IN2015DN03283A - - Google Patents
Download PDFInfo
- Publication number
- IN2015DN03283A IN2015DN03283A IN3283DEN2015A IN2015DN03283A IN 2015DN03283 A IN2015DN03283 A IN 2015DN03283A IN 3283DEN2015 A IN3283DEN2015 A IN 3283DEN2015A IN 2015DN03283 A IN2015DN03283 A IN 2015DN03283A
- Authority
- IN
- India
- Prior art keywords
- heat sink
- metal layer
- copper
- layer
- intermetallic compound
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 abstract 4
- 239000002184 metal Substances 0.000 abstract 4
- 229910052802 copper Inorganic materials 0.000 abstract 3
- 239000010949 copper Substances 0.000 abstract 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract 2
- 229910000881 Cu alloy Inorganic materials 0.000 abstract 2
- 229910052782 aluminium Inorganic materials 0.000 abstract 2
- 229910000765 intermetallic Inorganic materials 0.000 abstract 2
- 229910000838 Al alloy Inorganic materials 0.000 abstract 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract 1
- 238000009792 diffusion process Methods 0.000 abstract 1
- 239000007790 solid phase Substances 0.000 abstract 1
- 239000000758 substrate Substances 0.000 abstract 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2089—Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
- H05K7/209—Heat transfer by conduction from internal heat source to heat radiating structure
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/021—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/023—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
- C04B37/026—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4871—Bases, plates or heatsinks
- H01L21/4882—Assembly of heatsink parts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/121—Metallic interlayers based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/126—Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
- C04B2237/128—The active component for bonding being silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/343—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/366—Aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/368—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/407—Copper
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/70—Forming laminates or joined articles comprising layers of a specific, unusual thickness
- C04B2237/704—Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/70—Forming laminates or joined articles comprising layers of a specific, unusual thickness
- C04B2237/706—Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/86—Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/291—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/29111—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/32227—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8338—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/83399—Material
- H01L2224/834—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/83417—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/83424—Aluminium [Al] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
With respect to this substrate (1) for a power module with a heat sink , one of a metal layer (13) and a heat sink (31) is configured from aluminum or an aluminum alloy , and the other is configured from copper or a copper alloy. The metal layer (13) and the heat sink (31) are joined together by solid- phase diffusion bonding; an intermetallic compound layer that is formed of Cu and Al is formed at the bonding interface between the metal layer (13) and the heat sink (31); and oxides are dispersed in the form of a layer along the interface between the intermetallic compound layer and the metal layer (13) or the heat sink (31) ,which is formed of copper or a copper alloy.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012228870 | 2012-10-16 | ||
PCT/JP2013/077766 WO2014061588A1 (en) | 2012-10-16 | 2013-10-11 | Substrate for power module with heat sink, power module with heat sink, and method for producing substrate for power module with heat sink |
Publications (1)
Publication Number | Publication Date |
---|---|
IN2015DN03283A true IN2015DN03283A (en) | 2015-10-09 |
Family
ID=50488154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IN3283DEN2015 IN2015DN03283A (en) | 2012-10-16 | 2013-10-11 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9968012B2 (en) |
EP (1) | EP2911192B1 (en) |
JP (1) | JP5614485B2 (en) |
KR (1) | KR102146589B1 (en) |
CN (1) | CN104718616B (en) |
IN (1) | IN2015DN03283A (en) |
TW (1) | TWI600126B (en) |
WO (1) | WO2014061588A1 (en) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5542765B2 (en) * | 2011-09-26 | 2014-07-09 | 日立オートモティブシステムズ株式会社 | Power module |
JP6111764B2 (en) * | 2013-03-18 | 2017-04-12 | 三菱マテリアル株式会社 | Power module substrate manufacturing method |
JP5672324B2 (en) | 2013-03-18 | 2015-02-18 | 三菱マテリアル株式会社 | Manufacturing method of joined body and manufacturing method of power module substrate |
CN106537580B (en) * | 2014-07-29 | 2021-06-11 | 电化株式会社 | Ceramic circuit board and method for manufacturing the same |
JP6432208B2 (en) * | 2014-08-18 | 2018-12-05 | 三菱マテリアル株式会社 | Method for manufacturing power module substrate, and method for manufacturing power module substrate with heat sink |
JP6432466B2 (en) | 2014-08-26 | 2018-12-05 | 三菱マテリアル株式会社 | Bonded body, power module substrate with heat sink, heat sink, method for manufacturing bonded body, method for manufacturing power module substrate with heat sink, and method for manufacturing heat sink |
JP6332108B2 (en) * | 2015-03-30 | 2018-05-30 | 三菱マテリアル株式会社 | Manufacturing method of power module substrate with heat sink |
WO2016167217A1 (en) * | 2015-04-16 | 2016-10-20 | 三菱マテリアル株式会社 | Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink |
JP6696215B2 (en) | 2015-04-16 | 2020-05-20 | 三菱マテリアル株式会社 | Bonded body, power module substrate with heat sink, heat sink, and method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, and method of manufacturing heat sink |
US10497585B2 (en) | 2015-04-16 | 2019-12-03 | Mitsubishi Materials Corporation | Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink |
JP6696214B2 (en) | 2015-04-16 | 2020-05-20 | 三菱マテリアル株式会社 | Bonded body, power module substrate with heat sink, heat sink, and method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, and method of manufacturing heat sink |
CN105081500B (en) * | 2015-09-02 | 2017-02-22 | 哈尔滨工业大学 | Method for inducing growth of intermetallic compound with specific grain orientation and specific number of films through laser forward transfer printing |
JP2017063127A (en) * | 2015-09-25 | 2017-03-30 | 三菱マテリアル株式会社 | Substrate for light-emitting module, light-emitting module, substrate for light-emitting module with cooler, and manufacturing method of substrate for light-emitting module |
JP6638282B2 (en) * | 2015-09-25 | 2020-01-29 | 三菱マテリアル株式会社 | Light emitting module with cooler and method of manufacturing light emitting module with cooler |
US10898946B2 (en) * | 2016-06-16 | 2021-01-26 | Mitsubishi Electric Corporation | Semiconductor-mounting heat dissipation base plate and production method therefor |
EP3263537B1 (en) * | 2016-06-27 | 2021-09-22 | Infineon Technologies AG | Method for producing a metal-ceramic substrate |
JPWO2018154870A1 (en) * | 2017-02-27 | 2019-02-28 | 三菱電機株式会社 | Metal bonding method, semiconductor device manufacturing method, and semiconductor device |
JP6776953B2 (en) * | 2017-03-07 | 2020-10-28 | 三菱マテリアル株式会社 | Board for power module with heat sink |
JP6790945B2 (en) * | 2017-03-17 | 2020-11-25 | 三菱マテリアル株式会社 | Manufacturing method of insulated circuit board and manufacturing method of insulated circuit board with heat sink |
JP6717245B2 (en) | 2017-03-17 | 2020-07-01 | 三菱マテリアル株式会社 | Method for manufacturing joined body, method for manufacturing insulated circuit board, and method for manufacturing insulated circuit board with heat sink |
WO2018180965A1 (en) * | 2017-03-30 | 2018-10-04 | 株式会社 東芝 | Ceramic-copper circuit substrate and semiconductor device using same |
US11257733B2 (en) * | 2017-03-31 | 2022-02-22 | Panasonic Intellectual Property Management Co., Ltd. | Semiconductor device including heat-dissipating metal multilayer having different thermal conductivity, and method for manufacturing same |
JP7135716B2 (en) * | 2017-10-27 | 2022-09-13 | 三菱マテリアル株式会社 | Joined body, insulated circuit board with heat sink, and heat sink |
WO2019082973A1 (en) | 2017-10-27 | 2019-05-02 | 三菱マテリアル株式会社 | Bonded body, insulated circuit board with heat sink, and heat sink |
KR102363709B1 (en) * | 2018-02-13 | 2022-02-15 | 미쓰비시 마테리알 가부시키가이샤 | Copper/Titanium/Aluminum bonding body, insulated circuit board, insulated circuit board with heatsink attached, power module, LED module, thermoelectric module |
JP7060084B2 (en) * | 2018-03-26 | 2022-04-26 | 三菱マテリアル株式会社 | Manufacturing method of bonded body for insulated circuit board and bonded body for insulated circuit board |
JP7151583B2 (en) * | 2018-03-28 | 2022-10-12 | 三菱マテリアル株式会社 | Insulated circuit board with heat sink |
JP7167642B2 (en) * | 2018-11-08 | 2022-11-09 | 三菱マテリアル株式会社 | Joined body, insulated circuit board with heat sink, and heat sink |
TW202027978A (en) | 2018-11-28 | 2020-08-01 | 日商三菱綜合材料股份有限公司 | Bonded body, heat sink-attached insulated circuit board, and heat sink |
DE102019126954A1 (en) * | 2019-10-08 | 2021-04-08 | Rogers Germany Gmbh | Process for the production of a metal-ceramic substrate, soldering system and metal-ceramic substrate produced with such a process |
US11828546B2 (en) | 2019-11-21 | 2023-11-28 | Heraeus Deutschland GmbH & Co. KG | Heat exchange compound module |
JP7470181B2 (en) * | 2020-03-18 | 2024-04-17 | 株式会社東芝 | Bonded body, ceramic copper circuit board, manufacturing method of bonded body, and manufacturing method of ceramic copper circuit board |
US11825628B2 (en) * | 2020-08-19 | 2023-11-21 | Baidu Usa Llc | Hybrid cooling system for electronic racks |
US20230130677A1 (en) * | 2021-10-21 | 2023-04-27 | Amulaire Thermal Technology, Inc. | Heat-dissipation substrate having gradient sputtered structure |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04315524A (en) | 1991-04-10 | 1992-11-06 | Kobe Steel Ltd | Member for bonding together copper material and aluminum material and manufacture thereof |
JP3240211B2 (en) | 1993-04-12 | 2001-12-17 | 旭化成株式会社 | Copper-aluminum dissimilar metal joint material |
TW252061B (en) | 1994-07-20 | 1995-07-21 | Dong-Hann Chang | Process of undergoing diffusion bonding under low pressure |
JPH08255973A (en) | 1995-03-17 | 1996-10-01 | Toshiba Corp | Ceramic circuit board |
US6033787A (en) * | 1996-08-22 | 2000-03-07 | Mitsubishi Materials Corporation | Ceramic circuit board with heat sink |
US6124635A (en) * | 1997-03-21 | 2000-09-26 | Honda Giken Kogyo Kabushiki Kaisha | Functionally gradient integrated metal-ceramic member and semiconductor circuit substrate application thereof |
JPH11156995A (en) | 1997-09-25 | 1999-06-15 | Daido Steel Co Ltd | Clad plate, battery case using it, and manufacture thereof |
JP3752830B2 (en) | 1998-03-31 | 2006-03-08 | マツダ株式会社 | Joined metal member and method of joining the member |
JP2001148451A (en) * | 1999-03-24 | 2001-05-29 | Mitsubishi Materials Corp | Power module board |
JP2001252772A (en) | 2000-03-10 | 2001-09-18 | Showa Denko Kk | Aluminum-copper clad material and method for manufacturing the same |
JP2002064169A (en) * | 2000-08-21 | 2002-02-28 | Denki Kagaku Kogyo Kk | Heat radiating structure |
JP2002203942A (en) * | 2000-12-28 | 2002-07-19 | Fuji Electric Co Ltd | Power semiconductor module |
JP2002231865A (en) | 2001-02-02 | 2002-08-16 | Toyota Industries Corp | Insulation board with heat sink, bonding member and bonding method |
JP2003078086A (en) | 2001-09-04 | 2003-03-14 | Kubota Corp | Lamination structure of semiconductor module substrate |
JP2003092383A (en) * | 2001-09-19 | 2003-03-28 | Hitachi Ltd | Power semiconductor device and its heat sink |
JP2003258170A (en) * | 2002-02-26 | 2003-09-12 | Akane:Kk | Heat sink |
JP3917503B2 (en) | 2002-04-05 | 2007-05-23 | 住友精密工業株式会社 | Method of joining aluminum member and copper member and joining structure thereof |
TW540298B (en) | 2002-09-04 | 2003-07-01 | Loyalty Founder Entpr Co Ltd | Composite board forming method for heat sink |
JP3938079B2 (en) | 2003-03-20 | 2007-06-27 | 三菱マテリアル株式会社 | Power module substrate manufacturing method |
AU2003257838A1 (en) | 2003-08-07 | 2005-02-25 | Sumitomo Precision Products Co., Ltd. | Al-Cu JUNCTION STRUCTURE AND METHOD FOR MANUFACTURING SAME |
JP4918856B2 (en) * | 2004-04-05 | 2012-04-18 | 三菱マテリアル株式会社 | Power module substrate and power module |
JP2006100770A (en) * | 2004-09-01 | 2006-04-13 | Toyota Industries Corp | Manufacturing method of substrate base plate, substrate base plate and substrate using base plate |
JP4759384B2 (en) * | 2005-12-20 | 2011-08-31 | 昭和電工株式会社 | Semiconductor module |
BRPI0818826A2 (en) | 2007-10-25 | 2015-04-22 | Mitsubishi Rayon Co | Stamping, method for producing it, method for producing molded material, and prototype aluminum stamping mold |
JP5067187B2 (en) * | 2007-11-06 | 2012-11-07 | 三菱マテリアル株式会社 | Power module substrate with heat sink and power module with heat sink |
JP4747315B2 (en) * | 2007-11-19 | 2011-08-17 | 三菱マテリアル株式会社 | Power module substrate and power module |
JP5163199B2 (en) * | 2008-03-17 | 2013-03-13 | 三菱マテリアル株式会社 | Power module substrate with heat sink and power module with heat sink |
JP2010034238A (en) | 2008-07-28 | 2010-02-12 | Shin Kobe Electric Mach Co Ltd | Wiring board |
JP2010137251A (en) * | 2008-12-11 | 2010-06-24 | Mitsubishi Electric Corp | Metal bonded body, and method for manufacturing the same |
US8159821B2 (en) * | 2009-07-28 | 2012-04-17 | Dsem Holdings Sdn. Bhd. | Diffusion bonding circuit submount directly to vapor chamber |
TWI521651B (en) * | 2009-09-09 | 2016-02-11 | 三菱綜合材料股份有限公司 | Manufacturing method of substrate for power module having heatsink, substrate for power module having heatsink, and power module |
WO2011052517A1 (en) * | 2009-10-26 | 2011-05-05 | 株式会社Neomaxマテリアル | Aluminum-bonding alloy, clad material having bonding alloy layer formed from the alloy, and composite material including bonded aluminum |
US20120298408A1 (en) * | 2010-02-05 | 2012-11-29 | Mitsubishi Materials Corporation | Substrate for power module and power module |
US9266188B2 (en) | 2010-06-08 | 2016-02-23 | Neomax Materials Co., Ltd. | Aluminum copper clad material |
CN101947689B (en) | 2010-09-21 | 2012-10-03 | 河南科技大学 | Continuous compound molding method of copper-aluminum composite board and compound molding device thereof |
DE102010041714A1 (en) | 2010-09-30 | 2011-08-25 | Infineon Technologies AG, 85579 | Power semiconductor module, has base plate with hermetically sealed chamber for retaining cooling fluid, and circuit carrier with lower side firmly connected with base plate, where lower side is turned away from upper metallization |
JP5736807B2 (en) | 2011-02-02 | 2015-06-17 | 三菱マテリアル株式会社 | Power module substrate with heat sink, manufacturing method of power module substrate with heat sink, and power module |
JP5910166B2 (en) * | 2012-02-29 | 2016-04-27 | 三菱マテリアル株式会社 | Power module substrate manufacturing method |
JP5403129B2 (en) | 2012-03-30 | 2014-01-29 | 三菱マテリアル株式会社 | Power module substrate, power module substrate with heat sink, power module, and method for manufacturing power module substrate |
EP2898979B1 (en) | 2012-09-21 | 2019-03-06 | Mitsubishi Materials Corporation | Bonding structure for aluminum member and copper member |
-
2013
- 2013-10-11 EP EP13847976.1A patent/EP2911192B1/en active Active
- 2013-10-11 IN IN3283DEN2015 patent/IN2015DN03283A/en unknown
- 2013-10-11 CN CN201380053574.9A patent/CN104718616B/en active Active
- 2013-10-11 TW TW102136773A patent/TWI600126B/en active
- 2013-10-11 KR KR1020157008930A patent/KR102146589B1/en active IP Right Grant
- 2013-10-11 US US14/435,554 patent/US9968012B2/en active Active
- 2013-10-11 WO PCT/JP2013/077766 patent/WO2014061588A1/en active Application Filing
- 2013-10-11 JP JP2013214070A patent/JP5614485B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014099596A (en) | 2014-05-29 |
TWI600126B (en) | 2017-09-21 |
WO2014061588A1 (en) | 2014-04-24 |
US20150282379A1 (en) | 2015-10-01 |
EP2911192B1 (en) | 2021-05-05 |
EP2911192A1 (en) | 2015-08-26 |
US9968012B2 (en) | 2018-05-08 |
KR102146589B1 (en) | 2020-08-20 |
TW201423922A (en) | 2014-06-16 |
CN104718616B (en) | 2017-11-14 |
EP2911192A4 (en) | 2016-06-22 |
JP5614485B2 (en) | 2014-10-29 |
CN104718616A (en) | 2015-06-17 |
KR20150067177A (en) | 2015-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
IN2015DN03283A (en) | ||
IN2015DN02361A (en) | ||
TW201613755A (en) | Bonded body, power module substrate with heat sink, heat sink, method of producing bonded body, method of producing power module substrate with heat sink and method of producing heat sink | |
IN2014DN08075A (en) | ||
WO2014022619A8 (en) | Dual solder layer for fluidic self assembly and electrical component substrate and method employing same | |
IN2014DN08074A (en) | ||
IN2014DN08073A (en) | ||
IN2014DN08029A (en) | ||
EP2811513A4 (en) | Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, and paste for bonding copper member | |
EP2727898A4 (en) | Brazing filler metal, brazing filler metal paste, ceramic circuit substrate, ceramic master circuit substrate, and power semiconductor module | |
PH12017500373B1 (en) | Conductive adhesive film | |
WO2012015982A3 (en) | Electronics substrate with enhanced direct bonded metal | |
EP2996140A3 (en) | Multiple bonding layers for thin-wafer handling | |
WO2010114874A3 (en) | Conductive compositions containing blended alloy fillers | |
IN2014DN09944A (en) | ||
EP2930744A4 (en) | Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, paste for copper plate bonding, and method for producing bonded body | |
JP2013214576A5 (en) | ||
GB0908626D0 (en) | A metallization layer stack without a terminal aluminium metal layer | |
TR201902757T4 (en) | Aluminum composite material for use in the melting-free thermal bonding method and method for its production. | |
PH12018501619A1 (en) | Electrically conductive adhesive agent composition, and electrically conductive adhesive film and dicing-die bonding film using the same | |
IN2014MN01030A (en) | ||
PH12015502509A1 (en) | Lead frame construct for lead-free solder connections | |
GB201315481D0 (en) | Reflow method for lead-free solder | |
EP2887394A3 (en) | Methods for forming semiconductor devices with stepped bond pads | |
EP2713411A3 (en) | Luminescence device |