WO2014061588A1 - ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法 - Google Patents

ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法 Download PDF

Info

Publication number
WO2014061588A1
WO2014061588A1 PCT/JP2013/077766 JP2013077766W WO2014061588A1 WO 2014061588 A1 WO2014061588 A1 WO 2014061588A1 JP 2013077766 W JP2013077766 W JP 2013077766W WO 2014061588 A1 WO2014061588 A1 WO 2014061588A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
metal layer
power module
layer
copper
Prior art date
Application number
PCT/JP2013/077766
Other languages
English (en)
French (fr)
Inventor
伸幸 寺▲崎▼
長友 義幸
黒光 祥郎
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP13847976.1A priority Critical patent/EP2911192B1/en
Priority to KR1020157008930A priority patent/KR102146589B1/ko
Priority to IN3283DEN2015 priority patent/IN2015DN03283A/en
Priority to CN201380053574.9A priority patent/CN104718616B/zh
Priority to US14/435,554 priority patent/US9968012B2/en
Publication of WO2014061588A1 publication Critical patent/WO2014061588A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/121Metallic interlayers based on aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/128The active component for bonding being silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83417Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/83424Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Definitions

  • the present invention relates to a power module substrate having a circuit layer disposed on one surface of an insulating layer (ceramic substrate) and a metal layer disposed on the other surface, and a heat sink bonded to the power module substrate.
  • the present invention relates to a power module substrate with a heat sink, a power module with a heat sink in which a semiconductor element is mounted on the power module substrate with a heat sink, and a method for manufacturing a power module substrate with a heat sink.
  • a power element for high power control used for controlling an electric vehicle, an electric vehicle, and the like generates a large amount of heat. Therefore, as a substrate on which the element is mounted, for example, AlN (aluminum nitride) 2.
  • a substrate on which the element is mounted for example, AlN (aluminum nitride) 2.
  • a power module substrate in which a metal plate excellent in conductivity is bonded as a circuit layer and a metal layer to one surface and the other surface of a ceramic substrate (insulating layer) made of, for example has been widely used.
  • Such a power module substrate has a semiconductor element (electronic component) as a power element mounted on the circuit layer via a solder material to form a power module.
  • a heat sink is joined below the metal layer to dissipate heat.
  • Patent Document 1 describes a method of joining by screwing a grease between a metal layer of a power module substrate and a heat sink.
  • Patent Document 2 describes a method of joining a metal layer of a power module substrate and a heat sink via solder.
  • Patent Document 1 and Patent Document 2 when the metal layer and the heat sink are joined via grease or solder, the thermal resistance of the grease or solder is larger than that of the metal layer or heat sink. There is a risk that the heat generated from the electronic component (semiconductor element) is insufficiently dissipated at the joint between the layer and the heat sink, the temperature rises, and the performance of the electronic component decreases.
  • the grease when grease is used, when the heat cycle and power cycle are loaded, the grease may deteriorate or voids may be generated inside the grease, which further increases the thermal resistance at the joint. Problems arise. For this reason, when the electronic component is used, it is required to sufficiently dissipate heat from the electronic component by reducing the thermal resistance at the joint between the metal layer and the heat sink.
  • This invention was made in view of the above-mentioned circumstances, and when one of the metal layer and the heat sink to be joined to each other is made of aluminum or an aluminum alloy and the other is made of copper or a copper alloy, To provide a power module substrate with a heat sink, a power module with a heat sink, and a method for manufacturing a power module substrate with a heat sink that can reduce the thermal resistance at the joint between the metal layer and the heat sink and suppress the temperature rise of the electronic component. Objective.
  • the power module substrate with a heat sink has a circuit layer disposed on one surface of the insulating layer and a metal layer disposed on the other surface of the insulating layer.
  • a power module substrate with a heat sink comprising: a heat sink joined to the metal layer of the power module substrate, wherein one of the metal layer and the heat sink is made of aluminum or an aluminum alloy, and the other is Composed of copper or copper alloy, the metal layer and the heat sink are solid phase diffusion bonded, and an intermetallic compound layer made of Cu and Al is formed at the bonding interface between the metal layer and the heat sink.
  • an oxide is dispersed in a layered manner along the interface. That.
  • one of the metal layer and the heat sink is made of aluminum or an aluminum alloy
  • the other is made of copper or a copper alloy
  • the metal layer and the heat sink are bonded by solid phase diffusion bonding. Since it is joined, compared with the case where it joins via grease or solder, the thermal resistance in the junction part of a metal layer and a heat sink can be made small.
  • the metal layer and the heat sink are firmly bonded by solid phase diffusion bonding, and when a heat cycle is applied, the occurrence of delamination at the interface between the metal layer and the heat sink is suppressed. It is possible to improve the bonding reliability of the bonded portion.
  • the metal layer and the heat sink are solid-phase diffusion bonded, a gap is hardly generated at the joint between the metal layer and the heat sink, the thermal conductivity of the joint can be improved, and the thermal resistance can be reduced.
  • it hold maintains below the eutectic temperature of the said aluminum or aluminum alloy, and the said copper or copper alloy, and solid phase diffusion bonding is carried out, a liquid phase is not formed between a metal layer and a heat sink. Therefore, a large amount of a compound of aluminum and copper is not generated between the metal layer and the heat sink, and it is possible to improve the joint reliability of the joint portion between the metal layer and the heat sink.
  • the difference in thermal expansion coefficient between the insulating layer and the heat sink when the heat cycle is loaded. Since the metal layer absorbs the resulting thermal stress, it is possible to suppress the occurrence of cracks in the insulating layer.
  • a metal layer made of copper or copper alloy having excellent thermal conductivity is disposed on the other surface of the insulating layer, it is possible to efficiently transfer heat from the semiconductor element to the heat sink side. .
  • the heat sink is made of copper or copper alloy having excellent thermal conductivity, or aluminum or aluminum alloy, it is possible to improve the heat dissipation of the power module substrate with heat sink.
  • an intermetallic compound layer made of Cu and Al is formed at the bonding interface between the metal layer and the heat sink, Al (aluminum atom) in the metal layer or heat sink and Cu (copper in the heat sink or metal layer) Atoms) are sufficiently interdiffused, and the metal layer and the heat sink are firmly bonded.
  • the oxide is dispersed in layers along the interface at the bonding interface between the metal layer made of copper or copper alloy or the heat sink and the intermetallic compound layer, the metal layer made of aluminum or aluminum alloy or The oxide film formed on the surface of the heat sink is destroyed and solid phase diffusion bonding is sufficiently advanced.
  • the intermetallic compound layer has a structure in which a plurality of intermetallic compounds are stacked along the bonding interface between the metal layer and the heat sink. In this case, it can suppress that a brittle intermetallic compound layer grows large.
  • an intermetallic compound suitable for each composition is formed in layers from the metal layer side toward the heat sink side. Therefore, the characteristics in the vicinity of the bonding interface can be stabilized. Specifically, since three types of intermetallic compounds of the ⁇ phase, ⁇ 2 phase, and ⁇ 2 phase are laminated in the intermetallic compound layer, the volume fluctuation inside the intermetallic compound layer is reduced and the internal strain is reduced. It will be suppressed.
  • the average crystal grain size of the metal layer or heat sink made of copper or copper alloy is in the range of 50 ⁇ m to 200 ⁇ m, and the average crystal grain size of the metal layer or heat sink made of aluminum or aluminum alloy is 500 ⁇ m or more. Preferably it is.
  • the average crystal grain size of the metal layer and the heat sink is set to be relatively large, unnecessary strain is not accumulated in the metal layer and the heat sink, and fatigue characteristics are improved. Therefore, in the heat cycle load, the bonding reliability against the thermal stress generated between the power module substrate and the heat sink is improved.
  • a power module with a heat sink includes the power module substrate with a heat sink according to (1) and a semiconductor element bonded to one side of the circuit layer.
  • the heat resistance at the joint between the metal layer and the heat sink is reduced as described above, so that heat from the semiconductor element can be efficiently transferred to the heat sink side. It is.
  • the heat sink is made of copper or copper alloy having excellent thermal conductivity, or aluminum or aluminum alloy, the heat dissipation of the power module substrate with heat sink can be improved. Then, the temperature rise of the semiconductor element can be suppressed, the semiconductor element can be operated at a predetermined temperature, and the operational stability can be improved.
  • the metal layer made of aluminum or aluminum alloy having a low deformation resistance
  • it is possible to suppress the cracking of the insulating layer and improve the reliability of the power module with a heat sink. it can.
  • the metal layer is made of copper or copper alloy having excellent thermal conductivity, the heat generated from the semiconductor element can be more efficiently transferred to the heat sink side. Then, the temperature rise of the semiconductor element can be suppressed, the semiconductor element can be operated at a predetermined temperature, and the operational stability can be improved.
  • a circuit layer is disposed on one surface of the insulating layer, and a metal layer is disposed on the other surface of the insulating layer.
  • a method for manufacturing a power module substrate with a heat sink comprising: a power module substrate; and a heat sink bonded to a metal layer of the power module substrate, wherein one of the metal layer and the heat sink is made of aluminum or an aluminum alloy. And the other is made of copper or a copper alloy, and the metal layer and the heat sink are bonded by solid phase diffusion bonding, whereby an intermetallic compound composed of Cu and Al is formed at the bonding interface between the metal layer and the heat sink. And forming an oxide layer on the interface between the metal layer or the heat sink and the intermetallic compound layer made of the copper or copper alloy. They are dispersed in layers along.
  • one of the metal layer and the heat sink is made of aluminum or an aluminum alloy, the other is made of copper or a copper alloy, and the metal layer and the heat sink are solid-phased. Since it is configured to be bonded by diffusion bonding, it is possible to obtain a power module substrate with a heat sink that has a lower thermal resistance at the joint between the metal layer and the heat sink than when bonded via grease or solder. Can do.
  • an intermetallic compound layer made of Cu and Al is formed at the bonding interface between the metal layer and the heat sink, and an oxide layer is formed at the interface between the metal layer or the heat sink and the intermetallic compound layer. Since it is dispersed, a power module substrate with a heat sink in which the metal layer and the heat sink are firmly bonded can be obtained.
  • the thermal resistance at the joint between the metal layer and the heat sink is reduced. It is possible to provide a power module substrate with a heat sink, a power module with a heat sink, and a method for manufacturing a power module substrate with a heat sink that can be reduced in size and suppress the temperature rise of electronic components.
  • FIG. 5 It is a schematic explanatory drawing of the power module with a heat sink which concerns on 2nd Embodiment of this invention, the board
  • FIG. 10 is an enlarged explanatory diagram of an interface between the heat sink of FIG. 9 and the intermetallic compound layer. It is a schematic explanatory drawing of the joining interface of the metal layer and heat sink in the board
  • FIG. 12 is an enlarged explanatory diagram of an interface between the metal layer and the intermetallic compound layer in FIG. 11. It is a binary phase diagram of Cu and Al.
  • FIG. 1 shows a power module 1 with a heat sink, a power module substrate 30 with a heat sink, and a power module substrate 10 according to the first embodiment of the present invention.
  • the power module 1 with a heat sink includes a power module substrate 30 with a heat sink and a semiconductor element 3 bonded to one side (the upper side in FIG. 1) of the power module substrate 30 with a heat sink via a solder layer 2. I have.
  • the solder layer 2 is, for example, a Sn—Ag, Sn—Cu, Sn—In, or Sn—Ag—Cu solder material (so-called lead-free solder material). And the semiconductor element 3 are joined.
  • the semiconductor element 3 is an electronic component including a semiconductor, and various semiconductor elements are selected according to the required function.
  • an IGBT element is used.
  • the power module substrate 30 with a heat sink includes a power module substrate 10 and a heat sink 31 bonded to the other side (lower side in FIG. 1) of the power module substrate 10.
  • the power module substrate 10 is formed on the ceramic substrate 11 (insulating layer) and one surface (the first surface, the upper surface in FIG. 1) of the ceramic substrate 11.
  • a circuit layer 12 and a metal layer 13 formed on the other surface (the second surface, the lower surface in FIG. 1) of the ceramic substrate 11 are provided.
  • the ceramic substrate 11 prevents electrical connection between the circuit layer 12 and the metal layer 13, and is made of highly insulating AlN (aluminum nitride). Further, the thickness of the ceramic substrate 11 is set within a range of 0.2 to 1.5 mm, and in this embodiment is set to 0.635 mm.
  • the circuit layer 12 is formed by bonding a metal plate to the first surface (the upper surface in FIG. 1) of the ceramic substrate 11.
  • the circuit layer 12 is formed by joining an aluminum plate 22 made of a rolled plate of aluminum (so-called 4N aluminum) having a purity of 99.99% or more to the ceramic substrate 11.
  • the metal layer 13 is formed by bonding a metal plate to the second surface (the lower surface in FIG. 1) of the ceramic substrate 11.
  • the metal layer 13 is formed by joining an aluminum plate 23 made of a rolled plate of aluminum (so-called 4N aluminum) having a purity of 99.99% or more to the ceramic substrate 11.
  • the average crystal grain size of the metal layer 13 is 500 ⁇ m or more.
  • the heat sink 31 is for dissipating heat on the power module substrate 10 side.
  • the heat sink 31 is made of copper or a copper alloy having good thermal conductivity.
  • the heat sink 31 is made of oxygen-free copper.
  • the average crystal grain size of the heat sink 31 is in the range of 50 ⁇ m to 200 ⁇ m.
  • a flow path 32 is provided for a cooling fluid to flow.
  • the metal layer 13 of the power module substrate 10 and the heat sink 31 are joined by solid phase diffusion bonding.
  • an intermetallic compound layer 41 is formed at the bonding interface between the metal layer 13 and the heat sink 31.
  • the intermetallic compound layer 41 is formed by mutual diffusion of Al (aluminum atoms) of the metal layer 13 and Cu (copper atoms) of the heat sink 31.
  • This intermetallic compound layer 41 has a concentration gradient in which the concentration of Al gradually decreases and the concentration of Cu increases as it goes from the metal layer 13 to the heat sink 31.
  • the intermetallic compound layer 41 is composed of an intermetallic compound composed of Al and Cu.
  • the intermetallic compound layer 41 has a structure in which a plurality of intermetallic compounds are stacked along the bonding interface.
  • the thickness t of the intermetallic compound layer 41 is set in the range of 1 ⁇ m to 80 ⁇ m, preferably in the range of 5 ⁇ m to 80 ⁇ m.
  • a structure in which three kinds of intermetallic compounds are laminated is formed, and in order from the metal layer 13 side to the heat sink 31 side, a ⁇ phase 43, a ⁇ 2 phase 44, The ⁇ 2 phase 45 is set (FIG. 13).
  • the oxide 46 is dispersed in a layered manner along the bonding interface at the bonding interface between the intermetallic compound layer 41 and the heat sink 31.
  • the oxide 46 is an aluminum oxide such as alumina (Al 2 O 3 ).
  • the oxide 46 is dispersed in a state of being separated at the interface between the intermetallic compound layer 41 and the heat sink 31, and there is a region where the intermetallic compound layer 41 and the heat sink 31 are in direct contact. .
  • the manufacturing method of the power module 1 with a heat sink, the power module substrate 30 with a heat sink, and the power module substrate 10 according to the present embodiment will be described with reference to FIGS.
  • FIG. 4 aluminum plates 22 and 23 are laminated on the first surface and the second surface of the ceramic substrate 11 via a brazing material. Then, by cooling after pressurization and heating, the ceramic substrate 11 and the aluminum plates 22 and 23 are joined to form the circuit layer 12 and the metal layer 13 (circuit layer and metal layer joining step S11).
  • the brazing temperature is set to 640 ° C. to 650 ° C. In this way, the power module substrate 10 in which the circuit layer 12 is formed on the first surface of the ceramic substrate 11 and the metal layer 13 is formed on the second surface is obtained.
  • a heat sink 31 is laminated on the other side of the metal layer 13.
  • one side of the metal layer 13 is the surface of the metal layer 13 bonded to the second surface of the ceramic substrate 11.
  • the other side of the metal layer 13 is a surface opposite to the surface of the metal layer 13 that is bonded to the second surface of the ceramic substrate 11.
  • a load is applied from one side of the power module substrate 10 and the other side of the heat sink 31, that is, the lower surface of the heat sink 31 in FIG.
  • the load applied to the contact surface between the metal layer 13 and the heat sink 31 is the 3 kgf / cm 2 or more 35 kgf / cm 2 or less.
  • solid phase diffusion bonding is performed with the heating temperature for vacuum heating being lower than the eutectic temperature of aluminum and copper, and the metal layer 13 and the heat sink 31 are bonded.
  • the preferable conditions for this vacuum heating are 400 ° C. or more and 548 ° C. or less and 15 to 270 minutes or less.
  • the surface where the metal layer 13 and the heat sink 31 are bonded is solid-phase diffusion bonded after the scratches on the surface are previously removed and smoothed.
  • a more preferable heating temperature for the vacuum heating is in the range of the eutectic temperature of aluminum and copper of ⁇ 5 ° C. or higher and lower than the eutectic temperature.
  • the semiconductor element 3 is placed on one side (surface) of the circuit layer 12 via a solder material, and soldered in a reduction furnace (semiconductor element joining step S13).
  • a reduction furnace semiconductor element joining step S13
  • the metal layer 13 made of aluminum and the heat sink 31 made of copper are joined by solid phase diffusion bonding. Therefore, the thermal conductivity at the joint between the metal layer 13 and the heat sink 31 can be improved and the thermal resistance can be improved as compared with the case where the thermal conductivity is poor. Can be reduced.
  • the metal layer 13 and the heat sink 31 are bonded by solid phase diffusion bonding, and an intermetallic compound layer 41 made of Cu and Al is formed at the bonding interface between the metal layer 13 and the heat sink 31.
  • Al (aluminum atoms) in the metal layer 13 and Cu (copper atoms) in the heat sink 31 are sufficiently interdiffused, and the metal layer 13 and the heat sink 31 are firmly bonded.
  • the intermetallic compound layer 41 has a structure in which a plurality of intermetallic compounds are stacked along the bonding interface, it is possible to suppress the brittle intermetallic compound layer from growing greatly. Further, since Al in the metal layer 13 and Cu in the heat sink 31 are interdiffused, an intermetallic compound suitable for each composition is formed in layers from the metal layer 13 side toward the heat sink 31 side. The characteristics in the vicinity of the bonding interface can be stabilized. Specifically, the intermetallic compound layer 41 is formed by laminating three kinds of intermetallic compounds of the ⁇ phase 43, the ⁇ 2 phase 44, and the ⁇ 2 phase 45 in order from the metal layer 13 toward the heat sink 31.
  • the volume variation inside the intermetallic compound layer 41 is reduced, and the internal strain is suppressed. That is, when solid phase diffusion is not performed, for example, when a liquid phase is formed, an intermetallic compound is generated more than necessary, and the volume of the intermetallic compound layer increases, and the intermetallic compound layer Internal distortion occurs. However, in the case of solid phase diffusion, the brittle intermetallic compound layer does not grow greatly, and the intermetallic compound is formed in a layer form, so that the internal strain is suppressed.
  • the oxides 46 are dispersed in layers along the bonding interface at the bonding interface between the intermetallic compound layer 41 and the heat sink 31, the oxide film formed on the surface of the metal layer 13 is surely destroyed. Therefore, the mutual diffusion of Cu and Al is sufficiently advanced, and the metal layer 13 and the heat sink 31 are reliably bonded.
  • the average thickness of the intermetallic compound layer 41 is in the range of 1 ⁇ m to 80 ⁇ m, preferably in the range of 5 ⁇ m to 80 ⁇ m, the Al in the metal layer 13 and the Cu in the heat sink 31 are sufficiently As a result, the metal layer 13 and the heat sink 31 can be firmly bonded together, and the brittle intermetallic compound layer 41 compared to the metal layer 13 and the heat sink 31 is prevented from growing more than necessary. As a result, the characteristics of the bonding interface are stabilized.
  • the average crystal grain size of the heat sink 31 is in the range of 50 ⁇ m or more and 200 ⁇ m or less, the average crystal grain size of the metal layer 13 is 500 ⁇ m or more, and the average of the metal layer 13 and the heat sink 31 is The crystal grain size is set relatively large. Therefore, unnecessary strain is not accumulated in the metal layer 13 and the heat sink 31, and fatigue characteristics are good. Therefore, in the heat cycle load, the bonding reliability against the thermal stress generated between the power module substrate 10 and the heat sink 31 is improved.
  • the solid phase diffusion bonding is performed with a load applied in the stacking direction to the metal layer 13 and the heat sink 31 of the power module substrate 10, there is a gap in the joint between the metal layer 13 and the heat sink 31. Is less likely to occur, and the thermal conductivity of the joint can be improved. Furthermore, since the solid layer diffusion bonding is performed by maintaining the heating temperature of the metal layer 13 and the heat sink 31 below the eutectic temperature of aluminum and copper, no liquid phase is formed between the metal layer 13 and the heat sink 31. Therefore, a large amount of aluminum and copper compound is not generated between the metal layer 13 and the heat sink 31, and the bonding reliability of the bonding portion between the metal layer 13 and the heat sink 31 can be improved.
  • the circuit layer 12 and the metal layer 13 made of aluminum having a small deformation resistance are disposed on the first surface and the second surface of the ceramic substrate 11, and the ceramic substrate 11 is subjected to a heat cycle. Since the circuit layer 12 and the metal layer 13 absorb the thermal stress generated in the ceramic substrate 11, it is possible to prevent the ceramic substrate 11 from being cracked. Further, since the heat sink 31 is made of copper having excellent thermal conductivity, the heat dissipation of the power module substrate 30 with a heat sink can be improved.
  • the heat resistance at the joint between the metal layer 13 and the heat sink 31 is small, so the heat generated from the semiconductor element 3 is reduced. It can be efficiently dissipated. Furthermore, since the bonding strength between the metal layer 13 and the heat sink 31 is high, peeling of the bonding interface hardly occurs when a heat cycle is applied, and an increase in the thermal resistance of the power module 1 with a heat sink can be suppressed. . Further, since the heat sink 31 is made of copper having excellent thermal conductivity, the heat from the semiconductor element 3 can be dissipated more efficiently.
  • the heat from the semiconductor element 3 can be efficiently dissipated in this way, and the temperature rise of the semiconductor element 3 can be suppressed. It is possible to operate and improve the stability of the operation. Moreover, since the circuit layer 12 and the metal layer 13 are comprised with aluminum with small deformation resistance, it can suppress that a ceramic substrate 11 cracks and can improve the reliability of the power module 1 with a heat sink.
  • the circuit layer 12 and the metal layer 13 are formed on the first surface and the second surface of the ceramic substrate 11, and the other side of the metal layer 13, that is, the second surface of the ceramic substrate 11. the surface opposite to the surface which is bonded to the surface after placing the heat sink 31, the, the metal layer 13 and the heat sink 31, with the 3 kgf / cm 2 or more 35 kgf / cm 2 or less of a load is loaded, It is configured to hold at 400 ° C. or higher and 548 ° C. or lower for 15 minutes or longer and 270 minutes or shorter.
  • the heat sink 31 can be reliably formed on the other side of the metal layer 13 by bonding the metal layer 13 and the heat sink 31.
  • the metal layer 13 and the heat sink 31 can be bonded to each other while suppressing the formation of a gap between the metal layer 13 and the heat sink 31. It is possible to improve the thermal conductivity at the bonding interface between the heat sink 31 and the heat sink 31, reduce the thermal resistance, and efficiently dissipate the heat generated from the semiconductor element 3 toward the heat sink 31.
  • the load applied to the metal layer 13 and the heat sink 31 during solid phase diffusion bonding is less than 3 kgf / cm 2, it becomes difficult to sufficiently bond the metal layer 13 and the heat sink 31 to each other. There may be a gap between the heat sink 13 and the heat sink 31. Moreover, when it exceeds 35 kgf / cm ⁇ 2 >, the load applied is too high and the ceramic substrate 11 may be cracked. For these reasons, the load applied during solid phase diffusion bonding is set in the above range.
  • the preferable temperature for vacuum heating at the time of solid phase diffusion bonding is in the range from the eutectic temperature of aluminum and copper to the eutectic temperature of ⁇ 5 ° C. or higher and lower than the eutectic temperature.
  • a vacuum heating temperature is selected, a liquid phase is not formed between the metal layer 13 and the heat sink 31, so that a large amount of aluminum and copper compounds are not generated, and the solid phase diffusion bonding has good bonding reliability.
  • the diffusion rate at the time of solid phase diffusion bonding is high and the solid phase diffusion bonding can be performed in a relatively short time, it is set as described above.
  • the holding time of heating at the time of solid phase diffusion bonding is less than 15 minutes, the holding time is too short, so that solid phase diffusion does not occur sufficiently, and bonding may be insufficient. Is set in the above range because the manufacturing cost increases.
  • FIG. 5 shows a power module 101 with a heat sink, a power module substrate 130 with a heat sink, and a power module substrate 110 according to a second embodiment of the present invention.
  • symbol is attached
  • the power module 101 with a heat sink includes a power module substrate 130 with a heat sink and a semiconductor element 3 bonded to one side (the upper side in FIG. 5) of the power module substrate 130 with a heat sink via a solder layer 2. ing.
  • the power module substrate with heat sink 130 includes a power module substrate 110 and a heat sink 131 bonded to the other side (lower side in FIG. 5) of the power module substrate 110.
  • the power module substrate 110 was formed on the ceramic substrate 11 (insulating layer) and one surface (the first surface, the upper surface in FIG. 5) of the ceramic substrate 11.
  • the circuit layer 12 and a metal layer 113 formed on the other surface (the second surface, the lower surface in FIG. 5) of the ceramic substrate 11 are provided.
  • the metal layer 113 is formed by bonding a metal plate to the second surface (the lower surface in FIG. 5) of the ceramic substrate 11.
  • the metal layer 113 is made of oxygen-free copper.
  • the average crystal grain size of the metal layer 113 is in the range of 50 ⁇ m to 200 ⁇ m.
  • the heat sink 131 is made of an aluminum alloy (A6063), and a flow path 132 for flowing a cooling fluid is formed therein.
  • the heat sink 131 has an average crystal grain size of 500 ⁇ m or more.
  • the metal layer 113 of the power module substrate 110 and the heat sink 131 are joined by solid phase diffusion bonding.
  • an intermetallic compound layer 141 is formed at the bonding interface between the metal layer 113 and the heat sink 131.
  • the intermetallic compound layer 141 is formed by mutual diffusion of Cu (copper atoms) in the metal layer 113 and Al (aluminum atoms) in the heat sink 131.
  • the intermetallic compound layer 141 has a concentration gradient in which the concentration of Al gradually decreases and the concentration of Cu increases as it goes from the heat sink 131 to the metal layer 113.
  • the intermetallic compound layer 141 is composed of an intermetallic compound composed of Al and Cu.
  • the intermetallic compound layer 141 has a structure in which a plurality of intermetallic compounds are stacked along the bonding interface.
  • the thickness t of the intermetallic compound layer 141 is set in the range of 1 ⁇ m to 80 ⁇ m, preferably in the range of 5 ⁇ m to 80 ⁇ m.
  • a structure in which three kinds of intermetallic compounds are laminated is formed, and in order from the heat sink 131 side to the metal layer 113 side, the ⁇ phase 43, the ⁇ 2 phase 44, The ⁇ 2 phase 45 is set.
  • the oxide 46 is dispersed in layers along the bonding interface at the bonding interface between the intermetallic compound layer 141 and the metal layer 113.
  • the oxide 46 is an aluminum oxide such as alumina (Al 2 O 3 ). Note that the oxide 46 is dispersed in a state of being divided at the interface between the intermetallic compound layer 141 and the metal layer 113, and there is a region where the intermetallic compound layer 141 and the metal layer 113 are in direct contact with each other. ing.
  • a manufacturing method of the power module 101 with heat sink, the power module substrate 130 with heat sink, and the power module substrate 110 according to the present embodiment will be described.
  • a copper plate to be the metal layer 113 is bonded to one surface (second surface) of the ceramic substrate 11, and an Al plate to be the circuit layer 12 is bonded to the other surface (first surface) of the ceramic substrate 11.
  • oxygen-free copper is used as the copper plate
  • 4N aluminum is used as the Al plate
  • the ceramic substrate and the copper plate are joined by an active metal brazing method
  • the ceramic substrate and the Al plate are joined using an Al—Si brazing material. It was done by joining.
  • the heat sink 131 is laminated on the other side of the metal layer 113, that is, the surface of the metal layer 113 opposite to the surface bonded to the second surface of the ceramic substrate 11. Then, with the load applied to the metal layer 113 and the heat sink 131 in the stacking direction, the heating temperature of the metal layer 113 and the heat sink 131 is maintained below the eutectic temperature of aluminum and copper.
  • the heat sink 131 is joined by solid phase diffusion bonding.
  • the conditions for solid phase diffusion bonding are the same as in the first embodiment.
  • the power module substrate with heat sink 130 and the power module substrate 110 according to the second embodiment are obtained.
  • the semiconductor element 3 is placed on one side (surface) of the circuit layer 12 via a solder material, and soldered in a reduction furnace.
  • the power module 101 with a heat sink which is 2nd Embodiment of this invention is produced.
  • the metal layer 113 made of copper and the heat sink 131 made of an aluminum alloy are in a solid phase. Since it is configured to be bonded by diffusion bonding, the thermal conductivity at the bonding portion between the metal layer 113 and the heat sink 131 is improved as compared with the case where bonding is performed via grease or solder having poor thermal conductivity. Thus, the thermal resistance can be reduced.
  • the metal layer 113 and the heat sink 131 are bonded by solid phase diffusion bonding, and an intermetallic compound layer 141 made of Cu and Al is formed at the bonding interface between the metal layer 113 and the heat sink 131.
  • Cu (copper atoms) in the metal layer 113 and Al (aluminum atoms) in the heat sink 131 are sufficiently interdiffused, and the metal layer 113 and the heat sink 131 are firmly bonded.
  • the oxide 46 is dispersed in layers along the bonding interface at the bonding interface between the intermetallic compound layer 141 and the metal layer 113, the oxide film formed on the surface of the heat sink 131 is reliably destroyed. Therefore, the mutual diffusion of Cu and Al is sufficiently advanced, and the metal layer 113 and the heat sink 131 are reliably bonded.
  • the average thickness of the intermetallic compound layer 141 is in the range of 1 ⁇ m to 80 ⁇ m, preferably in the range of 5 ⁇ m to 80 ⁇ m, the Cu in the metal layer 113 and the Al in the heat sink 131 are sufficiently As a result, the metal layer 113 and the heat sink 131 can be firmly bonded to each other, and the brittle intermetallic compound layer 141 is suppressed from growing more than necessary as compared to the metal layer 113 and the heat sink 131. As a result, the characteristics of the bonding interface are stabilized.
  • the average crystal grain size of the heat sink 131 is 500 ⁇ m or more, and the average crystal grain size of the metal layer 113 is in the range of 50 ⁇ m to 200 ⁇ m.
  • the average crystal grain size is set relatively large. Therefore, unnecessary strain is not accumulated in the metal layer 113 and the heat sink 131, and fatigue characteristics are good. Therefore, in the heat cycle load, the bonding reliability against the thermal stress generated between the power module substrate 110 and the heat sink 131 is improved.
  • the metal layer 113 is made of oxygen-free copper, the heat from the semiconductor element 3 can be spread and efficiently transmitted to the heat sink 131 side to reduce the thermal resistance.
  • the circuit layer is made of 4N aluminum having a purity of 99.99%.
  • the present invention is not limited to this, and aluminum having a purity of 99% (2N aluminum), You may comprise aluminum alloy, copper, or a copper alloy.
  • the circuit layer is formed of copper or a copper alloy, the heat from the semiconductor element can be spread in the surface direction by the circuit layer and efficiently dissipated to the power module substrate side.
  • the metal layer is made of pure aluminum having a purity of 99.99%.
  • the metal layer may be made of 99% pure aluminum (2N aluminum) or an aluminum alloy.
  • the heat sink was comprised with the aluminum alloy (A6063) was demonstrated, you may be comprised with the pure aluminum of purity 99.99%, and another aluminum alloy.
  • the metal layer or the heat sink is made of oxygen-free copper has been described, it may be made of tough pitch copper or a copper alloy.
  • the flow path may not be provided.
  • the heat sink may be provided with a heat radiating fin.
  • the heating temperature during solid phase diffusion bonding may be less than the eutectic temperature of the aluminum alloy and the copper alloy.
  • the eutectic temperature may be lower than the metal constituting the heat sink and the metal constituting the heat sink.
  • a ceramic substrate made of AlN as an insulating layer, is not limited thereto, it may be used a ceramic substrate made of Si 3 N 4 or Al 2 O 3, or the like, insulating The insulating layer may be made of resin.
  • the power module substrate with a heat sink of the above embodiment the case where an aluminum plate is bonded as a circuit layer to the first surface of the ceramic substrate has been described.
  • the power module substrate with a heat sink of FIG. As shown at 230, a copper plate having a die pad 232 to which a semiconductor element or the like is bonded and a lead portion 233 used as an external terminal may be bonded to the first surface of the ceramic substrate 11 as a circuit layer 212.
  • a joining method of the ceramic substrate 11 and the above-mentioned copper plate for example, a joining method by an active metal brazing method, a DBC method or the like can be cited.
  • the die pad 232 and the ceramic substrate 11 are bonded.
  • the circuit layer 312 includes an aluminum layer 312A and a copper layer 312B bonded to one side of the aluminum layer 312A. May be made of a copper plate having a die pad 332 and a lead portion 333.
  • the aluminum layer 312A and the die pad 332 are bonded by solid phase diffusion bonding.
  • one side of the aluminum layer 312A is the surface of the aluminum layer 312A opposite to the surface bonded to the first surface of the ceramic substrate 11.
  • the thickness of the aluminum layer 312A is preferably 0.1 mm or more and 1.0 mm or less.
  • the thickness of the copper layer 312B is 0.1 mm or more and 6.0 mm or less.
  • the intermetallic compound layer 41 is formed in the joining interface of the metal layer 13 and the heat sink 31, and this intermetallic compound layer 41 is the metal layer 13 side toward the heat sink 31 side in order.
  • the ⁇ phase 43, the ⁇ 2 phase 44, and the ⁇ 2 phase 45 have been described as being laminated, but the present invention is not limited to this.
  • an intermetallic compound composed of a plurality of Cu and Al is formed so that the ratio of aluminum decreases in order from the metal layer 13 side to the heat sink 31 side. It may be laminated. Further, as shown in FIG.
  • the ⁇ phase 443 and the ⁇ 2 phase 444 are sequentially formed along the bonding interface from the metal layer 13 side toward the heat sink 31 side. Further, at least one of the ⁇ 2 phase 445, the ⁇ phase 447, and the ⁇ 2 phase 448 may be stacked (FIG. 13).
  • the oxide 46 is dispersed in a layered manner along the bonding interface at the bonding interface between the intermetallic compound layer 41 and the heat sink 31 .
  • FIG. thus, along the interface between the intermetallic compound layer 441 and the heat sink 31, the oxide 446 is layered inside the layer formed of at least one of the ⁇ 2 phase 445, the ⁇ phase 447, and the ⁇ 2 phase 448. It is also possible to adopt a configuration in which they are dispersed.
  • the oxide 446 is an aluminum oxide such as alumina (Al 2 O 3 ).
  • an intermetallic compound layer 141 is formed at the bonding interface between the metal layer 113 and the heat sink 131.
  • the intermetallic compound layer 141 is sequentially formed from the heat sink 131 side toward the metal layer 113 side.
  • the ⁇ phase 43, the ⁇ 2 phase 44, and the ⁇ 2 phase 45 have been described as being laminated, but the present invention is not limited to this.
  • an intermetallic compound composed of a plurality of Cu and Al is formed so that the ratio of aluminum decreases in order from the heat sink 131 side to the metal layer 113 side. It may be laminated. Further, as shown in FIG.
  • the ⁇ phase 543 and the ⁇ 2 phase 544 are formed at the bonding interface between the metal layer 113 and the heat sink 131 in order from the heat sink 131 side to the metal layer 113 side along the bonding interface. Further, at least one of the ⁇ 2 phase 545, the ⁇ phase 547, and the ⁇ 2 phase 548 may be stacked.
  • the oxide 46 is dispersed in layers along the bonding interface at the bonding interface between the intermetallic compound layer 141 and the metal layer 113 .
  • FIG. As shown, along the interface between the intermetallic compound layer 541 and the metal layer 113, the oxide 546 is inside the layer formed of at least one of the ⁇ 2 phase 545, the ⁇ phase 547, and the ⁇ 2 phase 548. It may be configured to be dispersed in layers.
  • the oxide 546 is an aluminum oxide such as alumina (Al 2 O 3 ).
  • a power module substrate with a heat sink produced by solid phase diffusion bonding of a metal layer and a heat sink under the conditions shown in Tables 1 and 2 is used.
  • Power modules with heat sinks of 1 to 1-7, inventive examples 2-1 to 2-7, comparative example 1 and comparative example 2 were produced.
  • the ceramic substrate was made of AlN, and had a size of 40 mm ⁇ 40 mm and a thickness of 0.635 mm.
  • the circuit layer was composed of a 4N aluminum rolled plate, and was 37 mm ⁇ 37 mm and 0.6 mm thick.
  • the metal layer is composed of a 4N aluminum rolled plate, and has a size of 37 mm ⁇ 37 mm and a thickness of 1.6 mm.
  • Examples 2-1 to 2-7 of the present invention and Comparative Example 2 were made of an oxygen-free copper rolled plate having a size of 37 mm ⁇ 37 mm and a thickness of 0.3 mm.
  • Examples 1-1 to 1-7 of the present invention and Comparative Example 1 were made of oxygen-free copper and had a cooling channel inside the heat sink.
  • Inventive Examples 2-1 to 2-7 and Comparative Example 2 were made of aluminum alloy (A6063) and had a cooling channel inside the heat sink.
  • As the semiconductor element an IGBT element having a size of 12.5 mm ⁇ 9.5 mm and a thickness of 0.25 mm was used. The following evaluation was performed on the power module with the heat sink thus manufactured.
  • Heat cycle test The heat cycle test is performed by applying a heat cycle of ⁇ 40 ° C. to 125 ° C. to a power module with a heat sink. In this example, this heat cycle was performed 3000 times. Before and after the heat cycle test, the bonding rate at the interface between the metal layer and the heat sink and the thermal resistance of the power module with the heat sink were measured.
  • the bonding rate at the bonding interface between the metal layer and the heat sink was evaluated using an ultrasonic flaw detector and calculated from the following equation.
  • Table 1 shows the evaluation results of Invention Examples 1-1 to 1-7 and Comparative Example 1 in which the metal layer was 4N aluminum and the heat sink was oxygen-free copper.
  • Table 2 shows the evaluation results of Invention Examples 2-1 to 2-7 and Comparative Example 2 in which the metal layer was oxygen-free copper and the heat sink was an aluminum alloy (A6063).
  • the thermal resistance at the joint between the metal layer and the heat sink is reduced. It is possible to provide a power module substrate with a heat sink, a power module with a heat sink, and a method for manufacturing a power module substrate with a heat sink that can be reduced in size and suppress the temperature rise of electronic components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

本発明に係わるヒートシンク付パワーモジュール用基板(1)においては、金属層(13)及びヒートシンク(31)の一方がアルミニウム又はアルミニウム合金で構成され、他方が銅又は銅合金で構成され、前記金属層(13)と前記ヒートシンク(31)とが、固相拡散接合され、前記金属層(13)と前記ヒートシンク(31)との接合界面には、CuとAlからなる金属間化合物層が形成されており、銅又は銅合金からなる前記金属層(13)又は前記ヒートシンク(31)と前記金属間化合物層との界面には、酸化物が前記界面に沿って層状に分散している。

Description

ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法
 この発明は、絶縁層(セラミックス基板)の一方の面に回路層が配設されるとともに他方の面に金属層が配設されたパワーモジュール用基板とこのパワーモジュール用基板に接合されたヒートシンクとを備えたヒートシンク付パワーモジュール用基板、このヒートシンク付パワーモジュール用基板に半導体素子が搭載されたヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法に関するものである。
 本願は、2012年10月16日に日本に出願された特願2012-228870号について優先権を主張し、その内容をここに援用する。
各種の半導体素子のうちでも、電気自動車や電気車両などを制御するために用いられる大電力制御用のパワー素子では、発熱量が多いことから、これを搭載する基板としては、例えばAlN(窒化アルミ)などからなるセラミックス基板(絶縁層)の一方の面及び他方の面に導電性に優れた金属板を回路層及び金属層として接合したパワーモジュール用基板が、従来から広く用いられている。
そして、このようなパワーモジュール用基板は、その回路層上に、はんだ材を介してパワー素子としての半導体素子(電子部品)が搭載され、パワーモジュールとされる。また、金属層の下方にはヒートシンクが接合され、放熱させる構造とされている。
従来、パワーモジュール用基板とヒートシンクとを接合する方法として、例えば、特許文献1には、パワーモジュール用基板の金属層とヒートシンクとの間にグリースを介在させてネジ留めによって接合する方法が記載されている。また、特許文献2には、パワーモジュール用基板の金属層とヒートシンクとを、はんだを介して接合する方法が記載されている。
特開2004-288828号公報 特開2009-224571号公報
しかしながら、特許文献1及び特許文献2に示したように、グリースやはんだを介して金属層とヒートシンクとを接合した場合、金属層やヒートシンクと比べてグリースやはんだの熱抵抗が大きいために、金属層とヒートシンクとの接合部において電子部品(半導体素子)から発生する熱の放散が不十分となって温度が上昇し、電子部品の性能が低下するおそれがある。特に、グリースを用いた場合には、ヒートサイクル及びパワーサイクルが負荷された際に、グリースが劣化したり、グリースの内部に空隙が生じたりする場合があり、接合部においてさらに熱抵抗が大きくなる問題が生じる。そのため、電子部品の使用時において、金属層とヒートシンクとの接合部における熱抵抗を低下させて電子部品からの熱を十分に放散することが求められている。
 この発明は、前述した事情に鑑みてなされたものであって、互いに接合される金属層及びヒートシンクの一方がアルミニウム又はアルミニウム合金で構成され、他方が銅又は銅合金で構成されている場合において、金属層とヒートシンクの接合部における熱抵抗を小さくし、電子部品の温度上昇を抑制可能なヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法を提供することを目的とする。
(1)本発明の一態様のヒートシンク付パワーモジュール用基板は、絶縁層の一方の面に回路層が配設され、前記絶縁層の他方の面に金属層が配設されたパワーモジュール用基板と、前記パワーモジュール用基板の前記金属層に接合されたヒートシンクと、を備えたヒートシンク付パワーモジュール用基板であって、前記金属層及び前記ヒートシンクの一方がアルミニウム又はアルミニウム合金で構成され、他方が銅又は銅合金で構成され、前記金属層と前記ヒートシンクとが、固相拡散接合され、前記金属層と前記ヒートシンクとの接合界面には、CuとAlからなる金属間化合物層が形成されており、銅又は銅合金からなる前記金属層又は前記ヒートシンクと前記金属間化合物層との界面には、酸化物が前記界面に沿って層状に分散している。
 上述のヒートシンク付パワーモジュール用基板によれば、金属層及びヒートシンクの一方がアルミニウム又はアルミニウム合金で構成され、他方が銅又は銅合金で構成され、これらの金属層とヒートシンクとが固相拡散接合によって接合されているので、グリースやはんだを介して接合されている場合と比較して、金属層とヒートシンクとの接合部における熱抵抗を小さくすることができる。
また、金属層とヒートシンクとが、固相拡散接合によって強固に接合されており、ヒートサイクルが負荷された場合において、金属層とヒートシンクとの界面に剥離が生じることが抑制され、金属層とヒートシンクとの接合部の接合信頼性を向上させることができる。
さらに、金属層とヒートシンクとが固相拡散接合されているので、金属層とヒートシンクとの接合部に隙間が生じ難く、接合部の熱伝導性を良好にし、熱抵抗を小さくすることができる。
また、前記アルミニウム又はアルミニウム合金と、前記銅又は銅合金との共晶温度未満で保持し固相拡散接合した場合には、金属層とヒートシンクとの間に液相が形成されない。そのため、金属層とヒートシンクとの間にアルミニウムと銅との化合物が多量に生成せず、金属層とヒートシンクとの接合部の接合信頼性を向上させることが可能である。
 また、絶縁層の他方の面に変形抵抗が小さいアルミニウム又はアルミニウム合金で構成された金属層を配設した場合、ヒートサイクルが負荷された際に、絶縁層とヒートシンクとの熱膨張係数の差に起因して生じる熱応力を金属層が吸収するので、絶縁層に割れが発生することを抑制できる。
 また、絶縁層の他方の面に熱伝導性に優れる銅又は銅合金で構成された金属層を配設した場合、半導体素子からの熱を効率的にヒートシンク側へと伝達することが可能である。
 また、ヒートシンクが熱伝導性に優れる銅又は銅合金、若しくはアルミニウム又はアルミニウム合金で構成されているので、ヒートシンク付パワーモジュール用基板の放熱性を向上させることが可能である。
また、金属層とヒートシンクとの接合界面に、CuとAlからなる金属間化合物層が形成されていることから、金属層又はヒートシンク中のAl(アルミニウム原子)とヒートシンク又は金属層中のCu(銅原子)とが十分に相互拡散しており、金属層とヒートシンクとが強固に接合されている。
また、銅又は銅合金からなる金属層又はヒートシンクと金属間化合物層との接合界面には、酸化物が、界面に沿って層状に分散していることから、アルミニウム又はアルミニウム合金からなる金属層又はヒートシンクの表面に形成された酸化膜が破壊されて固相拡散接合が十分に進行している。
さらに、金属間化合物層は、複数の金属間化合物が金属層とヒートシンクとの接合界面に沿って積層した構造とされていることが好ましい。この場合、脆い金属間化合物層が大きく成長してしまうことを抑制できる。また、金属層又はヒートシンク中のAlとヒートシンク又は金属層中のCuとが相互拡散することにより、金属層側からヒートシンク側に向けてそれぞれの組成に適した金属間化合物が層状に形成されることから、接合界面近傍の特性を安定させることができる。
具体的には、金属間化合物層には、θ相、η2相、ζ2相の3種の金属間化合物が積層しているので、金属間化合物層の内部における体積変動が小さくなり、内部歪みが抑えられることになる。
 ここで、銅又は銅合金からなる金属層又はヒートシンクの平均結晶粒径が50μm以上200μm以下の範囲内とされ、アルミニウム又はアルミニウム合金からなる金属層又はヒートシンクの平均結晶粒径が500μm以上とされていることが好ましい。この場合、金属層、ヒートシンクの平均結晶粒径が比較的大きく設定されているので、金属層、ヒートシンクには、不要な歪が蓄積されておらず、疲労特性が良好となる。したがって、ヒートサイクル負荷において、パワーモジュール用基板とヒートシンクとの間に生じる熱応力に対する接合信頼性が向上する。
 (2)本発明の他の態様のヒートシンク付パワーモジュールは、(1)に記載のヒートシンク付パワーモジュール用基板と、前記回路層の一方側に接合された半導体素子と、を備えている。
 上述のヒートシンク付パワーモジュールによれば、上述のように金属層とヒートシンクとの接合部における熱抵抗が小さくされているので、半導体素子からの熱をヒートシンク側へと効率的に伝達することが可能である。また、ヒートシンクが熱伝導性に優れる銅又は銅合金、若しくはアルミニウム又はアルミニウム合金で構成されているので、ヒートシンク付パワーモジュール用基板の放熱性を向上させることができる。そして、半導体素子の温度上昇を抑制して、所定の温度で半導体素子を動作させることができ、動作の安定性を向上させることが可能となる。
 また、絶縁層の他方の面に変形抵抗の小さいアルミニウム又はアルミニウム合金で構成された金属層が配設された場合、絶縁層の割れを抑制し、ヒートシンク付パワーモジュールの信頼性を向上させることができる。
 また、金属層が熱伝導性に優れる銅又は銅合金で構成されている場合、半導体素子から発生する熱をヒートシンク側へとさらに効率的に伝達することができる。そして、半導体素子の温度上昇を抑制して、所定の温度で半導体素子を動作させることができ、動作の安定性を向上させることが可能となる。
(3)本発明の他の態様のヒートシンク付パワーモジュール用基板の製造方法は、絶縁層の一方の面に回路層が配設され、前記絶縁層の他方の面に金属層が配設されたパワーモジュール用基板と、前記パワーモジュール用基板の金属層に接合されたヒートシンクと、を備えたヒートシンク付パワーモジュール用基板の製造方法であって、前記金属層及び前記ヒートシンクの一方をアルミニウム又はアルミニウム合金で構成し、他方を銅又は銅合金で構成し、前記金属層と前記ヒートシンクとを固相拡散接合することにより、前記金属層と前記ヒートシンクとの接合界面に、CuとAlからなる金属間化合物層を形成するとともに、前記銅又は銅合金からなる前記金属層又は前記ヒートシンクと前記金属間化合物層との界面に酸化物を前記界面に沿って層状に分散させている。
 上述のヒートシンク付パワーモジュール用基板の製造方法によれば、金属層及びヒートシンクの一方がアルミニウム又はアルミニウム合金で構成され、他方が銅又は銅合金で構成され、前記金属層と前記ヒートシンクとを固相拡散接合によって接合する構成とされているので、グリースやはんだを介して接合されている場合と比較して、金属層とヒートシンクとの接合部における熱抵抗が小さいヒートシンク付パワーモジュール用基板を得ることができる。
 また、上述したように、金属層とヒートシンクとの接合界面に、CuとAlからなる金属間化合物層が形成されるとともに、金属層又はヒートシンクと金属間化合物層との界面に酸化物が層状に分散しているので、金属層とヒートシンクとが強固に接合されたヒートシンク付パワーモジュール用基板を得ることができる。
本発明によれば、互いに接合される金属層及びヒートシンクの一方がアルミニウム又はアルミニウム合金で構成され、他方が銅又は銅合金で構成されている場合において、金属層とヒートシンクの接合部における熱抵抗を小さくし、電子部品の温度上昇を抑制可能なヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法を提供することができる。
本発明の第1実施形態に係るヒートシンク付パワーモジュール、ヒートシンク付パワーモジュール用基板、パワーモジュール用基板の概略説明図である。 図1の金属層とヒートシンクとの接合部の拡大図である。 本発明の第1実施形態に係るヒートシンク付パワーモジュールの製造方法を説明するフロー図である。 本発明の第1実施形態に係るパワーモジュール用基板の製造方法の概略説明図である。 本発明の第2実施形態に係るヒートシンク付パワーモジュール、ヒートシンク付パワーモジュール用基板、パワーモジュール用基板の概略説明図である。 図5の金属層とヒートシンクとの接合部の拡大図である。 本発明の他の実施形態に係るヒートシンク付パワーモジュール用基板の概略説明図である。 本発明の他の実施形態に係るヒートシンク付パワーモジュール用基板の概略説明図である。 本発明の他の実施形態に係るヒートシンク付パワーモジュール用基板における金属層とヒートシンクとの接合界面の概略説明図である。 図9のヒートシンクと金属間化合物層との界面の拡大説明図である。 本発明の他の実施形態に係るヒートシンク付パワーモジュール用基板における金属層とヒートシンクとの接合界面の概略説明図である。 図11の金属層と金属間化合物層との界面の拡大説明図である。 CuとAlの2元状態図である。
(第1実施形態)
 以下に、本発明の実施形態について、添付した図面を参照して説明する。
図1に、本発明の第1実施形態であるヒートシンク付パワーモジュール1、ヒートシンク付パワーモジュール用基板30、パワーモジュール用基板10を示す。
 このヒートシンク付パワーモジュール1は、ヒートシンク付パワーモジュール用基板30と、このヒートシンク付パワーモジュール用基板30の一方側(図1において上側)にはんだ層2を介して接合された半導体素子3と、を備えている。
 はんだ層2は、例えばSn-Ag系、Sn-Cu系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材(いわゆる鉛フリーはんだ材)とされており、ヒートシンク付パワーモジュール用基板30と半導体素子3とを接合するものである。
半導体素子3は、半導体を備えた電子部品であり、必要とされる機能に応じて種々の半導体素子が選択される。本実施形態では、IGBT素子とされている。
ヒートシンク付パワーモジュール用基板30は、パワーモジュール用基板10と、パワーモジュール用基板10の他方側(図1において下側)に接合されたヒートシンク31とを備えている。
そして、パワーモジュール用基板10は、図1で示すように、セラミックス基板11(絶縁層)と、このセラミックス基板11の一方の面(第一の面であり、図1において上面)に形成された回路層12と、セラミックス基板11の他方の面(第二の面であり、図1において下面)に形成された金属層13と、を備えている。
 セラミックス基板11は、回路層12と金属層13との間の電気的接続を防止するものであって、絶縁性の高いAlN(窒化アルミニウム)で構成されている。また、セラミックス基板11の厚さは、0.2~1.5mmの範囲内に設定されており、本実施形態では、0.635mmに設定されている。
 回路層12は、セラミックス基板11の第一の面(図1において上面)に、金属板が接合されることにより形成されている。本実施形態においては、回路層12は、純度が99.99%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなるアルミニウム板22がセラミックス基板11に接合されることにより形成されている。
 金属層13は、セラミックス基板11の第二の面(図1において下面)に、金属板が接合されることにより形成されている。本実施形態においては、金属層13は、純度が99.99%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなるアルミニウム板23がセラミックス基板11に接合されることで形成されている。第1実施形態においては、金属層13の平均結晶粒径が500μm以上とされている。
ヒートシンク31は、パワーモジュール用基板10側の熱を放散するためのものである。ヒートシンク31は、熱伝導性が良好な銅又は銅合金で構成されており、本実施形態においては、無酸素銅で構成されている。さらに、第1実施形態においては、ヒートシンク31の平均結晶粒径が50μm以上200μm以下の範囲内とされている。
このヒートシンク31の内部には、冷却用の流体が流れるための流路32が設けられている。
そして、本実施形態においては、パワーモジュール用基板10の金属層13とヒートシンク31とが、固相拡散接合によって接合されている。
金属層13とヒートシンク31との接合界面には、図2に示すように、金属間化合物層41が形成されている。
金属間化合物層41は、金属層13のAl(アルミニウム原子)と、ヒートシンク31のCu(銅原子)とが相互拡散することによって形成されるものである。この金属間化合物層41においては、金属層13からヒートシンク31に向かうに従い、漸次Alの濃度が低くなり、かつCuの濃度が高くなる濃度勾配を有している。
この金属間化合物層41は、AlとCuからなる金属間化合物で構成されており、本実施形態では、複数の金属間化合物が接合界面に沿って積層した構造とされている。ここで、この金属間化合物層41の厚さtは、1μm以上80μm以下の範囲内、好ましくは、5μm以上80μm以下の範囲内に設定されている。
 第1実施形態では、図2に示すように、3種の金属間化合物が積層された構造とされており、金属層13側からヒートシンク31側に向けて順に、θ相43、η2相44、ζ2相45とされている(図13)。
また、金属間化合物層41とヒートシンク31との接合界面には、酸化物46が、接合界面に沿って層状に分散している。なお、第1実施形態においては、この酸化物46は、アルミナ(Al)等のアルミニウム酸化物とされている。なお、酸化物46は、金属間化合物層41とヒートシンク31との界面に分断された状態で分散しており、金属間化合物層41とヒートシンク31とが直接接触している領域も存在している。
次に、本実施形態であるヒートシンク付パワーモジュール1、ヒートシンク付パワーモジュール用基板30、パワーモジュール用基板10の製造方法について、図3及び図4を用いて説明する。
 まず、図4で示すように、セラミックス基板11の第一の面及び第二の面に、ろう材を介してアルミニウム板22、23を積層する。そして、加圧・加熱後冷却することによって、セラミックス基板11とアルミニウム板22、23を接合し、回路層12及び金属層13を形成する(回路層及び金属層接合工程S11)。なお、このろう付けの温度は、640℃~650℃に設定されている。
 こうして、セラミックス基板11の第一の面に回路層12が形成され、第二の面に金属層13が形成されたパワーモジュール用基板10が得られる。
 次に、図4で示すように、金属層13の他方側にヒートシンク31を積層する。ここで、金属層13の一方側は、セラミックス基板11の第二の面と接合されている金属層13の面である。また、金属層13の他方側は、金属層13の、セラミックス基板11の第二の面と接合されている面とは反対の面である。そして、金属層13とヒートシンク31に対して積層方向に荷重を負荷した状態で、金属層13及びヒートシンク31の加熱温度をアルミニウムと銅との共晶温度未満で保持することにより、金属層13とヒートシンク31とを固相拡散接合する(ヒートシンク接合工程S12)。具体的には、まず、パワーモジュール用基板10の一方側及びヒートシンク31の他方側、すなわち、図4においてヒートシンク31の下面、から荷重を負荷し、真空加熱炉の中に配置する。本実施形態においては、金属層13及びヒートシンク31との接触面に負荷される荷重は、3kgf/cm以上35kgf/cm以下とされている。そして、真空加熱の加熱温度を、アルミニウムと銅との共晶温度未満として、固相拡散接合を行い、金属層13とヒートシンク31とを接合する。この真空加熱の好ましい条件は、400℃以上548℃以下で、15分以上270分以下に保持することとされている。
本実施形態においては、金属層13とヒートシンク31との接合される面において、予め当該面の傷が除去されて平滑にされた後に、固相拡散接合されている。
なお、真空加熱のより好ましい加熱温度は、アルミニウムと銅の共晶温度-5℃以上且つ共晶温度未満の範囲とされている。
上述のようにして、本実施形態であるヒートシンク付パワーモジュール用基板30、及びパワーモジュール用基板10が得られる。
 そして、回路層12の一方側(表面)に、はんだ材を介して半導体素子3を載置し、還元炉内においてはんだ接合する(半導体素子接合工程S13)。
このようにして、本実施形態であるヒートシンク付パワーモジュール1が製出される。
 以上のような構成とされた本実施形態であるヒートシンク付パワーモジュール用基板30によれば、アルミニウムで構成された金属層13と、銅で構成されたヒートシンク31とが固相拡散接合によって接合される構成とされているので、熱伝導性が悪いグリースやはんだを介して接合されている場合と比較して、金属層13とヒートシンク31との接合部における熱伝導性を向上させて、熱抵抗を小さくすることができる。
さらには、金属層13とヒートシンク31とが固相拡散接合によって接合されており、金属層13とヒートシンク31との接合界面に、CuとAlからなる金属間化合物層41が形成されていることから、金属層13中のAl(アルミニウム原子)とヒートシンク31中のCu(銅原子)とが十分に相互拡散しており、金属層13とヒートシンク31とが強固に接合されている。
また、金属間化合物層41は、複数の金属間化合物が前記接合界面に沿って積層した構造とされているので、脆い金属間化合物層が大きく成長してしまうことを抑制できる。また、金属層13中のAlとヒートシンク31中のCuとが相互拡散することにより、金属層13側からヒートシンク31側に向けてそれぞれの組成に適した金属間化合物が層状に形成されることから、接合界面近傍の特性を安定させることができる。
具体的には、金属間化合物層41は、金属層13からヒートシンク31側に向けて順に、θ相43、η2相44、ζ2相45の3種の金属間化合物が積層しているので、金属間化合物層41の内部における体積変動が小さくなり、内部歪みが抑えられることになる。
すなわち、固相拡散しなかった場合、例えば、液相が形成された場合には、金属間化合物が必要以上に発生し、金属間化合物層はその体積の変動が大きくなり、金属間化合物層に内部歪みが生じる。しかし、固相拡散した場合には、脆い金属間化合物層が大きく成長せずに、金属間化合物が層状に形成されるため、その内部歪みが抑えられる。
また、これらの金属間化合物層41とヒートシンク31の接合界面において、酸化物46が接合界面に沿って層状に分散しているので、金属層13の表面に形成された酸化膜が確実に破壊され、CuとAlの相互拡散が十分に進行していることになり、金属層13とヒートシンク31とが確実に接合されている。
さらに、金属間化合物層41の平均厚みが1μm以上80μm以下の範囲内、好ましくは5μm以上80μm以下の範囲内とされているので、金属層13中のAlとヒートシンク31中のCuとが十分に相互拡散していることになり、金属層13とヒートシンク31とが強固に接合できるとともに、金属層13、ヒートシンク31、比べて脆い金属間化合物層41が必要以上に成長することが抑えられており、接合界面の特性が安定することになる。
さらに、本実施形態においては、ヒートシンク31の平均結晶粒径が50μm以上200μm以下の範囲内とされ、金属層13の平均結晶粒径が500μm以上とされており、金属層13、ヒートシンク31の平均結晶粒径が比較的大きく設定されている。よって、金属層13、ヒートシンク31には、不要な歪が蓄積されておらず、疲労特性が良好となる。したがって、ヒートサイクル負荷において、パワーモジュール用基板10とヒートシンク31との間に生じる熱応力に対する接合信頼性が向上する。
また、パワーモジュール用基板10の金属層13とヒートシンク31に対して積層方向に荷重を負荷した状態で固相拡散接合する構成とされているので、金属層13とヒートシンク31との接合部に隙間が生じ難く、接合部の熱伝導性を良好にすることができる。
さらに、金属層13及びヒートシンク31の加熱温度をアルミニウムと銅の共晶温度未満で保持することにより固相拡散接合されているので、金属層13とヒートシンク31との間に液相が形成されない。そのため、金属層13とヒートシンク31との間にアルミニウムと銅の化合物が多量に生成されず、金属層13とヒートシンク31との接合部の接合信頼性を向上させることができる。
 また、セラミックス基板11の第一の面及び第二の面に変形抵抗が小さいアルミニウムで構成された回路層12及び金属層13が配設されており、ヒートサイクルが負荷された場合にセラミックス基板11に生じる熱応力を回路層12及び金属層13が吸収するので、セラミックス基板11に割れが発生することを抑制できる。
 また、ヒートシンク31が熱伝導性に優れる銅で構成されているので、ヒートシンク付パワーモジュール用基板30の放熱性を向上させることが可能である。
上述のようなヒートシンク付パワーモジュール用基板30を用いたヒートシンク付パワーモジュール1においては、金属層13とヒートシンク31との接合部における熱抵抗が小さくなっているので、半導体素子3から発生する熱を効率的に放散することができる。さらには、金属層13とヒートシンク31との接合強度が高いため、ヒートサイクルが負荷された場合に、接合界面の剥離が生じ難く、ヒートシンク付パワーモジュール1の熱抵抗の上昇を抑制することができる。また、ヒートシンク31が熱伝導性に優れる銅で構成されているので、半導体素子3からの熱をさらに効率的に放散することが可能である。
本発明のヒートシンク付パワーモジュール1によれば、このように半導体素子3からの熱を効率的に放散し、半導体素子3の温度上昇を抑制することができるので、所定の温度で半導体素子3を動作させ、動作の安定性を向上させることが可能となる。
また、回路層12及び金属層13が変形抵抗の小さいアルミニウムで構成されているので、セラミックス基板11に割れが発生することを抑制し、ヒートシンク付パワーモジュール1の信頼性を向上させることができる。
また、固相拡散接合は、セラミックス基板11の第一の面及び第二の面に、回路層12及び金属層13を形成し、金属層13の他方側、すなわち、セラミックス基板11の第二の面と接合されている面とは反対の面、にヒートシンク31を配置した後に、金属層13及びヒートシンク31に対して、3kgf/cm以上35kgf/cm以下の荷重が負荷された状態で、400℃以上548℃以下で、15分以上270分以下保持する構成とされている。このようにして、金属層13とヒートシンク31とが十分に密着した状態で、金属層13中にヒートシンク31の銅原子を固相拡散させ、ヒートシンク31中に金属層13のアルミニウム原子を固相拡散させて金属層13とヒートシンク31を接合することにより、金属層13の他方側にヒートシンク31を確実に形成することができる。
 さらに、このように固相拡散接合を行うことで、金属層13とヒートシンク31との間に隙間が生じることを抑制して金属層13とヒートシンク31とを接合することができるので、金属層13とヒートシンク31との接合界面における熱伝導性を良好にし、熱抵抗を小さくすることができ、半導体素子3から生じる熱をヒートシンク31側へと効率的に放散することが可能である。
 固相拡散接合する際に、金属層13及びヒートシンク31に対して負荷される荷重が3kgf/cm未満の場合は、金属層13とヒートシンク31とを十分に接合させることが困難となり、金属層13とヒートシンク31との間に隙間が生じる場合がある。また、35kgf/cmを超える場合には、負荷される荷重が高すぎてセラミックス基板11に割れが発生することがある。このような理由により、固相拡散接合の際に負荷される荷重は、上記の範囲に設定されている。
 固相拡散接合する際の温度が400℃未満の場合には、アルミニウム原子と銅原子とが十分に拡散せず、固相拡散による接合が困難となる。また、548℃を超える場合には、金属層13とヒートシンク31との間に液相が形成されてアルミニウムと銅の化合物が多量に生成するので、金属層13とヒートシンク31との接合が阻害され、接合信頼性が低下する。このような理由により、固相拡散接合の際の温度は、上記の範囲に設定されている。
また、固相拡散接合時における真空加熱の好ましい温度は、アルミニウムと銅の共晶温度から共晶温度-5℃以上且つ共晶温度未満の範囲とされている。このような真空加熱の温度を選択したときには、金属層13とヒートシンク31との間に液相が形成されないのでアルミニウムと銅の化合物が多量に生成せず、固相拡散接合の接合信頼性が良好となることに加えて、固相拡散接合の際の拡散速度が速く、比較的短時間で固相拡散接合できるため上記のように設定されている。
 固相拡散接合時の加熱の保持時間が、15分未満の場合は、保持時間が短過ぎるために固相拡散が十分に生じ難く、接合が不十分となることがあり、270分を超える場合は、製造コストが増加するため、上記の範囲に設定されている。
 また、固相拡散接合する際に、接合される面に傷がある場合、固相拡散接合時に隙間が生じるが、金属層13とヒートシンク31との接合される面は、予め当該面の傷が除去されて平滑にされた後に、固相拡散接合されているので、それぞれの接合界面に隙間が生じることを抑制して接合することが可能である。
(第2実施形態)
次に、本発明の第2実施形態について説明する。
図5に、本発明の第2実施形態であるヒートシンク付パワーモジュール101、ヒートシンク付パワーモジュール用基板130、パワーモジュール用基板110を示す。なお、第1実施形態と同様の構成のものについては、同一符号を付して詳細な説明を省略する。
ヒートシンク付パワーモジュール101は、ヒートシンク付パワーモジュール用基板130と、このヒートシンク付パワーモジュール用基板130の一方側(図5において上側)にはんだ層2を介して接合された半導体素子3と、を備えている。
ヒートシンク付パワーモジュール用基板130は、パワーモジュール用基板110と、パワーモジュール用基板110の他方側(図5において下側)に接合されたヒートシンク131とを備えている。
そして、パワーモジュール用基板110は、図5で示すように、セラミックス基板11(絶縁層)と、このセラミックス基板11の一方の面(第一の面であり、図5において上面)に形成された回路層12と、セラミックス基板11の他方の面(第二の面であり、図5において下面)に形成された金属層113と、を備えている。
 金属層113は、セラミックス基板11の第二の面(図5において下面)に、金属板が接合されることにより形成されている。第2実施形態においては、金属層113は、無酸素銅で構成されている。この金属層113の平均結晶粒径は50μm以上200μm以下の範囲内とされている。
 ヒートシンク131は、アルミニウム合金(A6063)で構成され、内部には冷却用の流体が流れるための流路132が形成されている。第2実施形態においては、ヒートシンク131の平均結晶粒径が500μm以上とされている。
そして、パワーモジュール用基板110の金属層113とヒートシンク131とが、固相拡散接合によって接合されている。
金属層113とヒートシンク131との接合界面には、図6に示すように、金属間化合物層141が形成されている。
 金属間化合物層141は、金属層113のCu(銅原子)と、ヒートシンク131のAl(アルミニウム原子)とが相互拡散することによって形成されるものである。この金属間化合物層141においては、ヒートシンク131から金属層113に向かうに従い、漸次Alの濃度が低くなり、かつCuの濃度が高くなる濃度勾配を有している。
この金属間化合物層141は、AlとCuからなる金属間化合物で構成されており、第2実施形態では、複数の金属間化合物が接合界面に沿って積層した構造とされている。ここで、この金属間化合物層141の厚さtは、1μm以上80μm以下の範囲内、好ましくは、5μm以上80μm以下の範囲内に設定されている。
 第2実施形態では、図6に示すように、3種の金属間化合物が積層された構造とされており、ヒートシンク131側から金属層113側に向けて順に、θ相43、η2相44、ζ2相45とされている。
また、金属間化合物層141と金属層113との接合界面には、酸化物46が、接合界面に沿って層状に分散している。なお、第2実施形態においては、この酸化物46は、アルミナ(Al)等のアルミニウム酸化物とされている。なお、酸化物46は、金属間化合物層141と金属層113との界面に分断された状態で分散しており、金属間化合物層141と金属層113とが直接接触している領域も存在している。
次に、本実施形態であるヒートシンク付パワーモジュール101、ヒートシンク付パワーモジュール用基板130、パワーモジュール用基板110の製造方法について説明する。
 まず、セラミックス基板11の一方の面(第二の面)に、金属層113となる銅板を接合し、セラミックス基板11の他方の面(第一の面)に回路層12となるAl板を接合した。本実施形態では、銅板として無酸素銅を、Al板として4Nアルミニウムを用い、セラミックス基板と銅板の接合を活性金属ろう付け法で、セラミックス基板とAl板の接合をAl-Si系ろう材を用いた接合で行った。
次に、金属層113の他方側、すなわち、金属層113の、セラミックス基板11の第二の面と接合されている面とは反対の面、にヒートシンク131を積層する。そして、金属層113とヒートシンク131に対して積層方向に荷重を負荷した状態で、金属層113及びヒートシンク131の加熱温度をアルミニウムと銅との共晶温度未満で保持することにより、金属層113とヒートシンク131を固相拡散接合する。固相拡散接合の条件は第1実施形態と同様である。
上述のようにして、第2実施形態であるヒートシンク付パワーモジュール用基板130、及びパワーモジュール用基板110が得られる。
 そして、回路層12の一方側(表面)に、はんだ材を介して半導体素子3を載置し、還元炉内においてはんだ接合する。
このようにして、本発明の第2実施形態であるヒートシンク付パワーモジュール101が製出される。
以上のような構成とされた第2実施形態であるヒートシンク付パワーモジュール用基板130によれば、銅で構成された金属層113と、アルミニウム合金(A6063)で構成されたヒートシンク131とが固相拡散接合によって接合される構成とされているので、熱伝導性が悪いグリースやはんだを介して接合されている場合と比較して、金属層113とヒートシンク131との接合部における熱伝導性を向上させて、熱抵抗を小さくすることができる。
さらには、金属層113とヒートシンク131とが固相拡散接合によって接合されており、金属層113とヒートシンク131との接合界面に、CuとAlからなる金属間化合物層141が形成されていることから、金属層113中のCu(銅原子)とヒートシンク131中のAl(アルミニウム原子)とが十分に相互拡散しており、金属層113とヒートシンク131とが強固に接合されている。
また、これらの金属間化合物層141と金属層113の接合界面において、酸化物46が接合界面に沿って層状に分散しているので、ヒートシンク131の表面に形成された酸化膜が確実に破壊され、CuとAlの相互拡散が十分に進行していることになり、金属層113とヒートシンク131とが確実に接合されている。
さらに、金属間化合物層141の平均厚みが1μm以上80μm以下の範囲内、好ましくは5μm以上80μm以下の範囲内とされているので、金属層113中のCuとヒートシンク131中のAlとが十分に相互拡散していることになり、金属層113とヒートシンク131とが強固に接合できるとともに、金属層113、ヒートシンク131に比べて脆い金属間化合物層141が必要以上に成長することが抑えられており、接合界面の特性が安定することになる。
さらに、第2実施形態においては、ヒートシンク131の平均結晶粒径が500μm以上とされ、金属層113の平均結晶粒径が50μm以上200μm以下の範囲内とされており、金属層113、ヒートシンク131の平均結晶粒径が比較的大きく設定されている。よって、金属層113、ヒートシンク131には、不要な歪が蓄積されておらず、疲労特性が良好となる。したがって、ヒートサイクル負荷において、パワーモジュール用基板110とヒートシンク131との間に生じる熱応力に対する接合信頼性が向上する。
さらに、第2実施形態においては金属層113が無酸素銅で構成されているので、半導体素子3からの熱を拡げて効率的にヒートシンク131側へと伝達し熱抵抗を小さくできる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
なお、上記の実施形態においては、回路層が純度99.99%の4Nアルミニウムで構成されている場合について説明したが、これに限定されるものではなく、純度99%のアルミニウム(2Nアルミニウム)、アルミニウム合金、銅、又は銅合金で構成されても良い。銅や銅合金で回路層を形成した場合には、半導体素子からの熱を回路層で面方向に拡げ、効率的にパワーモジュール用基板側へ放散することが可能である。
また、上記の実施形態においては、金属層が純度99.99%の純アルミニウムで構成されている場合について説明したが、純度99%のアルミニウム(2Nアルミニウム)やアルミニウム合金で構成されても良い。また、ヒートシンクがアルミニウム合金(A6063)で構成されている場合について説明したが、純度99.99%の純アルミニウムや他のアルミニウム合金で構成されていても良い。
また、金属層又はヒートシンクが無酸素銅で構成される場合について説明したが、タフピッチ銅や銅合金で構成されても良い。また、ヒートシンクの内部に流路が設けられている場合について説明したが、流路は設けられていなくても良い。また、ヒートシンクは放熱フィンを備えていても良い。
例えば、金属層をアルミニウム合金で構成し、ヒートシンクを銅合金で構成した場合には、固相拡散接合時の加熱の温度をアルミニウム合金と銅合金との共晶温度未満とすれば良く、金属層を構成する金属とヒートシンクを構成する金属に応じた共晶温度未満とすれば良い。
 また、絶縁層としてAlNからなるセラミックス基板を用いたものとして説明したが、これに限定されることはなく、SiやAl等からなるセラミックス基板を用いても良いし、絶縁樹脂によって絶縁層を構成しても良い。
 また、上記の実施形態のヒートシンク付パワーモジュール用基板において、セラミックス基板の第一の面に、回路層としてアルミニウム板が接合されている場合について説明したが、例えば図7のヒートシンク付パワーモジュール用基板230に示すように、セラミックス基板11の第一の面に、回路層212として、半導体素子などが接合されるダイパッド232と、外部端子として用いられるリード部233とを有する銅板を接合しても良い。ここで、セラミックス基板11と上述の銅板との接合方法としては、例えば活性金属ロウ付け法やDBC法などによる接合方法が挙げられる。また、図7に示すヒートシンク付パワーモジュール用基板230では、ダイパッド232とセラミックス基板11とが接合されている。
 また、図8に示すヒートシンク付パワーモジュール用基板330に示すように、回路層312が、アルミニウム層312Aと、このアルミニウム層312Aの一方側に接合された銅層312Bとを備え、この銅層312Bは、ダイパッド332とリード部333とを有する銅板からなる構成とされても良い。このヒートシンク付パワーモジュール用基板330では、アルミニウム層312Aと、ダイパッド332とが、固相拡散接合によって接合されている。ここで、アルミニウム層312Aの一方側は、アルミニウム層312Aの、セラミックス基板11の第一の面と接合されている面とは反対の面である。
 ここで、アルミニウム層312Aの厚さは、0.1mm以上1.0mm以下とされていることが好ましい。また、銅層312Bの厚さは、0.1mm以上6.0mm以下とされていることが好ましい。
 また、第1実施形態では、金属層13とヒートシンク31との接合界面には、金属間化合物層41が形成され、この金属間化合物層41は、金属層13側からヒートシンク31側に向けて順に、θ相43、η2相44、ζ2相45が積層して構成されている場合について説明したが、これに限定されるものではない。
 具体的には、金属層13とヒートシンク31との接合界面において、金属層13側からヒートシンク31側に向けて順に、アルミニウムの比率が低くなるように、複数のCu及びAlからなる金属間化合物が積層されていても良い。また、図9に示すように、金属層13とヒートシンク31との接合界面には、金属層13側からヒートシンク31側に向けて順に、前述の接合界面に沿って、θ相443、η2相444が積層し、さらにζ2相445、δ相447、及びγ2相448のうち少なくとも一つの相が積層して構成されていても良い(図13)。
 また、第1実施形態では、金属間化合物層41とヒートシンク31との接合界面には、酸化物46が、接合界面に沿って層状に分散している場合について説明したが、例えば図10に示すように、金属間化合物層441とヒートシンク31との界面に沿って、酸化物446が、ζ2相445、δ相447、及びγ2相448のうち少なくとも一つの相で構成された層の内部に層状に分散している構成とされても良い。なお、この酸化物446は、アルミナ(Al)等のアルミニウム酸化物とされている。
 また、第2実施形態では、金属層113とヒートシンク131との接合界面には、金属間化合物層141が形成され、この金属間化合物層141は、ヒートシンク131側から金属層113側に向けて順に、θ相43、η2相44、ζ2相45が積層して構成されている場合について説明したが、これに限定されるものではない。
 具体的には、金属層113とヒートシンク131との接合界面において、ヒートシンク131側から金属層113側に向けて順に、アルミニウムの比率が低くなるように、複数のCu及びAlからなる金属間化合物が積層されていても良い。また、図11に示すように、金属層113とヒートシンク131との接合界面には、ヒートシンク131側から金属層113側に向けて順に、前述の接合界面に沿って、θ相543、η2相544が積層し、さらにζ2相545、δ相547、及びγ2相548のうち少なくとも一つの相が積層して構成されていても良い。
 また、第2実施形態では、金属間化合物層141と金属層113との接合界面には、酸化物46が、接合界面に沿って層状に分散している場合について説明したが、例えば図12に示すように、金属間化合物層541と金属層113との界面に沿って、酸化物546がζ2相545、δ相547、及びγ2相548のうち少なくとも一つの相で構成された層の内部に層状に分散している構成とされても良い。なお、この酸化物546は、アルミナ(Al)等のアルミニウム酸化物とされている。
 以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
 図3のフロー図に記載した手順に従って、表1及び表2に示す条件で金属層とヒートシンクとを固相拡散接合して作製されたヒートシンク付パワーモジュール用基板を用いて、本発明例1-1~1-7、本発明例2-1~2-7、比較例1及び比較例2のヒートシンク付パワーモジュールを作製した。
 なお、セラミックス基板は、AlNで構成され、40mm×40mm、厚さ0.635mmのものを使用した。
 また、回路層は、4Nアルミニウムの圧延板で構成され、37mm×37mm、厚さ0.6mmのものを使用した。
金属層は、本発明例1-1~1-7、及び比較例1については、4Nアルミニウムの圧延板で構成され、37mm×37mm、厚さ1.6mmのものを使用した。
また、本発明例2-1~2-7、及び比較例2については、無酸素銅の圧延板で構成され、37mm×37mm、厚さ0.3mmのものを使用した。
ヒートシンクは、本発明例1-1~1-7、及び比較例1については、無酸素銅で構成され、ヒートシンクの内部に冷却用の流路を有するものを用いた。
また、本発明例2-1~2-7、及び比較例2については、アルミニウム合金(A6063)で構成され、ヒートシンクの内部に冷却用の流路を有するものを用いた。
 半導体素子は、IGBT素子とし、12.5mm×9.5mm、厚さ0.25mmのものを使用した。
 このようにして作製したヒートシンク付パワーモジュールに対して、以下の評価を実施した。
(ヒートサイクル試験)
 ヒートサイクル試験は、ヒートシンク付パワーモジュールに対して、-40℃から125℃のヒートサイクルを負荷することにより行う。本実施例では、このヒートサイクルを3000回実施した。
このヒートサイクル試験前後における、金属層とヒートシンクとの界面における接合率及びヒートシンク付パワーモジュールの熱抵抗を測定した。
(酸化物の評価方法)
クロスセクションポリッシャ(日本電子株式会社製SM-09010)を用いて、イオン加速電圧:5kV、加工時間:14時間、遮蔽板からの突出量:100μmでイオンエッチングした断面を走査型電子顕微鏡(カール ツァイスNTS社製ULTRA55)を用いて、加速電圧:1kV、WD:2.5mmでIn-Lens像、組成像の撮影及びEDS分析を行った。
本発明例1-1~1-7及び2-1~2-7では、In-Lens像を撮影すると、Cuと金属間化合物層の界面に沿って層状に分散した白いコンラストが得られた。また同条件にて組成像を撮影すると、前記箇所はAlより暗いコントラストになっていた。さらにEDS分析から前記箇所に酸素が濃集していた。以上のことからCuと金属間化合物層との界面には、酸化物が、前記界面に沿って層状に分散していることを確認した。
また、比較例1及び比較例2ではこのような酸化物は確認されなかった。上記の方法により酸化物が確認できたものを表では「有」とし、確認できなかったものを「無」と記載した。
(金属層とヒートシンクとの接合界面の接合率評価)
ヒートサイクル試験前後のヒートシンク付パワーモジュールに対して、金属層とヒートシンクとの接合界面の接合率について超音波探傷装置を用いて評価し、以下の式から算出した。ここで、初期接合面積とは、接合前における接合すべき面積、すなわち金属層の面積とした。超音波探傷像において剥離は白色部で示されることから、この白色部の面積を剥離面積とした。
 (接合率(%))={(初期接合面積)-(剥離面積)}/(初期接合面積)×100
(熱抵抗評価)
 熱抵抗は、次のようにして測定した。半導体素子としてヒータチップを用い、100Wの電力で加熱し、熱電対を用いてヒータチップの温度を実測した。また、ヒートシンクを流通する冷却媒体(エチレングリコール:水=9:1)の温度を実測した。そして、ヒータチップの温度と冷却媒体の温度差を電力で割った値を熱抵抗とした。
 金属層を4Nアルミニウム、ヒートシンクを無酸素銅とした本発明例1-1~1-7、及び比較例1の評価結果を表1に示す。
 金属層を無酸素銅、ヒートシンクをアルミニウム合金(A6063)とした本発明例2-1~2-7、及び比較例2の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
                  
Figure JPOXMLDOC01-appb-T000002
                  
表1、表2に示すように、Cuと金属間化合物層の界面に沿って層状に分散した酸化物が無い比較例1及び比較例2では、ヒートサイクル試験前の接合率は高かったものの、ヒートサイクル試験後の接合率は低下し、熱抵抗は上昇した。これは、固相拡散接合時の温度をアルミニウムと銅との共晶温度以上としたためと推察される。
一方、本発明である本発明例1-1~1-7及び2-1~2-7では、Cuと金属間化合物層の界面に沿って層状に分散した酸化物があるため、ヒートサイクル試験前及び試験後における接合率は共に高く、さらに、ヒートサイクル試験前後の熱抵抗は共に低かった。
よって、本発明例1-1~1-7及び2-1~2-7では、パワーモジュール用基板とヒートシンクとが強固に接合されていることが確認された。
 本発明によれば、互いに接合される金属層及びヒートシンクの一方がアルミニウム又はアルミニウム合金で構成され、他方が銅又は銅合金で構成されている場合において、金属層とヒートシンクの接合部における熱抵抗を小さくし、電子部品の温度上昇を抑制可能なヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法を提供することができる。
1、101 ヒートシンク付パワーモジュール
3 半導体素子
10、110 パワーモジュール用基板
11 セラミックス基板
12、212、312 回路層
13、113 金属層
30、130、230、330 ヒートシンク付パワーモジュール用基板
31、131 ヒートシンク
41、141、441、541 金属間化合物層

Claims (3)

  1. 絶縁層の一方の面に回路層が配設され、前記絶縁層の他方の面に金属層が配設されたパワーモジュール用基板と、
     前記パワーモジュール用基板の前記金属層に接合されたヒートシンクと、を備えたヒートシンク付パワーモジュール用基板であって、
    前記金属層及び前記ヒートシンクの一方がアルミニウム又はアルミニウム合金で構成され、
    他方が銅又は銅合金で構成され、
    前記金属層と前記ヒートシンクとが、固相拡散接合され、
    前記金属層と前記ヒートシンクとの接合界面には、CuとAlからなる金属間化合物層が形成されており、
    銅又は銅合金からなる前記金属層又は前記ヒートシンクと、前記金属間化合物層との界面には、酸化物が前記界面に沿って層状に分散していることを特徴とするヒートシンク付パワーモジュール用基板。
  2.  請求項1に記載のヒートシンク付パワーモジュール用基板と、前記回路層の一方側に接合された半導体素子と、を備えるヒートシンク付パワーモジュール。
  3. 絶縁層の一方の面に回路層が配設され、前記絶縁層の他方の面に金属層が配設されたパワーモジュール用基板と、
     前記パワーモジュール用基板の金属層に接合されたヒートシンクと、を備えたヒートシンク付パワーモジュール用基板の製造方法であって、
     前記金属層及び前記ヒートシンクの一方をアルミニウム又はアルミニウム合金で構成し、
     他方を銅又は銅合金で構成し、
     前記金属層と前記ヒートシンクとを固相拡散接合することにより、
     前記金属層と前記ヒートシンクとの接合界面に、CuとAlからなる金属間化合物層を形成するとともに、前記銅又は銅合金からなる前記金属層又は前記ヒートシンクと前記金属間化合物層との界面に酸化物を前記界面に沿って層状に分散させることを特徴とするヒートシンク付パワーモジュール用基板の製造方法。
     
     
PCT/JP2013/077766 2012-10-16 2013-10-11 ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法 WO2014061588A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13847976.1A EP2911192B1 (en) 2012-10-16 2013-10-11 Substrate for power module with heat sink, power module with heat sink, and method for producing substrate for power module with heat sink
KR1020157008930A KR102146589B1 (ko) 2012-10-16 2013-10-11 히트싱크가 부착된 파워 모듈용 기판, 히트싱크가 부착된 파워 모듈, 및 히트싱크가 부착된 파워 모듈용 기판의 제조 방법
IN3283DEN2015 IN2015DN03283A (ja) 2012-10-16 2013-10-11
CN201380053574.9A CN104718616B (zh) 2012-10-16 2013-10-11 自带散热器的功率模块用基板、自带散热器的功率模块及自带散热器的功率模块用基板的制造方法
US14/435,554 US9968012B2 (en) 2012-10-16 2013-10-11 Heat-sink-attached power module substrate, heat-sink-attached power module, and method for producing heat-sink-attached power module substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-228870 2012-10-16
JP2012228870 2012-10-16

Publications (1)

Publication Number Publication Date
WO2014061588A1 true WO2014061588A1 (ja) 2014-04-24

Family

ID=50488154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077766 WO2014061588A1 (ja) 2012-10-16 2013-10-11 ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法

Country Status (8)

Country Link
US (1) US9968012B2 (ja)
EP (1) EP2911192B1 (ja)
JP (1) JP5614485B2 (ja)
KR (1) KR102146589B1 (ja)
CN (1) CN104718616B (ja)
IN (1) IN2015DN03283A (ja)
TW (1) TWI600126B (ja)
WO (1) WO2014061588A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663663A (zh) * 2014-08-26 2017-05-10 三菱综合材料株式会社 接合体及其制造方法、自带散热器的功率模块用基板及其制造方法、散热器及其制造方法
CN107431051A (zh) * 2015-03-30 2017-12-01 三菱综合材料株式会社 带有散热片的功率模块用基板的制造方法
CN107534033A (zh) * 2015-04-16 2018-01-02 三菱综合材料株式会社 接合体、自带散热器的功率模块用基板、散热器及接合体的制造方法、自带散热器的功率模块用基板的制造方法、散热器的制造方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5542765B2 (ja) * 2011-09-26 2014-07-09 日立オートモティブシステムズ株式会社 パワーモジュール
JP6111764B2 (ja) * 2013-03-18 2017-04-12 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
JP5672324B2 (ja) 2013-03-18 2015-02-18 三菱マテリアル株式会社 接合体の製造方法及びパワーモジュール用基板の製造方法
DE112015003487T5 (de) * 2014-07-29 2017-05-11 Denka Company Limited Keramische Leiterplatte und Verfahren zur Herstellung der selben
JP6432208B2 (ja) * 2014-08-18 2018-12-05 三菱マテリアル株式会社 パワーモジュール用基板の製造方法、及び、ヒートシンク付パワーモジュール用基板の製造方法
JP6696214B2 (ja) 2015-04-16 2020-05-20 三菱マテリアル株式会社 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、及び、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法
US10497585B2 (en) 2015-04-16 2019-12-03 Mitsubishi Materials Corporation Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
WO2016167217A1 (ja) * 2015-04-16 2016-10-20 三菱マテリアル株式会社 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、及び、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法
CN105081500B (zh) * 2015-09-02 2017-02-22 哈尔滨工业大学 一种使用激光前向转印具有特定晶粒取向和数量薄膜诱发金属间化合物生长的方法
JP6638282B2 (ja) * 2015-09-25 2020-01-29 三菱マテリアル株式会社 冷却器付き発光モジュールおよび冷却器付き発光モジュールの製造方法
JP2017063127A (ja) * 2015-09-25 2017-03-30 三菱マテリアル株式会社 発光モジュール用基板、発光モジュール、冷却器付き発光モジュール用基板、および発光モジュール用基板の製造方法
WO2017217221A1 (ja) * 2016-06-16 2017-12-21 三菱電機株式会社 半導体実装用放熱ベース板およびその製造方法
JPWO2018154870A1 (ja) * 2017-02-27 2019-02-28 三菱電機株式会社 金属接合方法、半導体装置の製造方法、及び半導体装置
JP6776953B2 (ja) * 2017-03-07 2020-10-28 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板
JP6790945B2 (ja) * 2017-03-17 2020-11-25 三菱マテリアル株式会社 絶縁回路基板の製造方法、及び、ヒートシンク付き絶縁回路基板の製造方法
JP6717245B2 (ja) 2017-03-17 2020-07-01 三菱マテリアル株式会社 接合体の製造方法、絶縁回路基板の製造方法、及び、ヒートシンク付き絶縁回路基板の製造方法
JP6970738B2 (ja) * 2017-03-30 2021-11-24 株式会社東芝 セラミックス銅回路基板およびそれを用いた半導体装置
WO2018181236A1 (ja) * 2017-03-31 2018-10-04 パナソニックIpマネジメント株式会社 半導体装置及びその製造方法
JP7135716B2 (ja) 2017-10-27 2022-09-13 三菱マテリアル株式会社 接合体、ヒートシンク付絶縁回路基板、及び、ヒートシンク
WO2019082973A1 (ja) 2017-10-27 2019-05-02 三菱マテリアル株式会社 接合体、ヒートシンク付絶縁回路基板、及び、ヒートシンク
US11887909B2 (en) * 2018-02-13 2024-01-30 Mitsubishi Materials Corporation Copper/titanium/aluminum joint, insulating circuit substrate, insulating circuit substrate with heat sink, power module, LED module, and thermoelectric module
EP3780087A4 (en) * 2018-03-26 2022-01-12 Mitsubishi Materials Corporation METHOD OF MANUFACTURE OF CONNECTED BODY FOR INSULATION OF A CIRCUIT BOARD AND CONNECTED BODY FOR INSULATION OF A CIRCUIT BOARD
EP3780085A4 (en) * 2018-03-28 2021-12-29 Mitsubishi Materials Corporation Insulated circuit board with heat sink
JP7167642B2 (ja) 2018-11-08 2022-11-09 三菱マテリアル株式会社 接合体、ヒートシンク付絶縁回路基板、及び、ヒートシンク
JP7081686B2 (ja) 2018-11-28 2022-06-07 三菱マテリアル株式会社 接合体、ヒートシンク付絶縁回路基板、及び、ヒートシンク
DE102019126954A1 (de) * 2019-10-08 2021-04-08 Rogers Germany Gmbh Verfahren zur Herstellung eines Metall-Keramik-Substrats, Lötsystem und Metall-Keramik-Substrat, hergestellt mit einem solchen Verfahren
US11828546B2 (en) * 2019-11-21 2023-11-28 Heraeus Deutschland GmbH & Co. KG Heat exchange compound module
CN114846912A (zh) * 2020-03-18 2022-08-02 株式会社东芝 接合体、陶瓷铜电路基板、接合体的制造方法及陶瓷铜电路基板的制造方法
US11825628B2 (en) * 2020-08-19 2023-11-21 Baidu Usa Llc Hybrid cooling system for electronic racks
US20230130677A1 (en) * 2021-10-21 2023-04-27 Amulaire Thermal Technology, Inc. Heat-dissipation substrate having gradient sputtered structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288828A (ja) 2003-03-20 2004-10-14 Mitsubishi Materials Corp パワーモジュール用基板の製造方法及びパワーモジュール用基板並びにパワーモジュール
JP2009224571A (ja) 2008-03-17 2009-10-01 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板及びヒートシンク付パワーモジュール
JP2010137251A (ja) * 2008-12-11 2010-06-24 Mitsubishi Electric Corp 金属接合体およびその製造方法
WO2011155379A1 (ja) * 2010-06-08 2011-12-15 株式会社Neomaxマテリアル アルミニウム銅クラッド材
JP2012160642A (ja) * 2011-02-02 2012-08-23 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール用基板の製造方法及びパワーモジュール

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04315524A (ja) 1991-04-10 1992-11-06 Kobe Steel Ltd 銅材とアルミニウム材との接合用部材及びその製造方法
JP3240211B2 (ja) 1993-04-12 2001-12-17 旭化成株式会社 銅−アルミニウム異種金属継手材
TW252061B (en) 1994-07-20 1995-07-21 Dong-Hann Chang Process of undergoing diffusion bonding under low pressure
JPH08255973A (ja) * 1995-03-17 1996-10-01 Toshiba Corp セラミックス回路基板
US6033787A (en) * 1996-08-22 2000-03-07 Mitsubishi Materials Corporation Ceramic circuit board with heat sink
US6124635A (en) * 1997-03-21 2000-09-26 Honda Giken Kogyo Kabushiki Kaisha Functionally gradient integrated metal-ceramic member and semiconductor circuit substrate application thereof
JPH11156995A (ja) 1997-09-25 1999-06-15 Daido Steel Co Ltd クラッド板とこれを用いた電池用ケース並びにこれらの製造方法
JP3752830B2 (ja) 1998-03-31 2006-03-08 マツダ株式会社 接合金属部材及び該部材の接合方法
JP2001148451A (ja) * 1999-03-24 2001-05-29 Mitsubishi Materials Corp パワーモジュール用基板
JP2001252772A (ja) 2000-03-10 2001-09-18 Showa Denko Kk アルミニウム−銅クラッド材およびその製造方法
JP2002064169A (ja) * 2000-08-21 2002-02-28 Denki Kagaku Kogyo Kk 放熱構造体
JP2002203942A (ja) * 2000-12-28 2002-07-19 Fuji Electric Co Ltd パワー半導体モジュール
JP2002231865A (ja) * 2001-02-02 2002-08-16 Toyota Industries Corp ヒートシンク付絶縁基板、接合部材及び接合方法
JP2003078086A (ja) 2001-09-04 2003-03-14 Kubota Corp 半導体素子モジュール基板の積層構造
JP2003092383A (ja) 2001-09-19 2003-03-28 Hitachi Ltd パワー半導体装置およびそのヒートシンク
JP2003258170A (ja) * 2002-02-26 2003-09-12 Akane:Kk ヒートシンク
JP3917503B2 (ja) 2002-04-05 2007-05-23 住友精密工業株式会社 アルミニウム部材と銅部材の接合方法及びその接合構造物
TW540298B (en) 2002-09-04 2003-07-01 Loyalty Founder Entpr Co Ltd Composite board forming method for heat sink
AU2003257838A1 (en) 2003-08-07 2005-02-25 Sumitomo Precision Products Co., Ltd. Al-Cu JUNCTION STRUCTURE AND METHOD FOR MANUFACTURING SAME
US7532481B2 (en) * 2004-04-05 2009-05-12 Mitsubishi Materials Corporation Al/AlN joint material, base plate for power module, power module, and manufacturing method of Al/AlN joint material
JP2006100770A (ja) * 2004-09-01 2006-04-13 Toyota Industries Corp 回路基板のベース板の製造方法及び回路基板のベース板並びにベース板を用いた回路基板
JP4759384B2 (ja) * 2005-12-20 2011-08-31 昭和電工株式会社 半導体モジュール
EP2210970B1 (en) 2007-10-25 2017-03-29 Mitsubishi Rayon Co., Ltd. Stamper, process for producing the same, process for producing molding, and aluminum base die for stamper
JP5067187B2 (ja) * 2007-11-06 2012-11-07 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板及びヒートシンク付パワーモジュール
JP4747315B2 (ja) * 2007-11-19 2011-08-17 三菱マテリアル株式会社 パワーモジュール用基板及びパワーモジュール
JP2010034238A (ja) 2008-07-28 2010-02-12 Shin Kobe Electric Mach Co Ltd 配線板
US8159821B2 (en) * 2009-07-28 2012-04-17 Dsem Holdings Sdn. Bhd. Diffusion bonding circuit submount directly to vapor chamber
WO2011030754A1 (ja) * 2009-09-09 2011-03-17 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンク付パワーモジュール用基板及びパワーモジュール
CN102596488B (zh) * 2009-10-26 2013-09-18 株式会社新王材料 铝接合合金、具有由该合金形成的接合合金层的覆层材料和铝接合复合材料
CN102742008B (zh) * 2010-02-05 2015-07-01 三菱综合材料株式会社 功率模块用基板及功率模块
CN101947689B (zh) 2010-09-21 2012-10-03 河南科技大学 铜铝复合板的连续复合成形方法及其复合成形装置
DE102010041714A1 (de) * 2010-09-30 2011-08-25 Infineon Technologies AG, 85579 Leistungshalbleitermodul und Verfahren zur Herstellung eines Leistungshalbleitermoduls
JP5910166B2 (ja) * 2012-02-29 2016-04-27 三菱マテリアル株式会社 パワーモジュール用基板の製造方法
JP5403129B2 (ja) 2012-03-30 2014-01-29 三菱マテリアル株式会社 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法
KR102051697B1 (ko) 2012-09-21 2019-12-03 미쓰비시 마테리알 가부시키가이샤 알루미늄 부재와 구리 부재의 접합 구조

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288828A (ja) 2003-03-20 2004-10-14 Mitsubishi Materials Corp パワーモジュール用基板の製造方法及びパワーモジュール用基板並びにパワーモジュール
JP2009224571A (ja) 2008-03-17 2009-10-01 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板及びヒートシンク付パワーモジュール
JP2010137251A (ja) * 2008-12-11 2010-06-24 Mitsubishi Electric Corp 金属接合体およびその製造方法
WO2011155379A1 (ja) * 2010-06-08 2011-12-15 株式会社Neomaxマテリアル アルミニウム銅クラッド材
JP2012160642A (ja) * 2011-02-02 2012-08-23 Mitsubishi Materials Corp ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール用基板の製造方法及びパワーモジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2911192A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663663A (zh) * 2014-08-26 2017-05-10 三菱综合材料株式会社 接合体及其制造方法、自带散热器的功率模块用基板及其制造方法、散热器及其制造方法
US10283431B2 (en) 2014-08-26 2019-05-07 Mitsubishi Materials Corporation Bonded body, power module substrate with heat sink, heat sink, method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, and method of manufacturing heat sink
CN107431051A (zh) * 2015-03-30 2017-12-01 三菱综合材料株式会社 带有散热片的功率模块用基板的制造方法
CN107431051B (zh) * 2015-03-30 2019-12-06 三菱综合材料株式会社 带有散热片的功率模块用基板的制造方法
CN107534033A (zh) * 2015-04-16 2018-01-02 三菱综合材料株式会社 接合体、自带散热器的功率模块用基板、散热器及接合体的制造方法、自带散热器的功率模块用基板的制造方法、散热器的制造方法
CN107534033B (zh) * 2015-04-16 2020-12-11 三菱综合材料株式会社 接合体、自带散热器的功率模块用基板、散热器及接合体的制造方法、自带散热器的功率模块用基板的制造方法、散热器的制造方法

Also Published As

Publication number Publication date
US9968012B2 (en) 2018-05-08
EP2911192A4 (en) 2016-06-22
KR20150067177A (ko) 2015-06-17
CN104718616B (zh) 2017-11-14
JP2014099596A (ja) 2014-05-29
IN2015DN03283A (ja) 2015-10-09
KR102146589B1 (ko) 2020-08-20
EP2911192B1 (en) 2021-05-05
EP2911192A1 (en) 2015-08-26
US20150282379A1 (en) 2015-10-01
CN104718616A (zh) 2015-06-17
TW201423922A (zh) 2014-06-16
JP5614485B2 (ja) 2014-10-29
TWI600126B (zh) 2017-09-21

Similar Documents

Publication Publication Date Title
JP5614485B2 (ja) ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法
JP5403129B2 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法
KR102122625B1 (ko) 파워 모듈용 기판, 히트 싱크가 형성된 파워 모듈용 기판, 히트 싱크가 형성된 파워 모듈
JP6696215B2 (ja) 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、及び、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法
JP6621076B2 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板及びパワーモジュール
JP6696214B2 (ja) 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、及び、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法
JP5991102B2 (ja) ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法
WO2013147142A1 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板及びパワーモジュール
KR102154882B1 (ko) 파워 모듈
JP5991103B2 (ja) ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法
WO2014103955A1 (ja) パワーモジュール
KR20170046649A (ko) 접합체, 히트 싱크가 부착된 파워 모듈용 기판, 히트 싱크, 접합체의 제조 방법, 히트 싱크가 부착된 파워 모듈용 기판의 제조 방법, 및 히트 싱크의 제조 방법
JP2014222788A (ja) パワーモジュール用基板の製造方法、ヒートシンク付パワーモジュール用基板の製造方法及びパワーモジュールの製造方法
JP2014039062A (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法
WO2016167217A1 (ja) 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、及び、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法
KR102590640B1 (ko) 접합체, 히트 싱크가 부착된 절연 회로 기판, 및, 히트 싱크
JP2018137277A (ja) 銅/アルミニウム接合体の製造方法、絶縁回路基板の製造方法、ヒートシンク付き絶縁回路基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157008930

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14435554

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013847976

Country of ref document: EP