JP3917503B2 - Method of joining aluminum member and copper member and joining structure thereof - Google Patents

Method of joining aluminum member and copper member and joining structure thereof Download PDF

Info

Publication number
JP3917503B2
JP3917503B2 JP2002321182A JP2002321182A JP3917503B2 JP 3917503 B2 JP3917503 B2 JP 3917503B2 JP 2002321182 A JP2002321182 A JP 2002321182A JP 2002321182 A JP2002321182 A JP 2002321182A JP 3917503 B2 JP3917503 B2 JP 3917503B2
Authority
JP
Japan
Prior art keywords
copper
aluminum
joining
alloy
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002321182A
Other languages
Japanese (ja)
Other versions
JP2004001069A (en
Inventor
小山健
三木啓治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2002321182A priority Critical patent/JP3917503B2/en
Publication of JP2004001069A publication Critical patent/JP2004001069A/en
Application granted granted Critical
Publication of JP3917503B2 publication Critical patent/JP3917503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウムまたはアルミニウム合金(この明細書では、これらをまとめて「アルミニウム」と総称することがある)製の部材と、銅または銅合金(この明細書では、これらをまとめて「銅」と総称することがある)製の部材とを用いた異種金属材料(以下、単に「異材」という)の接合方法に関する。また、本発明は、アルミニウム部材と銅部材との異材接合を備えた接合構造物に関するものである。
【0002】
ここでいう接合構造物とは、アルミニウム及び銅が具備する特性を併せて活用するため、アルミニウムと銅の接合部を有する構造物である。アルミニウム及び銅が有する熱伝導性を活用する場合には、熱の発生源から伝熱によって熱を移動させる熱交換装置、例えば、半導体デバイスの冷却に使用されるヒートシンクのように、各種機器の放熱を助ける装置がある。また、両金属の導電効率に優れた特性を活用する場合には、通電効率を高めることができる電極装置、例えば、アルマイト電極のように、通電ロスを極力少なくできる機器がある。
【0003】
【従来技術】
一般に、アルミニウム部材同士のように同種金属の接合には、融接、ろう接等、各種の接合方法が確立され実用化されている。しかし、異材接合においては、適用できる接合方法及び接合材料の組合せが限定される。特にアルミニウム部材と銅部材の接合では、接合界面にアルミニウムと銅を主成分とする非常に脆い金属間化合物が生成するため、十分な接合部の性能、特に接合強度を確保することができる接合方法が確立されていないのが現状である。
【0004】
前述の通り、アルミニウム部材と銅部材との接合が問題となる機器としては、熱交換装置や電極装置などがあるが、特にアルミニウムも銅も熱伝導性に優れていることから、これらの両金属を組み合わせた交換装置が多用されている。その一例に集積回路(LSI)のような半導体デバイスから発生する熱を奪って、冷却するためのヒートシンクがある。以下、これを例にして説明する。
【0005】
ヒートシンクは、概略、図4および図5に示す構造のものである。図4に示す熱交換装置1は、放熱部2を構成するアルミニウム製のフィン2−1と底板2−2とからなるもので、その底板中央部に半導体デバイス等の発熱源7を配置し、その熱を底板2−2からフィン2−1へ伝導させて放熱する。このような装置では、矢印で示すように、発熱源からの熱の流れは中央部のフィンに集中し、多数のフィンに均等に伝わり難いために放熱効率が低い。これを改良したのが図5に示す構造のものである。
【0006】
図5に示すヒートシンクは、底板2-2と発熱源7との間に熱拡散用の基板3を設けたものである。この基板3は、アルミニウムよりも熱伝導率の大きい銅または銅合金製である。したがって、発熱源7からの熱は、基板3内を拡散し、多数のフィン2-1に均等に伝わって放熱の効率が高まる。
【0007】
上記図5に示すヒートシンクの問題点は、基板3と放熱部の底板2-2との接合にある。すなわち、前者は銅、後者はアルミニウムであるから、いわゆる異材接合となるが、接着剤による接合、ろう付、はんだ付等の通常の接合では、接合強度が不十分である。アルミニウムと銅では熱膨脹率が異なるから、加熱−冷却の繰り返しによって接合部には熱疲労が発生し、脆弱な接合部はこれに耐えきれず剥離することになる。
【0008】
さらに、前述の通り、放熱部はアルミニウム製であり、しかも多数の薄いフィンを備えているので、基板との接合前後あるいは接合中に加圧して接合強度を高めるという手段も採り難い。
【0009】
【発明が解決しようとする課題】
従来から、アルミニウムと銅の異材接合に関して、拡散接合、摩擦圧接及び爆着等の固相接合法の適用が検討されており、一部では実用化に至っている接合方法もある。しかし、これらの接合方法では、接合体の形状に制限があり、特に電子部品等に代表される精密部品への適用は困難である。
【0010】
一方、ろう付は、金属の接合法として従来から汎用されている技術であり、簡易であるとともに、被接合材に自由度が大きいことから、精密部品への適用も容易である。したがって、今後の精密部品の加工において、さらなる低コスト化の要請も予測されることから、アルミニウムと銅の異材接合におけるろう付接合の適用が大きな課題となっている。
【0011】
本発明は、上述した従来の問題点や課題に鑑みてなされたものであり、汎用されている接合技術であるろう付を採用して、アルミニウム製の部材と銅製の部材とを強固に接合する新しい方法を提供するとともに、アルミニウム製の部材と銅製の部材との異材接合を備えた構造物であっても、これらの接合強度に優れ、上述した問題のない接合構造物を提供することを目的としている。
【0012】
【課題を解決するための手段】
本発明者らは、上述の課題を解決するため、市販のろう材を用いてろう付を行い、その際に生じる現象を把握するとともに、アルミニウムと銅の異材接合におけるろう付特性について種々検討を行った。
【0013】
図1は、アルミニウム(Al)と銅(Cu)を直接ろう付した異材接合におけるろう付部分の代表的な組織を模式的に示した図である。接合条件は、後述する実施例のろう付条件と同じである。同図に示すように、Al−Cuの接合部には、層状の生成相5と、不定形の生成相6が形成されるが、これらはいずれもAl−Cuの金属間化合物である。
【0014】
Al−Cuの接合部の特性を明確にするため、アルミニウムと銅の母材及びこれらの金属間化合物の硬さを測定した。アルミニウム母材及び銅母材がともにHv100以下であるのに対し、層状の金属間化合物相5及び不定形な金属間化合物相6の硬度はHv500〜600であり、母材に比べて著しく硬く、脆弱な組織であることが分かる。
【0015】
次に、接合部における脆弱なAl−Cuの金属間化合物の生成を回避するため、銅の接合面に薄い金属層を形成した後、ろう付にて接合を行った。上記の金属層は、後述する実施例で示す条件で、銀箔を固相拡散接合することによって構成してもよく、また、銅表面に銀箔を圧着して構成した銅−銀のクラッド材を用いてもよい。
【0016】
図2は、アルミニウム(Al)と銅(Cu)の接合面に固相拡散接合で形成された金属層(Ag)との接合におけるろう付部分の代表的な組織を模式的に示した図である。Cu−Agの接合部は、固相拡散接合時の状態が保持されており、ろう付により組織的な変化は観察されず、アルミニウムや銅の反応やそれによる脆弱な金属間化合物の形成も認められない。
【0017】
一方、銀とアルミニウムの接合部には、ろう材、Ag及びAlの反応層8が形成され、さらに、この反応層8中にはAl−Agの金属間化合物が生成された領域9が存在するようになる。図1の場合と同様に、Al−Agの金属間化合物が生成された領域9の硬さを測定したが、Hv350程度であり、アルミニウム母材及び銅母材よりも硬いものであるが、Al−Agのマトリックス相へ網目状に生成された構造であり、優れた接合強度を発揮することが分かる。
【0018】
すなわち、アルミニウムと銅の異種金属を直接ろう付する場合には、接合部に脆弱な金属間化合物が生成するのを完全には避けることができないが、脆弱な金属間化合物を形成することがない、金属層を一方の母材金属の表面に形成し、この金属層と他の母材金属の表面とをろう付することによって、接合強度に優れた異材接合が可能になる。
【0019】
本発明は、上記の知見に基づいて完成されたものであり、下記(1)の接合方法及び(2)の接合構造物を要旨としている。
(1)アルミニウム(Al)またはアルミニウム(Al)合金製の部材と銅または銅合金製の部材との接合に際して、前記銅または銅合金製の部材の接合面に銀(Ag)からなる金属層を形成し、この金属層と前記アルミニウム(Al)またはアルミニウム(Al)合金製の部材の接合面とAl−Si系の合金ろう材を用いてろう付することにより、残存した前記金属層と、残存した前記金属層と、Al−Agの金属間化合物が生成された領域が存在する反応層とを形成し、この反応層は前記ろう材、銀(Ag)およびアルミニウム(Al)の反応によって構成され、そのマトリックス相へ網目状に生成する前記Al−Agの金属間化合物を存在させることを特徴とするアルミニウムまたはアルミニウム合金製の部材と銅または銅合金製の部材との接合方法である。
(2)アルミニウム(Al)またはアルミニウム(Al)合金製の部材と銅または銅合金製の部材とを接合する構造物であって、その接合断面が、銅または銅合金層と、この銅または銅合金層に形成され残存した銀(Ag)からなる金属層と、Al−Si系の合金ろう材を用いるろう付により形成されたAl−Agの金属間化合物が生成された領域が存在する反応層と、アルミニウムまたはアルミニウム合金層とから構成され、前記反応層は前記ろう材、銀(Ag)およびアルミニウム(Al)の反応によって形成され、そのマトリックス相へ網目状に生成する前記Al−Agの金属間化合物が存在する構造であることを特徴とする接合構造物である。
【0020】
上記(1)及び(2)の銀(Ag)からなる金属層は、銀箔を固相拡散接合することによって構成することができるが、量産性を考慮すると、銅−銀箔のクラッド材を用いるのが望ましい。
【0021】
さらに、金属層の厚さは20μm以上にするのが望ましく、また、ろう付はAl−Si系の合金ろう材を用いる。
【0022】
さらに、上記(1)の接合方法及び(2)の接合構造物では、反応層には前記Al−Agの金属間化合物が網目状に生成した領域を含むが否かを判断する。
【0023】
しかしながら、後述する図3に示すように、金属層を銀(Ag)とした場合に、Al−Agの金属間化合物が生成された領域が反応層中に層状に存在して観察されるが、この領域を超えた広い範囲においてもAl−Agの金属間化合物の生成が観られる。この範囲においても、所定の接合強度が確保できることを確認している。
【0024】
したがって、本発明の接合構造物では、単にAl−Agの金属間化合物が網目状に生成された領域の存否を判断するのではなく、ろう材、AgおよびAlの反応によって構成された反応層中で、マトリックス相へ網目状に生成するAl−Agの金属間化合物が存在するか否かを判断することになる。
【0025】
【発明の実施の形態】
本発明の接合方法は、銅部材の接合面に金属層を形成し、この金属層と前記アルミニウム部材とをろう付することを特徴としている。本発明が対象とするろう材には、アルミニウム部材同士のろう付材料として、市販のAl−Si系の合金ろうを使用することができる。
【0026】
本発明で金属層を形成する金属材料としては、銅とのろう付け特性に優れ、かつアルミニウムとのろう付性にも優れたものである必要がある。本発明のように、Al−Si系のろう材でアルミニウムとの接合を対象とする場合には、銀を用いる。
【0027】
これは、Al−Si系ろう材によるアルミニウムと銀のろう付部には、ろう材、銀及びアルミニウムの反応層が形成され、さらに、この反応層にアルミニウムと銀との金属間化合物が生成された領域が存在するようになる。このAl−Agの金属間化合物は、Al−Agのマトリックス相へ網目状に生成された構造であり、優れた接合強度を発揮することができる。さらに、銀は銅との接合性にも優れていることによる。
【0028】
銀による金属層の厚さは、ろう付時に生じる液相が銅接合面と接触することを防ぐ必要があることから、20μm以上確保するのが望ましい。一方、Al−Agの金属間化合物が形成される領域は金属層の厚さに依存しないので、直接、金属層の厚さは接合強度に影響を及ぼさない。このため、本発明では金属層の厚さの上限を規定しない。
【0030】
本発明の接合構造物は、例示したヒートシンクに代表される熱交換装置に限定されるものではなく、前述の通り、アルミニウム及び銅の導電効率に優れた特性を活用する場合には、通電効率を高めることができる電極装置、例えば、アルマイト電極のように、通電ロスを極力少なくできる機器に適用することができる。
【0031】
【実施例】
(実施例1)
本発明の接合方法による接合強度に及ぼす効果を確認するため、アルミニウム部材(工業用純アルミニウム…JIS H 4000 相当)と銅部材(工業用純銅…JIS H 3100 相当)を接合する試験を行った。
【0032】
まず、銅部材の表面に金属層を形成するため、銅部材の表面に鏡面仕上げ加工を施したのち、厚さ100μmの工業用銀箔(Ag≧99.9%)を銅部材の表面に接触するように載置し、固相拡散処理を行った。このときの拡散条件は、拡散温度が765℃で、拡散時間を5Hrとして、接触荷重は0.26Kgf/mm2とした。拡散接合は、5×10-5Torrの真空中で、加圧には油圧を用いた。
【0033】
上記の金属層を形成した後、市販のAl−10Si−1.5Mg−0.1Bi系の合金ろうを厚さ100μmの箔ろう材に加工して、金属層とアルミニウム部材のろう付けを行った。接合に際して、接合面をアセトンで充分に脱脂した後、スプリングで0.03kgf/mm2を付加し、3×10-5Torrの真空中において、接合温度が550℃で10minの条件で炉中ろう付とした。
【0034】
上記の接合処理の後、接合部材から20mm×52.5mm×3mmの試料を5.2mm重ね合わせて接合した試験片を作製して、試験数5で引張破壊試験を実施した。
【0035】
なお、比較のために、金属層を形成することなく、直接、Al−10Si−1.5Mg−0.1Bi系の厚さ100μmの箔ろう材を用いて、銅部材とアルミニウム部材とのろう付接合を実施した。ろう付の条件は、本発明例と同じにした。表1に各試験数5での引張破壊試験よる破断強度、伸び及び破壊位置の測定結果を示す。
【0036】
【表1】

Figure 0003917503
【0037】
表1の結果から明らかなように、比較例における破断は、母材金属の変形をほとんど伴わない脆性的な破壊であり、最高荷重点における瞬時破壊であった。これに対し、本発明例では、充分な母材の変形を伴う延性破壊であり、接合部では破壊せず、アルミニウム母材で破壊した。
【0038】
(実施例2)
本発明の接合構造物の接合断面を観察するため、実施例1と同様に、アルミニウム部材(工業用純アルミニウム…JIS H 4000 相当)と銅部材(工業用純銅…JIS H 3100 相当)を接合する試験を行った。
【0039】
実施例2では、銅部材の表面に金属層を形成するため、厚さ100μmの工業用銀箔(Ag≧99.9%)を銅部材に圧着した、市販の銅−銀クラッド材を用いた。このクラッド材に市販のAl−10Si−1.5Mg−0.1Bi系の合金ろうを厚さ100μmの箔ろう材に加工して、金属層とアルミニウム部材のろう付けを行った。
【0040】
接合条件は実施例1と同様とし、接合面をアセトンで充分に脱脂した後、スプリングで0.03kgf/mm2を付加し、3×10-5Torrの真空中において、接合温度が550℃で10minの条件で炉中ろう付とした。接合処理の後、接合部材から接合断面の観察用試料を作製して、電子顕微鏡で金属組織を観察した。
【0041】
図3は、電子顕微鏡による接合断面の金属組織を観察した結果を示す図である。同図に示すように、接合断面は図面の右方より、Cu層、Ag層、反応層及びAl層で構成されている。Ag層は処理前には厚さ100μmであったが、接合処理後に残存した層厚さは30〜40μmとなっていた。また、図3に示す接合処理後のAg層では、一部にAl拡散層を含んでいた。
【0042】
反応層はろう材、AgおよびAlの反応によって構成されたものであり、ろう材に含有されるSiの析出が観察される。さらに、この反応層にAl−Agの金属間化合物が生成された領域が存在するようになる。この金属間化合物の組成はAg2Alであって、その構造はAl−Agのマトリックス相へ網目状に生成されたものである。このため、Al−Agの接合断面において優れた接合強度を発揮することが分かる。
【0043】
図3では、Al−Agの金属間化合物が生成された領域が反応層中に層状に存在しているように構成されているが、この領域を超えた広い範囲においてもAl−Agの金属間化合物の生成が観察される。したがって、この領域はAl−Agの金属間化合物が高濃度に生成した領域を示しているのである。また、この領域を超えてAl−Agの金属間化合物の生成が観察される範囲では、所定の接合強度が確保できることを確認している。
【0044】
【発明の効果】
本発明の接合方法によれば、アルミニウム部材と銅部材という異種材料であっても、汎用されているろう付に両部材を強固に接合することができる。さらに、アルミニウム製の部材と銅製の部材との異材接合を備えた構造物であっても、これらの接合強度に優れ、最適な熱交換装置や電極装置を提供することができる。
【図面の簡単な説明】
【図1】アルミニウム(Al)と銅(Cu)を直接ろう付した異材接合におけるろう付部分の代表的な組織を模式的に示した図である。
【図2】アルミニウム(Al)と銅(Cu)の接合面に固相拡散接合で形成された金属層(Ag)との接合におけるろう付部分の代表的な組織を模式的に示した図である。
【図3】電子顕微鏡による接合断面の金属組織を観察した結果を示す図である。
【図4】従来のヒートシンクの一例を示す縦断面図である。
【図5】従来のヒートシンクの改良例を示す縦断面図である。
【符号の説明】
1…熱交換装置(ヒートシンク)、
2…放熱部、2−1…放熱部のフィン
2−2…放熱部の底板
3…基板、 4…接合層
5…層状の金属化合物相
6…不定型な金属間化合物相
7…発熱体、8…反応層
9…Al−Ag金属間化合物の生成領域[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a member made of aluminum or an aluminum alloy (in this specification, these may be collectively referred to as “aluminum”), and copper or a copper alloy (in this specification, collectively referred to as “copper”). The present invention relates to a joining method of dissimilar metal materials (hereinafter, simply referred to as “dissimilar materials”) using members made of the same. In addition, the present invention relates to a bonded structure provided with dissimilar material bonding between an aluminum member and a copper member.
[0002]
The junction structure here is a structure having a junction between aluminum and copper in order to utilize the characteristics of aluminum and copper. When utilizing the thermal conductivity of aluminum and copper, heat exchange equipment that moves heat from a heat source by heat transfer, for example, heat sinks used for cooling semiconductor devices, dissipates heat from various devices. There are devices to help. Moreover, when utilizing the characteristic which was excellent in the electrical conductivity efficiency of both metals, there exists an apparatus which can reduce an energization loss as much as possible, such as an electrode apparatus which can raise energization efficiency, for example, an alumite electrode.
[0003]
[Prior art]
In general, various joining methods, such as fusion welding and brazing, have been established and put into practical use for joining the same kind of metal like aluminum members. However, in dissimilar material joining, the combination of the joining method and joining material which can be applied is limited. Particularly in the joining of an aluminum member and a copper member, since a very brittle intermetallic compound mainly composed of aluminum and copper is generated at the joining interface, a joining method capable of ensuring sufficient performance of the joining portion, particularly joining strength. Is not established.
[0004]
As described above, heat exchange devices and electrode devices are examples of devices in which the joining of aluminum members and copper members is a problem, but both these metals are particularly excellent because both aluminum and copper are excellent in thermal conductivity. The exchange device which combined is used frequently. One example is a heat sink for removing heat generated from a semiconductor device such as an integrated circuit (LSI) and cooling it. Hereinafter, this will be described as an example.
[0005]
The heat sink generally has the structure shown in FIGS. The heat exchanging device 1 shown in FIG. 4 is composed of aluminum fins 2-1 and a bottom plate 2-2 that constitute the heat radiating section 2, and a heat source 7 such as a semiconductor device is arranged at the center of the bottom plate, The heat is conducted from the bottom plate 2-2 to the fins 2-1 to radiate heat. In such an apparatus, as indicated by the arrows, the heat flow from the heat source is concentrated on the fins in the central portion, and the heat radiation efficiency is low because it is difficult to transmit evenly to many fins. This is improved in the structure shown in FIG.
[0006]
The heat sink shown in FIG. 5 is one in which a substrate 3 for heat diffusion is provided between a bottom plate 2-2 and a heat source 7. The substrate 3 is made of copper or a copper alloy having a higher thermal conductivity than aluminum. Therefore, the heat from the heat source 7 diffuses in the substrate 3 and is evenly transmitted to the numerous fins 2-1 to increase the efficiency of heat dissipation.
[0007]
The problem with the heat sink shown in FIG. 5 is the junction between the substrate 3 and the bottom plate 2-2 of the heat radiating portion. That is, since the former is copper and the latter is aluminum, so-called dissimilar material joining is used, but the joining strength is insufficient in ordinary joining such as joining by an adhesive, brazing, and soldering. Since aluminum and copper have different coefficients of thermal expansion, thermal fatigue occurs in the joint due to repeated heating and cooling, and the fragile joint cannot withstand this and peels off.
[0008]
Furthermore, as described above, since the heat radiating portion is made of aluminum and includes a large number of thin fins, it is difficult to adopt a means of increasing the bonding strength by applying pressure before or after bonding to the substrate or during bonding.
[0009]
[Problems to be solved by the invention]
Conventionally, application of solid phase bonding methods such as diffusion bonding, friction welding, and explosive bonding has been studied for bonding different materials of aluminum and copper, and there are also some bonding methods that have been put into practical use. However, in these joining methods, the shape of the joined body is limited, and in particular, it is difficult to apply to precision parts represented by electronic parts and the like.
[0010]
On the other hand, brazing is a technique that has been widely used as a metal joining method, and is simple and has a high degree of freedom in the materials to be joined, so that it can be easily applied to precision parts. Accordingly, in the processing of precision parts in the future, the demand for further cost reduction is also predicted, so the application of brazing joining in dissimilar joining of aluminum and copper has become a major issue.
[0011]
The present invention has been made in view of the conventional problems and problems described above, and employs brazing, which is a widely used joining technique, to firmly join an aluminum member and a copper member. An object of the present invention is to provide a new method and to provide a bonded structure that has excellent bonding strength and is free from the above-described problems even if the structure includes a dissimilar material bonding between an aluminum member and a copper member. It is said.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors perform brazing using a commercially available brazing material, grasp the phenomenon occurring at that time, and conduct various studies on the brazing characteristics in the joining of different materials of aluminum and copper. went.
[0013]
FIG. 1 is a diagram schematically showing a typical structure of a brazed portion in a dissimilar material joint obtained by directly brazing aluminum (Al) and copper (Cu). The joining conditions are the same as the brazing conditions in the examples described later. As shown in the figure, a layered generation phase 5 and an amorphous generation phase 6 are formed at the Al—Cu joint, both of which are Al—Cu intermetallic compounds.
[0014]
In order to clarify the characteristics of the Al—Cu joint, the hardnesses of the aluminum and copper base materials and these intermetallic compounds were measured. While both the aluminum base material and the copper base material have a Hv of 100 or less, the hardness of the layered intermetallic compound phase 5 and the amorphous intermetallic compound phase 6 is Hv500 to 600, which is significantly harder than the base material. It turns out that it is a weak organization.
[0015]
Next, in order to avoid formation of brittle Al—Cu intermetallic compounds in the joint, a thin metal layer was formed on the copper joint surface, and then joined by brazing. The metal layer may be formed by solid phase diffusion bonding of a silver foil under the conditions shown in the examples described later, and a copper-silver clad material formed by pressure bonding a silver foil to a copper surface is used. May be.
[0016]
FIG. 2 is a diagram schematically showing a typical structure of a brazed portion in joining with a metal layer (Ag) formed by solid phase diffusion bonding on a joining surface of aluminum (Al) and copper (Cu). is there. The Cu-Ag bonded portion maintains the state at the time of solid phase diffusion bonding, no structural change is observed by brazing, and the formation of fragile intermetallic compounds due to the reaction of aluminum and copper is also observed. I can't.
[0017]
On the other hand, a brazing material, Ag and Al reaction layer 8 is formed at the joint between silver and aluminum, and a region 9 in which an Al-Ag intermetallic compound is generated exists in the reaction layer 8. It becomes like this. As in the case of FIG. 1, the hardness of the region 9 where the Al—Ag intermetallic compound was generated was measured, which is about Hv 350, which is harder than the aluminum base material and the copper base material. It can be seen that it is a network-like structure formed in a matrix phase of -Ag and exhibits excellent bonding strength.
[0018]
That is, in the case of directly brazing different metals of aluminum and copper, it is not possible to completely avoid the formation of a brittle intermetallic compound at the joint, but no brittle intermetallic compound is formed. By forming a metal layer on the surface of one base metal and brazing the metal layer and the surface of the other base metal, it is possible to join different materials with excellent joint strength.
[0019]
The present invention has been completed on the basis of the above findings, and has the gist of the following (1) joining method and (2) joining structure.
(1) When joining a member made of aluminum (Al) or an aluminum (Al) alloy and a member made of copper or a copper alloy, a metal layer made of silver (Ag) is formed on the joint surface of the copper or copper alloy member By forming and brazing this metal layer with the joining surface of the aluminum (Al) or aluminum (Al) alloy member and an Al-Si alloy brazing material , the remaining metal layer and the remaining And a reaction layer in which a region in which an Al-Ag intermetallic compound is generated exists, and this reaction layer is formed by the reaction of the brazing material, silver (Ag), and aluminum (Al). the aluminum or aluminum alloy member, characterized in that the presence of intermetallic compounds of Al-Ag and copper or copper alloy parts to produce reticulated to the matrix phase It is a method of joining.
(2) A structure that joins a member made of aluminum (Al) or an aluminum (Al) alloy and a member made of copper or a copper alloy, the joint section of which is a copper or copper alloy layer and the copper or copper A metal layer made of remaining silver (Ag) formed in the alloy layer, and a reaction layer in which an Al-Ag intermetallic compound formed by brazing using an Al-Si alloy brazing material is present. And the reaction layer is formed by the reaction of the brazing filler metal , silver (Ag) and aluminum (Al), and the Al-Ag metal generated in a network form in the matrix phase. It is a bonded structure characterized by having a structure in which an intermetallic compound exists .
[0020]
The metal layer made of silver (Ag) in the above (1) and (2) can be formed by solid phase diffusion bonding of silver foil, but considering mass productivity, a copper-silver foil clad material is used. Is desirable.
[0021]
Further, the thickness of the metal layer is desirable to more than 20 [mu] m, also brazing Ru using Al-Si alloy brazing material.
[0022]
Further, in the bonding method and bonding structure (2) above (1), although the reaction layer including a region intermetallic compound of the Al-Ag was formed in a mesh shape you determine.
[0023]
However, as shown in FIG. 3 to be described later, when the metal layer is silver (Ag), a region where an intermetallic compound of Al-Ag is generated is observed in a layered manner in the reaction layer. Even in a wide range beyond this region, the formation of Al-Ag intermetallic compounds is observed. Even in this range, it has been confirmed that a predetermined bonding strength can be secured.
[0024]
Therefore, in the joining structure of the present invention, it is not simply determined whether or not there is a region in which the intermetallic compound of Al—Ag is generated in a network form, but in the reaction layer constituted by the reaction of the brazing material, Ag and Al. Thus, it is determined whether or not there is an Al—Ag intermetallic compound that is generated in a network form in the matrix phase.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
The joining method of the present invention is characterized in that a metal layer is formed on a joining surface of a copper member, and the metal layer and the aluminum member are brazed. For the brazing material targeted by the present invention, a commercially available Al—Si based alloy brazing material can be used as a brazing material between aluminum members.
[0026]
The metal material forming the metal layer in the present invention needs to have excellent brazing characteristics with copper and excellent brazing properties with aluminum. As in the present invention, when intended for bonding with the aluminum brazing material Al-Si system, Ru with silver.
[0027]
This is because a reaction layer of brazing material, silver and aluminum is formed at the brazing portion of aluminum and silver by the Al-Si brazing material, and an intermetallic compound of aluminum and silver is generated in this reaction layer. Area will exist. This Al—Ag intermetallic compound has a network-like structure formed in an Al—Ag matrix phase, and can exhibit excellent bonding strength. Further, silver is excellent in bondability with copper.
[0028]
The thickness of the metal layer made of silver is preferably 20 μm or more because it is necessary to prevent the liquid phase generated during brazing from coming into contact with the copper bonding surface. On the other hand, since the region where the Al—Ag intermetallic compound is formed does not depend on the thickness of the metal layer, the thickness of the metal layer does not directly affect the bonding strength. For this reason, the upper limit of the thickness of a metal layer is not prescribed | regulated in this invention.
[0030]
The junction structure of the present invention is not limited to the heat exchange device represented by the exemplified heat sink. As described above, when utilizing the characteristics excellent in the conductive efficiency of aluminum and copper, the energization efficiency is reduced. The present invention can be applied to an electrode device that can be increased, for example, an apparatus that can reduce current loss as much as possible, such as an alumite electrode.
[0031]
【Example】
Example 1
In order to confirm the effect on the bonding strength by the bonding method of the present invention, an aluminum member (industrial pure aluminum: equivalent to JIS H 4000) and a copper member (industrial pure copper: equivalent to JIS H 3100) were tested.
[0032]
First, in order to form a metal layer on the surface of the copper member, the surface of the copper member is mirror-finished, and then an industrial silver foil (Ag ≧ 99.9%) having a thickness of 100 μm is brought into contact with the surface of the copper member. Then, solid phase diffusion treatment was performed. The diffusion conditions at this time were a diffusion temperature of 765 ° C., a diffusion time of 5 hours, and a contact load of 0.26 kgf / mm 2 . In diffusion bonding, a hydraulic pressure was used for pressurization in a vacuum of 5 × 10 −5 Torr.
[0033]
After the metal layer was formed, a commercially available Al-10Si-1.5Mg-0.1Bi alloy brazing alloy was processed into a foil brazing material having a thickness of 100 μm, and the metal layer and the aluminum member were brazed. . At the time of joining, the joint surfaces are thoroughly degreased with acetone, 0.03 kgf / mm 2 is added with a spring, and the brazing is carried out in a furnace at a joining temperature of 550 ° C. for 10 minutes in a vacuum of 3 × 10 −5 Torr. It was attached.
[0034]
After the above-described joining treatment, a test piece was prepared by joining 5.2 mm of a 20 mm × 52.5 mm × 3 mm sample from the joining member, and a tensile fracture test was performed with 5 tests.
[0035]
For comparison, a copper brazing member and an aluminum member are brazed directly using an Al-10Si-1.5Mg-0.1Bi type 100 μm-thick foil brazing material without forming a metal layer. Joining was performed. The conditions for brazing were the same as in the example of the present invention. Table 1 shows the measurement results of the breaking strength, the elongation and the breaking position by the tensile breaking test with each test number of 5.
[0036]
[Table 1]
Figure 0003917503
[0037]
As is clear from the results in Table 1, the fracture in the comparative example was a brittle fracture with almost no deformation of the base metal, and was an instantaneous fracture at the highest load point. On the other hand, in the example of this invention, it was a ductile fracture accompanied by sufficient deformation | transformation of a base material, it did not destroy at a junction part, but destroyed with the aluminum base material.
[0038]
(Example 2)
In order to observe the cross section of the bonded structure of the present invention, an aluminum member (industrial pure aluminum ... corresponding to JIS H 4000) and a copper member (industrial pure copper ... corresponding to JIS H 3100) are joined as in Example 1. A test was conducted.
[0039]
In Example 2, in order to form a metal layer on the surface of the copper member, a commercially available copper-silver clad material in which an industrial silver foil (Ag ≧ 99.9%) having a thickness of 100 μm was pressure-bonded to the copper member was used. A commercially available Al-10Si-1.5Mg-0.1Bi alloy brazing alloy was processed into a foil brazing material having a thickness of 100 μm, and the metal layer and the aluminum member were brazed.
[0040]
The joining conditions were the same as in Example 1. After thoroughly degreasing the joining surface with acetone, 0.03 kgf / mm 2 was added with a spring, and the joining temperature was 550 ° C. in a vacuum of 3 × 10 −5 Torr. Brazing in the furnace was performed for 10 min. After the joining process, a specimen for observing the joining cross section was prepared from the joining member, and the metal structure was observed with an electron microscope.
[0041]
FIG. 3 is a diagram showing the result of observing the metal structure of the bonded cross section with an electron microscope. As shown in the figure, the cross section of the junction is composed of a Cu layer, an Ag layer, a reaction layer, and an Al layer from the right side of the drawing. The Ag layer had a thickness of 100 μm before the treatment, but the layer thickness remaining after the joining treatment was 30 to 40 μm. In addition, the Ag layer after the bonding process shown in FIG. 3 partially includes an Al diffusion layer.
[0042]
The reaction layer is constituted by the reaction of brazing material, Ag and Al, and precipitation of Si contained in the brazing material is observed. Furthermore, a region in which an Al—Ag intermetallic compound is generated exists in the reaction layer. The composition of this intermetallic compound is Ag 2 Al, and its structure is generated in a network form in the matrix phase of Al—Ag. For this reason, it turns out that the joining strength which was excellent in the joining cross section of Al-Ag is exhibited.
[0043]
In FIG. 3, the region in which the Al—Ag intermetallic compound is formed is configured to exist in a layered manner in the reaction layer, but the Al—Ag intermetallic compound also extends over a wide range beyond this region. Compound formation is observed. Therefore, this region indicates a region where an Al—Ag intermetallic compound is generated at a high concentration. In addition, it has been confirmed that a predetermined bonding strength can be ensured in a range where generation of an Al—Ag intermetallic compound is observed beyond this region.
[0044]
【The invention's effect】
According to the joining method of the present invention, even when different materials such as an aluminum member and a copper member are used, both members can be firmly joined to a widely used brazing. Furthermore, even a structure provided with a dissimilar material joint between an aluminum member and a copper member can be provided with an excellent heat exchange device and electrode device that are excellent in their joint strength.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a representative structure of a brazed portion in a dissimilar material joint in which aluminum (Al) and copper (Cu) are directly brazed.
FIG. 2 is a diagram schematically showing a typical structure of a brazed portion in joining a metal layer (Ag) formed by solid phase diffusion bonding on a joining surface of aluminum (Al) and copper (Cu). is there.
FIG. 3 is a view showing a result of observing a metal structure of a bonded cross section by an electron microscope.
FIG. 4 is a longitudinal sectional view showing an example of a conventional heat sink.
FIG. 5 is a longitudinal sectional view showing an improved example of a conventional heat sink.
[Explanation of symbols]
1 ... heat exchange device (heat sink),
DESCRIPTION OF SYMBOLS 2 ... Radiating part, 2-1 ... Fin of heat radiating part 2-2 ... Bottom plate 3 of heat radiating part ... Substrate 4 ... Bonding layer 5 ... Layered metal compound phase 6 ... Atypical intermetallic compound phase 7 ... Heating element, 8 ... Reaction layer 9 ... Al-Ag intermetallic compound formation region

Claims (3)

アルミニウム(Al)またはアルミニウム(Al)合金製の部材と銅または銅合金製の部材との接合に際して、
前記銅または銅合金製の部材の接合面に銀(Ag)からなる金属層を形成し、
この金属層と前記アルミニウム(Al)またはアルミニウム(Al)合金製の部材の接合面とAl−Si系の合金ろう材を用いてろう付することにより、残存した前記金属層と、残存した前記金属層と、Al−Agの金属間化合物が生成された領域が存在する反応層とを形成し、
この反応層は前記ろう材、銀(Ag)およびアルミニウム(Al)の反応によって構成され、そのマトリックス相へ網目状に生成する前記Al−Agの金属間化合物を存在させることを特徴とするアルミニウムまたはアルミニウム合金製の部材と銅または銅合金製の部材との接合方法。
When joining a member made of aluminum (Al) or an aluminum (Al) alloy and a member made of copper or a copper alloy,
Forming a metal layer made of silver (Ag) on the joint surface of the copper or copper alloy member;
The remaining metal layer and the remaining metal are brazed by brazing this metal layer with a joining surface of the aluminum (Al) or aluminum (Al) alloy member and an Al-Si alloy brazing material. Forming a layer and a reaction layer in which a region where an intermetallic compound of Al-Ag is generated is formed,
This reaction layer is formed by the reaction of the brazing material, silver (Ag) and aluminum (Al), and the aluminum or the intermetallic compound of Al-Ag generated in a network form is present in the matrix phase. A method of joining an aluminum alloy member and a copper or copper alloy member.
前記銅または銅合金製の部材の接合面に形成される金属層の厚さは20μm以上であることを特徴とする請求項1に記載のアルミニウムまたはアルミニウム合金製の部材と銅または銅合金製の部材との接合方法。  The thickness of the metal layer formed in the joint surface of the said copper or copper alloy member is 20 micrometers or more, The member made from aluminum or an aluminum alloy of Claim 1 and copper or copper alloy made of Joining method with member. アルミニウム(Al)またはアルミニウム(Al)合金製の部材と銅または銅合金製の部材とを接合する構造物であって、
その接合断面が、銅または銅合金層と、この銅または銅合金層に形成され残存した銀(Ag)からなる金属層と、Al−Si系の合金ろう材を用いるろう付により形成されたAl−Agの金属間化合物が生成された領域が存在する反応層と、アルミニウムまたはアルミニウム合金層とから構成され、
前記反応層は前記ろう材、銀(Ag)およびアルミニウム(Al)の反応によって形成され、そのマトリックス相へ網目状に生成する前記Al−Agの金属間化合物が存在する構造であることを特徴とする接合構造物。
A structure for joining a member made of aluminum (Al) or an aluminum (Al) alloy and a member made of copper or a copper alloy,
The bonding cross section is formed by copper or a copper alloy layer, a metal layer made of silver (Ag) remaining in the copper or copper alloy layer, and Al formed by brazing using an Al—Si alloy brazing material. A reaction layer in which a region in which an intermetallic compound of Ag is generated is present, and an aluminum or aluminum alloy layer,
The reaction layer is formed by a reaction of the brazing material, silver (Ag) and aluminum (Al), and has a structure in which the Al—Ag intermetallic compound generated in a network form exists in the matrix phase. Bonding structure to do.
JP2002321182A 2002-04-05 2002-11-05 Method of joining aluminum member and copper member and joining structure thereof Expired - Fee Related JP3917503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002321182A JP3917503B2 (en) 2002-04-05 2002-11-05 Method of joining aluminum member and copper member and joining structure thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002103356 2002-04-05
JP2002321182A JP3917503B2 (en) 2002-04-05 2002-11-05 Method of joining aluminum member and copper member and joining structure thereof

Publications (2)

Publication Number Publication Date
JP2004001069A JP2004001069A (en) 2004-01-08
JP3917503B2 true JP3917503B2 (en) 2007-05-23

Family

ID=30446675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321182A Expired - Fee Related JP3917503B2 (en) 2002-04-05 2002-11-05 Method of joining aluminum member and copper member and joining structure thereof

Country Status (1)

Country Link
JP (1) JP3917503B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005052885A (en) * 2003-08-07 2005-03-03 Sumitomo Precision Prod Co Ltd Al-cu joined structure, and method for manufacturing the same
JP2005052888A (en) * 2003-08-07 2005-03-03 Sumitomo Precision Prod Co Ltd Thin al-cu joined structure, and method for manufacturing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0401529D0 (en) * 2004-01-23 2004-02-25 Rolls Royce Plc Component joining
CN102489808A (en) * 2011-12-02 2012-06-13 郑克力 Copper and aluminum Composite welding method
JP5549958B2 (en) 2012-09-21 2014-07-16 三菱マテリアル株式会社 Joining structure of aluminum member and copper member
TWI600126B (en) 2012-10-16 2017-09-21 三菱綜合材料股份有限公司 Power module substrate having heatsink, power module having heatsink, and producing method of power module substrate having heatsink
JP6621076B2 (en) 2013-03-29 2019-12-18 三菱マテリアル株式会社 Power module substrate, power module substrate with heat sink, and power module
CN104504173B (en) * 2014-11-26 2017-10-03 西北工业大学 Couple the titanium alloy press-in connection interface bonding ratio Forecasting Methodology of crystallite dimension
JP6647185B2 (en) * 2016-11-01 2020-02-14 古河電気工業株式会社 Cable joint for welding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005052885A (en) * 2003-08-07 2005-03-03 Sumitomo Precision Prod Co Ltd Al-cu joined structure, and method for manufacturing the same
JP2005052888A (en) * 2003-08-07 2005-03-03 Sumitomo Precision Prod Co Ltd Thin al-cu joined structure, and method for manufacturing the same
JP4522678B2 (en) * 2003-08-07 2010-08-11 住友精密工業株式会社 Thin Al-Cu bonded structure and manufacturing method thereof
JP4522677B2 (en) * 2003-08-07 2010-08-11 住友精密工業株式会社 Al-Cu bonded structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004001069A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP6797797B2 (en) Ceramic metal circuit board and semiconductor device using it
JP6432466B2 (en) Bonded body, power module substrate with heat sink, heat sink, method for manufacturing bonded body, method for manufacturing power module substrate with heat sink, and method for manufacturing heat sink
TWI676516B (en) Bonded body, power module substrate with heat sink, heat sink and method of producing bonded body, method of producing power module substrate with heat sink and method of producing heat sink
TWI661516B (en) Bonded body, power module substrate with heat sink, heat sink, method of producing bonded body, method of producing power module substrate with heat sink and method of producing heat sink
TW201526171A (en) Method of producing a jointed body and method of producing power module substrate
WO2014103934A1 (en) Power module
JP2015043392A (en) Junction body and power module substrate
JP2015062953A (en) Joined body, and substrate for power module
JP3917503B2 (en) Method of joining aluminum member and copper member and joining structure thereof
JP2008147308A (en) Circuit board and semiconductor module having same
JP2009129983A (en) Junction structure and method of manufacturing the same, and power semiconductor module and method of manufacturing the same
JP4104429B2 (en) Module structure and module using it
JP6031784B2 (en) Power module substrate and manufacturing method thereof
JP2021098641A (en) Copper/ceramic conjugate and dielectric circuit board
JP2008147309A (en) Ceramic substrate and semiconductor module using the same
US20060286358A1 (en) Heat spreader for use with light emitting diode
TW201739725A (en) Bonded body, power module substrate, method of producing bonded body and method of producing power module substrate
JP2017228693A (en) Conjugate, substrate for power module, manufacturing method of conjugate, and manufacturing method of substrate for power module
JP6928297B2 (en) Copper / ceramic joints and insulated circuit boards
JP2002009212A (en) Method for manufacturing heat dissipation structure
WO2021117327A1 (en) Copper/ceramic assembly and insulated circuit board
WO2016167217A1 (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP6819385B2 (en) Manufacturing method of semiconductor devices
JP2002113569A (en) Method for joining aluminum member and copper member, and heat exchanger and its manufacturing method
JP6673635B2 (en) Method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, method of manufacturing heat sink, and bonded body, power module substrate with heat sink, and heat sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3917503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees