエトキシ)メチルシラン、3-グリシジルオキシプロピルトリメトキシシランまたは2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランから選ばれる少なくとも1種であることを特徴とする上記(1)~上記(7)のいずれかに記載の組成物。
(10)前記(C)成分のポリシロキサンが、前記式[A1]、式[A2]および式[A3]で示されるアルコキシシランを重縮合させて得られるポリシロキサンであることを特徴とする上記(1)~上記(9)のいずれかに記載の組成物。
(11)(D)成分として、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンまたはγ-ブチロラクトンの少なくとも1つの溶媒を含有することを特徴とする上記(1)~上記(10)のいずれかに記載の組成物。
(12)(E)成分として、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールイソプロピルエーテルまたはジエチレングリコールモノブチルエーテルの少なくとも1つの溶媒を含有することを特徴とする上記(1)~上記(11)のいずれかに記載の組成物。
(13)上記(1)~上記(12)のいずれかに記載の組成物から得られることを特徴とする樹脂被膜。
(14)上記(1)~上記(12)のいずれかに記載の組成物から得られることを特徴とする液晶配向処理剤。
(15)上記(14)に記載の液晶配向処理剤を用いて得られることを特徴とする液晶配向膜。
(16)上記(14)に記載の液晶配向処理剤を用いて、インクジェット法にて得られることを特徴とする液晶配向膜。
(17)上記(15)または上記(16)に記載の液晶配向膜を有することを特徴とする液晶表示素子。
(18)電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする上記(15)または上記(16)に記載の液晶配向膜。
(19)上記(18)に記載の液晶配向膜を有することを特徴とする液晶表示素子。
(20)電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする上記(15)または上記(16)に記載の液晶配向膜。
(21)上記(20)に記載の液晶配向膜を有することを特徴とする液晶表示素子。
 本発明の特定構造を有する溶媒、カルボキシル基を有するジアミン化合物を含むジアミン成分とテトラカルボン酸二無水物成分とを反応させて得られるポリイミド前駆体またはポリイミドから選ばれる少なくとも1種の重合体および特定構造のポリシロキサンを含有する組成物は、低温での焼成によって樹脂被膜を形成することができる。また、本発明の組成物は、基板に塗布をする際に、樹脂被膜上のはじきに伴うピンホールの発生を抑制することができる。
 また、本発明の組成物からなる液晶配向処理剤は、低温での焼成によって液晶配向膜を形成することができる。この液晶配向処理剤は、基板に塗布をする際に、液晶配向膜上のはじきに伴うピンホールの発生を抑制することができる。そのため、これにより得られる液晶配向膜を有する液晶表示素子は、配向欠陥が無く、信頼性が高い液晶表示素子となる。
 本発明者は、鋭意研究を行った結果、以下の知見を得て本発明を完成するに至った。
 本発明は、下記の(A)成分、(B)成分および(C)成分を含有する組成物、液晶配向処理剤、該組成物を用いて得られる樹脂被膜、該液晶配向処理剤を用いて得られる液晶配向膜、さらには、該液晶配向膜を有する液晶表示素子である。
 (A)成分:下記の式[1a]または式[1b]から選ばれる少なくとも1種の溶媒(特定溶媒ともいう)。
Figure JPOXMLDOC01-appb-C000021
(式[1a]中、Xは炭素数1~4のアルキル基を示し、式[1b]中、Xは炭素数1~4のアルキル基を示す)。
 (B)成分:カルボキシル基を有するジアミン化合物を含むジアミン成分とテトラカルボン酸二無水物成分とを反応させて得られるポリイミド前駆体またはポリイミドから選ばれる少なくとも1種の重合体(特定重合体ともいう)。
 (C)成分:下記の式[A1]、式[A2]または式[A3]で示されるアルコキシシランのいずれか1種を含むアルコキシシランを重縮合させて得られるポリシロキサン(特定ポリシロキサンともいう)。
Figure JPOXMLDOC01-appb-C000022
(式[A1]中、Aは脂肪族炭化水素、ベンゼン環、シクロヘキサン環、複素環またはステロイド構造を有する炭素数8~35の有機基を示し、Aはそれぞれ水素原子または炭素数1~5のアルキル基を示し、Aはそれぞれ炭素数1~5のアルキル基を示し、mは1または2の整数を示し、nは0~2の整数を示し、pは0~3の整数を示す。ただし、m+n+pは4である)。
Figure JPOXMLDOC01-appb-C000023
(式[A2]中、Bはビニル基、エポキシ基、アミノ基、メルカプト基、イソシアネート基、メタクリル基、アクリル基、ウレイド基またはシンナモイル基を有する炭素数2~12の有機基を示し、Bはそれぞれ水素原子または炭素数1~5のアルキル基を示し、Bはそれぞれ炭素数1~5のアルキル基を示し、mは1または2の整数を示し、nは0~2の整数を示し、pは0~3の整数を示す。ただし、m+n+pは4である)。
Figure JPOXMLDOC01-appb-C000024
(式[A3]中、Dはそれぞれ水素原子または炭素数1~5のアルキル基を示、Dは炭素数1~5のアルキル基を示し、nは0~3の整数を示す)。
 本発明の特定溶媒は、通常、ポリイミド系ポリマーを含む組成物に用いられる溶媒であるNMPやγ-BLに比べて溶媒の沸点が低く、さらに、本発明の特定重合体を溶解することができる。そして、本発明の特定ポリシロキサンは、NMPやγ-BLなどの沸点が高い溶媒だけではなく、本発明の特定溶媒、一般的なアルコール系溶媒またはグリコール系溶媒に溶解することができる。そのため、本発明の組成物は、低温での焼成によって樹脂被膜を形成することができる。
 また、本発明の組成物は、特定重合体を特定溶媒に溶解させたポリマー溶液に、特定ポリシロキサンまたは特定ポリシロキサンのポリマー溶液を混合しても、特定溶媒がNMPやγ-BLなどのように極性が高い溶媒ではないため、溶媒と特定ポリシロキサンまたは特定ポリシロキサンのポリマー溶液との相溶性が高くなる。そのため、この組成物を基板に塗布をする際に、樹脂被膜上のはじきに伴うピンホールの発生を抑制することができる。
 さらに、本発明の特定溶媒は、通常、ポリイミド系のポリマーを有する組成物に用いられるNMPやγ-BLなどの溶媒に比べて、溶媒としての表面張力が低い。そのため、特定溶媒を用いた組成物は、基板への濡れ拡がり性が高くなる。そのため、樹脂被膜上のはじきに伴うピンホールの発生を抑制することができる。
 以上の点から、本発明の組成物は、低温での焼成によって樹脂被膜を形成することができ、さらに、基板に塗布をする際に、樹脂被膜上のはじきに伴うピンホールの発生を抑制することができる。また、本発明の組成物から得られる液晶配向処理剤においても、同様の理由で上述した効果が得られる。
 以下、本発明の実施形態をより詳細に説明する。
<特定溶媒>
 本発明の(A)成分である特定溶媒は、下記の式[1a]または式[1b]から選ばれる少なくとも1種の溶媒である。
Figure JPOXMLDOC01-appb-C000025
(式[1a]中、Xは炭素数1~3のアルキル基を示す)。
(式[1b]中、Xは炭素数1~3のアルキル基を示す)。
 具体的には、下記の式[1a-1]~式[1a-4]および式[1b-1]~式[1b-4]で示される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 なかでも、溶媒の沸点および入手性の点から、式[1a-1]、式[1b-1]、式[1b-2]または式[1b-3]が好ましい。
 本発明の特定溶媒は、上述した低温での焼成で樹脂被膜または液晶配向膜を形成することができ、さらに、基板への濡れ拡がり性を高める効果を高めるため、組成物またはそれを用いた液晶配向処理剤に含まれる溶媒全体の50~100質量%であることが好ましい。なかでも、55~100質量%が好ましい。より好ましいのは、55~95質量%である。
 組成物またはそれを用いた液晶配向処理剤における溶媒全体の中で、本発明の特定溶媒の量が多いほど、本発明の効果、すなわち、低温での焼成で樹脂被膜または液晶配向膜を形成することができ、基板への塗布溶液の濡れ拡がり性が高くなり、塗布性に優れた樹脂被膜または液晶配向膜を得ることができる。
<特定重合体>
 本発明の(B)成分である特定重合体は、カルボキシル基を有するジアミン化合物を含むジアミン成分とテトラカルボン酸二無水物成分とを反応させて得られるポリイミド前駆体またはポリイミドから選ばれる少なくとも1種の重合体である。
 ポリイミド前駆体は、下記の式[A]で示される構造である。
Figure JPOXMLDOC01-appb-C000028
(式[A]中、Rは4価の有機基であり、Rはカルボキシル基を有する2価の有機基であり、AおよびAは水素原子または炭素数1~8のアルキル基を示し、それぞれ同じであっても異なってもよく、AおよびAは水素原子、炭素数1~5のアルキル基またはアセチル基を示し、それぞれ同じであっても異なってもよく、nは正の整数を示す)。
 前記ジアミン成分としては、分子内に1級または2級のアミノ基を2個有するジアミン化合物であり、テトラカルボン酸成分としては、テトラカルボン酸化合物、テトラカルボン酸二無水物、ジカルボン酸ジハライド化合物、ジカルボン酸ジアルキルエステル化合物またはジアルキルエステルジハライド化合物が挙げられる。
 本発明の特定重合体は、下記の式[B]で示されるカルボキシル基を有するジアミン化合物と下記の式[C]で示されるテトラカルボン酸二無水物とを原料とすることで比較的簡便に得られるという理由から、下記の式[D]で示される繰り返し単位の構造式からなるポリアミド酸または該ポリアミド酸をイミド化させたポリイミドが好ましい。
Figure JPOXMLDOC01-appb-C000029
(式[B]および式[C]中、RおよびRは式[A]で定義したものと同意義である)。
Figure JPOXMLDOC01-appb-C000030
(式[D]中、RおよびRは式[A]で定義したものと同意義である)。
 また、通常の合成手法で、上記で得られた式[D]の重合体に、式[A]で示されるAおよびAの炭素数1~8のアルキル基、および式[A]で示されるAおよびAの炭素数1~5のアルキル基またはアセチル基を導入することもできる。
<カルボキシル基を有するジアミン化合物>
 本発明のカルボキシル基を有するジアミン化合物は、分子内に下記の式[2]で示される構造を有するジアミン化合物である。
Figure JPOXMLDOC01-appb-C000031
 式[2]中、aは0~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0または1の整数が好ましい。
 式[2]で示される構造を有するジアミン化合物として、具体的には、下記の式[2a]で示される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000032
 式[2a]中、aは0~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0または1が好ましい。
 式[2a]中、nは1~4の整数を示す。なかでも、合成の容易さの点から1が好ましい。
 本発明の式[2a]で示されるジアミン化合物を製造する方法は特に限定されないが、好ましい方法としては、下記に示すものが挙げられる。
 一例として、式[2a]で示されるジアミン化合物は、下記の式[2a-A]で示されるジニトロ体化合物を合成し、さらにそのニトロ基を還元してアミノ基に変換することで得られる。
Figure JPOXMLDOC01-appb-C000033
(式[2a-A]中、aは0~4の整数を示し、nは1~4の整数を示す)。
 式[2a-A]で示されるジニトロ体化合物のジニトロ基を還元する方法には、特に制限はなく、通常、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサンまたはアルコール系溶剤などの溶媒中、パラジウム-炭素、酸化白金、ラネーニッケル、白金黒、ロジウム-アルミナまたは硫化白金炭素などを触媒として用いて、水素ガス、ヒドラジンまたは塩化水素下で反応させる方法がある。
 本発明のカルボキシル基を有するジアミン化合物としては、さらに、下記の式[2a-1]~式[2a-4]で示される構造も挙げられる。
Figure JPOXMLDOC01-appb-C000034
 式[2a-1]中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-または-N(CH)CO-を示す。なかでも、合成の容易さの点から、単結合、-CH-、-C(CH-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-または-OCO-が好ましい。より好ましいのは、単結合、-CH-、-C(CH-、-O-、-CO-、-NH-または-N(CH)-である。
 式[2a-1]中、mおよびmはそれぞれ0~4の整数を示し、かつm+mは1~4の整数を示す。なかでも、m+mが1または2が好ましい。
 式[2a-2]中、mおよびmはそれぞれ1~5の整数を示す。なかでも、合成の容易さの点から、1または2が好ましい。
 式[2a-3]中、Aは炭素数1~5の直鎖または分岐アルキル基を示す。なかでも、炭素数1~3の直鎖アルキル基が好ましい。
 式[2a-3]中、mは1~5の整数を示す。なかでも、1または2が好ましい。
 式[2a-4]中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-または-N(CH)CO-を示す。なかでも、単結合、-CH-、-C(CH-、-O-、-CO-、-NH-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-または-OCO-が好ましい。より好ましいのは、-O-、-CO-、-NH-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-または-OCO-である。
 式[2a-4]中、mは1~4の整数を示す。なかでも、合成の容易さの点から、1が好ましい。
 本発明のカルボキシル基を有するジアミン化合物は、全ジアミン成分中の20モル%~100モル%であることが好ましく、より好ましくは、30モル%~100モル%であることが好ましい。
 上記のカルボキシル基を有するジアミン化合物は、本発明の特定重合体の溶媒への溶解性や組成物の塗布性、液晶配向膜にした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することができる。
<第2のジアミン化合物>
 本発明の特定重合体を作製するためのジアミン成分には、第2のジアミン化合物として、下記の式[2b]で示されるジアミン化合物(第2のジアミン化合物ともいう)を用いることができる。
Figure JPOXMLDOC01-appb-C000035
(式[2b]中、Yは下記の式[2b-1]、式[2b-2]、式[2b-3]、式[2b-4]または式[2b-5]の構造を示し、mは0~4の整数を示す)。
Figure JPOXMLDOC01-appb-C000036
 式[2b-1]中、aは0~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0または1の整数が好ましい。
 式[2b-2]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-を示す。なかでも、原料の入手性や合成の容易さの点から、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-または-COO-が好ましい。より好ましいのは、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-または-COO-である。
 式[2b-2]中、Yは単結合または-(CH-(bは1~15の整数である)を示す。なかでも、単結合または-(CH-(bは1~10の整数である)が好ましい。
 式[2b-2]中、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-を示す。なかでも、合成の容易さの点から、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-または-COO-が好ましい。より好ましいのは、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-または-COO-である。
 式[2b-2]中、Yはベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基であり、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよい。さらに、Yは、ステロイド骨格を有する炭素数12~25の有機基から選ばれる2価の有機基であってもよい。なかでも、合成の容易さの点から、ベンゼン環、シクロへキサン環またはステロイド骨格を有する炭素数12~25の有機基が好ましい。
 式[2b-2]中、Yはベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよい。なかでも、ベンゼン環またはシクロへキサン環が好ましい。
 式[2b-2]中、nは0~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0~3が好ましい。より好ましいのは、0~2である。
 式[2b-2]中、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~18のフッ素含有アルコキシル基を示す。なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~10のフッ素含有アルコキシル基が好ましい。より好ましくは、炭素数1~12のアルキル基または炭素数1~12のアルコキシル基である。特に好ましくは、炭素数1~9のアルキル基または炭素数1~9のアルコキシル基である。
 式[2b]中の置換基Yを構成するための、式[2b-2]におけるY、Y、Y、Y、Y、Yおよびnの好ましい組み合わせとしては、国際公開公報WO2011/132751(2011.10.27公開)の13項~34項の表6~表47に掲載される(2-1)~(2-629)と同じ組み合わせが挙げられる。なお、国際公開公報の各表では、本発明におけるY~Yが、Y1~Y6として示されているが、Y1~Y6は、Y~Yと読み替えるものとする。
 式[2b-3]中、Yは炭素数8~22のアルキル基を示す。
 式[2b-4]中、YおよびYはそれぞれ独立して炭素数1~6の炭化水素基を示す。
 式[2b-5]中、Y10は炭素数1~8のアルキル基を示す。
 本発明の式[2b]で示されるジアミン化合物を製造する方法は特に限定されないが、好ましい方法としては、下記に示すものが挙げられる。
 一例として、式[2b]で示されるジアミン化合物は、下記の式[2b-A]で示されるジニトロ体化合物を合成し、さらにそのニトロ基を還元してアミノ基に変換することで得られる。
Figure JPOXMLDOC01-appb-C000037
(式[2b-A]中、Yは前記式[2b-1]、式[2b-2]、式[2b-3]、式[2b-4]または式[2b-5]から選ばれる少なくとも1つの構造の置換基を示し、mは0~4の整数を示す)。
 式[2b-A]で示されるジニトロ体化合物のジニトロ基を還元する方法には、特に制限はなく、通常、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサンまたはアルコール系溶剤などの溶媒中、パラジウム-炭素、酸化白金、ラネーニッケル、白金黒、ロジウム-アルミナまたは硫化白金炭素などを触媒として用いて、水素ガス、ヒドラジンまたは塩化水素下で反応させる方法がある。
 下記に、本発明の式[2b]で示される第2のジアミン化合物の具体的な構造を挙げるが、これらの例に限定されるものではない。
 すなわち、式[2b]で示される第2のジアミンとしては、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,6-ジアミノトルエン、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノールの他に、下記の式[2b-6]~[2b-46]で示される構造のジアミン化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000038
(式[2b-6]~式[2b-9]中、Aは、炭素数1~22のアルキル基またはフッ素含有アルキル基を示す)。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
(式[2b-34]~式[2b-36]中、Rは-O-、-OCH-、-CHO-、-COOCH-またはCHOCO-を示し、Rは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基またはフッ素含有アルコキシ基を示す)。
Figure JPOXMLDOC01-appb-C000051
(式[2b-37]~式[2b-39]中、Rは-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-または-CH-を示し、Rは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基またはフッ素含有アルコキシ基を示す)。
Figure JPOXMLDOC01-appb-C000052
(式[2b-40]および式[2b-41]中、Rは-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-または-O-であり、Rはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基または水酸基である)。
Figure JPOXMLDOC01-appb-C000053
(式[2b-42]および式[2b-43]中、Rは炭素数3~12のアルキル基を示す。なお、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体が好ましい)。
Figure JPOXMLDOC01-appb-C000054
(式[2b-44]および式[2b-45]中、Rは炭素数3~12のアルキル基を示す。なお、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体が好ましい)。
Figure JPOXMLDOC01-appb-C000055
(式[2b-46]中、Bはフッ素原子で置換されていてもよい炭素数3~20のアルキル基を示し、Bは1,4-シクロへキシレン基または1,4-フェニレン基を示し、Bは酸素原子または-COO-*(但し、「*」を付した結合手がBと結合する)を示し、Bは酸素原子または-COO-*(但し、「*」を付した結合手が(CH)aと結合する)を示す。また、aは0または1の整数を示し、aは2~10の整数を示し、aは0または1の整数を示す)。
 本発明の第2のジアミン化合物のなかで、式[2b]中の置換基Yが式[2b-2]で示される構造のジアミン化合物を用いた組成物は、樹脂被膜の疎水性を高くすることができる。さらに、液晶配向膜にした場合に、液晶のプレチルト角を高くすることができる。その際、これらの効果を高めることを目的に、上記ジアミン化合物の中でも、式[2b-28]~式[2b-39]または式[2b-42]~式[2b-46]で示されるジアミン化合物を用いることが好ましい。より好ましいのは、式[2b-24]~式[2b-39]または式[2b-42]~式[2b-46]で示されるジアミン化合物である。また、よりこれらの効果を高めるため、これらジアミン化合物は、ジアミン成分全体の5モル%以上80モル%以下であることが好ましい。より好ましくは、組成物および液晶配向処理剤の塗布性や液晶配向膜としての電気特性の点から、これらジアミン化合物は、ジアミン成分全体の5モル%以上60モル%以下である。特に好ましくは、ジアミン成分全体の10モル%以上60モル%以下である。
 本発明の第2のジアミン化合物は、本発明の特定重合体の溶媒への溶解性や塗布性、液晶配向膜にした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することができる。
<その他ジアミン化合物>
 本発明の特定重合体には、本発明の効果を損なわない限りにおいて、式[2a]、式[2a-1]~式[2a-4]で示される分子内にカルボキシル基を有するジアミン化合物や式[2b]で示される第2のジアミン化合物の他に、その他のジアミン化合物(その他ジアミン化合物ともいう)を、ジアミン成分として用いることができる。
 下記に、その他ジアミン化合物の具体例を挙げるが、これらの例に限定されるものではない。
 すなわち、その他ジアミン化合物としては、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカンまたは1,12-ジアミノドデカンなどが挙げられる。
 また、その他ジアミン化合物として、ジアミン側鎖にアルキル基、フッ素含有アルキル基、芳香環、脂肪族環または複素環を有するもの、さらに、これらからなる大環状置換体を有するものなどを挙げることもできる。具体的には、下記の式[DA1]~[DA13]で示されるジアミン化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
(式[DA1]~式[DA6]中、Aは-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-または-NH-を示し、Aは炭素数1~22の直鎖状もしくは分岐状のアルキル基または炭素数1~22の直鎖状もしくは分岐状のフッ素含有アルキル基を示す)。
Figure JPOXMLDOC01-appb-C000059
(式[DA7]中、pは1~10の整数を示す)。
 本発明の効果を損なわない限りにおいて、その他ジアミン化合物として、下記の式[DA8]~式[DA13]で示されるジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
(式[DA10]中、mは0~3の整数を示し、式[DA13]中、nは1~5の整数を示す)。
 さらに、本発明の効果を損なわない限りにおいて、下記の式[DA14]で示されるジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000062
(式[DA14]中、Aは-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCO-、-CON(CH)-または-N(CH)CO-より選ばれる2価の有機基であり、Aは単結合、炭素数1~20の脂肪族炭化水素基、非芳香族環式炭化水素基または芳香族炭化水素基であり、Aは単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-、-OCO-、-CON(CH)-、-N(CH)CO-または-O(CH-(mは1~5の整数である)より選ばれ、Aは窒素含有芳香族複素環であり、nは1~4の整数である)。
 加えて、その他ジアミン化合物として、下記の式[DA15]および式[DA16]で示されるジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000063
 上記のその他ジアミン化合物は、本発明の特定重合体の溶媒への溶解性や組成物の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。
<テトラカルボン酸二無水物成分>
 本発明の特定重合体を作製するためのテトラカルボン酸二無水物成分としては、下記の式[3]で示されるテトラカルボン酸無水物またはそのテトラカルボン酸誘導体(特定テトラカルボン酸二無水物成分ともいう)が挙げられる。
Figure JPOXMLDOC01-appb-C000064
式[3]中、Zは下記の式[3a]~式[3j]から選ばれる少なくとも1種の構造の基である。
Figure JPOXMLDOC01-appb-C000065
 式[3a]中、Z~Zは水素原子、メチル基、塩素原子またはベンゼン環を示し、それぞれ同じであっても異なってもよい。
 式[3g]中、ZおよびZは水素原子またはメチル基を示し、それぞれ同じであっても異なってもよい。
 本発明の特定テトラカルボン酸二無水物成分である式[3]に示される構造中、Zは、合成の容易さやポリマーを製造する際の重合反応性のし易さの点から、式[3a]、式[3c]、式[3d]、式[3e]、式[3f]または式[3g]で示される構造が好ましい。より好ましいのは、式[3a]、式[3e]、式[3f]または式[3g]で示される構造である。
 本発明の特定テトラカルボン酸成分は、全テトラカルボン酸成分中の1モル%以上であることが好ましい。より好ましいのは、5モル%以上であり、特に好ましいのは、10モル%以上である。
 また、式[3e]、式[3f]または式[3g]の構造の特定テトラカルボン酸二無水物成分を用いる場合、その使用量は、テトラカルボン酸二無水物成分全体の20モル%以上とすることで、所望の効果が得られる。好ましくは、30モル%以上である。さらに、テトラカルボン酸二無水物成分のすべてが式[3e]、式[3f]または式[3g]の構造のテトラカルボン酸二無水物成分であってもよい。
 本発明の特定重合体には、本発明の効果を損なわない限りにおいて、特定テトラカルボン酸二無水物成分以外のその他のテトラカルボン酸二無水物成分を用いることができる。
 その他のテトラカルボン酸二無水物成分としては、以下に示すテトラカルボン酸化合物、テトラカルボン酸二無水物、ジカルボン酸ジハライド化合物、ジカルボン酸ジアルキルエステル化合物またはジアルキルエステルジハライド化合物が挙げられる。
 すなわち、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸または1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸が挙げられる。
 特定テトラカルボン酸二無水物成分およびその他のテトラカルボン酸成分は、本発明の特定重合体の溶媒への溶解性や組成物の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。
<特定重合体の製造方法>
 本発明において、特定重合体を合成する方法は特に限定されない。通常、ジアミン成分とテトラカルボン酸二無水物成分とを反応させて得られる。一般的には、テトラカルボン酸およびその誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸二無水物成分と、1種または複数種のジアミン化合物からなるジアミン成分とを反応させて、ポリアミド酸を得る。具体的には、テトラカルボン酸二無水物と1級または2級のジアミン化合物とを重縮合させてポリアミド酸を得る方法、テトラカルボン酸と1級または2級のジアミン化合物とを脱水重縮合反応させてポリアミド酸を得る方法またはジカルボン酸ジハライドと1級または2級のジアミン化合物とを重縮合させてポリアミド酸を得る方法が用いられる。
 ポリアミド酸アルキルエステルを得るには、カルボン酸基をジアルキルエステル化したテトラカルボン酸と1級または2級のジアミン化合物とを重縮合させる方法、カルボン酸基をジアルキルエステル化したジカルボン酸ジハライドと1級または2級のジアミン化合物とを重縮合させる方法またはポリアミド酸のカルボキシル基をエステルに変換する方法が用いられる。
 ポリイミドを得るには、前記のポリアミド酸またはポリアミド酸アルキルエステルを閉環させてポリイミドとする方法が用いられる。
 ジアミン成分とテトラカルボン酸成分との反応は、通常、ジアミン成分とテトラカルボン酸成分とを有機溶媒中で行う。その際に用いる有機溶媒としては、本発明の(A)成分である特定溶媒や生成したポリイミド前駆体が溶解するものであれば特に限定されない。
 本発明の特定溶媒以外の溶媒としては、下記の溶媒が挙げられる。
すなわち、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノンまたは4-ヒドロキシ-4-メチル-2-ペンタノンなどである。
 これらは単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。
 ジアミン成分とテトラカルボン酸成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、または有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸成分を有機溶媒に分散、あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸成分とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分またはテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ重合体としてもよい。その際の重合温度は-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
 ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。
 本発明のポリイミドは前記のポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化またはポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミンまたはトリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸または無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
 ポリイミド前駆体またはポリイミドの反応溶液から、生成したポリイミド前駆体またはポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類または炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。
 本発明の特定重合体の分子量は、そこから得られる樹脂被膜または液晶配向膜の強度、膜形成時の作業性および塗膜性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。
<特定ポリシロキサン>
 本発明の(C)成分である特定ポリシロキサンは、前記式[A1]、式[A2]または式[A3]で示されるアルコキシシランのいずれか1種を含むアルコキシシランを重縮合させて得られるポリシロキサンである。
 本発明の式[A1]で示されるアルコキシシランは、下記の式[A1]に示されるアルコキシシランである。
Figure JPOXMLDOC01-appb-C000066
 式[A1]中、Aは脂肪族炭化水素、ベンゼン環、シクロヘキサン環、複素環またはステロイド構造を有する炭素数8~35の有機基である。
 式[A1]中、Aはそれぞれ水素原子または炭素数1~5のアルキル基である。なかでも、水素原子または炭素数1~3のアルキル基が好ましい。
 式[A1]中、Aはそれぞれ炭素数1~5のアルキル基である。なかでも、重縮合の反応性の点から、炭素数1~3のアルキル基が好ましい。
 式[A1]中、mは1または2の整数である。なかでも、合成の点からは、1が好ましい。
 式[A1]中、nは0~2の整数である。
 式[A1]中、pは0~3の整数である。なかでも、重縮合の反応性の点から、1~3の整数が好ましい。より好ましくは、2または3である。
 式[A1]中、m+n+pは4の整数である。
 式[A1]で示されるアルコキシシランの具体例としては、オクチルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、ヘキサデシルトリエトキシシラン、ペンチルトリエトキシシラン、ヘプタデシルトリメトキシシラン、ヘプタデシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、ノナデシルトリメトキシシラン、ノナデシルトリエトキシシラン、イソオクチルトリエトキシシラン、フェネチルトリエトキシシラン、ペンタフルオロフェニルプロピルトリメトキシシラン、m-スチリルエチルトリメトキシシラン、p-スチリルエチルトリメトキシシラン、1-ナフチルトリエトキシシラン、1-ナフチルトリメトキシシラン、トリエトキシ-1H,1H,2H,2H-トリデカフルオロ-n-オクチルシラン、ジメトキシジフェニルシラン、ジメトキシメチルフェニルシランまたはトリエトキシフェニルシランなどが挙げられる。
 加えて、下記の式[A1-1]~式[A1-32]で示されるアルコキシシランを用いることもできる。
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
(式[A1-1]~式[A1-18]中、Rはそれぞれ炭素数1~5のアルキル基を示す)。
Figure JPOXMLDOC01-appb-C000076
(式[A1-19]~式[A1-22]中、Rはそれぞれ炭素数1~5のアルキル基を示し、Rはそれぞれ-O-、-COO-、-OCO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-OCH-、-CHO-、-COOCH-または-CHOCO-を示し、Rはそれぞれ炭素数1~12のアルキル基、アルコキシ基、フッ素含有アルキル基またはフッ素含有アルコキシ基を示す)。
Figure JPOXMLDOC01-appb-C000077
(式[A1-23]および式[A1-24]中、Rはそれぞれ炭素数1~5のアルキル基を示し、Rはそれぞれ-O-、-COO-、-OCO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-OCH-、-CHO-、-COOCH-または-CHOCO-を示し、Rはそれぞれ炭素数1~12のアルキル基、アルコキシ基、フッ素含有アルキル基、フッ素含有アルコキシ基、フッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基または水酸基を示す)。
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
(式[A1-25]~式[A1-31]中、Rはそれぞれ炭素数1~5のアルキル基を示し、Rはそれぞれ-O-、-COO-、-OCO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-OCH-、-CHO-、-COOCH-または-CHOCO-を示し、Rはそれぞれ炭素数1~12のアルキル基、アルコキシ基、フッ素含有アルキル基またはフッ素含有アルコキシ基を示す)。
Figure JPOXMLDOC01-appb-C000080
(式[A1-32]中、Rはそれぞれ炭素数1~5のアルキル基を示し、Bはフッ素原子で置換されていてもよい炭素数3~20のアルキル基を示し、Bは1,4-シクロへキシレン基または1,4-フェニレン基を示し、Bは酸素原子またはCOO-*(但し、「*」を付した結合手がBと結合する。)を示し、Bは酸素原子またはCOO-*(但し、「*」を付した結合手が(CH)a)と結合する。)である。また、aは0または1の整数を示し、aは2~10の整数を示し、aは0または1の整数を示す)。
 上記の式[A1]で示されるアルコキシシランは、樹脂被膜または液晶配向膜の強度やこれら膜形成時の作業性、さらには、液晶配向膜とした際の液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。
 本発明の式[A2]で示されるアルコキシシランは、下記の式[A2]に示されるアルコキシシランである。
Figure JPOXMLDOC01-appb-C000081
 式[A2]中、Bはビニル基、エポキシ基、アミノ基、メルカプト基、イソシアネート基、メタクリル基、アクリル基、ウレイド基またはシンナモイル基を有する炭素数2~12の有機基である。なかでも、入手の容易さの点から、ビニル基、エポキシ基、アミノ基、メタクリル基、アクリル基またはウレイド基が好ましい。より好ましくは、メタクリル基、アクリル基またはウレイド基である。
 式[A2]中、Bはそれぞれ水素原子または炭素数1~5のアルキル基である。なかでも、水素原子または炭素数1~3のアルキル基が好ましい。
 式[A2]中、Bはそれぞれ炭素数1~5のアルキル基である。なかでも、重縮合の反応性の点から、炭素数1~3のアルキル基が好ましい。
 式[A2]中、mは1または2の整数である。なかでも、合成の点からは、1が好ましい。
 式[A2]中、nは0~2の整数である。
 式[A2]中、pは0~3の整数である。なかでも、重縮合の反応性の点から、1~3の整数が好ましい。より好ましくは、2または3である。
 式[A2]中、m+n+pは4の整数である。
 式[A2]で示されるアルコキシシランの具体例としては、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、ジメトキシメチルビニルシラン、トリエトキシビニルシラン、ビニルトリメトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、m-スチリルエチルトリエトキシシラン、p-スチリルエチルトリエトキシシラン、m-スチリルメチルトリエトキシシラン、p-スチリルメチルトリエトキシシラン、3-(N-スチリルメチル-2-アミノエチルアミノ)プロピルトリメトキシシラン、ジエトキシ(3-グリシジルオキシプロピル)メチルシラン、3-グリシジルオキシプロピル(ジメトキシ)メチルシラン、3-グリシジルオキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルジメトキシメチルシラン、3-(2-アミノエチルアミノ)プロピルトリエトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-アミノプロピルジエトキシメチルシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、トリメトキシ[3-(フェニルアミノ)プロピル]シラン、3-メルカプトプロピル(ジメトキシ)メチルシラン、(3-メルカプトプロピル)トリエトキシシラン、(3-メルカプトプロピル)トリメトキシシラン、3-(トリエトキシシリル)プロピルイソシアネート、3-(トリエトキシシリル)プロピルメタクリレート、3-(トリメトキシシリル)プロピルメタクリレート、 3-(トリエトキシシリル)プロピルアクリレート、3-(トリメトキシシリル)プロピルアクリレート、3-(トリエトキシシリル)エチルメタクリレート、3-(トリメトキシシリル)エチルメタクリレート、3-(トリエトキシシリル)エチルアクリレート、3-(トリメトキシシリル)エチルアクリレート、3-(トリエトキシシリル)メチルメタクリレート、3-(トリメトキシシリル)メチルメタクリレート、 3-(トリエトキシシリル)メチルアクリレート、3-(トリメトキシシリル)メチルアクリレート、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリプロポキシシラン、(R)-N-1-フェニルエチル-N’-トリエトキシシリルプロピルウレア、(R)-N-1-フェニルエチル-N’-トリメトキシシリルプロピルウレア、ビス[3-(トリメトキシシリル)プロピル]ウレア、ビス[3-(トリプロポキシシリル)プロピル]ウレア、1-[3-(トリメトキシシリル)プロピル]ウレアなどが挙げられる。
 上記の式[A2]で示されるアルコキシシランは、樹脂被膜または液晶配向膜の強度やこれら膜形成時の作業性、さらには、液晶配向膜とした際の液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。
 本発明の式[A3]で示されるアルコキシシランは、下記の式[A]に示されるアルコキシシランである。
Figure JPOXMLDOC01-appb-C000082
 式[A3]中、Dはそれぞれ水素原子または炭素数1~5のアルキル基であるが、これらは、ハロゲン原子、窒素原子、酸素原子、硫黄原子で置換されていても良い。なかでも、水素原子または炭素数1~3のアルキル基が好ましい。
 式[A3]中、Dはそれぞれ炭素数1~5のアルキル基である。なかでも、重縮合の反応性の点から、炭素数1~3のアルキル基が好ましい。
 式[A3]中、nは0~3の整数である。
 式[A3]で示されるアルコキシシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、メチルトリプロポキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエトキシジエチルシラン、ジブトキシジメチルシラン、(クロロメチル)トリエトキシシラン、3-クロロプロピルジメトキシメチルシラン、3-クロロプロピルトリエトキシシラン、2-シアノエチルトリエトキシシラン、トリメトキシ(3,3,3-トリフルオロプロピル)シラン、ヘキシルトリメトキシシランまたは3-トリメトキシシリルプロピルクロライドなどが挙げられる。
 上記の式[A3]中、nが0であるアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシランまたはテトラブトキシシランが挙げられる。
 上記の式[A3]で示されるアルコキシシランは、樹脂被膜または液晶配向膜の強度やこれら膜形成時の作業性、さらには、液晶配向膜とした際の液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。
 本発明の特定ポリシロキサンは、前記式[A1]、式[A2]または式[A3]で示されるアルコキシシランのいずれか1種を含むアルコキシシランを重縮合させて得られるポリシロキサンであるが、これらアルコキシシランを複数種含むアルコキシシランを重縮合させて得られるポリシロキサンが好ましい。すなわち、前記式[A1]および式[A2]、前記式[A1]および式[A3]または前記式[A2]および式[A3]の2種を含むアルコキシシラン、さらには、前記式[A1]、式[A2]および式[A3]の3種を含むアルコキシシランを重縮合させて得られるポリシロキサンが挙げられる。なかでも、前記式[A1]および式[A2]、前記式[A1]および式[A3]の2種を含むアルコキシシラン、または前記式[A1]、式[A2]および式[A3]の3種を含むアルコキシシランが好ましい。
 前記式[A1]、式[A2]または式[A3]で示されるアルコキシシランは、本発明の特定ポリシロキサンを得るために用いられる。
 式[A1]で示されるアルコキシシランは、すべてのアルコキシシラン中、1~40モル%であることが好ましく、より好ましくは、1~30モル%である。また、式[A2]で示されるアルコキシシランは、すべてのアルコキシシラン中、1~70モル%であることが好ましく、より好ましくは、1~60モル%である。さらに、式[A3]で示されるアルコキシシランは、すべてのアルコキシシラン中、1~99モル%であることが好ましく、より好ましくは、1~80モル%である。
 本発明に用いる特定ポリシロキサンを得る方法は特に限定されない。本発明における特定ポリシロキサンは、前記式[A1]、式[A2]または式[A3]で示されるアルコキシシランのいずれか1種を含むアルコキシシランを有機溶媒中で重合させて得る、あるいは前記式[A1]、式[A2]、式[A3]で示されるアルコキシシランの中から複数種のアルコキシシランを有機溶媒中で重合させて得ることができる。また、本発明の特定ポリシロキサンは、アルコキシシランを重縮合して、有機溶媒に均一に溶解した溶液として得られる。
 本発明の特定ポリシロキサンを重縮合する方法は特に限定されない。そのなかでも、例えば、アルコキシシランを本発明の特定溶媒、アルコール系溶媒またはグリコール系溶媒中で、加水分解・重縮合反応させる方法が挙げられる。その際、加水分解・重縮合反応は、部分的に加水分解させても、完全に加水分解させてもよい。完全に加水分解する場合は、理論上、アルコキシシラン中のすべてのアルコキシ基の0.5倍モル量の水を加えればよいが、通常は0.5倍モル量よりも過剰量の水を加えることが好ましい。本発明の特定ポリシロキサンを得るためには、上記加水分解・重縮合反応に用いる水の量は、目的に応じて適宜選択することができるが、アルコキシシラン中のすべてのアルコキシ基の0.5~2.5倍モル量であることが好ましい。
 また、加水分解・重縮合反応を促進する目的で、塩酸、硫酸、硝酸、酢酸、蟻酸、蓚酸、マレイン酸またはフマル酸などの酸性化合物、アンモニア、メチルアミン、エチルアミン、エタノールアミンまたはトリエチルアミンなどのアルカリ性化合物、あるいは、塩酸、硝酸または硝酸などの金属塩などの触媒を用いることができる。加えて、アルコキシシランが溶解した溶液を加熱することで、加水分解・重縮合反応を促進させることもできる。その際、加熱温度および加熱時間は、目的に応じて適宜選択することができる。例えば、50℃で24時間加熱攪拌、その後、還流下で1時間加熱攪拌するなどの条件が挙げられる。
 さらに、重縮合する別の方法として、アルコキシシラン、有機溶媒および蓚酸の混合物を加熱して、重縮合反応する方法が挙げられる。具体的には、あらかじめ、本発明の特定溶媒やアルコール溶媒に蓚酸を加えて、蓚酸の溶液とした後、該溶液を加熱した状態で、アルコキシシランを混合する方法である。その際、上記反応に用いる蓚酸の量は、アルコキシシラン中のすべてのアルコキシ基の1モルに対して、0.2~2.0モルとすることが好ましい。また、この反応は、溶液の温度が50~180℃で行うことができるが、溶媒の蒸発や揮散が起こらないように、還流下で数十分から数十時間で行うことが好ましい。
 本発明の特定ポリシロキサンを得る重縮合反応において、前記式[A1]、式[A2]および式[A3]で示されるアルコキシシランを複数種用いる場合は、複数種のアルコキシシランをあらかじめ混合した混合物を用いて反応しても、複数種のアルコキシシランを順次添加しながら反応してもよい。
 アルコキシシランの重縮合反応に用いる溶媒としては、アルコキシシランが溶解するものであれば、特に限定されない。また、アルコキシシランが溶解しない溶媒であっても、アルコキシシランの重縮合反応の進行とともに溶解するものであればよい。重縮合反応に用いる溶媒として、一般的には、アルコキシシランの重縮合反応によりアルコールが発生するため、アルコール系溶媒、グリコール系溶媒、グリコールエーテル系溶媒またはアルコールと相溶性がよい有機溶媒が用いられる。このような重縮合反応に用いる溶媒の具体例としては、メタノール、エタノール、プロパノール、ブタノールまたはジアセトンアルコールなどのアルコール系溶媒、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、へキシレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,2-ペンタンジオール、1,3-ペンタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、2,4-ペンタンジオール、2,3-ペンタンジオールまたは1,6-ヘキサンジオールなどのグルコール系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテルまたはプロピレングリコールジブチルエーテルなどのグリコールエーテル系溶媒、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサメチルホスホトリアミドまたはm-クレゾールなどのアルコールと相性のよい有機溶媒が挙げられる。
 なかでも、本発明の組成物またはそれを用いた液晶配向処理剤を調整するうえでは、本発明の特定溶媒を用いることが好ましい。また、本発明においては、重縮合反応の際、上記溶媒を1種類または2種類以上を混合して用いることができる。
 上記方法により得られた特定ポリシロキサンの重合溶液は、原料として仕込んだ全アルコキシシランが有する珪素原子をSiOに換算した濃度(SiO換算濃度ともいう)が、20質量%以下であることが好ましい。なかでも、5~15質量%であることが好ましい。この濃度範囲において任意の濃度を選択することで、溶液中のゲルの発生を抑制することができ、均一な特定ポリシロキサンの重縮合溶液を得ることができる。
 本発明においては、上記の方法で得られた特定ポリシロキサンの重縮合溶液をそのまま本発明の(C)成分の特定ポリシロキサンの溶液としてもよいし、必要に応じて、上記の方法で得られた特定ポリシロキサンの重縮合溶液を濃縮したり、溶媒を加えて希釈したり、他の溶媒に置換して、(C)成分の特定ポリシロキサンの溶液としてもよい。
 上記の溶媒を加えて希釈する際に用いる溶媒(添加溶媒ともいう)は、重縮合反応に用いる溶媒や、本発明の特定溶媒、さらにはその他の溶媒であってもよい。この添加溶媒は、特定ポリシロキサンが均一に溶解している限りにおいては特に限定されず、1種類または2種類以上を任意に選択して使用することができる。このような添加溶媒としては、上記の重縮合反応に用いる溶媒に加え、アセトン、メチルエチルケトンまたはメチルイソブチルケトンなどのケトン系溶媒、酢酸メチル、酢酸エチルまたは乳酸エチルなどのエステル系溶媒などが挙げられる。
 本発明において、(C)成分の特定ポリシロキサンは、(B)成分の特定重合体と混合する前に、特定ポリシロキサンを重縮合反応の際に発生するアルコールを常圧または減圧で留去することが好ましい。
<組成物・液晶配向処理剤>
 本発明の組成物またはそれを用いた液晶配向処理剤は、樹脂被膜または液晶配向膜(総称して樹脂被膜ともいう)を形成するための塗布溶液であり、特定溶媒、特定重合体および特定ポリシロキサンを含有する樹脂被膜を形成するための塗布溶液である。このなかで、組成物またはそれを用いた液晶配向処理剤中における本発明の重合体は、特定重合体および特定ポリシロキサンを示す。
 本発明の組成物またはそれを用いた液晶配向処理剤における、特定ポリシロキサンの含有量は、特定重合体成分100質量部に対して、0.1~90質量部であることが好ましい。なかでも、組成物または液晶配向処理剤の安定性の点から、特定重合体100質量部に対して1から70質量部がより好ましい。特に好ましくは、5~60質量部である。
 本発明の組成物またはそれを用いた液晶配向処理剤における、すべての重合体成分は、すべてが本発明の重合体であってもよく、本発明の重合体に、それ以外の他の重合体が混合されていても良い。その際、それ以外の他の重合体の含有量は、本発明の重合体の0.5質量%~15質量%、好ましくは1質量%~10質量%である。それ以外の他の重合体としては、上記カルボキシル基を有するジアミン化合物、第2のジアミン化合物または特定テトラカルボン酸成分を用いないポリイミド前駆体またはポリイミドが挙げられる。さらには、ポリイミド前駆体およびポリイミド以外の重合体、具体的には、アクリルポリマー、メタクリルポリマー、ポリスチレンまたはポリアミドなどが挙げられる。
 本発明の組成物またはそれを用いた液晶配向処理剤中の有機溶媒は、塗布により均一な樹脂被膜を形成するという観点から、有機溶媒の含有量が70~99.9質量%であることが好ましい。この含有量は、目的とする樹脂被膜または液晶配向膜の膜厚によって適宜変更することができる。
 本発明の組成物またはそれを用いた液晶配向処理剤に用いる有機溶媒におけるすべての有機溶媒は、すべてが本発明の特定溶媒であってもよく、本発明の有機溶媒に、それ以外の他の有機溶媒が混合させていても良い。その際、本発明の特定溶媒は、組成物または液晶配向処理剤に含まれる溶媒全体の50~100質量%であることが好ましい。なかでも、55~100質量%が好ましい。より好ましいのは、55~95質量%である。
 それ以外の他の有機溶媒としては、特定重合体および特定ポリシロキサンを溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。
 例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノンまたは4-ヒドロキシ-4-メチル-2-ペンタノンなどである。
 なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンまたはγ-ブチルラクトン(以上(D)成分ともいう)を用いることが好ましい。
 これら(D)成分は、組成物またはそれを用いた液晶配向処理剤に含まれる有機溶媒全体の1~50質量%であることが好ましい。なかでも、1~40質量%が好ましい。より好ましいのは1~30質量%であり、さらに好ましくは、5~30質量%である。
 本発明の組成物またはそれを用いた液晶配向処理剤は、本発明の効果を損なわない限り、組成物またはそれを用いた液晶配向処理剤を塗布した際の樹脂被膜または液晶配向膜の塗膜性や表面平滑性を向上させる有機溶媒、すなわち貧溶媒を用いることができる。
 樹脂被膜または液晶配向膜の塗膜性や表面平滑性を向上させる貧溶媒の具体例を以下に挙げる。
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステルまたは乳酸イソアミルエステルなどの溶媒の表面張力が低い有機溶媒である。
 なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールイソプロピルエーテルまたはジエチレングリコールモノブチルエーテル(以上(E)成分ともいう)を用いることが好ましい。
 これら(E)成分は、組成物またはそれを用いた液晶配向処理剤に含まれる有機溶媒全体の1~50質量%であることが好ましい。なかでも、1~45質量%が好ましい。より好ましいのは5~45質量%であり、さらに好ましくは、5~40質量%である。
 本発明の組成物またはそれを用いた液晶配向処理剤には、本発明の効果を損なわない限り、エポキシ基、イソシアネート基、オキセタン基またはシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基および低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、または重合性不飽和結合を有する架橋性化合物を導入することもできる。これら置換基や重合性不飽和結合は、架橋性化合物中に2個以上有する必要がある。
 エポキシ基またはイソシアネート基を有する架橋性化合物としては、例えば、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパンまたは1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノールなどが挙げられる。
 オキセタン基を有する架橋性化合物は、下記の式[4]で示すオキセタン基を少なくとも2個有する架橋性化合物である。
Figure JPOXMLDOC01-appb-C000083
 具体的には、下記の式[4-1]~式[4-11]で示される架橋性化合物である。
(式[4-1]中、nは1~3の整数を示す)。
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
(式[4-7]中、nは1~3の整数を示し、式[4-8]中、nは1~3の整数を示し、式[4-9]中、nは1~100の整数を示す)。
Figure JPOXMLDOC01-appb-C000088
(式[4-11]中、nは1~10の整数を示す)。
 シクロカーボネート基を有する架橋性化合物としては、下記の式[5]で示されるシクロカーボネート基を少なくとも2個有する架橋性化合物である。
Figure JPOXMLDOC01-appb-C000089
 具体的には、下記の式[5-1]~式[5-37]で示される架橋性化合物である。
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
(式[5-24]中、nは1~10の整数を示し、式[5-25]中、nは1~10の整数を示す)。
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
(式[5-36]中、nは1~100の整数を示し、式[5-37]中、nは1~10の整数を示す)。
 さらに、下記の式[5-38]~式[5-40]に示される少なくとも1種の構造を有するポリシロキサンを挙げることもできる。
Figure JPOXMLDOC01-appb-C000107
(式[5-38]~式[5-40]中、R、R、R、RおよびRは、それぞれ独立して、式[5]で示される構造、水素原子、水酸基、炭素数1~10のアルキル基、アルコキシル基、脂肪族環または芳香族環を示し少なくとも1つは式[5]で示される構造を示す)。
 より具体的には、下記の式[5-41]および式[5-42]の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000108
(式[5-42]中、nは1~10の整数を示す)。
 ヒドロキシル基およびアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基またはアルコキシル基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂またはエチレン尿素-ホルムアルデヒド樹脂などが挙げられる。具体的には、アミノ基の水素原子がメチロール基またはアルコキシメチル基またはその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体、またはグリコールウリルを用いることができる。このメラミン誘導体またはベンゾグアナミン誘導体は、2量体または3量体として存在することも可能である。これらはトリアジン環1個当たり、メチロール基またはアルコキシメチル基を平均3個以上6個以下有するものが好ましい。
 このようなメラミン誘導体またはベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル社製)やサイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド社製)が挙げられる。また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリル等、パウダーリンク1174のようなメトキシメチロール化グリコールウリル等が挙げられる。
 ヒドロキシル基またはアルコキシル基を有するベンゼンまたはフェノール性化合物としては、例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼンまたは2,6-ジヒドロキシメチル-p-tert-ブチルフェノール等が挙げられる。
 より具体的には、国際公開公報WO2011/132751(2011.10.27公開)の62頁~66頁に掲載される、式[6-1]~式[6-48]で示される架橋性化合物が挙げられる。
 重合性不飽和結合を有する架橋性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパンまたはグリセリンポリグリシジルエーテルポリ(メタ)アクリレート等の重合性不飽和基を分子内に3個有する架橋性化合物、さらに、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレートまたはヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートなどの重合性不飽和基を分子内に2個有する架橋性化合物、加えて、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステルまたはN-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する架橋性化合物が挙げられる。
 加えて、下記の式[7]で示される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000109
(式[7]中、Eはシクロヘキサン環、ビシクロヘキサン環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環またはフェナントレン環からなる群から選ばれる基を示し、Eは下記の式[7a]または式[7b]から選ばれる基を示し、nは1~4の整数を示す)。
Figure JPOXMLDOC01-appb-C000110
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。また、本発明の組成物またはそれを用いた液晶配向処理剤に用いる架橋性化合物は、1種類であってもよく、2種類以上組み合わせてもよい。
 本発明の組成物またはそれを用いた液晶配向処理剤における、架橋性化合物の含有量は、すべての重合体成分100質量部に対して、0.1~150質量部であることが好ましい。架橋反応が進行し目的の効果を発現させるためには、すべての重合体成分100質量部に対して0.1~100質量部がより好ましく、特に、1~50質量部が最も好ましい。
 本発明の組成物を用いた液晶配向処理剤を用いて液晶配向膜とした際、液晶配向膜中の電荷移動を促進し、該液晶配向膜を用いた液晶セルの電荷抜けを促進させる化合物として、国際公開公報WO2011/132751(2011.10.27公開)の69頁~73頁に掲載される、式[M1]~式[M156]で示される窒素含有複素環アミン化合物を添加することが好ましい。このアミン化合物は、組成物に直接添加しても構わないが、適当な溶媒で濃度0.1質量%~10質量%、好ましくは1質量%~7質量%の溶液にしてから添加することが好ましい。この溶媒としては、上述した重合体を溶解させる有機溶媒であれば特に限定されない。
 本発明の組成物またはそれを用いた液晶配向処理剤は、本発明の効果を損なわない限り、組成物またはそれを用いた液晶配向処理剤を塗布した際の樹脂被膜または液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を用いることができる。さらに、樹脂被膜または液晶配向膜と基板との密着性を向上させる化合物などを用いることもできる。
 樹脂被膜または液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
 より具体的には、例えば、エフトップEF301、EF303、EF352(以上、トーケムプロダクツ社製)、メガファックF171、F173、R-30(以上、大日本インキ社製)、フロラードFC430、FC431(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(以上、旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、組成物または液晶配向処理剤に含有されるすべての重合体成分100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
 樹脂被膜または液晶配向膜と基板との密着性を向上させる化合物の具体例としては、以下に示す官能性シラン含有化合物やエポキシ基含有化合物が挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンまたはN,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。
 これら基板と密着させる化合物を使用する場合は、組成物またはそれを用いた液晶配向処理剤に含有されるすべての重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると組成物またはそれを用いた液晶配向処理剤の保存安定性が悪くなる場合がある。
 本発明の組成物またはそれを用いた液晶配向処理剤には、上記の貧溶媒、架橋性化合物、樹脂被膜または液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物および基板と密着させる化合物の他に、本発明の効果が損なわれない範囲であれば、樹脂被膜または液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
<樹脂被膜>
 本発明の組成物は、基板上に塗布、焼成した後、樹脂被膜として用いることができる。この際に用いる基板としては、目的とするデバイスに応じて、ガラス基板、シリコンウェハ、アクリル基板やポリカーボネート基板などのプラスチック基板なども用いることができる。組成物の塗布方法は、特に限定されないが、工業的には、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法などで行う方法が一般的である。これらは、目的に応じてこれらを用いてもよい。
 組成物を基板上に塗布した後は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により50~250℃、好ましくは80~200℃、さらに好ましくは、80~150℃で溶媒を蒸発させて樹脂被膜とすることができる。焼成後の樹脂被膜の厚みは、目的に応じて、0.01~100μmに調整することができる。
<液晶配向膜・液晶表示素子>
 本発明の組成物を用いた液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、液晶配向膜として用いることができる。また、垂直配向用途などの場合では配向処理なしでも液晶配向膜として用いることができる。この際に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板やポリカーボネート基板などのプラスチック基板なども用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO電極などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハなどの不透明な基板も使用でき、この場合の電極としてはアルミなどの光を反射する材料も使用できる。
 液晶配向処理剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法またはスプレー法などがあり、目的に応じてこれらを用いてもよい。
 液晶配向処理剤を基板上に塗布した後は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により50~250℃、好ましくは80~200℃、さらに好ましくは、80~150℃で溶媒を蒸発させて液晶配向膜とすることができる。焼成後の液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の液晶配向膜をラビングまたは偏光紫外線照射などで処理する。
 本発明の液晶表示素子は、上記した手法により、本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製して液晶表示素子としたものである。
 液晶セルの作製方法としては、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。
 さらに、本発明の液晶配向処理剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射および加熱の少なくとも一方により重合性化合物を重合させる工程を経て製造される液晶表示素子にも好ましく用いられる。ここで、活性エネルギー線としては、紫外線が好適である。紫外線としては、波長が300~400nm、好ましくは310~360nmである。加熱による重合の場合、加熱温度は40~120℃、好ましくは60~80℃である。また、紫外線の照射と加熱を同時に行ってもよい。
 上記の液晶表示素子は、PSA(Polymer Sustained Alignment)方式により、液晶分子のプレチルトを制御するものである。PSA方式では、液晶材料中に少量の光重合性化合物、例えば光重合性モノマーを混入しておき、液晶セルを組み立てた後、液晶層に所定の電圧を印加した状態で光重合性化合物に紫外線などを照射し、生成した重合体によって液晶分子のプレチルトを制御する。重合体が生成するときの液晶分子の配向状態が電圧を取り去った後においても記憶されるので、液晶層に形成される電界などを制御することにより、液晶分子のプレチルトを調整することができる。また、PSA方式では、ラビング処理を必要としないので、ラビング処理によってプレチルトを制御することが難しい垂直配向型の液晶層の形成に適している。
 すなわち、本発明の液晶表示素子は、上記した手法により本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、液晶セルを作製し、紫外線の照射および加熱の少なくとも一方により重合性化合物を重合することで液晶分子の配向を制御するものとすることができる。
 PSA方式の液晶セル作製の一例を挙げるならば、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが挙げられる。
 液晶には、熱や紫外線照射により重合する重合性化合物が混合される。重合性化合物としては、アクリレート基やメタクリレート基等の重合性不飽和基を分子内に1個以上有する化合物が挙げられる。その際、重合性化合物は、液晶成分の100質量部に対して0.01~10質量部であることが好ましく、より好ましくは0.1~5質量部である。重合性化合物が0.01質量部未満であると、重合性化合物が重合せずに液晶の配向制御できなくなり、10質量部よりも多くなると、未反応の重合性化合物が多くなって液晶表示素子の焼き付き特性が低下する。
 液晶セルを作製した後は、液晶セルに交流または直流の電圧を印加しながら、熱や紫外線を照射して重合性化合物を重合する。これにより、液晶分子の配向を制御することができる。
 加えて、本発明の液晶配向処理剤は、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加する工程を経て製造される液晶表示素子にも好ましく用いられる。ここで、活性エネルギー線としては、紫外線が好適である。紫外線としては、波長が300~400nm、好ましくは310~360nmである。加熱による重合の場合、加熱温度は40~120℃、好ましくは60~80℃である。また、紫外線の照射と加熱を同時に行ってもよい。
 活性エネルギー線および熱の少なくとも一方より重合する重合性基を含む液晶配向膜を得るためには、この重合性基を含む化合物を液晶配向処理剤中に添加する方法や、重合性基を含む重合体成分を用いる方法が挙げられる。本発明の液晶配向処理剤は、熱や紫外線の照射により、反応する2重結合部位を持つ特定化合物を含んでいるため、紫外線の照射および加熱の少なくとも一方により液晶分子の配向を制御することができる。
 液晶セル作製の一例を挙げるならば、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが挙げられる。
 液晶セルを作製した後は、液晶セルに交流または直流の電圧を印加しながら、熱や紫外線を照射することで、液晶分子の配向を制御することができる。
 以上のようにして、本発明の液晶配向処理剤を用いて作製された液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、これらに限定されるものではない。
 合成例、実施例および比較例で用いる略語は、以下の通りである。
(カルボキシル基を有するジアミン化合物)
 A1:3,5-ジアミノ安息香酸(下記の式[A1]で示されるジアミン化合物)
 A2:2,5-ジアミノ安息香酸(下記の式[A2]で示されるジアミン化合物)
Figure JPOXMLDOC01-appb-C000111
(第2のジアミン化合物)
 B1:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン(下記の式[B1]で示されるジアミン化合物)
 B2:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシメチル〕ベンゼン(下記の式[B2]で示されるジアミン化合物)
 B3:1,3-ジアミノ-4-{4-〔トランス-4-(トランス-4-n-ペンチルシクロへキシル)シクロへキシル〕フェノキシ}ベンゼン(下記の式[B3]で示されるジアミン化合物)
 B4:下記の式[B4]で示されるジアミン化合物
 B5:1,3-ジアミノ-4-オクタデシルオキシベンゼン(下記の式[B5]で示されるジアミン化合物)
 B6:下記の式[B6]で示されるジアミン化合物
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
(その他ジアミン化合物)
 C1:p-フェニレンジアミン(下記の式[C1]で示されるジアミン化合物)
 C2:m-フェニレンジアミン(下記の式[C2]で示されるジアミン化合物)
Figure JPOXMLDOC01-appb-C000115
(テトラカルボン酸成分)
 D1:1,2,3,4-シクロブタンテトラカルボン酸二無水物(下記の式[D1]で示されるテトラカルボン酸二無水物)
 D2:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物(下記の式[D2]で示されるテトラカルボン酸二無水物)
 D3:下記の式[D3]で示されるテトラカルボン酸二無水物
 D4:下記の式[D4]で示されるテトラカルボン酸二無水物
Figure JPOXMLDOC01-appb-C000116
(アルコキシシランモノマー)
 MPMS:3-メタクリロキシプロピルトリメトキシシラン(本発明の式[A2]で示されるアルコキシシランモノマー)
 UPS:3-ウレイドプロピルトリエトキシシラン(本発明の式[A2]で示されるアルコキシシランモノマー)
 TEOS:テトラエトキシシラン(本発明の式[A3]で示されるアルコキシシランモノマー)
(本発明の(A)成分(特定溶媒))
 PGME:プロピレングリコールモノメチルエーテル(本発明の式[1a-1]で示される溶媒)
 MCS:エチレングリコールモノメチルエーテル(本発明の式[1b-1]で示される溶媒)
 ECS:エチレングリコールモノエチルエーテル(本発明の式[1b-2]で示される溶媒)
 PCS:エチレングリコールモノプロピルエーテル(本発明の式[1b-3]で示される溶媒)
Figure JPOXMLDOC01-appb-C000117
(本発明の(D)成分(その他の有機溶媒))
 NMP:N-メチル-2-ピロリドン
 NEP:N-エチル-2-ピロリドン
 γ-BL:γ-ブチロラクトン
(本発明の(E)成分(その他の有機溶媒)) 
 BCS:エチレングリコールモノブチルエーテル
(ポリイミド前駆体およびポリイミドの分子量測定)
 合成例におけるポリイミド前駆体およびポリイミドの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803,KD-805)(Shodex社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000、および30,000)(東ソー社製)およびポリエチレングリコール(分子量;約12,000、4,000、および1,000)(ポリマーラボラトリー社製)。
(ポリイミドのイミド化率の測定)
 合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
「本発明の(B)成分である特定重合体(ポリイミド前駆体およびポリイミド)の合成」
<合成例1>
 D1(3.12g,15.9mmol)、A1(2.42g,15.9mmol)をPGME(49.9g)中で混合し、40℃で8時間反応させ、樹脂固形分濃度10.0質量%のポリアミド酸溶液(1)を得た。このポリアミド酸の数平均分子量は、10,100、重量平均分子量は、23,500であった。
<合成例2>
 D2(8.42g,33.7mmol)、A2(6.40g,42.1mmol)をNMP(27.2g)中で混合し、80℃で5時間反応させた後、D1(1.65g,8.41mmol)とNMP(22.2g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(40.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(6.52g)、ピリジン(5.05g)を加え、90℃で4時間反応させた。この反応溶液をメタノール(650ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(2)を得た。このポリイミドのイミド化率は55%であり、数平均分子量は12,200、重量平均分子量は33,000であった。
<合成例3>
 D2(1.82g,7.27mmol)、B1(2.30g,6.04mmol)、A1(0.92g,6.05mmol)をPGME(29.7g)中で混合し、80℃で5時間反応させた後、D1(0.95g,4.84mmol)とPGME(24.3g)を加え、40℃で8時間反応させ、樹脂固形分濃度が10.0質量%のポリアミド酸溶液(3)を得た。このポリアミド酸の数平均分子量は、12,500、重量平均分子量は、34,100であった。
<合成例4>
 D2(3.83g,15.3mmol)、B1(4.86g,12.8mmol)、A1(1.94g,12.8mmol)をNMP(20.8g)中で混合し、80℃で5時間反応させた後、D1(2.00g,10.2mmol)とNMP(17.0g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(40.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(5.16g)、ピリジン(4.00g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(650ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(4)を得た。このポリイミドのイミド化率は61%であり、数平均分子量は15,200、重量平均分子量は38,300であった。
<合成例5>
 D2(6.12g,24.5mmol)、B1(4.66g,12.2mmol)、A1(2.33g,15.3mmol)、C1(0.33g,3.05mmol)をNMP(24.2g)中で混合し、80℃で5時間反応させた後、D1(1.20g,6.12mmol)とNMP(19.8g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(40.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(5.33g)、ピリジン(4.13g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(650ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(5)を得た。このポリイミドのイミド化率は58%であり、数平均分子量は16,100、重量平均分子量は39,100であった。
<合成例6>
 D2(4.91g,19.6mmol)、B2(3.32g,8.41mmol)、A1(2.13g,14.0mmol)、B6(1.14g,5.61mmol)をNMP(21.7g)中で混合し、80℃で5時間反応させた後、D1(1.65g,8.41mmol)とNMP(17.8g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(40.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(5.50g)、ピリジン(4.25g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(650ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(6)を得た。このポリイミドのイミド化率は51%であり、数平均分子量は17,900、重量平均分子量は41,200であった。
<合成例7>
 D2(5.06g,20.2mmol)、B3(3.75g,8.67mmol)、A2(2.63g,17.3mmol)、C2(0.31g,2.87mmol)をNMP(22.2g)中で混合し、80℃で5時間反応させた後、D1(1.70g,8.67mmol)とNMP(18.2g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(40.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(5.64g)、ピリジン(4.38g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(650ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(7)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は18,900、重量平均分子量は42,900であった。
<合成例8>
 D2(6.28g,25.1mmol)、B4(2.32g,4.71mmol)、A1(4.06g,26.7mmol)をNMP(22.9g)中で混合し、80℃で6時間反応させた後、D1(1.23g,6.27mmol)とNMP(18.7g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(40.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(5.77g)、ピリジン(4.47g)を加え、80℃で3.5時間反応させた。この反応溶液をメタノール(650ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(8)を得た。このポリイミドのイミド化率は45%であり、数平均分子量は15,100、重量平均分子量は36,500であった。
<合成例9>
 D3(6.51g,29.0mmol)、B1(3.32g,8.72mmol)、A1(3.09g,20.3mmol)をNMP(38.8g)中で混合し、40℃で5時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(40.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(5.74g)、ピリジン(4.45g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(650ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(9)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は13,100、重量平均分子量は36,200であった。
<合成例10>
 D3(6.54g,29.2mmol)、B5(3.30g,8.76mmol)、B6(1.19g,5.85mmol)、A2(2.22g,14.6mmol)をNMP(39.7g)中で混合し、40℃で5時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(40.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(5.62g)、ピリジン(4.36g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(650ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(10)を得た。このポリイミドのイミド化率は55%であり、数平均分子量は12,100、重量平均分子量は32,900であった。
<合成例11>
 D4(5.17g,17.2mmol)、B2(3.40g,8.62mmol)、C2(0.47g,4.35mmol)、A2(2.40g,15.8mmol)をNMP(22.6g)中で混合し、80℃で5時間反応させた後、D1(2.25g,11.5mmol)とNMP(18.5g)を加え、40℃で5.5時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(40.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(6.45g)、ピリジン(3.35g)を加え、40℃で1.5時間反応させた。この反応溶液をメタノール(650ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(11)を得た。このポリイミドのイミド化率は59%であり、数平均分子量は19,100、重量平均分子量は40,600であった。
<合成例12>
 D4(4.06g,13.5mmol)、B1(3.09g,8.12mmol)、B6(1.65g,8.12mmol)、A1(1.64g,10.8mmol)をNMP(21.6g)中で混合し、80℃で5時間反応させた後、D1(2.65g,13.5mmol)とNMP(17.7g)を加え、40℃で5.5時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(40.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(6.33g)、ピリジン(3.27g)を加え、40℃で1.5時間反応させた。この反応溶液をメタノール(650ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(12)を得た。このポリイミドのイミド化率は55%であり、数平均分子量は17,800、重量平均分子量は39,100であった。
<合成例13>
 D1(2.85g,14.5mmol)、A1(2.21g,14.5mmol)をNMP(15.2g)中で混合し、40℃で8時間反応させ、樹脂固形分濃度25.0質量%のポリアミド酸溶液(13)を得た。このポリアミド酸の数平均分子量は、18,100、重量平均分子量は、35,200であった。
<合成例14>
 D2(4.11g,16.4mmol)、B1(5.22g,13.7mmol)、A1(2.09g,13.7mmol)をNMP(22.4g)中で混合し、80℃で5時間反応させた後、D1(2.15g,11.0mmol)とNMP(18.3g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液(14)を得た。このポリアミド酸の数平均分子量は、19,100、重量平均分子量は、45,800であった。
<合成例15>
 D2(4.02g,16.1mmol)、B1(5.09g,13.4mmol)、C1(1.45g,13.4mmol)をNMP(20.9g)中で混合し、80℃で5時間反応させた後、D1(2.10g,10.7mmol)とNMP(17.1g)を加え、40℃で5.5時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(40.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(5.40g)、ピリジン(4.18g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(650ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(15)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は16,000、重量平均分子量は39,200であった。
 本発明の特定重合体(ポリイミド前駆体およびポリイミド)を表1に示す。
Figure JPOXMLDOC01-appb-T000118
*1:ポリアミド酸。
「本発明の式[A1]で示されるアルコキシシランモノマーの合成」
<合成例16>
Figure JPOXMLDOC01-appb-C000119
 マグネチックスターラーを備えた500mlの四口フラスコに、化合物(1)(30.0g)、炭酸カリウム(25.2g)、DMF(120g)を仕込み、25℃にて臭化アリル(22.1g)を滴下した。その後、50℃にて11時間攪拌した。反応液を酢酸エチル(500g)で希釈し、有機相を純水(200g)で3回洗浄した。有機相を硫酸ナトリウムで乾燥させ、これを濾過した後、濾液を濃縮乾燥し、化合物(2)(得量:34.8g,得率:100%)を得た。
 1H-NMR(400MHz,CDCl3,δppm):0.90(3H,t,J=7.2Hz, 3H),
  0.99-1.09(2H,m)1.18-1.46(11H,m),1.84-1.89(4H,m),
  2.37-2.44(1H,m),4.51(2H,dt,J=5.4Hz,1.6Hz),
  5.26(1H,dq,J=10.6Hz,1.6Hz),5.40(1H,dq,J=17.2Hz,1.6Hz),
  6.07(1H,ddd,J=17.2Hz,10.6Hz,5.4Hz),
  6.83(2H,dd,J=8.8Hz,2.9Hz),7.10(2H,dd,J=8.8Hz,2.9Hz).
 マグネチックスターラーを備えた300mL四口フラスコに、化合物(2)(20.0g)、トルエン(120g)を仕込み、25℃にて攪拌した。次に、Karstedt触媒(白金(0)-1,1,3,3-テトラメチルジシロキサン錯体の0.1mol/Lのキシレン溶液)(700μl)を添加した後、トリメトキシシラン(12.4ml)を滴下した。25℃にて29時間攪拌後、反応液を濃縮乾燥し、粗物を得た。これを減圧蒸留し、外温:245℃/圧力:0.8torrの条件で留出させ、本発明の式[A1]で示されるアルコキシシランモノマー(A)(得量:12.2g,得率:43%)を得た。
 1H-NMR(400MHz,CDCl3,δppm):0.76-0.82(2H,m),
  0.89(3H,t,J=7.2Hz),0.98-1.08(2H,m),1.18-1.45(11H,m),
  1.84-1.93(6H,m),2.36-2.43(1H,m),3.58(9H,s),
  3.91(2H,t,J=6.8Hz),6.81(2H,d,J=8.8Hz),
  7.08(2H,d,J=8.8Hz).
「本発明の(C)成分である特定ポリシロキサンの合成」
<合成例17>
 温度計および還流管を備え付けた200mlの四つ口反応フラスコ中で、PGME(28.3g)、TEOS(32.5g)、合成例16で得られたアルコキシシランモノマー(A)(4.10g)、MPMS(7.45g)を混合して、アルコキシシランモノマーの溶液を調整した。この溶液に、あらかじめPGME(14.2g)、水(10.8g)、触媒として蓚酸(0.70g)を混合して調整しておいた溶液を、25℃にて30分かけて滴下し、さらに25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、あらかじめ調整しておいたUPS含有量が92質量%のメタノール溶液(1.20g)とPGME(0.90g)の混合溶液を加えた。さらに30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(1)を得た。
<合成例18>
 温度計および還流管を備え付けた200mlの四つ口反応フラスコ中で、MCS(28.3g)、TEOS(32.5g)、合成例16で得られたアルコキシシランモノマー(A)(4.10g)、MPMS(7.45g)を混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめMCS(14.2g)、水(10.8g)、触媒として蓚酸(0.70g)を混合して調整しておいた溶液を、25℃にて30分かけて滴下し、さらに25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、あらかじめ調整しておいたUPS含有量92質量%のメタノール溶液(1.20g)とMCS(0.90g)の混合溶液を加えた。さらに30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(2)を得た。
<合成例19>
 温度計および還流管を備え付けた200mlの四つ口反応フラスコ中で、ECS(28.3g)、TEOS(32.5g)、合成例16で得られたアルコキシシランモノマー(A)(4.10g)、MPMS(7.45g)を混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめECS(14.2g)、水(10.8g)、触媒として蓚酸(0.70g)を混合して調整しておいた溶液を、25℃にて30分かけて滴下し、さらに25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、あらかじめ調整しておいたUPS含有量92質量%のメタノール溶液(1.20g)とECS(0.90g)の混合溶液を加えた。さらに30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(3)を得た。
<合成例20>
 温度計および還流管を備え付けた200mlの四つ口反応フラスコ中で、PCS(28.3g)、TEOS(32.5g)、合成例16で得られたアルコキシシランモノマー(A)(4.10g)、MPMS(7.45g)を混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめPCS(14.2g)、水(10.8g)、触媒として蓚酸(0.70g)を混合して調整しておいた溶液を、25℃にて30分かけて滴下し、さらに25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、あらかじめ調整しておいたUPS含有量92質量%のメタノール溶液(1.20g)とPCS(0.90g)の混合溶液を加えた。さらに30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(4)を得た。
<合成例21>
 温度計および還流管を備え付けた200mlの四つ口反応フラスコ中で、PGME(25.4g)、TEOS(20.0g)、合成例16で得られたアルコキシシランモノマー(A)(8.20g)、MPMS(19.9g)を混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめPGME(12.7g)、水(10.8g)、触媒として蓚酸(1.10g)を混合して調整しておいた溶液を、25℃にて30分かけて滴下し、さらに25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、あらかじめ調整しておいたUPS含有量92質量%のメタノール溶液(1.20g)とPGME(0.90g)の混合溶液を加えた。さらに30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(5)を得た。 
<合成例22>
 温度計および還流管を備え付けた200mlの四つ口反応フラスコ中で、PGME(29.2g)、TEOS(38.8g)、合成例16で得られたアルコキシシランモノマー(A)(4.10g)を混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめPGME(14.6g)、水(10.8g)、触媒として蓚酸(0.50g)を混合して調整しておいた溶液を、25℃にて30分かけて滴下し、さらに25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、あらかじめ調整しておいたUPS含有量92質量%のメタノール溶液(1.20g)とPGME(0.90g)の混合溶液を加えた。さらに30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(6)を得た。 
<合成例23>
 温度計および還流管を備え付けた200mlの四つ口反応フラスコ中で、PGME(31.6g)、TEOS(41.7g)を混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめPGME(15.8g)、水(10.8g)、触媒として蓚酸(0.20g)を混合した溶液を、25℃にて30分かけて滴下し、さらに25℃にて室温で30分間撹拌した。その後、オイルバスを用いて加熱して60分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(7)を得た。 
 本発明の特定ポリシロキサン(ポリシロキサン溶液)を表2に示す。
Figure JPOXMLDOC01-appb-T000120
「本発明の組成物および液晶配向処理剤の製造」
 下記する実施例1~実施例27、比較例1~比較例7では、組成物の製造例を記載する。また、これら組成物は液晶配向処理剤の評価のためにも使用される。
 本発明の組成物および液晶配向処理剤を表3~表5に示す。
 本発明の実施例および比較例で得られた組成物または液晶配向処理剤を用い、「組成物および液晶配向処理剤の塗布性の評価」、「液晶配向処理剤のインクジェット塗布性の評価」、「液晶セルの作製(通常セル)」、「液晶配向性の評価(通常セル)」、「液晶セルの作製および液晶配向性の評価(PSAセル)」および「電圧保持率の評価」を行った。その条件は、下記のとおりである。
「組成物および液晶配向処理剤の塗布性の評価」
 本発明の実施例および比較例で得られた組成物を細孔径1μmのメンブランフィルタで加圧濾過した溶液を用いて、塗布性の評価を行った。塗布には、スピンコーター(1H-D7)(ミカサ社製)を用いた。塗布は、純水およびIPA(イソプロピルアルコール)にて洗浄を行った30×40mmITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)のITO面にスピンコートし、塗布から仮乾燥までの時間が30秒、仮乾燥がホットプレート上にて80℃で5分間の条件で行った。
 そして、得られた樹脂被膜のピンホールの評価を行った。樹脂被膜のピンホールの評価は、樹脂被膜をナトリウムランプの下で目視観察することで行った。具体的には、樹脂被膜上に確認されたピンホールの数を数え、ピンホールの数が少ないものほど、本評価に優れるとした。
 なお、本発明の実施例および比較例で得られた組成物は、液晶配向処理剤に用いることができる。そのため、本実施例および比較例で得られた樹脂被膜の塗布性の結果は、液晶配向膜の印刷性の結果ともした。
 表6~表8に実施例および比較例で得られた樹脂被膜(液晶配向膜)のピンホールの数を示す。
「液晶配向処理剤のインクジェット塗布性の評価」
 本発明の実施例9で得られた液晶配向処理剤(9)および実施例16で得られた液晶配向処理剤(16)を細孔径1μmのメンブランフィルタで加圧濾過した溶液を用いて、インクジェット塗布性の評価を行った。インクジェット塗布機には、HIS-200(日立プラントテクノロジー社製)を用いた。塗布は、純水およびIPA(イソプロピルアルコール)にて洗浄を行ったITO(酸化インジウムスズ)蒸着基板上に、塗布面積が70×70mm、ノズルピッチが0.423mm、スキャンピッチが0.5mm、塗布速度が40mm/秒、塗布から仮乾燥までの時間が60秒、仮乾燥がホットプレート上にて70℃で5分間の条件で行った。
 得られた液晶配向膜のピンホールの評価を「組成物および液晶配向処理剤の塗布性の評価」と同様の条件で行った。
 表6および表7に実施例で得られた液晶配向膜のピンホールの数を示す。
「液晶セルの作製(通常セル)」
 本発明の実施例および比較例で得られた液晶配向処理剤を細孔径1μmのメンブランフィルタで加圧濾過した溶液を用いて、純水およびIPA(イソプロピルアルコール)にて洗浄を行った30×40mmITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)のITO面にスピンコートし、ホットプレート上にて100℃で5分間加熱処理をして膜厚が100nmのポリイミド液晶配向膜付きのITO基板を得た。このITO基板の塗膜面をロール径が120mmのラビング装置でレーヨン布を用いて、ロール回転数が1000rpm、ロール進行速度が50mm/sec、押し込み量が0.1mmの条件でラビング処理した。
 得られた液晶配向膜付きのITO基板を2枚用意し、液晶配向膜面を内側にして6μmのスペーサー挟んで組み合わせ、シール剤(XN-1500T)(三井化学社製)を印刷した。次いで、他方の基板と液晶配向膜面が向き合うようにして貼り合わせた後、シール剤を熱循環型クリーンオーブン中にて120℃で90分間加熱処理をすることにより硬化して空セルを作製した。この空セルに減圧注入法によって、液晶を注入し、注入口を封止して液晶セル(通常セル)を得た。
 なお、実施例1~実施例3で得られた液晶配向処理剤(1)~液晶配向処理剤(3)、比較例1~比較例3で得られた液晶配向処理剤(28)~液晶配向処理剤(30)を用いた液晶セルには、液晶にネマティック液晶(MLC-2003)(メルク・ジャパン社製)を用いた。
 また、実施例4~実施例8で得られた液晶配向処理剤(4)~液晶配向処理剤(8)、実施例10~実施例15で得られた液晶配向処理剤(10)~液晶配向処理剤(15)、実施例17~実施例27で得られた液晶配向処理剤(17)~液晶配向処理剤(27)および比較例4~比較例7で得られた液晶配向処理剤(31)~液晶配向処理剤(34)を用いた液晶セルには、液晶にネマティック液晶(MLC-6608)(メルク・ジャパン社製)を用いた。
「液晶配向性の評価(通常セル)」
 上記の「液晶セルの作製(通常セル)」で得られた液晶セルを用いて、液晶配向性の評価を行った。液晶配向性は、液晶セルを偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)で観察し、配向欠陥の有無を確認した。具体的には、配向欠陥が見られなかったものを、本評価に優れるとした(表6~表8中に、良好と示した)。
 表6~表8に実施例および比較例で得られた液晶配向性の結果を示す。
「液晶セルの作製および液晶配向性の評価(PSAセル)」
 実施例7で得られた液晶配向処理剤(7)、実施例12で得られた液晶配向処理剤(12)、実施例14で得られた液晶配向処理剤(14)および実施例26で得られた液晶配向処理剤(26)を細孔径1μmのメンブランフィルタで加圧濾過した溶液を用いて、純水およびIPA(イソプロピルアルコール)にて洗浄を行った中心に10×10mmのパターン間隔20μmのITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)と中心に10×40mmのITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)のITO面にスピンコートし、ホットプレート上にて100℃で5分間加熱処理をして膜厚が100nmのポリイミド塗膜を得た。塗膜面を純水にて洗浄した後、熱循環型クリーンオーブン中にて100℃で15分間加熱処理をして、液晶配向膜付き基板を得た。
 この液晶配向膜付き基板を、液晶配向膜面を内側にして、6μmのスペーサー挟んで組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法によって、ネマティック液晶(MLC-6608)(メルク・ジャパン社製)に、下記の式で示される重合性化合物(1)を、ネマティック液晶(MLC-6608)の100質量%に対して重合性化合物(1)を0.3質量%混合した液晶を注入し、注入口を封止して、液晶セルを得た。
Figure JPOXMLDOC01-appb-C000121
 得られた液晶セルに、交流5Vの電圧を印加しながら、照度60mWのメタルハライドランプを用いて、350nm以下の波長をカットし、365nm換算で20J/cmの紫外線照射を行い、液晶の配向方向が制御された液晶セル(PSAセル)を得た。液晶セルに紫外線を照射している際の照射装置内の温度は、50℃であった。
 この液晶セルの紫外線照射前と紫外線照射後の液晶の応答速度を測定した。応答速度は、透過率90%から透過率10%までのT90→T10を測定した。
 実施例で得られたPSAセルは、紫外線照射前の液晶セルに比べて、紫外線照射後の液晶セルの応答速度が早くなったことから、液晶の配向方向が制御されたことを確認した。また、いずれの液晶セルとも、偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)での観察により、液晶は均一に配向していることを確認した。
「電圧保持率の評価」
 上記の「液晶セルの作製(通常セル)」で得られた液晶セルに、80℃の温度下で1Vの電圧を60μs印加し、16.67ms後および50ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率(VHRともいう)として計算した。なお、測定は、電圧保持率測定装置(VHR-1)(東陽テクニカ社製)を使用し、Voltage:±1V、Pulse Width:60μs、Flame Period:16.67msまたは50msの設定で行った。
 表9に実施例および比較例で得られた電圧保持率の結果を示す。
<実施例1>
 合成例1の合成手法で得られた樹脂固形分濃度10.0質量%のポリアミド酸溶液(1)(12.0g)に、PGME(10.5g)を加え、25℃にて1時間攪拌した。この溶液に、合成例23の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(7)(2.50g)を加え、25℃にて2時間攪拌して、組成物(1)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(1)は、液晶配向処理剤(1)としても評価に用いた。
 得られた組成物(1)および液晶配向処理剤(1)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<実施例2>
 合成例1の合成手法で得られた樹脂固形分濃度10.0質量%のポリアミド酸溶液(1)(10.5g)に、PGME(10.5g)、γ-BL(1.27g)を加え、25℃にて1時間攪拌した。この溶液に、合成例23の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(7)(4.71g)を加え、25℃にて2時間攪拌して、組成物(2)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(2)は、液晶配向処理剤(2)としても評価に用いた。
 得られた組成物(2)および液晶配向処理剤(2)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<実施例3>
 合成例2の合成手法で得られたポリイミド粉末(2)(1.34g)に、PGME(28.0g)、NMP(4.20g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例23の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(7)(11.2g)を加え、25℃にて2時間攪拌して、組成物(3)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(3)は、液晶配向処理剤(3)としても評価に用いた。
 得られた組成物(3)および液晶配向処理剤(3)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<実施例4>
 合成例3の合成手法で得られた樹脂固形分濃度10.0質量%のポリアミド酸溶液(3)(13.5g)に、PGME(11.8g)を加え、25℃にて1時間攪拌した。この溶液に、合成例21の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(5)(2.81g)を加え、25℃にて2時間攪拌して、組成物(4)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(4)は、液晶配向処理剤(4)としても評価に用いた。
 得られた組成物(4)および液晶配向処理剤(4)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」、「液晶配向性の評価(通常セル)」および「電圧保持率の評価」を行った。
<実施例5>
 合成例3の合成手法で得られた樹脂固形分濃度10.0質量%のポリアミド酸溶液(3)(8.50g)に、PGME(10.1g)、γ-BL(2.66g)を加え、25℃にて1時間攪拌した。この溶液に、合成例17の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(1)(7.08g)を加え、25℃にて2時間攪拌して、組成物(5)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(5)は、液晶配向処理剤(5)としても評価に用いた。
 得られた組成物(5)および液晶配向処理剤(5)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<実施例6>
 合成例3の合成手法で得られた樹脂固形分濃度10.0質量%のポリアミド酸溶液(3)(15.0g)に、PGME(3.56g)、γ-BL(2.61g)、BCS(5.22g)を加え、25℃にて1時間攪拌した。この溶液に、合成例21の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(5)(1.39g)を加え、25℃にて2時間攪拌して、組成物(6)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(6)は、液晶配向処理剤(6)としても評価に用いた。
 得られた組成物(6)および液晶配向処理剤(6)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<実施例7>
 合成例4の合成手法で得られたポリイミド粉末(4)(1.65g)に、PGME(35.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例17の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(1)(9.17g)を加え、25℃にて2時間攪拌して、組成物(7)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(7)は、液晶配向処理剤(7)としても評価に用いた。
 得られた組成物(7)および液晶配向処理剤(7)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」、「液晶配向性の評価(通常セル)」、「液晶セルの作製および液晶配向性の評価(PSAセル)」および「電圧保持率の評価」を行った。
<実施例8>
 合成例4の合成手法で得られたポリイミド粉末(4)(1.33g)に、PCS(23.6g)、γ-BL(8.33g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例20の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(4)(11.1g)を加え、25℃にて2時間攪拌して、組成物(8)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(8)は、液晶配向処理剤(8)としても評価に用いた。
 得られた組成物(8)および液晶配向処理剤(8)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<実施例9>
 合成例4の合成手法で得られたポリイミド粉末(4)(1.00g)に、PCS(36.8g)、γ-BL(11.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例20の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(4)(8.33g)を加え、25℃にて2時間攪拌して、組成物(9)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(9)は、液晶配向処理剤(9)としても評価に用いた。
 得られた液晶配向処理剤(9)を用いて、上述した条件にて、「液晶配向処理剤のインクジェット塗布性の評価」を行った。
<実施例10>
 合成例4の合成手法で得られたポリイミド粉末(4)(1.23g)に、PCS(14.7g)、γ-BL(4.28g)、BCS(12.9g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例20の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(4)(12.5g)を加え、25℃にて2時間攪拌して、組成物(10)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(10)は、液晶配向処理剤(10)としても評価に用いた。
 得られた組成物(10)および液晶配向処理剤(10)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<実施例11>
 合成例5の合成手法で得られたポリイミド粉末(5)(2.10g)に、MCS(20.8g)、NEP(6.17g)、BCS(10.3g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例18の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(2)(4.38g)を加え、25℃にて2時間攪拌して、組成物(11)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(11)は、液晶配向処理剤(11)としても評価に用いた。
 得られた組成物(11)および液晶配向処理剤(11)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<実施例12>
 合成例5の合成手法で得られたポリイミド粉末(5)(2.55g)に、PGME(24.6g)、γ-BL(13.3g)、BCS(4.44g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例22の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(6)(2.36g)を加え、25℃にて2時間攪拌して、組成物(12)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(12)は、液晶配向処理剤(12)としても評価に用いた。
 得られた組成物(12)および液晶配向処理剤(12)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」、「液晶配向性の評価(通常セル)」および「液晶セルの作製および液晶配向性の評価(PSAセル)」を行った。
<実施例13>
 合成例6の合成手法で得られたポリイミド粉末(6)(1.35g)に、PGME(32.4g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例21の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(5)(11.3g)を加え、25℃にて2時間攪拌して、組成物(13)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(13)は、液晶配向処理剤(13)としても評価に用いた。
 得られた組成物(13)および液晶配向処理剤(13)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<実施例14>
 合成例6の合成手法で得られたポリイミド粉末(6)(2.10g)に、PGME(33.2g)、γ-BL(4.11g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例23の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(7)(4.38g)を加え、25℃にて2時間攪拌して、組成物(14)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(14)は、液晶配向処理剤(14)としても評価に用いた。
 得られた組成物(14)および液晶配向処理剤(14)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」、「液晶配向性の評価(通常セル)」および「液晶セルの作製および液晶配向性の評価(PSAセル)」を行った。
<実施例15>
 合成例6の合成手法で得られたポリイミド粉末(6)(1.75g)に、PCS(21.9g)、NEP(7.83g)、BCS(3.92g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例20の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(4)(6.25g)を加え、25℃にて2時間攪拌して、組成物(15)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(15)は、液晶配向処理剤(15)としても評価に用いた。
 得られた組成物(15)および液晶配向処理剤(15)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<実施例16>
 合成例6の合成手法で得られたポリイミド粉末(6)(1.05g)に、PCS(25.7g)、NEP(8.27g)、BCS(4.14g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例20の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(4)(3.75g)を加え、25℃にて2時間攪拌して、組成物(16)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(16)は、液晶配向処理剤(16)としても評価に用いた。
 得られた液晶配向処理剤(16)を用いて、上述した条件にて、「液晶配向処理剤のインクジェット塗布性の評価」を行った。
<実施例17>
 合成例7の合成手法で得られたポリイミド粉末(7)(2.11g)に、ECS(20.9g)、NMP(8.26g)、BCS(8.26g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例19の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(3)(4.40g)を加え、25℃にて2時間攪拌して、組成物(17)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(17)は、液晶配向処理剤(17)としても評価に用いた。
 得られた組成物(17)および液晶配向処理剤(17)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<実施例18>
 合成例8の合成手法で得られたポリイミド粉末(8)(2.55g)に、PGME(37.9g)、γ-BL(4.44g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例22の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(6)(2.36g)を加え、25℃にて2時間攪拌して、組成物(18)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(18)は、液晶配向処理剤(18)としても評価に用いた。
 得られた組成物(18)および液晶配向処理剤(18)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<実施例19>
 合成例8の合成手法で得られたポリイミド粉末(8)(1.75g)に、MCS(27.8g)、γ-BL(1.96g)、BCS(3.92g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例18の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(2)(6.25g)を加え、25℃にて2時間攪拌して、組成物(19)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(19)は、液晶配向処理剤(19)としても評価に用いた。
 得られた組成物(19)および液晶配向処理剤(19)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<実施例20>
 合成例9の合成手法で得られたポリイミド粉末(9)(1.35g)に、PGME(26.5g)、γ-BL(3.85g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例21の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(5)(9.20g)を加え、25℃にて2時間攪拌して、組成物(20)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(20)は、液晶配向処理剤(20)としても評価に用いた。
 得られた組成物(20)および液晶配向処理剤(20)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<実施例21>
 合成例9の合成手法で得られたポリイミド粉末(9)(1.77g)に、PCS(22.2g)、γ-BL(7.92g)、BCS(3.96g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例20の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(4)(6.32g)を加え、25℃にて2時間攪拌して、組成物(21)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(21)は、液晶配向処理剤(21)としても評価に用いた。
 得られた組成物(21)および液晶配向処理剤(21)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<実施例22>
 合成例10の合成手法で得られたポリイミド粉末(10)(1.65g)に、PCS(23.3g)、NMP(9.94g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例20の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(4)(7.40g)を加え、25℃にて2時間攪拌して、組成物(22)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(22)は、液晶配向処理剤(22)としても評価に用いた。
 得られた組成物(22)および液晶配向処理剤(22)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<実施例23>
 合成例11の合成手法で得られたポリイミド粉末(11)(1.95g)に、PGME(30.8g)、γ-BL(3.82g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例17の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(1)(4.06g)を加え、25℃にて2時間攪拌して、組成物(23)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(23)は、液晶配向処理剤(23)としても評価に用いた。
 得られた組成物(23)および液晶配向処理剤(23)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<実施例24>
 合成例11の合成手法で得られたポリイミド粉末(11)(1.90g)に、PGME(32.3g)、γ-BL(4.25g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例22の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(6)(6.79g)を加え、25℃にて2時間攪拌して、組成物(24)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(24)は、液晶配向処理剤(24)としても評価に用いた。
 得られた組成物(24)および液晶配向処理剤(24)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<実施例25>
 合成例11の合成手法で得られたポリイミド粉末(11)(2.23g)に、PCS(25.4g)、γ-BL(3.88g)、BCS(7.76g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例20の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(4)(2.06g)を加え、25℃にて2時間攪拌して、組成物(25)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(25)は、液晶配向処理剤(25)としても評価に用いた。
 得られた組成物(25)および液晶配向処理剤(25)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<実施例26>
 合成例12の合成手法で得られたポリイミド粉末(12)(1.22g)に、PGME(25.5g)、γ-BL(3.82g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例21の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(5)(10.2g)を加え、25℃にて2時間攪拌して、組成物(26)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(26)は、液晶配向処理剤(26)としても評価に用いた。
 得られた組成物(26)および液晶配向処理剤(26)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」、「液晶配向性の評価(通常セル)」および「液晶セルの作製および液晶配向性の評価(PSAセル)」を行った。
<実施例27>
 合成例12の合成手法で得られたポリイミド粉末(12)(2.50g)に、MCS(28.4g)、γ-BL(2.18g)、BCS(10.9g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例18の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(2)(2.31g)を加え、25℃にて2時間攪拌して、組成物(27)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(27)は、液晶配向処理剤(27)としても評価に用いた。
 得られた組成物(27)および液晶配向処理剤(27)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<比較例1>
 合成例13の合成手法で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(13)(7.70g)に、NMP(28.4g)を加え、25℃にて1時間攪拌した。この溶液に、合成例23の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(7)(4.01g)を加えて25℃にて2時間攪拌して、組成物(28)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(28)は、液晶配向処理剤(28)としても評価に用いた。
 得られた組成物(28)および液晶配向処理剤(28)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<比較例2>
 合成例13の合成手法で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(13)(7.75g)に、γ-BL(28.6g)を加え、25℃にて1時間攪拌した。この溶液に、合成例23の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(7)(4.04g)を加えて25℃にて2時間攪拌して、組成物(29)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(29)は、液晶配向処理剤(29)としても評価に用いた。
 得られた組成物(29)および液晶配向処理剤(29)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<比較例3>
 合成例13の合成手法で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(13)(6.50g)に、NMP(17.6g)、BCS(6.36g)を加え、25℃にて1時間攪拌した。この溶液に、合成例23の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(7)(3.39g)を加えて25℃にて2時間攪拌して、組成物(30)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(30)は、液晶配向処理剤(30)としても評価に用いた。
 得られた組成物(30)および液晶配向処理剤(30)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<比較例4>
 合成例14の合成手法で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(14)(8.12g)に、NMP(29.9g)を加え、25℃にて1時間攪拌した。この溶液に、合成例21の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(5)(4.23g)を加えて25℃にて2時間攪拌して、組成物(31)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(31)は、液晶配向処理剤(31)としても評価に用いた。
 得られた組成物(31)および液晶配向処理剤(31)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」、「液晶配向性の評価(通常セル)」および「電圧保持率の評価」を行った。
<比較例5>
 合成例14の合成手法で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(14)(8.10g)に、NMP(21.9g)、BCS(7.93g)を加え、25℃にて1時間攪拌した。この溶液に、合成例21の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(5)(4.22g)を加えて25℃にて2時間攪拌して、組成物(32)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(32)は、液晶配向処理剤(32)としても評価に用いた。
 得られた組成物(32)および液晶配向処理剤(32)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」および「液晶配向性の評価(通常セル)」を行った。
<比較例6>
 合成例4の合成手法で得られたポリイミド粉末(4)(1.65g)に、NMP(35.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、合成例17の合成手法で得られたSiO換算濃度が12質量%のポリシロキサン溶液(1)(9.17g)を加え、25℃にて2時間攪拌して、組成物(33)を得た。この組成物に、濁りや析出物の発生などの異常は見られず、均一な溶液であることが確認された。なお、この組成物(33)は、液晶配向処理剤(33)としても評価に用いた。
 得られた組成物(33)および液晶配向処理剤(33)を用いて、上述した条件にて、「組成物および液晶配向処理剤の塗布性の評価」、「液晶セルの作製(通常セル)」、「液晶配向性の評価(通常セル)」および「電圧保持率の評価」を行った。
<比較例7>
 合成例15の合成手法で得られたポリイミド粉末(15)(1.55g)に、PGME(32.9g)を加え、70℃にて24時間攪拌した。溶液中にポリイミド粉末の溶け残りが見られため、さらに70℃にて12時間攪拌したが、ポリイミド粉末を完全に溶解することができなかった。
 そのため、組成物(34)および液晶配向処理剤(34)を作製することができなかった。
Figure JPOXMLDOC01-appb-T000122
*2:組成物(液晶配向処理剤)中の重合体の占める割合を示す。
Figure JPOXMLDOC01-appb-T000123
*3:組成物(液晶配向処理剤)中の重合体の占める割合を示す。
Figure JPOXMLDOC01-appb-T000124
*4:組成物(液晶配向処理剤)中の重合体の占める割合を示す。
*5:ポリシロキサン溶液に含まれる溶媒成分を示す。
Figure JPOXMLDOC01-appb-T000125
Figure JPOXMLDOC01-appb-T000126
Figure JPOXMLDOC01-appb-T000127
*6:ポリイミド粉末が完全に溶解せず、組成物および液晶配向処理剤を調整することができなかった。
*7:配向欠陥が、15個~24個確認された。
*8:配向欠陥が、25個以上確認された。
Figure JPOXMLDOC01-appb-T000128
 上記の結果からわかるように、本発明の実施例の組成物は、比較例の組成物に比べて、基板に塗布をした際に、はじきに伴うピンホールが発生しない均一な塗膜性を示した。具体的には、同一のポリイミド前駆体または溶媒可溶型ポリイミドを用いた組成物での比較、すなわち、実施例1と比較例1、比較例2または比較例3との比較、実施例4と比較例4または比較例5との比較、および実施例7と比較例6との比較である。
 また、本発明の組成物を用いた液晶配向処理剤から得られた液晶配向膜も同様の結果が得られた。具体的には、同一のポリイミド前駆体または溶媒可溶型ポリイミドを用いた液晶配向処理剤での比較、すなわち、実施例1と比較例1、比較例2または比較例3との比較、実施例4と比較例4または比較例5との比較、および実施例7と比較例6との比較である。特に、側鎖を有するジアミン化合物をジアミン成分に使用して得られるポリイミド前駆体または溶媒可溶型ポリイミドを用いた液晶配向処理剤であっても、上記と同様に、ピンホールが発生しない均一な塗膜性を示した。
 さらに、液晶セルの液晶配向性の評価において、本発明の組成物を用いた液晶配向処理剤から得られた液晶セルは、比較例の組成物を用いた液晶配向処理剤から得られた液晶セルに比べて、ピンホールによる配向欠陥が見られず、均一な液晶配向性が得られた。具体的には、同一のポリイミド前駆体または溶媒可溶型ポリイミドを用いた液晶配向処理剤での比較、すなわち、実施例1と比較例1、比較例2または比較例3との比較、実施例4と比較例4または比較例5との比較、および実施例7と比較例6との比較である。
 加えて、電圧保持率の評価において、本発明の組成物を用いた液晶配向処理剤から得られた液晶セルは、比較例の組成物を用いた液晶配向処理剤から得られた液晶セルに比べて、高い値を示した。具体的には、同一のポリイミド前駆体または溶媒可溶型ポリイミドを用いた液晶配向処理剤での比較、すなわち、実施例4と比較例4との比較、および実施例7と比較例6との比較である。
 本発明の組成物は、基板に塗布をする際に、はじきに伴うピンホールが発生しない均一な塗膜性を示す樹脂被膜を得ることができる。また、本発明の組成物を用いた液晶配向処理剤でも、同様の結果を得ることができる。
 加えて、本発明の液晶配向処理剤は、はじきに伴うピンホールによる配向欠陥が発生しない液晶セルを得ることができる。特に、側鎖を有するジアミン化合物をジアミン成分に使用して得られるポリイミド前駆体または溶媒可溶型ポリイミドを用いた液晶配向処理剤であっても、同様の結果を得ることができる。
 また、本発明の液晶配向処理剤は、液晶の透過状態(透明状態ともいう)と散乱状態との間でスイッチングを行う液晶表示素子、すなわち、高分子分散型液晶(PDLC(Polymer Dispersed Liquid Crystal))や高分子ネットワーク液晶(PNLC(Polymer Network Liquid Crystal))を用いた液晶表示素子に対しても有用である。
 特に、電圧無印加時は透明状態となり、電圧印加時に散乱状態となるリバース型の素子に対して有用である。このリバース型の素子は、ガラス基板や、さらには、PET(ポリエチレンテレフタレート)やアクリル基板などのプラスチック基板を用いた表示を目的とする液晶ディスプレイ、さらには、光の透過と遮断を制御する調光窓、光シャッター素子、車などの乗り物の調光窓および透明ディスプレイの裏板などに対して、有用となる。
 さらに、本発明の液晶配向処理剤は、低温での焼成でも、高い電圧保持率を発現することができる。
 よって、本発明の液晶配向処理剤から得られた液晶配向膜を有する液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用でき、TN素子、STN素子、TFT液晶素子、特に垂直配向型の液晶表示素子に有用である。
 さらに、本発明の液晶配向処理剤から得られた液晶配向膜は、液晶表示素子を作製する際に、紫外線を照射する必要がある液晶表示素子に対しても有用である。すなわち、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子、さらには、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方で重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される液晶表示素子に対しても有用である。

Claims (21)

  1.  下記の(A)成分、(B)成分および(C)成分を含有することを特徴とする組成物。
     (A)成分:下記の式[1a]または式[1b]から選ばれる少なくとも1種の溶媒。
    Figure JPOXMLDOC01-appb-C000001
    (式[1a]中、Xは炭素数1~3のアルキル基を示し、式[1b]中、Xは炭素数1~3のアルキル基を示す)。
     (B)成分:カルボキシル基を有するジアミン化合物を含むジアミン成分とテトラカルボン酸二無水物成分とを反応させて得られるポリイミド前駆体またはポリイミドから選ばれる少なくとも1種の重合体。
     (C)成分:下記の式[A1]、式[A2]または式[A3]で示されるアルコキシシランのいずれか1種を含むアルコキシシランを重縮合させて得られるポリシロキサン。
    Figure JPOXMLDOC01-appb-C000002
    (式[A1]中、Aは脂肪族炭化水素、ベンゼン環、シクロヘキサン環、複素環またはステロイド構造を有する炭素数8~35の有機基を示し、Aはそれぞれ水素原子または炭素数1~5のアルキル基を示し、Aはそれぞれ炭素数1~5のアルキル基を示し、mは1または2の整数を示し、nは0~2の整数を示し、pは0~3の整数を示す。ただし、m+n+pは4である)。
    Figure JPOXMLDOC01-appb-C000003
    (式[A2]中、Bはビニル基、エポキシ基、アミノ基、メルカプト基、イソシアネート基、メタクリル基、アクリル基、ウレイド基またはシンナモイル基を有する炭素数2~12の有機基を示し、Bはそれぞれ水素原子または炭素数1~5のアルキル基を示し、Bはそれぞれ炭素数1~5のアルキル基を示し、mは1または2の整数を示し、nは0~2の整数を示し、pは0~3の整数を示す。ただし、m+n+pは4である)。
    Figure JPOXMLDOC01-appb-C000004
    (式[A3]中、Dはそれぞれ水素原子または炭素数1~5のアルキル基を示し、Dは炭素数1~5のアルキル基を示し、nは0~3の整数を示す)。
  2.  前記(A)成分が、組成物に含まれる溶媒全体の50~100質量%であることを特徴とする請求項1に記載の組成物。
  3.  前記(B)成分のカルボキシル基を有するジアミン化合物が、下記の式[2]で示される構造を有するジアミン化合物であることを特徴とする請求項1または請求項2に記載の組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式[2]中、aは0~4の整数を示す)。
  4. 前記(B)成分のカルボキシル基を有するジアミン化合物が、下記の式[2a]で示される構造のジアミン化合物であることを特徴とする請求項1または請求項2に記載の組成物。
    Figure JPOXMLDOC01-appb-C000006
    (式[2a]中、aは0~4の整数を示し、nは1~4の整数を示す)。
  5.  前記カルボキシル基を有するジアミン化合物が、前記(B)成分に用いられる全ジアミン中の20モル%~100モル%であることを特徴とする請求項3または請求項4に記載の組成物。
  6.  前記(B)成分のジアミン成分に、下記の式[2b]で示される構造から選ばれる少なくとも1種のジアミン化合物を含むことを特徴とする請求項1~請求項5のいずれか一項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000007
    (式[2b]中、Yは下記の式[2b-1]、式[2b-2]、式[2b-3]、式[2b-4]または式[2b-5]の構造を示し、mは1~4の整数を示す)。
    Figure JPOXMLDOC01-appb-C000008
    (式[2b-1]中、aは0~4の整数を示し、式[2b-2]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-を示し、Yは単結合または-(CH-(bは1~15の整数である)を示し、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-を示し、Yはベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基、またはステロイド骨格を有する炭素数12~25の2価の有機基を示し、前記環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、Yはベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、nは0~4の整数を示し、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~18のフッ素含有アルコキシル基を示し、式[2b-3]中、Yは炭素数8~22のアルキル基を示し、式[2b-4]中、YおよびYはそれぞれ独立して炭素数1~6の炭化水素基を示し、式[2b-5]中、Y10は炭素数1~8のアルキル基を示す)。
  7.  前記(B)成分のテトラカルボン酸二無水物成分が、下記の式[3]で示される化合物であることを特徴とする請求項1~請求項6のいずれか一項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000009
    (式[3]中、Zは下記の式[3a]~式[3j]から選ばれる少なくとも1種の構造の基である)。
    Figure JPOXMLDOC01-appb-C000010
    (式[3a]中、Z~Zは水素原子、メチル基、塩素原子またはベンゼン環を示し、それぞれ同じであっても異なってもよく、式[3g]中、ZおよびZは水素原子またはメチル基を示し、それぞれ同じであっても異なってもよい)。
  8.  前記(C)成分の式[A2]で示されるアルコキシシランが、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、ジメトキシメチルビニルシラン、トリエトキシビニルシラン、ビニルトリメトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、3-(トリエトキシシリル)プロピルメタクリレート、3-(トリメトキシシリル)プロピルアクリレートまたは3-(トリメトキシシリル)プロピルメタクリレートから選ばれる少なくとも1種であることを特徴とする請求項1~請求項7のいずれか一項に記載の組成物。
  9.  前記(C)成分の式[A2]で示されるアルコキシシランが、3-グリシジルオキシプロピル(ジメトキシ)メチルシラン、3-グリシジルオキシプロピル(ジエトキシ)メチルシラン、3-グリシジルオキシプロピルトリメトキシシランまたは2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランから選ばれる少なくとも1種であることを特徴とする請求項1~請求項7のいずれか一項に記載の組成物。
  10.  前記(C)成分のポリシロキサンが、前記式[A1]、式[A2]および式[A3]で示されるアルコキシシランを重縮合させて得られるポリシロキサンであることを特徴とする請求項1~請求項9のいずれか一項に記載の組成物。
  11.  (D)成分として、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンまたはγ-ブチロラクトンの少なくとも1つの溶媒を含有することを特徴とする請求項1~請求項10のいずれか一項に記載の組成物。
  12.  (E)成分として、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールイソプロピルエーテルまたはジエチレングリコールモノブチルエーテルの少なくとも1つの溶媒を含有することを特徴とする請求項1~請求項11のいずれか一項に記載の組成物。
  13.  請求項1~請求項12のいずれか一項に記載の組成物から得られることを特徴とする樹脂被膜。
  14.  請求項1~請求項12のいずれか一項に記載の組成物から得られることを特徴とする液晶配向処理剤。
  15.  請求項14に記載の液晶配向処理剤を用いて得られることを特徴とする液晶配向膜。
  16.  請求項14に記載の液晶配向処理剤を用いて、インクジェット法にて得られることを特徴とする液晶配向膜。
  17.  請求項15または請求項16に記載の液晶配向膜を有することを特徴とする液晶表示素子。
  18.  電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする請求項15または請求項16に記載の液晶配向膜。
  19.  請求項18に記載の液晶配向膜を有することを特徴とする液晶表示素子。
  20.  電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする請求項15または請求項16に記載の液晶配向膜。
  21.  請求項20に記載の液晶配向膜を有することを特徴とする液晶表示素子。
PCT/JP2013/078314 2012-10-18 2013-10-18 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子 WO2014061779A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177005972A KR20170027886A (ko) 2012-10-18 2013-10-18 조성물, 액정 배향 처리제, 액정 배향막 및 액정 표시 소자
JP2014542192A JP5950137B2 (ja) 2012-10-18 2013-10-18 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
KR1020157012504A KR20150070288A (ko) 2012-10-18 2013-10-18 조성물, 액정 배향 처리제, 액정 배향막 및 액정 표시 소자
CN201380065916.9A CN104854193B (zh) 2012-10-18 2013-10-18 组合物、液晶取向处理剂、液晶取向膜和液晶显示元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012231138 2012-10-18
JP2012-231138 2012-10-18

Publications (1)

Publication Number Publication Date
WO2014061779A1 true WO2014061779A1 (ja) 2014-04-24

Family

ID=50488335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078314 WO2014061779A1 (ja) 2012-10-18 2013-10-18 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子

Country Status (5)

Country Link
JP (1) JP5950137B2 (ja)
KR (2) KR20170027886A (ja)
CN (1) CN104854193B (ja)
TW (1) TWI542632B (ja)
WO (1) WO2014061779A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096726A1 (ja) * 2016-11-28 2018-05-31 東洋ゴム工業株式会社 光架橋性液晶性ポリマー、及び光架橋性液晶性ポリマーの製造方法
WO2018096724A1 (ja) * 2016-11-28 2018-05-31 東洋ゴム工業株式会社 光架橋性液晶性ポリマー、及び光架橋性液晶性ポリマーの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI640574B (zh) * 2016-02-25 2018-11-11 奇美實業股份有限公司 液晶配向劑、液晶配向膜及液晶顯示元件
CN111971617B (zh) * 2018-04-09 2023-06-20 日产化学株式会社 液晶取向剂、液晶取向膜和使用其的液晶表示元件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109438A (ja) * 1993-08-19 1995-04-25 Nissan Chem Ind Ltd ポリイミドワニス
WO2004072719A1 (ja) * 2003-02-12 2004-08-26 Nissan Chemical Industries, Ltd. 液晶配向剤およびそれを用いた液晶配向膜
JP2007031540A (ja) * 2005-07-26 2007-02-08 Chisso Corp ワニス組成物
JP2007241246A (ja) * 2006-02-13 2007-09-20 Seiko Epson Corp 液晶配向膜形成用組成物、液晶表示装置の製造方法、液晶配向膜形成装置及び液晶表示装置
JP2009157351A (ja) * 2007-12-06 2009-07-16 Jsr Corp 液晶配向剤および液晶表示素子
JP2011242427A (ja) * 2010-05-14 2011-12-01 Jsr Corp 液晶配向剤および液晶表示素子
JP2012017402A (ja) * 2010-07-08 2012-01-26 Ube Industries Ltd ポリイミドシロキサン溶液の製造方法
WO2013008852A1 (ja) * 2011-07-12 2013-01-17 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子
WO2013125595A1 (ja) * 2012-02-22 2013-08-29 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4085206B2 (ja) 1996-02-15 2008-05-14 日産化学工業株式会社 ジアミノベンゼン誘導体及びそれを用いたポリイミド並びに液晶配向膜
CN101021654A (zh) * 2006-02-13 2007-08-22 精工爱普生株式会社 液晶取向膜形成用组合物、液晶取向膜形成装置及液晶显示装置
JP5354161B2 (ja) 2008-10-17 2013-11-27 Jsr株式会社 液晶配向剤および液晶表示素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109438A (ja) * 1993-08-19 1995-04-25 Nissan Chem Ind Ltd ポリイミドワニス
WO2004072719A1 (ja) * 2003-02-12 2004-08-26 Nissan Chemical Industries, Ltd. 液晶配向剤およびそれを用いた液晶配向膜
JP2007031540A (ja) * 2005-07-26 2007-02-08 Chisso Corp ワニス組成物
JP2007241246A (ja) * 2006-02-13 2007-09-20 Seiko Epson Corp 液晶配向膜形成用組成物、液晶表示装置の製造方法、液晶配向膜形成装置及び液晶表示装置
JP2009157351A (ja) * 2007-12-06 2009-07-16 Jsr Corp 液晶配向剤および液晶表示素子
JP2011242427A (ja) * 2010-05-14 2011-12-01 Jsr Corp 液晶配向剤および液晶表示素子
JP2012017402A (ja) * 2010-07-08 2012-01-26 Ube Industries Ltd ポリイミドシロキサン溶液の製造方法
WO2013008852A1 (ja) * 2011-07-12 2013-01-17 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子
WO2013125595A1 (ja) * 2012-02-22 2013-08-29 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096726A1 (ja) * 2016-11-28 2018-05-31 東洋ゴム工業株式会社 光架橋性液晶性ポリマー、及び光架橋性液晶性ポリマーの製造方法
WO2018096724A1 (ja) * 2016-11-28 2018-05-31 東洋ゴム工業株式会社 光架橋性液晶性ポリマー、及び光架橋性液晶性ポリマーの製造方法
JPWO2018096724A1 (ja) * 2016-11-28 2019-06-24 Toyo Tire株式会社 光架橋性液晶性ポリマー、及び光架橋性液晶性ポリマーの製造方法
JPWO2018096726A1 (ja) * 2016-11-28 2019-06-24 Toyo Tire株式会社 光架橋性液晶性ポリマー、及び光架橋性液晶性ポリマーの製造方法
JP7112332B2 (ja) 2016-11-28 2022-08-03 Toyo Tire株式会社 光架橋性液晶性ポリマー、及び光架橋液晶性ポリマーの製造方法

Also Published As

Publication number Publication date
KR20150070288A (ko) 2015-06-24
JP5950137B2 (ja) 2016-07-13
KR20170027886A (ko) 2017-03-10
TWI542632B (zh) 2016-07-21
CN104854193B (zh) 2016-11-09
CN104854193A (zh) 2015-08-19
TW201430054A (zh) 2014-08-01
JPWO2014061779A1 (ja) 2016-09-05

Similar Documents

Publication Publication Date Title
JP5930237B2 (ja) 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
JP6011537B2 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
JP6414053B2 (ja) 液晶表示素子、液晶配向膜及び液晶配向処理剤
JP6512417B2 (ja) 組成物および樹脂被膜
JP6368955B2 (ja) 液晶配向処理剤、液晶配向膜および液晶表示素子
JP5930239B2 (ja) 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
KR20140129217A (ko) 조성물, 액정 배향 처리제, 액정 배향막 및 액정 표시 소자
WO2014034792A1 (ja) 液晶配向処理剤及びそれを用いた液晶表示素子
WO2014133154A1 (ja) 液晶表示素子、液晶配向膜及び液晶配向処理剤
JP6079627B2 (ja) 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子
WO2014084309A1 (ja) 液晶配向処理剤、液晶配向膜および液晶表示素子
WO2012165355A1 (ja) 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子
WO2014119682A1 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
JP5950137B2 (ja) 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
JP6575510B2 (ja) 液晶表示素子、液晶配向膜及び液晶配向処理剤
JP5930238B2 (ja) 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
WO2014133043A1 (ja) 液晶配向処理剤、液晶配向膜および液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014542192

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157012504

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13847498

Country of ref document: EP

Kind code of ref document: A1