WO2014061725A1 - 複合型中空容器の製造方法及び複合型中空容器 - Google Patents

複合型中空容器の製造方法及び複合型中空容器 Download PDF

Info

Publication number
WO2014061725A1
WO2014061725A1 PCT/JP2013/078146 JP2013078146W WO2014061725A1 WO 2014061725 A1 WO2014061725 A1 WO 2014061725A1 JP 2013078146 W JP2013078146 W JP 2013078146W WO 2014061725 A1 WO2014061725 A1 WO 2014061725A1
Authority
WO
WIPO (PCT)
Prior art keywords
base plate
thermoplastic resin
resin layer
side wall
surface treatment
Prior art date
Application number
PCT/JP2013/078146
Other languages
English (en)
French (fr)
Inventor
堀 久司
諒 吉田
正憲 遠藤
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to KR1020157011221A priority Critical patent/KR101651387B1/ko
Priority to CN201380054075.1A priority patent/CN104736323B/zh
Publication of WO2014061725A1 publication Critical patent/WO2014061725A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4878Mechanical treatment, e.g. deforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0609Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding characterised by the movement of the parts to be joined
    • B29C65/0618Linear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/4815Hot melt adhesives, e.g. thermoplastic adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/52Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0224Mechanical pre-treatments, e.g. reshaping with removal of material
    • B29C66/02241Cutting, e.g. by using waterjets, or sawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • B29C66/2424Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain
    • B29C66/24243Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral
    • B29C66/24244Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral forming a rectangle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30325Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined
    • B29C66/30326Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined in the form of porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/542Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining hollow covers or hollow bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • B29C66/8362Rollers, cylinders or drums moving relative to and tangentially to the parts to be joined
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8246Pressure tests, e.g. hydrostatic pressure tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/949Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9513Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration frequency values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9517Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration amplitude values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2022/00Hollow articles
    • B29L2022/005Hollow articles having dividing walls, e.g. additional elements placed between object parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2024/00Articles with hollow walls
    • B29L2024/006Articles with hollow walls multi-channelled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for producing a composite hollow container and a composite hollow container.
  • Patent Document 1 discloses a technique in which a resin member and a metal member are overlapped, a part of the resin member is melted, and both are joined. In this technique, a part of the resin member is melted and welded by frictional heat generated between the rotary tool and the metal member. Patent Document 1 discloses a technique for manufacturing a composite hollow container (hereinafter referred to as “composite hollow container”) by welding a resin container and a metal lid using this technique. It is disclosed.
  • composite hollow container hereinafter referred to as “composite hollow container”
  • the conventional method for manufacturing a composite hollow container has a problem that the bonding force between the container and the lid is small.
  • an object of the present invention is to provide a method for manufacturing a composite hollow container capable of increasing the bonding force between a resin member and a metal member and a composite hollow container having a large bonding force.
  • the present invention provides a surface treatment process for forming a plurality of fine recesses on the surface of a metal member, and a thermoplastic resin by applying a thermoplastic resin to at least the part subjected to the surface treatment process. While the resin layer forming step for forming the resin layer and the resin-coated metal member formed in the resin layer forming step and the resin member are abutted, heat is generated at the abutting portion between the thermoplastic resin layer and the resin member. And a welding step for welding.
  • thermoplastic resin layer can be reliably fixed to the metal member. Further, in the joining step, since the butt portion is made of resin, the affinity between the members to be joined is increased, the thermoplastic resin layer and the resin member are reliably welded, and the bonding force can be increased.
  • the metal member has a base plate and a plurality of fins arranged in parallel on the surface of the base plate, and the resin member has a bottom portion and a frame-like side wall portion standing on the bottom portion.
  • the surface treatment step at least a peripheral portion of the base plate is subjected to a surface treatment, and in the joining step, a butt portion between the thermoplastic resin layer formed on the peripheral portion and the side wall portion is welded. It is preferable.
  • a composite hollow container having metal fins formed therein can be easily manufactured.
  • a surface treatment is also performed on the front end surface of the fin, and in the joining step, a butt portion between the thermoplastic resin layer formed on the peripheral edge portion and the side wall portion is welded. At the same time, it is preferable to weld a butt portion between the thermoplastic resin layer formed on the front end surface of the fin and the bottom portion.
  • the abutting portion between the peripheral edge portion of the surface of the base plate and the side wall portion is welded. Can do.
  • the joining step it is preferable that welding is performed over the entire circumference of the peripheral edge. According to this manufacturing method, the hermeticity of the composite hollow container can be improved.
  • the metal member has a plurality of flow path holes through which a fluid flows, and the resin member has a header flow path hole communicating with an end portion of the flow path hole.
  • the metal member includes a base plate and a block portion formed on a surface of the base plate, and the resin member includes a bottom portion and a frame-like side wall portion standing on the bottom portion, A cutting step of cutting the block portion with a multi-cutter in which disc cutters are stacked to form fins, and in the surface treatment step, at least a peripheral portion of the base plate is subjected to a surface treatment, and the joining is performed. In the step, a butt portion between the thermoplastic resin layer formed on the peripheral edge portion and the side wall portion is welded.
  • the fins are formed with a multi-cutter, so that the plate thickness of the fins and the gaps between the fins can be easily changed, so that the degree of freedom in design can be improved.
  • the cutting step is performed before the surface treatment step, the surface treatment step is also performed on the front end surface of the fin, and the heat formed on the peripheral edge is formed in the joining step. It is preferable to weld the butted portion between the plastic resin layer and the side wall portion and weld the butted portion between the thermoplastic resin layer formed on the tip surface of the fin and the bottom portion.
  • the abutting portion between the peripheral edge portion of the surface of the base plate and the side wall portion is welded. Can do.
  • a plurality of fine recesses are formed on the surface of the base plate and the surface of the block portion, and the cutting step is performed after the resin layer forming step.
  • a thermoplastic resin is formed.
  • the block part is cut together with the layer to form a fin with a thermoplastic resin layer, and in the joining step, the butt part between the thermoplastic resin layer formed on the base plate and the side wall part is welded. It is preferable to weld a butt portion between the thermoplastic resin layer formed on the front end surface of the fin and the bottom portion.
  • the fins are formed with a multi-cutter, so that the plate thickness of the fins and the gaps between the fins can be easily changed, so that the degree of freedom in design can be improved.
  • work which forms a thermoplastic resin layer in a fin can be easily performed by performing a resin layer formation process before performing a cutting process.
  • the metal member includes a base plate
  • the resin member includes a bottom portion, a frame-like side wall portion standing on the bottom portion, and a support portion standing on the bottom portion, and in the surface treatment step,
  • the surface treatment is performed on the peripheral portion of the surface of the base plate and the position corresponding to the support portion of the surface of the base plate, and in the joining step, the peripheral portion of the base plate and the side wall portion are butted together. It is preferable that heat is generated at the butted portions of the portion and the base plate and the support portion, and the thermoplastic resin layer and the resin member are welded at each butted portion.
  • the abutting portion between the side wall portion and the peripheral edge portion of the base plate in addition to the abutting portion between the side wall portion and the peripheral edge portion of the base plate, the abutting portion between the support portion and the metal member can be welded, so that the coupling force can be further increased.
  • the support part is formed continuously from the side wall part. According to this manufacturing method, the rigidity of the container can be increased.
  • the metal member includes a base plate and a support portion erected on the base plate, and the resin member includes a bottom portion and a frame-like side wall portion erected on the bottom portion,
  • surface treatment step surface treatment is performed on the peripheral portion of the surface of the base plate and the front end surface of the support portion, and in the joining step, the butted portion of the peripheral portion of the base plate and the side wall portion, the bottom portion, and the bottom portion Heat is generated at the abutting portion with the support portion, and the thermoplastic resin layer and the resin member are welded at each abutting portion.
  • the abutting portion between the side wall portion and the peripheral edge portion of the lid can be welded, so that the coupling force can be further increased.
  • a plurality of fins are formed on the surface of the base plate. According to this manufacturing method, a composite hollow container provided with fins can be easily manufactured.
  • the metal member is preferably aluminum or an aluminum alloy. According to such a manufacturing method, a member can be easily molded, and a product rich in corrosion resistance and light weight can be manufactured.
  • the present invention is a metal container including a resin container having a bottom portion and a frame-like side wall portion standing on the bottom portion, and a base plate and a plurality of fins juxtaposed on the base plate.
  • the lid and the side wall portion are welded via a thermoplastic resin, and the tip end surface of the fin and the bottom portion are welded via a thermoplastic resin.
  • the abutting portion between the peripheral edge portion of the base plate and the front end surface of the side wall portion is also welded.
  • the binding force of can be increased.
  • the present invention is a metal container including a resin container having a bottom portion and a frame-like side wall portion standing on the bottom portion, and a base plate and a plurality of fins juxtaposed on the base plate. And a support portion formed on one of the bottom and the lid, the lid and the side wall portion being welded via a thermoplastic resin, and the support portion and the The bottom portion and the other of the lid are welded via a thermoplastic resin.
  • the abutting portion between the support portion, the bottom portion, and the other of the lid can be welded, so that the coupling force between the container and the lid is increased. be able to.
  • the bonding force between the resin member and the metal member can be increased.
  • FIG. 3 is a sectional view taken along the line II in FIG. 2.
  • FIG. 3 is a sectional view taken along the line II in FIG. 2.
  • FIG. 3 is a perspective view which shows the manufacturing method of the liquid cooling jacket which concerns on 1st embodiment, Comprising: (a) shows a metal member and (b) shows a surface treatment process. It is a figure which shows the manufacturing method of the liquid cooling jacket which concerns on 1st embodiment, Comprising: (a) is a perspective view which shows a resin layer formation process, (b) is sectional drawing which shows a removal process.
  • FIG. 1 It is a perspective view which shows the manufacturing method of the liquid cooling jacket which concerns on 1st embodiment, Comprising: (a) shows after a removal process, (b) shows a cutting process. It is a schematic side view which shows the cutting process of the manufacturing method of the liquid cooling jacket which concerns on 1st embodiment. It is a perspective view which shows the manufacturing method of the liquid cooling jacket which concerns on 1st embodiment, Comprising: (a) shows after a resin layer formation process, (b) shows a joining process. It is a schematic cross section of the II-II part of FIG. It is a perspective view which shows the manufacturing method of the liquid cooling jacket which concerns on 2nd embodiment of this invention, Comprising: (a) shows a surface treatment process, (b) shows a cutting process.
  • FIG. 1 It is a perspective view which shows the manufacturing method of the liquid cooling jacket which concerns on 2nd embodiment, Comprising: (a) shows after a cutting process, (b) shows a joining process. It is a perspective view which shows a modification. It is a perspective view which shows the manufacturing method of the liquid cooling jacket which concerns on 3rd embodiment of this invention, Comprising: (a) shows a metal member, (b) shows a surface treatment process. It is a perspective view which shows the resin layer formation process of the manufacturing method of the liquid cooling jacket which concerns on 3rd embodiment. (A) is a perspective view which shows the modification of a metal member, (b) is sectional drawing which shows the modification of a fin.
  • FIG. 1 It is a disassembled perspective view which shows the liquid cooling jacket which concerns on 4th embodiment of this invention. It is a partially broken perspective view which shows the liquid cooling jacket which concerns on 4th embodiment. It is III-III sectional drawing of FIG. It is a figure which shows the manufacturing method of the liquid cooling jacket which concerns on 4th embodiment, Comprising: (a) is a top view which shows a metal member, (b) is a top view which shows a resin layer formation process. It is a perspective view which shows the joining process of the manufacturing method of the liquid cooling jacket which concerns on 4th embodiment. It is a disassembled perspective view which shows the liquid cooling jacket which concerns on 5th embodiment of this invention. It is sectional drawing of the liquid cooling jacket which concerns on 5th embodiment.
  • the method for manufacturing a composite hollow container according to the present invention is to manufacture a composite hollow container by joining a resin member and a metal member.
  • the use of the composite hollow container is not particularly limited, but in this embodiment, a case where a liquid cooling jacket formed by joining a resin member and a metal member is illustrated.
  • the liquid cooling jacket 1 is composed of a resin container 2 and a metal lid 3.
  • the container 2 includes a bottom part 11 and a side wall part 12 rising from the bottom part 11.
  • the container 2 corresponds to a “resin member” in the claims.
  • the bottom 11 has a rectangular shape in plan view.
  • the side wall portion 12 has a rectangular frame shape in plan view.
  • the thickness of the side wall portion 12 is constant.
  • the lid 3 is a member that closes the opening of the container 2.
  • the lid 3 corresponds to a “metal member with resin” in the claims.
  • the lid 3 includes a base plate 21, a plurality of fins 22 arranged side by side on the base plate 21, and thermoplastic resin layers 23 formed at a plurality of locations.
  • the base plate 21 is a plate-like member that has a rectangular shape in plan view. The size of the base plate 21 is the same size as the outer edge of the side wall portion 12.
  • the fins 22 are formed perpendicular to the surface 21 a of the base plate 21.
  • the fins 22 are arranged in parallel at equal intervals in parallel to the longitudinal direction of the base plate 21.
  • the height of the fin 22 is the same as the height of the side wall portion 12.
  • the material of the base plate 21 and the fins 22 is not particularly limited as long as it is a metal, but in this embodiment is an aluminum alloy.
  • the base plate 21 and the fins 22 are integrally formed.
  • the thermoplastic resin layer 23 is a layer formed of a thermoplastic resin, and is formed on the peripheral portion of the surface 21 a and the front end surface 22 a of the fin 22.
  • the type of the thermoplastic resin is not particularly limited, but PPS (polyphenylene sulfide, manufactured by Polyplastics) is used in the present embodiment.
  • the thermoplastic resin layer 23 is formed over the entire periphery of the peripheral edge portion of the surface 21a.
  • the thermoplastic resin layer 23 is formed on the entire front end surface 22 a of the fin 22.
  • the thickness of the thermoplastic resin layer 23 is about several tens to several hundreds ⁇ m, but in FIG. 1, it is drawn thicker than the actual dimensions for convenience of explanation.
  • the first butting portion J1 has a rectangular frame shape in plan view.
  • the front end surface 22 a of the fin 22 and the bottom portion 11 are abutted to form a plurality of second abutting portions J ⁇ b> 2.
  • the liquid cooling jacket 1 is joined by welding the first butting portion J1 and the second butting portion J2.
  • the liquid cooling jacket 1 can cool a device or the like placed on the base plate 21 when a fluid flows through a gap between the fins 22 and 22 or a gap between the fin 22 and the side wall portion 12.
  • the liquid cooling jacket 1 has a rectangular shape in plan view, but may be formed to have a circular shape in plan view, an elliptical shape, or other polygonal shapes.
  • the manufacturing method of a liquid cooling jacket mainly performs a preparation process and a joining process.
  • the preparation process is a process of preparing the container 2 and the lid 3.
  • the surface treatment process, the resin layer forming process, the removing process, and the cutting process in the preparation process are processes for forming the lid 3 (metal member with resin).
  • the container 2 and the metal member 30 are prepared prior to the surface treatment process.
  • the container 2 is integrally formed by injection molding.
  • the metal member 30 is formed by die casting.
  • the metal member 30 includes a base plate 31 and a block portion 32 formed on the base plate 31.
  • the block portion 32 has a rectangular parallelepiped shape and is formed at the center of the base plate 31.
  • the area of the front surface 32 a of the block portion 32 is smaller than the area of the back surface 31 b of the base plate 31.
  • the metal member 30 will not be restrict
  • the surface treatment step is a step of forming fine recesses on the surface 31a of the base plate 31, the surface 32a of the block portion 32, and the four side surfaces 32b.
  • the formation method is not particularly limited as long as fine concave portions are formed on each surface. For example, etching treatment, alumite treatment, spray drying method, or the like is performed.
  • Etching is performed, for example, by immersing the corresponding part in an etching solution prepared by adding aluminum chloride hexahydrate to a hydrochloric acid solution.
  • the alumite treatment is performed by electrochemically oxidizing the corresponding part by electrolysis using an aluminum alloy as an anode using dilute sulfuric acid or oxalic acid.
  • the surface of the member is modified and shaped by colliding the accelerated particles with the corresponding part.
  • the concave surface may be formed by roughing the corresponding surface with a wire brush or the like.
  • the thermoplastic resin layer 23 is formed by applying a thermoplastic resin to the surface 31a of the base plate 31, the surface 32a of the block 32, and the four side surfaces 32b. It is a process to do.
  • the thermoplastic resin is applied, the molten thermoplastic resin is cured after entering the recess formed in the surface treatment process. Thereby, the thermoplastic resin layer 23 is reliably fixed to the base plate 31.
  • thermoplastic resin is not particularly limited, but for example, ABS resin, polypropylene, polyethylene, polyphenylene sulfide, etc. may be used.
  • the method for applying the thermoplastic resin is not particularly limited.
  • a thermoplastic resin is injected and applied.
  • the thermoplastic resin layer 23 may be formed by so-called dipping so that a part of the metal member 30 is impregnated with a resin liquid.
  • the removing step is a step of removing the thermoplastic resin layer 23 applied to the four side surfaces 32b of the block portion 32.
  • the method for removing the thermoplastic resin layer 23 is not particularly limited, but in the present embodiment, it is removed by cutting with an end mill or the like.
  • the removal step at least the thermoplastic resin applied to the side surface 32b may be removed, but in this embodiment, the removal is performed along a line indicated by a one-dot chain line in FIG. That is, in the present embodiment, the side surface 32b and part of the surface 32a of the block portion 32 and the thermoplastic resin layer 23 formed at these portions are removed by cutting.
  • the cutting process is a process of forming the fins by cutting the block portion 32 with the multi-cutter M.
  • the multi-cutter M is composed of a rotation axis Ma and a plurality of disk cutters Mb arranged in parallel to the rotation axis Ma.
  • the disk cutters Mb are arranged side by side with a gap, and a blade (not shown) is formed at the peripheral edge.
  • the gap between adjacent disk cutters Mb and Mb is equal to the thickness of the fin 22. Further, the thickness of the disk cutter Mb is equal to the gap between the adjacent fins 22.
  • the multi-cutter M is arranged so that the rotation axis Ma and the ridge line 32 c of the block part 32 are parallel, and the vertical line passing through the ridge line 32 c of the block part 32 and the rotation axis
  • the multi-cutter M is disposed at a position where the center of Ma overlaps. And the multi cutter M and the block part 32 are made to adjoin, and the disk cutter Mb and the block part 32 are made to contact.
  • the multi-cutter M When the disk cutter Mb is inserted to a predetermined depth, the multi-cutter M is moved relative to the other ridgeline 32d while maintaining the height position of the multi-cutter M with respect to the block portion 32 constant. When the center of the rotation axis Ma and the vertical line passing through the other ridge line 32d are moved to a position where they overlap each other, the multi-cutter M and the block part 32 are moved relative to each other. Note that the insertion method and the removal method of the multi-cutter M are not limited to this method.
  • a plurality of fins 22 (fins 22 with the thermoplastic resin layer 23) having the thermoplastic resin layer 23 formed on the tip surface 22a are formed by the cutting process.
  • the lid 3 is formed by the above surface treatment process, resin layer formation process, removal process, and cutting process.
  • the joining step is a step of welding the container 2 and the lid 3 by performing friction welding after the container 2 and the lid 3 are brought into contact with each other.
  • the peripheral edge portion of the surface 21a of the lid 3 and the front end surface 12a (see FIG. 1) of the side wall portion 12 of the container 2 are abutted to form the first abutting portion J1.
  • the bottom part 11 and the front end surface 22a of the fin 22 are abutted to form a plurality of second abutting parts J2 (see FIG. 3).
  • a friction process and a pressure welding process are performed.
  • the container 2 and the lid 3 are reciprocated while being pressed in directions close to each other.
  • the container 2 and the lid 3 are reciprocated relatively and linearly in parallel with the longitudinal direction of the fins 22.
  • the lid 3 is not moved, and only the container 2 is linearly reciprocated.
  • the conditions in the friction process may be set as appropriate, but the frequency is set to 100 to 260 Hz, the amplitude is set to 1.0 to 2.0 mm, and the friction pressure is set to 3.0 to 10.0 MPa.
  • the time for the friction process is set to about 1 to 3 seconds. When the friction process is completed, the process immediately proceeds to the pressure contact process.
  • the container 2 and the lid 3 are pressed in directions close to each other without being relatively moved.
  • the conditions in the pressure contact process may be set as appropriate.
  • the upset pressure (cooling pressure) is set to 3.0 to 12 MPa, and the cooling time is set to about 2 to 10 seconds.
  • burrs are generated in the first butted portion J1 and the second butted portion J2 by pushing out the softened base material. If necessary, burrs generated on the side of the first butting portion J1 are cut out using a cutter device.
  • the liquid cooling jacket 1 is completed through the above steps.
  • thermoplastic resin layer 23 can be reliably fixed to the base plate 21 (31) formed in the above.
  • the affinity between the members to be joined is increased, and the container and the thermoplastic resin layer are reliably welded, and the bonding force is increased. Can be bigger.
  • the butting portion J2 between the bottom portion 11 and the tip surface 22a of the fin 22 is also welded, so that it is possible to join more firmly.
  • thermoplastic resin can be injected to the front end surfaces 22a of the fins 22, but in this case, the thermoplastic resin is not applied to the side surfaces of the plurality of fins 22 formed.
  • a nest or the like must be disposed in the injection mold, which complicates the injection molding operation.
  • the thermoplastic resin is collectively applied to the entire base plate 31 and the block portion 32 (surface 31a, surface 32a and side surface 32b). Since injection is possible, no nesting or the like is required. Thereby, according to the present embodiment, the thermoplastic resin can be easily applied to the base plate 31 and the block portion 32.
  • thermoplastic resin is not particularly limited, but according to the injection molding as in the present embodiment, the fixing property of the thermoplastic resin to the base plate 31 is improved. Moreover, according to injection molding, a thermoplastic resin can be apply
  • the drawing resistance due to the so-called anchor effect can be improved by hardening after the thermoplastic resin enters the recess 31c.
  • the shape of the recess 31c is not particularly limited, but it is preferable that the opening diameter is reduced toward the opening of the recess 31c as in this embodiment.
  • the means for generating heat in the first butting portion J1 and the butting portion J2 is not particularly limited, but if friction welding is employed as in the present embodiment, it can be easily joined in a short time.
  • the moving direction of the friction process may move the container 2 in an oblique direction with respect to the fin 22, or may move the container 2 in parallel with the plate thickness direction of the fin 22.
  • frictional heat is generated by friction welding.
  • heat may be generated in the base plate 21 by bringing a heat generating device into contact with the base plate 21.
  • the rotating tool may be rotated on the back surface of the base plate 21 to generate heat by frictional heat between the base plate 21 and the rotating tool.
  • the kind of resin of the thermoplastic resin layer 23 and the container 2 may be the same, and may differ.
  • the liquid cooling jacket manufacturing method according to the second embodiment is different from the first embodiment in the surface treatment process, the resin layer forming process, and the bonding process.
  • the manufacturing method of the liquid cooling jacket which concerns on 2nd embodiment, it demonstrates centering around difference.
  • thermoplastic resin is applied to the surface-treated portion, that is, the peripheral portion of the surface 31a of the base plate 31 and the surface 32a of the block portion 32. Then, the thermoplastic resin layer 23 is formed.
  • the surface 32a of the block portion 32 is cut using a multi-cutter M.
  • thermoplastic resin layer 23 is formed on the front end surface 22a by the cutting process. Moreover, the thermoplastic resin layer 23 is formed in the peripheral part of the surface 31a. Thereby, the lid 3 is formed.
  • the joining step is a step of joining the lid 3 and the container 2 by welding by performing friction welding after the container 2 and the lid 3 are brought into contact with each other.
  • the container 2 and the lid 3 are relatively reciprocally moved parallel to the longitudinal direction of the fins 22 (parallel to the short direction of the lid 3).
  • the metal member 30 is formed by die casting, but may be formed by other forming methods.
  • the metal member 30 may be formed by extrusion molding.
  • the metal member 30 can be obtained by cutting the both ends (parts indicated by two-dot chain lines) of the intermediate block portion 32A after obtaining the extruded shape with the longitudinal direction of the metal member as the extrusion direction.
  • the fin 22 is formed by cutting with the multi-cutter M, but the manufacturing method of the liquid cooling jacket according to the third embodiment is the first embodiment in that the fin of the lid 3 is formed in advance. Is different. Moreover, after forming a fin, it differs from 1st embodiment by the point which apply
  • the manufacturing method of the liquid cooling jacket according to the third embodiment mainly performs a preparation process and a joining process.
  • a preparation step a surface treatment step and a resin layer forming step are performed.
  • the preparation process is a process for mainly forming the lid 3.
  • the container 2 and the metal member 40 are prepared prior to the surface treatment process.
  • the container 2 (resin member) is integrally formed by injection molding as shown in FIG.
  • the metal member 40 is formed by die casting.
  • the metal member 40 is a member that is a base of the lid 3.
  • the metal member 40 includes a base plate 41 and a plurality of fins 42 arranged in parallel with the base plate 41.
  • fine concave portions are formed on the peripheral edge portion of the surface 41a of the base plate 41 and the front end surface 42a of the fin 42.
  • the thermoplastic resin layer 23 is formed by applying a thermoplastic resin layer to the portion where the surface treatment step has been performed.
  • cover 3 metal member with resin
  • the joining step is a step of joining the container 2 and the lid 3 by performing friction welding in the same manner as in FIG. 8B of the first embodiment.
  • the metal member 40 is formed by die casting, but may be formed by other forming methods.
  • the metal member 40 may be formed by extrusion molding.
  • the metal member 40 can be obtained by removing the both ends (parts of the two-dot chain line) of the intermediate fin 22A after obtaining the extruded shape with the longitudinal direction of the metal member 40 as the extrusion direction.
  • the metal member 40 may be formed using the multi-cutter M.
  • the multi-cutter M may be inserted into the block portion 32 to form fins (cutting process).
  • the subsequent steps surface treatment step, resin layer forming step, and bonding step) are the same as those in the third embodiment.
  • a groove 22b may be provided on the tip surface 22a of the fin 22.
  • the groove 22b is formed such that the opening diameter increases as the distance from the tip surface 22a increases.
  • the butt portion J2 is welded in addition to the first butt portion J1, but the fin 22 and the bottom portion 11 may be separated without being welded.
  • the region in which the concave portion 31c is formed in the surface treatment step is equivalent to the region in which the thermoplastic resin layer 23 is formed.
  • the layer 23 may be formed.
  • the container 2 is made of resin and the lid 3 is made of metal.
  • the container may be made of metal and the lid may be made of resin.
  • the lid is made of resin, it is preferable to form fins at the bottom of the container.
  • the lid and the container may be joined in the joining step after the surface treatment process and the resin layer forming process are performed on the distal end surface of the side wall of the container and the distal end surface of the fin.
  • the liquid cooling jacket 51 according to the fourth embodiment includes a resin container 52 and a metal lid 53.
  • the liquid cooling jacket 51 is different from the first embodiment in that a support portion 63 is formed.
  • the container 52 includes a bottom portion 61, a side wall portion 62 that rises from the bottom portion 61, and a support portion 63 that continues from the bottom portion 61 to the side wall portion 62.
  • the container 52 corresponds to a “resin member” in the claims.
  • the container 52 is integrally formed by injection molding.
  • the support part 63 has a plate shape and has the same height as the side wall part 62.
  • the support portion 63 is continuous with the short side portion of the side wall portion 62 and is formed perpendicular to the short side portion.
  • the length of the support part 63 is about 2/3 of the long side part of the side wall part 62.
  • the lid 53 is a member that closes the opening of the container 52.
  • the lid 53 includes a base plate 71, a plurality of fins 72 provided in parallel to the base plate 71, a thermoplastic resin layer 73, and a space portion 74.
  • the lid 53 corresponds to a “metal member with resin” in the claims.
  • the base plate 71 is a plate-like member having a rectangular shape in plan view.
  • the base plate 71 has the same size as the outer edge of the side wall 62.
  • the fins 72 are formed perpendicular to the surface 71 a of the base plate 71.
  • the fins 72 are arranged in parallel at equal intervals in parallel to the longitudinal direction of the base plate 71.
  • the height of the fin 72 is smaller than the height of the side wall portion 62.
  • the space part 74 means a space in which the fins 72 are not formed among the plurality of fins 72 arranged side by side.
  • the space portion 74 is a space for inserting the support portion 63.
  • the thermoplastic resin layer 73 is a layer formed of a thermoplastic resin, and is formed at a peripheral edge portion of the surface 71a and a position corresponding to the support portion 63 in the surface 71a.
  • the front end surface 62a of the side wall portion 62 and the peripheral edge portion of the surface 71a of the lid 53 are abutted to form a first abutting portion J1.
  • the first butting portion J1 has a rectangular frame shape in plan view.
  • the tip end face 63a of the support part 63 and the surface 71a of the base plate 71 are abutted to form a third abutting part J3.
  • the liquid cooling jacket 51 is joined by welding the first butting portion J1 and the third butting portion J3.
  • the manufacturing method of a liquid cooling jacket mainly performs a preparation process and a joining process.
  • a preparation process a surface treatment process and a resin layer forming process are performed.
  • the surface treatment step and the resin layer formation step are steps for preparing the lid 53.
  • the container 52 and the metal member 80 are prepared prior to the surface treatment process.
  • the container 52 is integrally formed by injection molding.
  • the metal member 80 is formed by die casting, for example.
  • the metal member 80 is a member that is a base of the lid 53.
  • the metal member 80 includes a base plate 81 and a plurality of fins 82 provided in parallel to the base plate 81.
  • the surface treatment step is a step of forming fine concave portions at the peripheral portion of the back surface 81a of the base plate 81 and the portion of the back surface 81a where the support portion 13 is welded.
  • the resin layer forming step is a step of applying a thermoplastic resin to the peripheral portion of the back surface 81a of the base plate 81 and the portion welded to the support portion 63 of the back surface 81a. That is, in the resin layer forming step, the thermoplastic resin layer 73 is formed by applying resin to the portion where the concave portion is formed in the surface treatment step. Thereby, the lid 53 is formed.
  • the joining step is a step in which the container 52 and the lid 53 are brought into contact with each other and then friction welding is performed to join the container 52 and the lid 53 by welding.
  • the peripheral edge portion of the surface 71a of the base plate 71 and the front end surface 62a of the side wall portion 62 are abutted to form the first abutting portion J1.
  • the front end surface 63a of the support portion 63 and the base plate 71 are abutted to form a third abutting portion J3.
  • first butted portion J1 and the third butted portion J3 are joined by the same procedure as in the first embodiment.
  • the butt portion between the side wall portion 62 of the container 52 and the peripheral portion of the lid 53 is joined by the same principle as in the first embodiment.
  • the fin is welded to the bottom of the container.
  • the height of the side wall 62 may be larger than the height of the fin 72 as in the fourth embodiment. .
  • the internal pressure acts on the liquid cooling jacket, the internal pressure is concentrated on the central portion of the container, so that the deformation of the central portion of the container becomes large and the butt portion may be destroyed.
  • the support portion 63 of the container 52 and the center portion of the base plate 71 of the lid 53 are welded at the third butting portion J3. The coupling force with the lid 53 can be improved.
  • the support part 63 can improve the rigidity of the container 52 and the liquid cooling jacket 51 by being continuously formed from the side wall part 62 like this embodiment.
  • the fins 72 are provided, but the fins 72 may be omitted.
  • the support portion 63 is provided on the container 52, but the support portion 63 may be provided on the lid 53.
  • surface treatment is performed on the peripheral edge portion of the surface 71a and the front end surface of the support portion 63, and a thermoplastic resin layer is formed on the surface-treated portion to create a lid. And what is necessary is just to weld each butt
  • the metal member 80 is formed by die casting, but the metal member may be formed by cutting with a multi-cutter M.
  • a liquid cooling jacket 51A according to the fifth embodiment includes a resin container 52A and a metal lid 53A.
  • the liquid cooling jacket 51A is different from the fourth embodiment in that the support portion 63A is separated from the side wall portion 62.
  • the container 52 ⁇ / b> A includes a bottom 61, a side wall 62 that rises from the end of the bottom 61, and a support 63 ⁇ / b> A that rises from the center of the bottom 61.
  • the container 52A corresponds to a “resin member” in the claims.
  • the container 52A is integrally formed by injection molding.
  • the support portion 63 ⁇ / b> A has a columnar shape and has the same height as the side wall portion 62.
  • the support portion 63 ⁇ / b> A is formed in the center of the bottom portion 61 so as to be separated from the side wall portion 62.
  • the lid 53A includes a base plate 71, a plurality of fins 72 provided alongside the base plate 71, a thermoplastic resin layer 73, and a space portion 74.
  • the lid 53A corresponds to the “metal member with resin” in the claims.
  • the space part 74 means a space part in which the fins 72 are not formed among the plurality of fins 72 arranged side by side.
  • the space portion 74 is a space for inserting the support portion 63A.
  • the thermoplastic resin layer 73 is a layer formed of a thermoplastic resin, and is formed at a position corresponding to the peripheral portion of the surface 71a and the support portion 63A on the surface 71a.
  • the front end surface 62a of the side wall portion 62 and the peripheral edge portion of the surface 71a of the lid 53A are abutted to form a first abutting portion J1.
  • the first butting portion J1 has a rectangular frame shape in plan view.
  • the front end surface 63Aa of the support portion 63A and the surface 71a of the base plate 71 are abutted to form a third abutting portion J3.
  • the liquid cooling jacket 51A is joined by welding the first butting portion J1 and the third butting portion J3.
  • the manufacturing method of a liquid cooling jacket mainly performs a preparation process and a joining process.
  • a preparation process a surface treatment process and a resin layer forming process are performed.
  • a container 52A and a metal member 80A are prepared.
  • the container 52A is integrally formed by injection molding.
  • the metal member 80A is formed by die casting.
  • the metal member 80A is a member serving as a base of the lid 53A.
  • the metal member 80 ⁇ / b> A includes a base plate 81 and a plurality of fins 82 arranged in parallel with the base plate 81.
  • the surface treatment step is a step of forming fine concave portions in the peripheral portion of the back surface 81a of the base plate 81 and the portion of the back surface 81a where the support portion 63A is welded.
  • the resin layer forming step is a step of applying a thermoplastic resin to the peripheral portion of the back surface 81a of the base plate 81 and the portion of the back surface 81a that is welded to the support portion 63A. That is, in the resin layer forming step, the thermoplastic resin layer 73 is formed by applying the thermoplastic resin to the portion where the concave portion is formed in the surface treatment step. Thereby, the lid 53A is formed.
  • the joining step is a step of joining the container 52 and the lid 53 by welding by performing friction welding after the container 52 and the lid 53 are brought into contact with each other.
  • the peripheral edge portion of the surface 71a of the base plate 71 and the front end surface 62a of the side wall portion 62 are abutted to form the first abutting portion J1.
  • the tip end face 63Aa of the support portion 63A and the base plate 71 are abutted to form a third abutting portion J3.
  • first butted portion J1 and the third butted portion J3 are joined by the same procedure as in the first embodiment.
  • the support portion 63 ⁇ / b> A may be formed apart from the side wall portion 62.
  • the present embodiment only one support portion 63A is provided at the center, but a plurality of support portions 63A may be provided at other positions.
  • the support portion 63A is cylindrical in this embodiment, but may be a prism.
  • the fins 72 are provided, but the fins 72 may be omitted.
  • the support portion 63A is provided in the container 52, but the support portion 63A may be provided in the lid 53.
  • a surface treatment is performed on the peripheral portion of the surface 71a and the tip surface of the support portion 63A, and a lid is created by forming a thermoplastic resin layer on the surface-treated portion. And what is necessary is just to weld each butt
  • the liquid cooling jacket 91 according to the sixth embodiment is another embodiment in that it has a plurality of flow passage holes 104 and header flow passage holes 113 communicating with the end portions of the flow passage holes 104. Is different.
  • a metal container 92 and a resin lid 93 are welded.
  • the container 92 includes a bottom portion 101, a side wall portion 102 that rises from the bottom portion 101, a partition portion 103, and a thermoplastic resin layer 105.
  • the container 92 corresponds to a “metal member with resin” in the claims.
  • the side wall 102 has a rectangular frame shape in plan view.
  • the interior of the container 92 is partitioned into a plurality of spaces by the partition portion 103.
  • the space becomes a flow path hole 104 for circulating a fluid.
  • the thermoplastic resin layer 105 is a thermoplastic resin layer and is formed over the entire circumference of the front end surface (surface) of the side wall 102.
  • the lid 93 includes a bottom portion 111 and a side wall portion 112 formed perpendicular to the bottom portion 111.
  • the lid 93 corresponds to a “resin member” in the claims.
  • the side wall 112 has a rectangular frame shape in plan view.
  • a header channel hole 113 is formed inside the lid 93.
  • a preparation process and a joining process are performed.
  • a surface treatment process and a resin layer forming process are performed.
  • the surface treatment step and the resin layer formation step are steps for forming the container 92.
  • a metal member serving as a base of the container 92 and a lid 93 are prepared.
  • the metal member includes a bottom portion 101, a side wall portion 102, and a partition portion 103.
  • the lid 93 is integrally formed by injection molding.
  • a fine recess is formed on the front end surface of the side wall 102.
  • a thermoplastic resin layer is formed at the site where the recess is formed by the surface treatment. Thereby, the container 92 is formed.
  • the container 92 and the lid 93 are joined by friction welding.
  • the moving direction in the friction process is not particularly limited, but in the present embodiment, the moving direction is reciprocated along the longitudinal direction of the lid 93.
  • the liquid cooling jacket 91 is formed by the above process.
  • the liquid cooling jacket including the flow path hole 104 and the header flow path hole 113 communicating with the end of the flow path hole 104 inside. 91 can be easily manufactured.
  • the container is made of resin and the lid is made of metal, but the container 92 may be made of metal and the lid 93 may be made of resin as in the present embodiment.
  • the container 92 is made of metal and the lid 93 is made of resin.
  • the container may be made of resin and the lid may be made of metal.
  • the surface treatment step and the resin layer formation step are performed on the front end surface of the side wall portion of the lid to form the thermoplastic resin layer, and then bonded in the bonding step.
  • the fin is formed in a plate shape, but may be formed in a pin shape (columnar shape), for example.
  • a pin shape columnumnar shape
  • the first cutting step of cutting by moving the multi-cutter parallel to the longitudinal direction of the metal member the short of the metal member is formed. What is necessary is just to perform the 2nd cutting process which moves by moving a multi cutter parallel to a hand direction, and cuts. According to this step, a prismatic pin-shaped fin can be obtained.
  • a member in which the pin fin and the base plate are integrally formed may be formed by die casting.
  • test bodies 1 to 3 which are liquid cooling jackets were manufactured under different conditions, and a pressure resistance test was performed on these test bodies.
  • Test bodies 1 and 2 were manufactured by a process substantially equivalent to the first embodiment.
  • the test piece 3 is one in which the fins 22 are not welded to the bottom 11 of the container 2.
  • the metal member 30 was formed of an aluminum alloy (JIS: A1050H12).
  • the thickness of the base plate 31 is 4 mm
  • the horizontal dimension is 30 mm
  • the vertical dimension is 50 mm.
  • the block portion 32 has a thickness of 4 mm, a horizontal dimension of 19 mm, and a vertical dimension of 39 mm.
  • JIS is Si; 0.25% or less, Fe; 0.40% or less, Cu; 0.05% or less, Mn; 0.05% or less, Mg; 0.05% or less, Zn; 0.05% or less, V; 0.05% or less, Ti; 0.03% or less, Al; 99.50% or more.
  • H12 and has a tensile strength of 85N / mm 2 subjected to a heat treatment, etc., 16% growth, yield strength 75N / mm 2, say what has been tempered to the hardness 23HV.
  • the container 2 was formed using PPS (polyphenylene sulfide, manufactured by Polyplastics). Specifically, the mold temperature is set to 150 ° C., the resin temperature is set to 320 ° C., the injection speed is set to 100 mm / s, the holding pressure is set to 50 MPa, and the holding time is set to 3 seconds, and PPS is injected into the cavity of the injection mold (not shown). And molded.
  • PPS polyphenylene sulfide, manufactured by Polyplastics.
  • the metal member 30 was subjected to a surface treatment.
  • an etching process was performed to form a zinc-containing film on the metal member 30.
  • a zinc-containing sodium hydroxide aqueous solution having a sodium hydroxide concentration of 100 g / L and a zinc oxide concentration of 25 g / L was prepared.
  • the metal member 30 was impregnated in this zinc-containing aqueous sodium hydroxide solution at room temperature for 3 minutes and washed with water.
  • thermoplastic resin As shown in FIG. 5A, in the resin layer forming step, a thermoplastic resin was applied to the metal member 30 using an injection mold.
  • the thermoplastic resin PPS (polyphenylene sulfide, manufactured by Polyplastics Co., Ltd.) was used in this embodiment.
  • the metal member 30 subjected to the surface treatment process is set in an injection mold (not shown), a mold temperature of 150 ° C., a resin temperature of 320 ° C., an injection speed of 100 mm / s, a holding pressure of 50 MPa, and a holding time.
  • PPS was injected with a setting of 3 seconds. Thereby, the metal member 30 with which the thermoplastic resin was apply
  • thermoplastic resin applied to the four side surfaces 32b of the block portion 32 was removed.
  • fins were formed on the block portion 32 using a multi-cutter M in the cutting process.
  • the lid 3 in which the thermoplastic resin layer 23 was formed on the front end surface 22a of the fin 22 was obtained.
  • the specimen 2 was manufactured in the same process as the specimen 1 except for the amplitude in friction welding and the friction time.
  • the test body 3 has a structure in which the fins 22 are not welded to the bottom 11 of the container 2. Therefore, in the manufacturing method of the test body 3, in the removing step, not only the thermoplastic resin applied to the four side surfaces 32b of the block portion 32 shown in FIG. 5B but also the thermoplastic resin applied to the upper surface 32a. was also removed. After performing the surface treatment process and the resin layer forming process only on the peripheral edge of the base plate 21 (31), the bonding process was performed.
  • ⁇ Pressure resistance test> In the pressure resistance test, a through hole is provided in a part of the lid 3 of the test bodies 1 to 3, and air is supplied from the through hole to the inside of the test bodies 1 to 3, so that the joint portion of the test bodies 1 to 3 is destroyed. The applied pressure up to was measured. In this example, the pressure was increased by 0.1 MPa every 30 seconds.
  • the second butting portion (the butting portion between the tip surface 22a of the fin 22 and the bottom portion 11 of the container 2). ) was able to withstand a large pressure. Further, it was found that the pressure of 0.1 MPa can be endured without welding the fin 22 to the bottom portion 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

樹脂部材と金属部材との結合力を向上させることができる複合型中空容器の製造方法を提供することを課題とする。金属部材(30)の表面に複数の微細な凹部を形成する表面処理工程と、少なくとも表面処理工程を行った部位に熱可塑性樹脂を塗布して熱可塑性樹脂層(23)を形成する樹脂層形成工程と、樹脂層形成工程で形成された樹脂付き金属部材(蓋3)と樹脂部材(容器2)とを突き合わせつつ、熱可塑性樹脂層(23)と樹脂部材との突合せ部(J1)に熱を発生させて溶着する接合工程と、を含むことを特徴とする。

Description

複合型中空容器の製造方法及び複合型中空容器
 本発明は、複合型中空容器の製造方法及び複合型中空容器に関する。
 特許文献1には、樹脂部材と金属部材とを重ね合わせ、樹脂部材の一部を溶融させて両者を接合する技術が開示されている。この技術は、回転ツールと金属部材との間で発生する摩擦熱で、樹脂部材の一部を溶融させて溶着するものである。特許文献1には、この技術を利用して、樹脂製の容器と、金属製の蓋とを溶着して複合型の中空容器(以下、「複合型中空容器」と言う)を製造する技術が開示されている。
特開2010-158885号公報
 しかし、樹脂部材と金属部材との親和性が低いため、従来の複合型中空容器の製造方法では、容器と蓋との結合力が小さいという問題があった。
 このような観点から、本発明は、樹脂部材と金属部材との結合力を大きくすることができる複合型中空容器の製造方法及び結合力が大きい複合型中空容器を提供することを課題とする。
 このような課題を解決するために本発明は、金属部材の表面に複数の微細な凹部を形成する表面処理工程と、少なくとも前記表面処理工程を行った部位に熱可塑性樹脂を塗布して熱可塑性樹脂層を形成する樹脂層形成工程と、前記樹脂層形成工程で形成された樹脂付き金属部材と樹脂部材とを突き合わせつつ、前記熱可塑性樹脂層と前記樹脂部材との突合せ部に熱を発生させて溶着する接合工程と、を含むことを特徴とする。
 かかる製造方法によれば、表面処理工程によって形成された凹部に、塗布された熱可塑性樹脂が入り込んだ後に硬化するため、金属部材に熱可塑性樹脂層を確実に定着させることができる。また、接合工程では、突合せ部が樹脂同士となるため、接合する部材間の親和性が高くなり熱可塑性樹脂層と樹脂部材とが確実に溶着し、結合力を大きくすることができる。
 また、前記金属部材は、ベース板と前記ベース板の表面に並設された複数のフィンとを有し、前記樹脂部材は、底部と前記底部に立設する枠状の側壁部とを有し、前記表面処理工程では、少なくとも前記ベース板の周縁部に対して表面処理を行い、前記接合工程では、前記周縁部に形成された前記熱可塑性樹脂層と前記側壁部との突合せ部を溶着することが好ましい。
 かかる製造方法によれば、内部に金属製のフィンが形成された複合型中空容器を容易に製造することができる。
 また、前記表面処理工程では、前記フィンの先端面に対しても表面処理を行い、前記接合工程では、前記周縁部に形成された前記熱可塑性樹脂層と前記側壁部との突合せ部を溶着するとともに、前記フィンの先端面に形成された熱可塑性樹脂層と前記底部との突合せ部を溶着することが好ましい。
 かかる製造方法によれば、ベース板の表面の周縁部と側壁部との突合せ部に加えて、フィンの先端面と容器の底部との突合せ部が溶着されるため、結合力をより大きくすることができる。
 また、前記接合工程では、前記周縁部の全周に亘って溶着することが好ましい。かかる製造方法によれば、複合型中空容器の密閉性を向上させることできる。
 また、前記金属部材は、流体が流通する複数の流路孔を有し、前記樹脂部材は、前記流路孔の端部に連通するヘッダー流路孔を有することが好ましい。
 かかる製造方法によれば、流路孔及びヘッダー流路孔を備えた中空容器を容易に製造することができる。
 また、前記金属部材は、ベース板と前記ベース板の表面に形成されたブロック部とを有し、前記樹脂部材は、底部と前記底部に立設する枠状の側壁部とを有し、複数の円盤カッターが積層されたマルチカッターで前記ブロック部を切削してフィンを形成する切削工程を具備し、前記表面処理工程では、少なくとも前記ベース板の周縁部に対して表面処理を行い、前記接合工程では、前記周縁部に形成された前記熱可塑性樹脂層と前記側壁部との突合せ部を溶着することを特徴とする。
 かかる製造方法によれば、マルチカッターでフィンを形成することで、フィンの板厚やフィン同士の隙間等を容易に変更できるため、設計の自由度を向上させることができる。
 また、前記表面処理工程の前に、前記切削工程を行い、前記表面処理工程では、前記フィンの先端面に対しても表面処理を行い、前記接合工程では、前記周縁部に形成された前記熱可塑性樹脂層と前記側壁部との突合せ部を溶着するとともに、前記フィンの先端面に形成された熱可塑性樹脂層と前記底部との突合せ部を溶着することが好ましい。
 かかる製造方法によれば、ベース板の表面の周縁部と側壁部との突合せ部に加えて、フィンの先端面と容器の底部との突合せ部が溶着されるため、結合力をより大きくすることができる。
 また、前記表面処理工程では、前記ベース板の表面及び前記ブロック部の表面に複数の微細な凹部を形成し、前記樹脂層形成工程の後に前記切削工程を行い、前記切削工程では、熱可塑性樹脂層とともに前記ブロック部を切削して、熱可塑性樹脂層付きのフィンを形成し、前記接合工程では、前記ベース板に形成された前記熱可塑性樹脂層と前記側壁部との突合せ部を溶着するとともに、前記フィンの先端面に形成された熱可塑性樹脂層と前記底部との突合せ部を溶着することが好ましい。
 かかる製造方法によれば、マルチカッターでフィンを形成することで、フィンの板厚やフィン同士の隙間等を容易に変更できるため、設計の自由度を向上させることができる。また、切削工程を行う前に樹脂層形成工程を行うことにより、フィンに熱可塑性樹脂層を形成する作業を容易に行うことができる。
 また、前記金属部材はベース板を備え、前記樹脂部材は、底部と前記底部に立設された枠状の側壁部と前記底部に立設された支持部とを有し、前記表面処理工程では、前記ベース板の表面の周縁部及び前記ベース板の表面のうち前記支持部と対応する位置に対して表面処理を行い、前記接合工程では、前記ベース板の周縁部と前記側壁部との突合せ部及びベース板と前記支持部との突合せ部に熱を発生させ、それぞれの突合せ部において前記熱可塑性樹脂層と前記樹脂部材とを溶着することが好ましい。
 かかる製造方法によれば、側壁部とベース板の周縁部との突合せ部に加えて、支持部と金属部材との突合せ部を溶着させることができるため、結合力をより大きくすることができる。
 また、前記支持部は、前記側壁部から連続して形成されていることが好ましい。かかる製造方法によれば、容器の剛性を大きくすることができる。
 また、前記金属部材は、ベース板と前記ベース板に立設された支持部とを有し、前記樹脂部材は、底部と前記底部に立設された枠状の側壁部とを有し、前記表面処理工程では、前記ベース板の表面の周縁部及び前記支持部の先端面に表面処理を行い、前記接合工程では、前記ベース板の周縁部と前記側壁部との突合せ部及び前記底部と前記支持部との突合せ部に熱を発生させ、それぞれの突合せ部において前記熱可塑性樹脂層と前記樹脂部材とを溶着することを特徴とする。
 かかる製造方法によれば、側壁部と蓋の周縁部との突合せ部に加えて、蓋の支持部と容器との突合せ部を溶着させることができるため、結合力をより大きくことができる。
 また、前記ベース板の表面に、複数のフィンが形成されていることが好ましい。かかる製造方法によれば、フィンを備えた複合型中空容器を容易に製造することができる。
 また、前記金属部材は、アルミニウム又はアルミニウム合金であることが好ましい。かかる製造方法によれば、部材を容易に成形できるとともに、耐食性、軽量性に富んだ製品を製造することができる。
 また、本発明は、底部と前記底部に立設された枠状の側壁部とを備えた樹脂製の容器と、ベース板と前記ベース板に並設された複数のフィンとを備えた金属製の蓋と、を有し、前記蓋と前記側壁部とが熱可塑性樹脂を介して溶着されているとともに、前記フィンの先端面と前記底部とが熱可塑性樹脂を介して溶着されていることを特徴とする。
 かかる製造方法によれば、ベース板の周縁部と側壁部の先端面との突合せ部に加えて、フィンの先端面と容器の底部のとの突合せ部も溶着されているため、容器と蓋との結合力を大きくすることができる。
 また、本発明は、底部と前記底部に立設された枠状の側壁部とを備えた樹脂製の容器と、ベース板と前記ベース板に並設された複数のフィンとを備えた金属製の蓋と、前記底部及び前記蓋のいずれか一方に形成された支持部と、を有し、前記蓋と前記側壁部とが熱可塑性樹脂を介して溶着されているとともに、前記支持部と前記底部及び前記蓋のいずれか他方とが熱可塑性樹脂を介して溶着されていることを特徴とする。
 かかる構成によれば、側壁部と蓋との突合せ部に加えて、支持部と底部及び蓋のいずれか他方との突合せ部を溶着することができるため、容器と蓋との結合力を大きくすることができる。
 本発明に係る複合型中空容器の製造方法及び複合型中空容器によれば、樹脂部材と金属部材との結合力を大きくすることができる。
本発明の第一実施形態に係る液冷ジャケットを示す分解斜視図である。 第一実施形態に係る液冷ジャケットを示す一部破断斜視図である。 図2のI-I断面図である。 第一実施形態に係る液冷ジャケットの製造方法を示す斜視図であって、(a)は金属部材を示し、(b)は表面処理工程を示す。 第一実施形態に係る液冷ジャケットの製造方法を示す図であって、(a)は樹脂層形成工程を示す斜視図であり、(b)は除去工程を示す断面図である。 第一実施形態に係る液冷ジャケットの製造方法を示す斜視図であって、(a)は除去工程後を示し、(b)は切削工程を示す。 第一実施形態に係る液冷ジャケットの製造方法の切削工程を示す模式側面図である。 第一実施形態に係る液冷ジャケットの製造方法を示す斜視図であって、(a)は樹脂層形成工程後を示し、(b)は接合工程を示す。 図8のII-II部分の模式断面図である。 本発明の第二実施形態に係る液冷ジャケットの製造方法を示す斜視図であって、(a)は表面処理工程を示し、(b)は切削工程を示す。 第二実施形態に係る液冷ジャケットの製造方法を示す斜視図であって、(a)は切削工程後を示し、(b)は接合工程を示す。 変形例を示す斜視図である。 本発明の第三実施形態に係る液冷ジャケットの製造方法を示す斜視図であって、(a)は金属部材を示し、(b)は表面処理工程を示す。 第三実施形態に係る液冷ジャケットの製造方法の樹脂層形成工程を示す斜視図である。 (a)は金属部材の変形例を示す斜視図であり、(b)はフィンの変形例を示す断面図である。 本発明の第四実施形態に係る液冷ジャケットを示す分解斜視図である。 第四実施形態に係る液冷ジャケットを示す一部破断斜視図である。 図17のIII-III断面図である。 第四実施形態に係る液冷ジャケットの製造方法を示す図であって、(a)は金属部材を示す平面図であり、(b)は樹脂層形成工程を示す平面図である。 第四実施形態に係る液冷ジャケットの製造方法の接合工程を示す斜視図である。 本発明の第五実施形態に係る液冷ジャケットを示す分解斜視図である。 第五実施形態に係る液冷ジャケットの断面図である。 第五実施形態に係る液冷ジャケットの製造方法を示す図であって、(a)は金属部材を示す平面図であり、(b)は樹脂層形成工程を示す平面図である。 第五実施形態に係る液冷ジャケットの製造方法の接合工程を示す斜視図である。 本発明の第六実施形態に係る液冷ジャケットの製造方法を示す分解斜視図である。 第六実施形態に係る液冷ジャケットの製造方法を示す断面図である。 実施例の接合条件等を示す表である。
〔第一実施形態〕
 本発明の第一実施形態について図面を用いて詳細に説明する。本発明に係る複合型中空容器の製造方法は、樹脂部材と金属部材とを接合して複合型の中空容器を製造するものである。複合型中空容器の用途は特に制限されないが、本実施形態では、樹脂部材と金属部材とを接合してなる液冷ジャケットを製造する場合を例示する。
 図1に示すように、液冷ジャケット1は、樹脂製の容器2と、金属製の蓋3とで構成されている。容器2は、底部11と、底部11から立ち上がる側壁部12とで構成されている。容器2は、特許請求の範囲の「樹脂部材」に相当する。底部11は、平面視矩形を呈する。側壁部12は、平面視矩形枠状を呈する。側壁部12の板厚は一定になっている。容器2の材料は樹脂であれば特に制限されないが、本実施形態では例えばポリプロピレンで形成されている。
 蓋3は、容器2の開口を塞ぐ部材である。蓋3は、特許請求の範囲の「樹脂付き金属部材」に相当する。蓋3は、ベース板21と、ベース板21に並設された複数のフィン22と、複数個所に形成された熱可塑性樹脂層23とで構成されている。ベース板21は、平面視矩形を呈する板状部材である。ベース板21の大きさは、側壁部12の外縁と同じ大きさになっている。
 フィン22は、ベース板21の表面21aに垂直に形成されている。フィン22は、ベース板21の長手方向に対して平行に等間隔で並設されている。フィン22の高さは、側壁部12の高さと同じ寸法になっている。ベース板21及びフィン22の材料は金属であれば特に制限されないが、本実施形態ではアルミニウム合金である。ベース板21とフィン22とは一体形成されている。
 熱可塑性樹脂層23は、熱可塑性樹脂で形成された層であって、表面21aの周縁部及びフィン22の先端面22aに形成されている。熱可塑性樹脂の種類は特に制限されないが、本実施形態ではPPS(ポリフェニレンサルファイド、ポリプラスチックス社製)を用いている。熱可塑性樹脂層23は、表面21aの周縁部の全周に亘って形成されている。また、熱可塑性樹脂層23は、フィン22の先端面22aの全面に形成されている。熱可塑性樹脂層23の厚さは数十~数百μm程度であるが、図1では説明の便宜上実際の寸法よりも厚く描画している。
 図2に示すように、容器2の開口を蓋3で塞ぐと、側壁部12の先端面12aと蓋3の表面21aの周縁部とが突き合わされて第一突合せ部J1が形成される。第一突合せ部J1は、平面視矩形枠状を呈する。また、図3に示すように、本実施形態では、フィン22の先端面22aと底部11とが突き合わされて複数の第二突合せ部J2が形成される。液冷ジャケット1は、第一突合せ部J1及び第二突合せ部J2がそれぞれ溶着されることにより接合されている。液冷ジャケット1は、フィン22,22同士の隙間やフィン22と側壁部12との隙間に流体が流れることにより、ベース板21に載置される装置等を冷却することができる。
 なお、本実施形態では、液冷ジャケット1は平面視矩形状を呈するが、平面視円形状、楕円形状又は他の多角形状を呈するように形成されてもよい。
 次に、第一実施形態に係る液冷ジャケットの製造方法について説明する。液冷ジャケットの製造方法は、主に準備工程と、接合工程とを行う。準備工程は、容器2及び蓋3を用意する工程である。準備工程における、表面処理工程、樹脂層形成工程、除去工程及び切削工程は、蓋3(樹脂付き金属部材)を形成するための工程である。
 まず、表面処理工程に先だって、容器2及び金属部材30を用意する。容器2は、図1に示すように、射出成形によって一体形成する。一方、図4の(a)に示すように、例えば、ダイカストによって金属部材30を形成する。
 金属部材30は、ベース板31と、ベース板31に形成されたブロック部32とを備えている。ブロック部32は、直方体を呈し、ベース板31の中央に形成されている。ブロック部32の表面32aの面積は、ベース板31の裏面31bの面積よりも小さくなっている。金属部材30は、アルミニウム等切削加工が可能な金属であれば特に制限されないが、本実施形態ではアルミニウム合金で形成されている。
 図4の(a)及び(b)に示すように、表面処理工程は、ベース板31の表面31a及びブロック部32の表面32a、4つの側面32bに微細な凹部を形成する工程である。表面処理工程では、各面に微細な凹部が形成されればその形成方法は特に制限されないが、例えば、エッチング処理、アルマイト処理、スプレードライ法等を行う。
 エッチング処理は、例えば、塩酸溶液中に塩化アルミニウム六水和物を添加して調製したエッチング液に該当部位を浸漬させて行う。一方、アルマイト処理は、希硫酸やシュウ酸などを用いてアルミニウム合金を陽極として電気分解することにより、該当部位を電気化学的に酸化させて行う。
 スプレードライ法は、高速化した粒子を該当部位に衝突させて、部材の表面の改質や造形を行う。また、ワイヤーブラシ等で該当面を粗く削って凹部を形成してもよい。
 図5の(a)に示すように、樹脂層形成工程は、ベース板31の表面31a及びブロック部32の表面32a及び4つの側面32bに熱可塑性樹脂を塗布して熱可塑性樹脂層23を形成する工程である。熱可塑性樹脂を塗布すると、溶融した熱可塑性樹脂が表面処理工程で形成された凹部に入り込んだ後、硬化する。これにより、ベース板31に対して熱可塑性樹脂層23が確実に定着する。
 熱可塑性樹脂の種類は、特に制限されないが、例えば、ABS樹脂、ポリプロピレン、ポリエチレン、ポリフェニレンサルファイド等を用いればよい。樹脂層形成工程において、熱可塑性樹脂を塗布する方法は特に制限されるものではない。本実施形態では、金属部材30を射出成形型(図示省略)に設置した後、熱可塑性樹脂を射出して塗布している。なお、金属部材30の一部を樹脂液に含浸させるいわゆるドブ漬けによって熱可塑性樹脂層23を形成してもよい。
 図5の(b)に示すように、除去工程は、ブロック部32の4つの側面32bに塗布された熱可塑性樹脂層23を除去する工程である。熱可塑性樹脂層23を除去する方法は特に制限されないが、本実施形態ではエンドミル等で切削除去している。除去工程では、少なくとも側面32bに塗布された熱可塑性樹脂を除去すればよいが、本実施形態では、図5の(b)の一点鎖線で示すラインに沿って切削除去する。つまり、本実施形態では、ブロック部32の側面32b及び表面32aの一部とこれらの部位に形成された熱可塑性樹脂層23とを切削除去する。
 除去工程後は、図6の(a)に示すように、ブロック部32の4つの側面32b金属面の全てが露出するとともに、ブロック部32の周囲に沿って表面31aの一部が露出する。
 図6の(b)に示すように、切削工程は、マルチカッターMでブロック部32を切削してフィンを形成する工程である。マルチカッターMは、回転軸Maと、回転軸Maに並設された複数の円盤カッターMbとで構成されている。円盤カッターMbは、隙間をあけて並設されており、周縁部には刃(図省略)が形成されている。隣り合う円盤カッターMb,Mbの隙間は、フィン22の厚さと同等である。また、円盤カッターMbの厚さは、隣り合うフィン22同士の隙間と同等である。
 図7に示すように、切削工程では、回転軸Maとブロック部32の稜線32cとが平行となるようにマルチカッターMを配置するとともに、ブロック部32の稜線32cを通る鉛直線と、回転軸Maの中心とが重なる位置にマルチカッターMを配置する。そして、マルチカッターMとブロック部32とを近接させて、円盤カッターMbとブロック部32を接触させる。
 円盤カッターMbを所定の深さまで挿入したら、ブロック部32に対するマルチカッターMの高さ位置を一定に維持しつつ、他方の稜線32dに向けて相対移動させる。回転軸Maの中心と他方の稜線32dを通る鉛直線とが重なる位置まで移動させたら、マルチカッターMとブロック部32とが離間するように相対移動させる。なお、マルチカッターMの挿入方法及び離脱方法は、この方法に限定されるものではない。
 図8の(a)に示すように、切削工程によって、先端面22aに熱可塑性樹脂層23が形成された複数のフィン22(熱可塑性樹脂層23付きフィン22)が形成される。以上の表面処理工程と、樹脂層形成工程と、除去工程と、切削工程とによって蓋3が形成される。
 図8の(b)に示すように、接合工程は、容器2と蓋3とを突き合わせた後、摩擦圧接を行って容器2と蓋3とを溶着する工程である。蓋3に容器2をかぶせると、蓋3の表面21aの周縁部と容器2の側壁部12の先端面12a(図1参照)とが突き合わされて第一突合せ部J1が形成される。また、底部11とフィン22の先端面22aとが突き合わされて複数の第二突合せ部J2が形成される(図3参照)。
 摩擦圧接では、摩擦工程と圧接工程とを行う。摩擦工程では、容器2と蓋3とを互いに近接する方向に押圧しながら往復移動させる。本実施形態では、フィン22の長手方向と平行に容器2と蓋3とを相対的かつ直線的に往復移動させる。本実施形態では、蓋3は移動させず、容器2のみを直線的に往復移動させている。
 摩擦工程における条件は適宜設定すればよいが、周波数を100~260Hz、振幅を1.0~2.0mm、摩擦圧力を3.0~10.0MPaに設定する。摩擦工程の時間を1~3秒程度に設定する。摩擦工程が終了したら、直ちに圧接工程に移行する。
 圧接工程では、容器2及び蓋3を相対移動させずに互いに近接する方向に押圧する。圧接工程における条件は適宜設定すればよいが、例えば、アップセット圧力(冷却圧力)を3.0~12MPa、冷却時間を2~10秒程度に設定する。
 摩擦工程によって第一突合せ部J1及び第二突合せ部J2に摩擦熱が発生した後、往復移動を停止させ、圧接工程によってアプセット圧力を付与すると、ベース板21と側壁部12とが溶着するとともに、フィン22と底部11とが溶着する。より詳しくは、図9に示すように、摩擦熱が発生することによって、熱可塑性樹脂層23が溶融するとともに、側壁部12の先端面12aも溶融して両者が溶着する。
 摩擦圧接の際には、第一突合せ部J1及び第二突合せ部J2には、軟化した母材が押し出されることによってバリが発生する。必要に応じて、第一突合せ部J1の側方に発生したバリを、カッター装置を用いて切除する。以上の工程により液冷ジャケット1が完成する。
 以上説明した第一実施形態に係る液冷ジャケットの製造方法によれば、表面処理工程によって形成された凹部31c(図9参照)に、塗布された熱可塑性樹脂が入り込んだ後に硬化するため、金属で形成されたベース板21(31)に熱可塑性樹脂層23を確実に定着させることができる。また、接合工程では、第一突合せ部J1及び突合せ部J2において樹脂同士が突き合わされるため、接合する部材間の親和性が高くなり容器と熱可塑性樹脂層とが確実に溶着し、結合力を大きくすることができる。
 また、本実施形態では、第一突合せ部J1に加えて、底部11とフィン22の先端面22aとの突合せ部J2も溶着されるため、より強固に接合することができる。
 ここで、例えば、フィン22を形成した後に、フィン22の先端面22aに熱可塑性樹脂を射出することもできるが、この場合は複数枚形成されたフィン22の側面に熱可塑性樹脂が塗布されないように、射出成形型に入れ子等を配置しなければならず、射出成形作業が煩雑になる。しかし、本実施形態によれば、切削工程の前に樹脂層形成工程を行うことにより、ベース板31及びブロック部32の全体(表面31a、表面32a及び側面32b)に一括して熱可塑性樹脂を射出できるため、入れ子等が不要になる。これにより、本実施形態によれば、ベース板31及びブロック部32に対して容易に熱可塑性樹脂を塗布することができる。
 また、熱可塑性樹脂を塗布する方法は特に制限されないが、本実施形態のように射出成形によれば、熱可塑性樹脂のベース板31への定着性が良好となる。また、射出成形によれば、短時間で均一に熱可塑性樹脂を塗布することができる。
 また、図9に示すように、凹部31cに熱可塑性樹脂が入り込んだ後に硬化することにより、いわゆるアンカー効果による引き抜き抵抗を向上させることができる。凹部31cの形状は特に制限されないが、本実施形態のように、凹部31cの開口部に向かうにつれて開口径が小さくなるように形成されていることが好ましい。
 また、第一突合せ部J1及び突合せ部J2に熱を発生させる手段も特に制限されないが、本実施形態のように摩擦圧接を採用すると、短時間で容易に接合することができる。
 なお、摩擦工程の移動方向は、フィン22に対して斜め方向に容器2を移動させてもよいし、フィン22の板厚方向と平行に容器2を移動させてもよい。また、接合工程では、摩擦圧接によって摩擦熱を発生させたが、例えば、ベース板21に発熱装置を接触させてベース板21に熱を発生させてもよい。また、ベース板21の裏面に回転ツールを回転させてベース板21と回転ツールとの摩擦熱によって熱を発生させてもよい。また、熱可塑性樹脂層23と容器2の樹脂の種類は同一でもよいし、異なってもよい。
〔第二実施形態〕
 次に、第二実施形態について説明する。第二実施形態に係る液冷ジャケットの製造方法は、表面処理工程、樹脂層形成工程及び接合工程が第一実施形態と相違する。第二実施形態に係る液冷ジャケットの製造方法では、相違点を中心に説明する。
 図10の(a)に示すように、表面処理工程では、ベース板31の表面31aの周縁部と、ブロック部32の表面32aのみに対して表面処理を行う。
 図10の(b)に示すように、樹脂層形成工程では、表面処理を行った部位、つまり、ベース板31の表面31aの周縁部と、ブロック部32の表面32aに熱可塑性樹脂を塗布し、熱可塑性樹脂層23を形成する。
 図10(b)に示すように、切削工程では、マルチカッターMを用いてブロック部32の表面32aを切削する。本実施形態では、マルチカッターMの回転軸Maが、ブロック部32の長辺を構成する稜線32eと平行となるように配置し、この平行状態を維持しつつ切削する。
 図11の(a)に示すように、切削工程によって、先端面22aに熱可塑性樹脂層23が形成された状態で複数のフィン22が形成される。また、表面31aの周縁部に熱可塑性樹脂層23が形成される。これにより蓋3が形成される。
 図11の(b)に示すように、接合工程は、容器2と蓋3とを突き合わせた後、摩擦圧接を行って蓋3と容器2とを溶着により接合する工程である。本実施形態では、フィン22の長手方向と平行(蓋3の短手方向と平行)に容器2及び蓋3を相対的に往復移動させる。
 以上説明した第二実施形態に係る液冷ジャケットの製造方法によっても第一実施形態と略同等の効果を得ることができる。また、第二実施形態では、ベース板31の周縁部及び表面32aのみに樹脂を塗布するだけでよいため、第一実施形態の除去工程が不要になるというメリットがある。
〔変形例〕
 第一実施形態及び第二実施形態では、金属部材30をダイカストによって形成したが、他の成形方法で形成してもよい。例えば、図12に示すように、押出し成形によって金属部材30を形成してもよい。この変形例では、金属部材の長手方向を押出し方向として押出形材を得た後、中間ブロック部32Aの両端(2点鎖線で示す部分)を切削することで金属部材30を得ることができる。
〔第三実施形態〕
 次に、本発明の第三実施形態について説明する。第一実施形態では、マルチカッターMによって切削してフィン22を形成したが、第三実施形態に係る液冷ジャケットの製造方法は、蓋3のフィンが予め形成されている点で第一実施形態と相違する。また、フィンを形成した後に、熱可塑性樹脂を塗布する点で第一実施形態と相違する。
 第三実施形態に係る液冷ジャケットの製造方法は、主に準備工程と、接合工程とを行う。準備工程は、表面処理工程と、樹脂層形成工程とを行う。準備工程は、主に蓋3を形成するための工程である。
 まず、表面処理工程に先だって、容器2及び金属部材40を用意する。容器2(樹脂部材)は、図1に示すように、射出成形によって一体形成する。一方、図13の(a)に示すように、例えば、ダイカストによって金属部材40を形成する。金属部材40は、蓋3の素となる部材である。金属部材40は、ベース板41と、ベース板41に並設された複数のフィン42とで構成されている。
 図13の(a)及び(b)に示すように、表面処理工程では、ベース板41の表面41aの周縁部及びフィン42の先端面42aに対して微細な凹部を形成する。
 図14の(a)に示すように、樹脂層形成工程では、表面処理工程を行った部位に熱可塑性樹脂層を塗布して熱可塑性樹脂層23を形成する。これにより、第一実施形態に係る蓋と同等の蓋3(樹脂付き金属部材)が形成される。
 接合工程は、具体的な図示は省略するが、第一実施形態の図8の(b)と同じ要領で摩擦圧接を行って、容器2と蓋3とを接合する工程である。
 第三実施形態に係る液冷ジャケットの製造方法であっても第一実施形態と略同等の効果を得ることができる。また、第三実施形態では、蓋3に予めフィン22が形成された状態から蓋3を形成するため、マルチカッターM等を用いる必要が無い。
 第三実施形態では、金属部材40をダイカストによって形成したが、他の成形方法で形成してもよい。例えば、図15の(a)に示すように、押出し成形によって金属部材40を形成してもよい。この変形例では、金属部材40の長手方向を押出し方向として押出形材を得た後、中間フィン22Aの両端(2点差線の部分)を削除することで、金属部材40を得ることができる。
 また、金属部材40を、マルチカッターMを用いて形成してもよい。この場合は、金属部材30(図4の(a)参照)を用意した後、ブロック部32に対してマルチカッターMを挿入して、フィンを形成すればよい(切削工程)。その後の工程(表面処理工程、樹脂層形成工程及び接合工程)については、第三実施形態と同等である。
 また、図15の(b)に示すように、フィン22の先端面22aに溝22bを設けてもよい。溝22bは、先端面22aから離間するにつれて開口径が大きくなるように形成されている。先端面22a及び溝22bに熱可塑性樹脂が塗布されて、熱可塑性樹脂層が形成された後、容器2と溶着すると、溝22bに樹脂が入り込んだ状態で硬化する。これにより、フィン22に対する底部11の引き抜き抵抗が大きくなるため、フィン22と容器2との結合力をより高めることができる。
 なお、第一実施形態乃至第三実施形態について説明したが、これに限定されるものではない。例えば、本実施形態では、第一突合せ部J1に加えて、突合せ部J2につても溶着させたが、フィン22と底部11とは溶着させずに離間するように構成してもよい。また、本実施形態では、表面処理工程で凹部31cを形成した領域と、熱可塑性樹脂層23を形成した領域は同等であるが、樹脂層形成工程では少なくとも凹部31cを形成した箇所に熱可塑性樹脂層23を形成すればよい。
 また、本実施形態では、容器2を樹脂とし蓋3を金属としたが、容器を金属とし、蓋を樹脂としてもよい。蓋を樹脂とする場合は、容器の底部にフィンを形成することが好ましい。この場合は、容器の側壁部の先端面やフィンの先端面に表面処理工程及び樹脂層形成工程を行った後に、蓋と容器(樹脂付き金属部材)とを接合工程で接合すればよい。
〔第四実施形態〕
 図16に示すように、第四実施形態に係る液冷ジャケット51は、樹脂製の容器52と、金属製の蓋53とで構成されている。液冷ジャケット51は、支持部63が形成されている点で、第一実施形態と相違する。
 容器52は、底部61と、底部61から立ち上がる側壁部62と、底部61から立ち上がり側壁部62に連続する支持部63とで構成されている。容器52は、特許請求の範囲の「樹脂部材」に相当する。容器52は、射出成形によって一体形成されている。
 支持部63は、板状を呈し、側壁部62と同等の高さになっている。支持部63は、側壁部62の短辺部に連続し、当該短辺部に対して垂直に形成されている。支持部63の長さは、側壁部62の長辺部の2/3程度になっている。
 蓋53は、容器52の開口を塞ぐ部材である。蓋53は、ベース板71と、ベース板71に並設された複数のフィン72と、熱可塑性樹脂層73と、スペース部74とで構成されている。蓋53は、特許請求の範囲の「樹脂付き金属部材」に相当する。
 ベース板71は、平面視矩形を呈する板状部材である。ベース板71の大きさは、側壁部62の外縁と同じ大きさになっている。
 フィン72は、ベース板71の表面71aに垂直に形成されている。フィン72は、ベース板71の長手方向に対して平行に等間隔で並設されている。フィン72の高さは、側壁部62の高さよりも小さくなっている。
 スペース部74とは、複数枚並設されたフィン72群のうちフィン72が形成されていない空間を意味する。スペース部74は、支持部63を挿通するための空間である。
 熱可塑性樹脂層73は、熱可塑性樹脂で形成された層であって、表面71aの周縁部と、表面71aのうち支持部63に対応する位置とに形成されている。
 図17に示すように、容器52を蓋53で塞ぐと、側壁部62の先端面62aと蓋53の表面71aの周縁部とが突き合わされて第一突合せ部J1が形成される。第一突合せ部J1は、平面視矩形枠状を呈する。また、図18に示すように、支持部63の先端面63aとベース板71の表面71aとが突き合わされて第三突合せ部J3が形成される。液冷ジャケット51は、第一突合せ部J1と第三突合せ部J3とがそれぞれ溶着されることにより接合されている。
 次に、第四実施形態に係る液冷ジャケットの製造方法について説明する。液冷ジャケットの製造方法は、主に準備工程と、接合工程とを行う。準備工程では、表面処理工程と、樹脂層形成工程とを行う。表面処理工程及び樹脂層形成工程は、蓋53を用意するための工程である。
 まず、表面処理工程に先だって、容器52及び金属部材80を用意する。容器52は、図16を参照するように、射出成形によって一体形成する。一方、図19の(a)に示すように、例えば、ダイカストによって金属部材80を形成する。金属部材80は、蓋53の素となる部材である。金属部材80は、ベース板81と、ベース板81に並設された複数のフィン82とで構成されている。
 表面処理工程は、ベース板81の裏面81aの周縁部及び裏面81aのうち支持部13が溶着される部位に微細な凹部を形成する工程である。
 図19の(b)に示すように、樹脂層形成工程は、ベース板81の裏面81aの周縁部及び裏面81aのうち支持部63に溶着される部位に熱可塑性樹脂を塗布する工程である。つまり、樹脂層形成工程では、表面処理工程で凹部が形成された部位に樹脂を塗布して、熱可塑性樹脂層73を形成する。これにより、蓋53が形成される。
 図20に示すように、接合工程は、容器52と蓋53とを突き合わせた後、摩擦圧接を行って容器52と蓋53とを溶着により接合する工程である。蓋53に容器52をかぶせると、ベース板71の表面71aの周縁部と側壁部62の先端面62aとが突き合わされて第一突合せ部J1が形成される。また、支持部63の先端面63aとベース板71とが突き合わされて第三突合せ部J3が形成される。
 摩擦圧接では、第一実施形態と同様の手順によって、第一突合せ部J1と第三突合せ部J3とを接合する。
 以上説明した第四実施形態に係る液冷ジャケットの製造方法によれば、第一実施形態と同様の原理によって容器52の側壁部62と蓋53の周縁部との突合せ部が接合する。
 第一実施形態~第三実施形態では、フィンを容器の底部に溶着するものであったが、第四実施形態のように側壁部62の高さがフィン72の高さよりも大きくなる場合がある。このような場合は、液冷ジャケットに内圧が作用すると、容器の中央部に内圧が集中するため、容器の中央部分の変形が大きくなって突合せ部が破壊されるおそれがある。しかし、本実施形態のように、第一突合せ部J1に加えて、容器52の支持部63と蓋53のベース板71の中央部とが第三突合せ部J3で溶着されるため、容器52と蓋53との結合力を向上させることができる。
 また、支持部63は、本実施形態のように側壁部62から連続して形成されることで、容器52及び液冷ジャケット51の剛性を向上させることができる。
 なお、本実施形態ではフィン72を設けたが、フィン72を省略してもよい。また、本実施形態では、支持部63を容器52に設けたが、支持部63を蓋53に設けてもよい。この場合は、表面71aの周縁部と支持部63の先端面に表面処理を施すとともに、当該表面処理を行った部位に熱可塑性樹脂層を形成して蓋を作成する。そして、当該蓋と容器とを突き合わせて接合工程によって各突合せ部を溶着すればよい。
 また、本実施形態では、金属部材80をダイカストによって形成したが、金属部材をマルチカッターMで切削して形成してもよい。
〔第五実施形態〕
 図21に示すように、第五実施形態に係る液冷ジャケット51Aは、樹脂製の容器52Aと、金属製の蓋53Aとで構成されている。液冷ジャケット51Aは、支持部63Aが側壁部62と離間している点で第四実施形態と相違する。
 容器52Aは、底部61と、底部61の端部から立ち上がる側壁部62と、底部61の中央から立ち上がる支持部63Aとで構成されている。容器52Aは、特許請求の範囲の「樹脂部材」に相当する。容器52Aは、射出成型によって一体形成されている。
 支持部63Aは、円柱状を呈し、側壁部62と同等の高さになっている。支持部63Aは、底部61の中央において、側壁部62から離間して形成されている。
 蓋53Aは、ベース板71と、ベース板71に併設された複数のフィン72と、熱可塑性樹脂層73と、スペース部74とで構成されている。蓋53Aは、特許請求の範囲の「樹脂付き金属部材」に相当する。
 スペース部74とは、複数枚並設されたフィン72群のうちフィン72が形成されていない空間部分を意味する。スペース部74は、支持部63Aを挿通するための空間である。
 熱可塑性樹脂層73は、熱可塑性樹脂で形成された層であって、表面71aの周縁部と、表面71aのうち支持部63Aに対応する位置に形成されている。
 図22に示すように、容器52Aを蓋53Aで塞ぐと、側壁部62の先端面62aと蓋53Aの表面71aの周縁部とが突き合わされて第一突合せ部J1が形成される。第一突合せ部J1は、平面視矩形枠状を呈する。また、支持部63Aの先端面63Aaとベース板71の表面71aとが突き合わされて第三突合せ部J3が形成される。液冷ジャケット51Aは、第一突合せ部J1と第三突合せ部J3とがそれぞれ溶着されることにより接合されている。
 次に、第五実施形態に係る液冷ジャケットの製造方法について説明する。液冷ジャケットの製造方法は、主に準備工程と、接合工程とを行う。準備工程では、表面処理工程と、樹脂層形成工程とを行う。
 まず、表面処理工程に先だって、容器52A及び金属部材80Aを用意する。容器52Aは、図21を参照するように、射出成形によって一体形成する。一方、図23の(a)に示すように、例えば、ダイカストによって金属部材80Aを形成する。金属部材80Aは、蓋53Aの素となる部材である。金属部材80Aは、ベース板81と、ベース板81に並設された複数のフィン82とで構成されている。
 表面処理工程は、ベース板81の裏面81aの周縁部及び裏面81aのうち支持部63Aが溶着される部位に微細な凹部を形成する工程である。
 図23の(b)に示すように、樹脂層形成工程は、ベース板81の裏面81aの周縁部及び裏面81aのうち支持部63Aに溶着される部位に熱可塑性樹脂を塗布する工程である。つまり、樹脂層形成工程では、表面処理工程で凹部が形成された部位に熱可塑性樹脂を塗布して、熱可塑性樹脂層73を形成する。これにより、蓋53Aが形成される。
 図24に示すように、接合工程は、容器52と蓋53とを突き合わせた後、摩擦圧接を行って容器52と蓋53とを溶着により接合する工程である。蓋53に容器52をかぶせると、ベース板71の表面71aの周縁部と側壁部62の先端面62aとが突き合わされて第一突合せ部J1が形成される。また、支持部63Aの先端面63Aaとベース板71とが突き合わされて第三突合せ部J3が形成される。
 摩擦圧接では、第一実施形態と同様の手順によって、第一突合せ部J1と第三突合せ部J3とを接合する。
 以上説明した第五実施形態に係る液冷ジャケットの製造方法によれば、第四実施形態と同等の効果を得ることができる。また、第五実施形態のように、支持部63Aは側壁部62と離間して形成されていてもよい。また、本実施形態では支持部63Aを中央に1つだけ設けているが、他の位置に複数設けてもよい。なお、支持部63Aは本実施形態では円柱状としたが、角柱であってもよい。
 なお、本実施形態ではフィン72を設けたが、フィン72を省略してもよい。また、本実施形態では、支持部63Aを容器52に設けたが、支持部63Aを蓋53に設けてもよい。この場合は、表面71aの周縁部と支持部63Aの先端面に表面処理を施すとともに、当該表面処理を行った部位に熱可塑性樹脂層を形成して蓋を作成する。そして、当該蓋と容器とを突き合わせて接合工程によって各突合せ部を溶着すればよい。
〔第六実施形態〕
 次に、本発明の第六実施形態に係る液冷ジャケットの製造方法について説明する。図25に示すように、第六実施形態に係る液冷ジャケット91は、複数の流路孔104とこの流路孔104の端部に連通するヘッダー流路孔113を有する点で他の実施形態と相違する。第六実施形態に係る液冷ジャケット91は、金属製の容器92と樹脂製の蓋93とが溶着される。
 容器92は、底部101と、底部101から立ち上がる側壁部102と、仕切り部103と、熱可塑性樹脂層105とで構成されている。容器92は、特許請求の範囲の「樹脂付き金属部材」に相当する。側壁部102は、平面視矩形枠状を呈する。容器92の内部は、仕切り部103によって複数の空間に仕切られる。当該空間は、流体を流通させるための流路孔104となる。
 熱可塑性樹脂層105は、熱可塑性樹脂の層であって、側壁部102の先端面(表面)の全周に亘って形成されている。
 蓋93は、底部111と、底部111に対して垂直に形成された側壁部112とで構成されている。蓋93は、特許請求の範囲の「樹脂部材」に相当する。側壁部112は、平面視矩形枠状を呈する。蓋93の内部には、ヘッダー流路孔113が形成されている。
 第六実施形態に係る液冷ジャケットの製造方法では、準備工程と、接合工程とを行う。準備工程では、表面処理工程と、樹脂層形成工程とを行う。表面処理工程及び樹脂層形成工程は、容器92を形成するための工程である。
 まず、表面処理工程に先だって、容器92の素となる金属部材と、蓋93とを用意する。金属部材は、本実施形態では、底部101と、側壁部102と、仕切り部103とで構成される。一方、蓋93は、射出成形によって一体形成される。
 表面処理工程では、側壁部102の先端面に微細な凹部を形成する。樹脂層形成工程では、表面処理によって凹部を形成した部位に熱可塑性樹脂層を形成する。これにより、容器92が形成される。
 図26に示すように、接合工程では、容器92と蓋93とを摩擦圧接により接合する。摩擦工程における移動方向は特に制限されないが、本実施形態では蓋93の長手方向に沿って往復移動させる。以上の工程により、液冷ジャケット91が形成される。
 以上説明した第六実施形態に係る液冷ジャケットの製造方法によれば、内部に流路孔104と、この流路孔104の端部に連通するヘッダー流路孔113とを備えた液冷ジャケット91を容易に製造することができる。また、第一実施形態では、容器を樹脂、蓋を金属としたが、本実施形態のように容器92を金属、蓋93を樹脂としてもよい。
 なお、本実施形態では、容器92を金属、蓋93を樹脂としたが、容器を樹脂とし、蓋を金属としてもよい。この場合は、蓋の側壁部の先端面に、表面処理工程及び樹脂層形成工程を行って熱可塑性樹脂層を形成した後、接合工程で接合すればよい。
 以上本発明の実施形態について説明したが、本発明の趣旨に反しない範囲において適宜設計変更が可能である。例えば、本実施形態では、液冷ジャケットの内部にフィン22や仕切り部103等内部の空間を仕切る部材を備えた形態を例示したが、これらの部材が無い形態であってもよい。
 また、本実施形態では、フィンを板状に形成したが、例えば、ピン状(柱状)に形成してもよい。例えば、ピン状のフィンを形成する場合は、図6の(b)を参照すると、金属部材の長手方向と平行にマルチカッターを移動させて切削を行う第一切削工程の後、金属部材の短手方向と平行にマルチカッターを移動させて切削を行う第二切削工程を行えばよい。この工程によれば、角柱状のピン状のフィンを得ることができる。なお、ピンフィンとベース板とが一体形成された部材をダイカストによって形成してもよい。
 次に、本発明の実施例について説明する。以下では、第一実施形態と同様の符号を用いて説明する。実施例では、液冷ジャケットである試験体1~3を、条件を変えて製造し、これらの試験体に対して耐圧試験を行った。第一実施形態と略同等の工程によって試験体1,2を製造した。一方、フィン22が容器2の底部11に溶着されていないものを試験体3とした。
 試験体1の製造工程を具体的に説明する。図4の(a)を参照するように、準備工程では、アルミニウム合金(JIS:A1050H12)によって金属部材30を形成した。ベース板31の板厚は4mm、横寸法30mm、縦寸法50mmである。ブロック部32の板厚は4mm、横寸法19mm、縦寸法39mmである。
 なお、JIS:A1050は、Si;0.25%以下、Fe;0.40%以下、Cu;0.05%以下、Mn;0.05%以下、Mg;0.05%以下、Zn;0.05%以下、V;0.05%以下、Ti;0.03%以下、Al;99.50%以上で構成されている。H12とは、熱処理等を行って引張強さ85N/mm、伸び16%、耐力75N/mm、硬さ23HVに調質されたものを言う。
 また、準備工程では、PPS(ポリフェニレンサルファイド、ポリプラスチックス社製)を用いて容器2を形成した。具体的には、金型温度150℃、樹脂温度320℃、射出速度100mm/s、保圧50MPa、保圧時間3秒に設定して、射出成形型(図示省略)のキャビティにPPSを射出して成形した。
 図4の(b)を参照するように、金属部材30に対して表面処理を行った。本実施例では、エッチング処理を行って、金属部材30に亜鉛含有皮膜を形成した。具体的には、水酸化ナトリウム濃度100g/L及び酸化亜鉛濃度25g/Lの亜鉛含有水酸化ナトリウム水溶液を調整した。そして、この亜鉛含有水酸化ナトリウム水溶液中に金属部材30を室温下で3分間含浸させ、水洗した。
 図5(a)を参照するように、樹脂層形成工程では、射出成形型を用いて金属部材30に熱可塑性樹脂を塗布した。熱可塑性樹脂は、本実施形態ではPPS(ポリフェニレンサルファイド、ポリプラスチックス社製)を用いた。具体的には、表面処理工程を行った金属部材30を射出成形型(図示省略)にセットし、金型温度150℃、樹脂温度320℃、射出速度100mm/s、保圧50MPa、保圧時間3秒に設定して、PPSを射出した。これにより、熱可塑性樹脂が塗布された金属部材30を得た。
 図5の(b)を参照するように、除去工程では、ブロック部32の4つの側面32bに塗布された熱可塑性樹脂を除去した。
 図6の(a)及び(b)に示すように、切削工程では、マルチカッターMを用いてブロック部32にフィンを形成した。これにより、フィン22の先端面22aに熱可塑性樹脂層23が形成された蓋3を得た。
 図8の(a)及び(b)に示すように、接合工程では、摩擦圧接により容器2と蓋3とを接合した。摩擦圧接の条件は、図25に示すとおりである。以上の工程によって試験体1を得た。
 試験体2については、摩擦圧接における振幅と、摩擦時間を除いては、試験体1と同等の工程で製造した。
 試験体3は、フィン22が容器2の底部11に溶着されていない構造である。したがって、試験体3の製造方法では、除去工程において、図5(b)に示すブロック部32の4つの側面32bに塗布された熱可塑性樹脂のみならず、上面32aに塗布された熱可塑性樹脂をも除去した。ベース板21(31)の周縁部に対してのみ表面処理工程及び樹脂層形成工程を行った後、接合工程を行った。
<耐圧試験>
 耐圧試験は、試験体1~3の蓋3の一部に貫通孔を設け、当該貫通孔から試験体1~3の内部にエアーを供給し、試験体1~3の接合部分が破壊されるまでの印加圧力を計測した。本実施例では、30秒ごとに圧力を0.1MPa上昇させた。
 図25に示すように、試験体1,2と試験体3とを対比すると、第一突合せ部J1に加えて第二突合せ部(フィン22の先端面22aと容器2の底部11との突合せ部)を溶着した方が、大きな圧力に耐えられることがわかった。また、フィン22を底部11に溶着しなくても0.1MPaの圧力に耐えられることがわかった。
 1   液冷ジャケット(複合型中空容器)
 2   容器(樹脂部材)
 3   蓋(樹脂付き金属部材)
 11  底部
 12  側壁部
 12a 先端面
 21  ベース板
 21a 表面
 21b 裏面
 22  フィン
 22a 先端面
 24  熱可塑性樹脂層
 30  金属部材
 31c 凹部
 104 流路孔
 113 ヘッダー流路孔
 M   マルチカッター
 Ma  回転軸
 Hb  円盤カッター
 J1  第一突合せ部
 J2  第二突合せ部
 J3  第三突合せ部

Claims (15)

  1.  金属部材の表面に複数の微細な凹部を形成する表面処理工程と、
     少なくとも前記表面処理工程を行った部位に熱可塑性樹脂を塗布して熱可塑性樹脂層を形成する樹脂層形成工程と、
     前記樹脂層形成工程で形成された樹脂付き金属部材と樹脂部材とを突き合わせつつ、前記熱可塑性樹脂層と前記樹脂部材との突合せ部に熱を発生させて溶着する接合工程と、を含むことを特徴とする複合型中空容器の製造方法。
  2.  前記金属部材は、ベース板と前記ベース板の表面に並設された複数のフィンとを有し、
     前記樹脂部材は、底部と前記底部に立設する枠状の側壁部とを有し、
     前記表面処理工程では、少なくとも前記ベース板の周縁部に対して表面処理を行い、
     前記接合工程では、前記周縁部に形成された前記熱可塑性樹脂層と前記側壁部との突合せ部を溶着することを特徴とする請求の範囲第1項に記載の複合型中空容器の製造方法。
  3.  前記表面処理工程では、前記フィンの先端面に対しても表面処理を行い、
     前記接合工程では、前記周縁部に形成された前記熱可塑性樹脂層と前記側壁部との突合せ部を溶着するとともに、前記フィンの先端面に形成された熱可塑性樹脂層と前記底部との突合せ部を溶着することを特徴とする請求の範囲第2項に記載の複合型中空容器の製造方法。
  4.  前記接合工程では、前記周縁部の全周に亘って溶着することを特徴とする請求の範囲第2項又は請求の範囲第3項に記載の複合型中空容器の製造方法。
  5.  前記金属部材は、流体が流通する複数の流路孔を有し、
     前記樹脂部材は、前記流路孔の端部に連通するヘッダー流路孔を有することを特徴とする請求の範囲第1項に記載の複合型中空容器の製造方法。
  6.  前記金属部材は、ベース板と前記ベース板の表面に形成されたブロック部とを有し、
     前記樹脂部材は、底部と前記底部に立設する枠状の側壁部とを有し、
     複数の円盤カッターが積層されたマルチカッターで前記ブロック部を切削してフィンを形成する切削工程を具備し、
     前記表面処理工程では、少なくとも前記ベース板の周縁部に対して表面処理を行い、
     前記接合工程では、前記周縁部に形成された前記熱可塑性樹脂層と前記側壁部との突合せ部を溶着することを特徴とする請求の範囲第1項に記載の複合型中空容器の製造方法。
  7.  前記表面処理工程の前に、前記切削工程を行い、
     前記表面処理工程では、前記フィンの先端面に対しても表面処理を行い、
     前記接合工程では、前記周縁部に形成された前記熱可塑性樹脂層と前記側壁部との突合せ部を溶着するとともに、前記フィンの先端面に形成された熱可塑性樹脂層と前記底部との突合せ部を溶着することを特徴とする請求の範囲第6項に記載の複合型中空容器の製造方法。
  8.  前記表面処理工程では、前記ベース板の表面及び前記ブロック部の表面に複数の微細な凹部を形成し、
     前記樹脂層形成工程の後に前記切削工程を行い、
     前記切削工程では、熱可塑性樹脂層とともに前記ブロック部を切削して、熱可塑性樹脂層付きのフィンを形成し、
     前記接合工程では、前記ベース板に形成された前記熱可塑性樹脂層と前記側壁部との突合せ部を溶着するとともに、前記フィンの先端面に形成された熱可塑性樹脂層と前記底部との突合せ部を溶着することを特徴とする請求の範囲第6項に記載の複合型中空容器の製造方法。
  9.  前記金属部材はベース板を備え、
     前記樹脂部材は、底部と前記底部に立設された枠状の側壁部と前記底部に立設された支持部とを有し、
     前記表面処理工程では、前記ベース板の表面の周縁部及び前記ベース板の表面のうち前記支持部と対応する位置に対して表面処理を行い、
     前記接合工程では、前記ベース板の周縁部と前記側壁部との突合せ部及びベース板と前記支持部との突合せ部に熱を発生させ、それぞれの突合せ部において前記熱可塑性樹脂層と前記樹脂部材とを溶着することを特徴とする請求の範囲第1項に記載の複合型中空容器の製造方法。
  10.  前記支持部は、前記側壁部から連続して形成されていることを特徴とする請求の範囲第9項に記載の複合型中空容器の製造方法。
  11.  前記金属部材は、ベース板と前記ベース板に立設された支持部とを有し、
     前記樹脂部材は、底部と前記底部に立設された枠状の側壁部とを有し、
     前記表面処理工程では、前記ベース板の表面の周縁部及び前記支持部の先端面に表面処理を行い、
     前記接合工程では、前記ベース板の周縁部と前記側壁部との突合せ部及び前記底部と前記支持部との突合せ部に熱を発生させ、それぞれの突合せ部において前記熱可塑性樹脂層と前記樹脂部材とを溶着することを特徴とする請求の範囲第1項に記載の複合型中空容器の製造方法。
  12.  前記ベース板の表面に、複数のフィンが形成されていることを特徴とする請求の範囲第9項乃至請求の範囲第11項のいずれか一項に記載の複合型中空容器の製造方法。
  13.  前記金属部材は、アルミニウム製又はアルミニウム合金製であることを特徴とする請求の範囲第1項乃至請求の範囲第12項のいずれか一項に記載の複合型中空容器の製造方法。
  14.  底部と前記底部に立設された枠状の側壁部とを備えた樹脂製の容器と、
     ベース板と前記ベース板に並設された複数のフィンとを備えた金属製の蓋と、を有し、
     前記蓋と前記側壁部とが熱可塑性樹脂を介して溶着されているとともに、前記フィンの先端面と前記底部とが熱可塑性樹脂を介して溶着されていることを特徴とする複合型中空容器。
  15.  底部と前記底部に立設された枠状の側壁部とを備えた樹脂製の容器と、
     ベース板と前記ベース板に並設された複数のフィンとを備えた金属製の蓋と、
     前記底部及び前記蓋のいずれか一方に形成された支持部と、を有し、
     前記蓋と前記側壁部とが熱可塑性樹脂を介して溶着されているとともに、前記支持部と前記底部及び前記蓋のいずれか他方とが熱可塑性樹脂を介して溶着されていることを特徴とする複合型中空容器。
PCT/JP2013/078146 2012-10-17 2013-10-17 複合型中空容器の製造方法及び複合型中空容器 WO2014061725A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157011221A KR101651387B1 (ko) 2012-10-17 2013-10-17 복합형 중공 용기의 제조 방법 및 복합형 중공 용기
CN201380054075.1A CN104736323B (zh) 2012-10-17 2013-10-17 复合型中空容器的制造方法及复合型中空容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-230100 2012-10-17
JP2012230100A JP5838949B2 (ja) 2012-10-17 2012-10-17 複合型中空容器の製造方法及び複合型中空容器

Publications (1)

Publication Number Publication Date
WO2014061725A1 true WO2014061725A1 (ja) 2014-04-24

Family

ID=50488285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078146 WO2014061725A1 (ja) 2012-10-17 2013-10-17 複合型中空容器の製造方法及び複合型中空容器

Country Status (5)

Country Link
JP (1) JP5838949B2 (ja)
KR (1) KR101651387B1 (ja)
CN (1) CN104736323B (ja)
TW (1) TWI623413B (ja)
WO (1) WO2014061725A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018163914A (ja) * 2017-03-24 2018-10-18 株式会社ケーヒン パワーモジュール
JP2018163912A (ja) * 2017-03-24 2018-10-18 株式会社ケーヒン パワーモジュール
JP2019204897A (ja) * 2018-05-24 2019-11-28 三井化学株式会社 冷却ジャケット
WO2020255885A1 (ja) * 2019-06-21 2020-12-24 三井化学株式会社 冷却装置および構造体
CN115156863A (zh) * 2022-08-19 2022-10-11 昆山固特杰散热产品有限公司 一种密鳍片带侧墙散热板的成型方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6302803B2 (ja) * 2014-09-09 2018-03-28 日立オートモティブシステムズ株式会社 パワー半導体モジュール及びその製造方法、電力変換装置
JP6314802B2 (ja) * 2014-11-21 2018-04-25 日本軽金属株式会社 液冷ジャケットの製造方法
JP6460921B2 (ja) * 2015-06-15 2019-01-30 三菱電機株式会社 電力半導体装置用冷却装置及びその製造方法
KR20210135570A (ko) * 2019-03-28 2021-11-15 미쯔이가가꾸가부시끼가이샤 냉각 유닛, 냉각 장치, 전지 구조체 및 전동 차량
JP7474629B2 (ja) 2020-03-31 2024-04-25 株式会社フジクラ コールドプレート

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5378274A (en) * 1976-12-21 1978-07-11 Sumitomo Aluminium Smelting Co Method for making aluminumm synthetic resin composite plate
JPS6434724A (en) * 1987-07-30 1989-02-06 Diesel Kiki Co Connecting method of tube in heat exchanger
JP2009056520A (ja) * 2007-08-30 2009-03-19 Nippon Light Metal Co Ltd 溝入れ加工方法
JP2009279858A (ja) * 2008-05-23 2009-12-03 Sumitomo Light Metal Ind Ltd 金属材と樹脂材の接合方法、及び金属材と樹脂材の接合体
JP2010158885A (ja) * 2008-12-09 2010-07-22 Nippon Light Metal Co Ltd 樹脂部材と金属部材の接合方法及び液冷ジャケットの製造方法
JP2010194545A (ja) * 2009-02-23 2010-09-09 Nippon Light Metal Co Ltd 液冷ジャケットの製造方法
JP2011166127A (ja) * 2010-01-12 2011-08-25 Nippon Light Metal Co Ltd 液冷一体型基板の製造方法および液冷一体型基板
JP2011166122A (ja) * 2010-01-12 2011-08-25 Nippon Light Metal Co Ltd フィン一体型基板およびフィン一体型基板の製造方法
JP2012187861A (ja) * 2011-03-11 2012-10-04 Teijin Ltd 炭素繊維複合材料の接合部材の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326452B2 (ja) * 2008-09-17 2013-10-30 宇部興産株式会社 複合構造体およびその製造方法
JP2010212577A (ja) * 2009-03-12 2010-09-24 Aisin Aw Co Ltd 半導体モジュール
JP5899634B2 (ja) * 2010-03-16 2016-04-06 宇部興産株式会社 複合構造体
CN102371679A (zh) * 2010-08-19 2012-03-14 鸿富锦精密工业(深圳)有限公司 金属与树脂的复合体的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5378274A (en) * 1976-12-21 1978-07-11 Sumitomo Aluminium Smelting Co Method for making aluminumm synthetic resin composite plate
JPS6434724A (en) * 1987-07-30 1989-02-06 Diesel Kiki Co Connecting method of tube in heat exchanger
JP2009056520A (ja) * 2007-08-30 2009-03-19 Nippon Light Metal Co Ltd 溝入れ加工方法
JP2009279858A (ja) * 2008-05-23 2009-12-03 Sumitomo Light Metal Ind Ltd 金属材と樹脂材の接合方法、及び金属材と樹脂材の接合体
JP2010158885A (ja) * 2008-12-09 2010-07-22 Nippon Light Metal Co Ltd 樹脂部材と金属部材の接合方法及び液冷ジャケットの製造方法
JP2010194545A (ja) * 2009-02-23 2010-09-09 Nippon Light Metal Co Ltd 液冷ジャケットの製造方法
JP2011166127A (ja) * 2010-01-12 2011-08-25 Nippon Light Metal Co Ltd 液冷一体型基板の製造方法および液冷一体型基板
JP2011166126A (ja) * 2010-01-12 2011-08-25 Nippon Light Metal Co Ltd 液冷一体型基板および液冷一体型基板の製造方法
JP2011166122A (ja) * 2010-01-12 2011-08-25 Nippon Light Metal Co Ltd フィン一体型基板およびフィン一体型基板の製造方法
JP2012187861A (ja) * 2011-03-11 2012-10-04 Teijin Ltd 炭素繊維複合材料の接合部材の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018163914A (ja) * 2017-03-24 2018-10-18 株式会社ケーヒン パワーモジュール
JP2018163912A (ja) * 2017-03-24 2018-10-18 株式会社ケーヒン パワーモジュール
JP2019204897A (ja) * 2018-05-24 2019-11-28 三井化学株式会社 冷却ジャケット
JP7130434B2 (ja) 2018-05-24 2022-09-05 三井化学株式会社 冷却ジャケット
WO2020255885A1 (ja) * 2019-06-21 2020-12-24 三井化学株式会社 冷却装置および構造体
JPWO2020255885A1 (ja) * 2019-06-21 2021-12-23 三井化学株式会社 冷却装置および構造体
EP3989331A4 (en) * 2019-06-21 2023-07-19 Mitsui Chemicals, Inc. COOLING DEVICE AND STRUCTURE
CN115156863A (zh) * 2022-08-19 2022-10-11 昆山固特杰散热产品有限公司 一种密鳍片带侧墙散热板的成型方法
CN115156863B (zh) * 2022-08-19 2024-05-07 昆山固特杰散热产品有限公司 一种密鳍片带侧墙散热板的成型方法

Also Published As

Publication number Publication date
KR20150064155A (ko) 2015-06-10
CN104736323A (zh) 2015-06-24
TWI623413B (zh) 2018-05-11
JP5838949B2 (ja) 2016-01-06
JP2014079975A (ja) 2014-05-08
CN104736323B (zh) 2016-11-16
TW201429690A (zh) 2014-08-01
KR101651387B1 (ko) 2016-08-25

Similar Documents

Publication Publication Date Title
JP5838949B2 (ja) 複合型中空容器の製造方法及び複合型中空容器
JP5935933B2 (ja) 複合型中空容器の製造方法
EP3498416B1 (en) Bonded structure of heterogeneous materials and method for manufacturing same
WO2010067796A1 (ja) 樹脂部材と金属部材の接合方法及び液冷ジャケットの製造方法
WO2014156989A1 (ja) 複合成形体の製造方法
JP7067305B2 (ja) 部材の接合方法及び部材の接合装置
JP5774246B2 (ja) 金属成形体の粗面化方法
JP6203297B2 (ja) レーザ重ね溶接方法
KR102048693B1 (ko) 3차원 형상 조형물의 제조 방법
JP5458031B2 (ja) 異材接合構造体の接合方法
JP5725155B2 (ja) 射出成形用金型の製造方法、射出成形用金型、射出成形用金型セット、マイクロチップ用基板の製造方法、及びこの金型を用いたマイクロチップ製造方法
KR20150064153A (ko) 히트 싱크의 제조 방법 및 전열판의 제조 방법
WO2017013978A1 (ja) 接合方法及びヒートシンクの製造方法
JP6065068B2 (ja) 複合型中空容器の製造方法及び複合型中空容器
CN108472762B (zh) 接合方法、中空容器的制造方法以及液冷套筒的制造方法
WO2016166843A1 (ja) 金属部材の製造方法
JP5803992B2 (ja) 伝熱板の製造方法
KR102453212B1 (ko) 금속 구조체의 제조 방법, 및 금속 구조체
JP6311511B2 (ja) ガラス接合体の製造方法
JP5900410B2 (ja) 部材の接合方法
KR20210111710A (ko) 금속 구조체의 제조 방법
JP2021087984A (ja) 溶接方法および構造物
JP2023059621A (ja) 金属部材の製造方法及び金属樹脂接合体の製造方法
JP2020185718A (ja) 接合構造体の製造方法及び接合構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157011221

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13846987

Country of ref document: EP

Kind code of ref document: A1