JP2005052888A - Thin al-cu joined structure, and method for manufacturing the same - Google Patents

Thin al-cu joined structure, and method for manufacturing the same Download PDF

Info

Publication number
JP2005052888A
JP2005052888A JP2003289357A JP2003289357A JP2005052888A JP 2005052888 A JP2005052888 A JP 2005052888A JP 2003289357 A JP2003289357 A JP 2003289357A JP 2003289357 A JP2003289357 A JP 2003289357A JP 2005052888 A JP2005052888 A JP 2005052888A
Authority
JP
Japan
Prior art keywords
rolling
thin
joint
brazing
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003289357A
Other languages
Japanese (ja)
Other versions
JP4522678B2 (en
Inventor
Takeshi Koyama
小山健
Keiji Miki
三木啓治
Makoto Yoshida
吉田誠
Kenji Shinozaki
篠崎賢二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2003289357A priority Critical patent/JP4522678B2/en
Priority to PCT/JP2003/010324 priority patent/WO2005014217A1/en
Priority to AU2003257838A priority patent/AU2003257838A1/en
Priority to US10/781,358 priority patent/US6921583B2/en
Publication of JP2005052888A publication Critical patent/JP2005052888A/en
Application granted granted Critical
Publication of JP4522678B2 publication Critical patent/JP4522678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin Al-Cu joined structure of excellent dimensional characteristic by ensuring an Al-Cu different joining member of excellent workability, and reducing the thickness thereof by rolling. <P>SOLUTION: (1) In the thin Al-Cu joined structure, a brazed member with Ag used for an insert on a joining surface of an Al member with a Cu member is rolled. The thin Al-Cu joined structure is ≥ 0.1 mm thick, and the thickness of the brazed member is preferably reduced by the hot-rolling. (2) In the method for manufacturing the thin Al-Cu joined structure, rolling is performed with the brazed member with Ag used for the insert on the joining surface of the Al member with the Cu member as a starting material. In the method for manufacturing the thin Al-Cu joined structure, the hot-rolling is performed at the temperature of 350-500°C, the draft at each rolling is set to be 20%±10% when the hot-rolling is repeated, and annealing is preferably performed after finishing the hot-rolling. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、アルミニウムまたはアルミニウム合金(以下、これらを総称して「Al(アルミニウム)」という)部材と、銅または銅合金(以下、これらを総称して「Cu(銅)」という)部材との薄型接合構造物およびその製造方法に関する。   The present invention comprises an aluminum or aluminum alloy (hereinafter collectively referred to as “Al (aluminum)”) member and a copper or copper alloy (hereinafter collectively referred to as “Cu (copper)”) member. The present invention relates to a thin joint structure and a manufacturing method thereof.

更に詳しくは、Al部材とCu部材との接合面に銀または銀合金(以下、これらを総称して「Ag」という)をインサート材として用いたろう付け接合部材を圧延加工を施し、望ましくは熱間圧延を施すことにより、優れた寸法特性を発揮することができる薄型Al−Cu接合構造物およびその製造方法に関するものである。   More specifically, a brazed joint member using silver or a silver alloy (hereinafter collectively referred to as “Ag”) as an insert material is rolled on the joint surface between the Al member and the Cu member, and preferably hot The present invention relates to a thin Al—Cu bonded structure capable of exhibiting excellent dimensional characteristics by rolling and a manufacturing method thereof.

電子機器や通信機器として、さらに自動車や航空機などの輸送機器として使用される熱交換器、放熱器、ヒートパイプおよびヒートシンク等には、優れた伝熱性能はもとより、軽量化が求められる。そのため、熱交換用、または熱伝達用材料として、伝熱性や熱拡散性が優れているものの軽量化の点で難のあるCu(銅)に代わって、軽量でありかつCuに次ぐ伝熱性を有するAl(アルミニウム)が広く採用されている。   Heat exchangers, radiators, heat pipes, heat sinks, and the like used as electronic devices and communication devices, and also as transportation devices such as automobiles and airplanes are required to have a light weight as well as excellent heat transfer performance. Therefore, as a material for heat exchange or heat transfer, it is lightweight and replaces Cu (copper), which has excellent heat transfer and thermal diffusibility, but is difficult in terms of weight reduction. Al (aluminum) is widely used.

特に、電子機器に用いられるAl製熱交換器では、伝熱性能を向上させるべく冷却面積の拡大や材料肉厚の増加等の改良が加えられているが、近年、電子機器産業界における製品の小型化、薄肉化、軽量化、および高性能化が顕著となり、これらの改善の延長線上では、伝熱性能の向上にも限界がある。   In particular, Al heat exchangers used in electronic equipment have been improved by increasing the cooling area and increasing the material thickness in order to improve heat transfer performance. Miniaturization, thinning, weight reduction, and high performance become remarkable, and there is a limit to improvement of heat transfer performance on the extension line of these improvements.

このような技術背景を踏まえて、Cuの優れた伝熱性および耐食性とAlの軽量性とを加味し、重量増加をCu以下に抑えつつ、Alを超えた伝熱性能を有するように、Al−Cu接合部を有する構造物の開発が望まれている。   In light of such a technical background, in consideration of the excellent heat transfer and corrosion resistance of Cu and the lightness of Al, while suppressing the increase in weight to less than Cu, Al- Development of a structure having a Cu joint is desired.

従来から、AlとCuの異材接合に関して、拡散接合、摩擦圧接および爆着等の固相接合法の適用が検討されており、一部では実用化に至っている接合方法もある。しかし、これらの接合方法では、大面積や複雑形状の接合が困難であり、接合体の形状、寸法に制限があるとともに、、電子機器に代表される精密部品への適用は困難である。   Conventionally, application of solid phase bonding methods such as diffusion bonding, friction welding, and explosive bonding has been studied with respect to bonding of dissimilar materials of Al and Cu, and some bonding methods have been put into practical use. However, these joining methods make it difficult to join large areas and complex shapes, and there are limitations on the shape and dimensions of the joined body, and it is difficult to apply to precision parts typified by electronic devices.

一方、ろう付は、金属の接合法として従来から汎用されている技術であり、簡易であるとともに、被接合材の自由度が大きいことから、精密部品への適用も容易である。ところが、Al−Cuのろう付接合において、Cuは高温での反応性が高いため、高温でAlと接合すると酸化物やAl−Cuの金属間化合物を形成し易く、これらが接合を阻害して十分な接合強度が得られない。   On the other hand, brazing is a technique that has been widely used as a metal joining method, and is simple and has a high degree of freedom in materials to be joined, so that it can be easily applied to precision parts. However, in brazing bonding of Al—Cu, Cu is highly reactive at high temperature, and therefore, when bonded to Al at high temperature, it is easy to form an oxide or an intermetallic compound of Al—Cu, which inhibits bonding. Sufficient bonding strength cannot be obtained.

このような問題を画期的に解決するものとして、本発明者らは、先に「Al部材とCu部材との接合に際して、前記Cu部材の接合面にインサート層としてAg層を形成し、このAg層と前記Al部材の接合面とろう付することを特徴とするAl部材とCu部材の接合方法および接合構造物」に関する発明を提案している(特願2002−321182、参照)。   In order to solve such a problem, the present inventors have previously described, “When an Al member and a Cu member are joined, an Ag layer is formed as an insert layer on the joining surface of the Cu member. An invention relating to a “joining method and joining structure of an Al member and a Cu member characterized by brazing the Ag layer and the joining surface of the Al member” has been proposed (see Japanese Patent Application No. 2002-321182).

しかしながら、前述の通り、電子機器産業界における製品の小型化、薄肉化、軽量化、および高性能化が顕著になると、これに対応して、精密部品への適用も可能にするために、各種の熱交換機器や熱伝達機器に優れた寸法特性が要請されるようになる。   However, as mentioned above, when the downsizing, thinning, weight reduction, and high performance of products in the electronic equipment industry become significant, various types of products can be applied to enable precision parts. Therefore, excellent dimensional characteristics are required for heat exchange devices and heat transfer devices.

ここで、熱交換機器や熱伝達機器に要求される寸法特性として、機器の寸法精度のみならず、機器が採用する寸法の多様化に伴う寸法適用性を挙げることができる。したがって、先に提案したAl−Cu接合構造物においても、同様に、優れた寸法特性を具備することが必要になる。   Here, as dimensional characteristics required for heat exchange equipment and heat transfer equipment, not only the dimensional accuracy of equipment but also dimensional applicability associated with diversification of dimensions adopted by equipment can be cited. Therefore, it is necessary for the previously proposed Al-Cu bonded structure to have excellent dimensional characteristics as well.

本発明は、上述した熱交換機器や熱伝達機器に要求される寸法特性に鑑みてなされたものであり、加工性に優れたAl−Cu異材接合部を有する部材を確保し、これを圧延による減肉加工を施すことによって、優れた寸法精度を有するとともに、寸法の多様化に伴う寸法適用性に対応することができ、しかも、Alの軽量性とCuの伝熱性、熱拡散性、耐食性とを併せ持つことができる、薄型Al−Cu接合構造物およびその製造方法を提供することを目的としている。   The present invention has been made in view of the dimensional characteristics required for the heat exchange device and the heat transfer device described above, and secures a member having an Al—Cu dissimilar material joint excellent in workability, which is obtained by rolling. By performing the thinning process, it has excellent dimensional accuracy and can cope with the dimensional applicability accompanying the diversification of dimensions, and also has the lightness of Al and the heat transfer, thermal diffusivity, and corrosion resistance of Cu. It is an object of the present invention to provide a thin Al—Cu bonded structure and a method for manufacturing the same.

本発明者らは、上述の課題を解決するため、各種のAl−Cu接合部材の接合強度、変形挙動および加工性について詳細な検討を行った。   In order to solve the above-described problems, the present inventors have conducted detailed studies on the bonding strength, deformation behavior, and workability of various Al—Cu bonding members.

図1は、Al−Si系ろう材を用いてAl−Cuを直接ろう付した異材接合における、接合部の代表的な組織を模式的に示した図である。このときの接合条件は、Al−Si−Mg−Bi系のろう材を用いて、ろう付け温度を530℃(803K)、ろう付け時間を60secとしている。   FIG. 1 is a diagram schematically showing a typical structure of a joint in a dissimilar material joint in which Al—Cu is brazed directly using an Al—Si brazing material. The bonding conditions at this time are Al—Si—Mg—Bi brazing material, brazing temperature of 530 ° C. (803 K), and brazing time of 60 sec.

同図に示すように、Al−Cuの接合部には、層状に生成したδ相および不定形なθ相の2種類の金属間化合物の形成が認められるが、これらはいずれもAl−Cuの金属間化合物である。   As shown in the figure, the formation of two types of intermetallic compounds, a δ phase formed in a layer form and an amorphous θ phase, is observed at the Al—Cu joint, both of which are made of Al—Cu. It is an intermetallic compound.

また、ろう付接合部のせん断破壊試験の結果によれば、接合部の変形破壊は脆性的な挙動を示し、母材の変形を殆ど伴わないものである。具体的には、変形破壊は接合部で生じており、接合部の引張強さは12.5Mpa程度に留まり、母材Al(工業用純Al)の引張強さの65Mpaに比べ、著しく低い値となっている。   Further, according to the result of the shear fracture test of the brazed joint, the deformation fracture of the joint exhibits brittle behavior and hardly undergoes deformation of the base material. Specifically, deformation fracture occurs at the joint, and the tensile strength of the joint remains at about 12.5 Mpa, which is a significantly lower value than the tensile strength of 65 Mpa of the base material Al (industrial pure Al). It has become.

図2は、Al−Si系ろう材を用いてAl−Cuの接合面にインサート材としてAgを挿入して異材接合した、接合部の代表的な組織を模式的に示した図である。このときの接合条件は、Al−Si−Mg−Bi系の合金ろう材を用いて、ろう付け温度を550℃(823K)、ろう付け時間を600secとしている。   FIG. 2 is a diagram schematically showing a representative structure of a joint portion in which Ag is inserted as an insert material into an Al—Cu joint surface using an Al—Si based brazing material and different materials are joined. The joining conditions at this time were an Al—Si—Mg—Bi alloy brazing material, a brazing temperature of 550 ° C. (823 K), and a brazing time of 600 seconds.

Ag−Cuの2元系平衡状態図によれば、この組み合わせは典型的な共晶反応系であり、すべての組成域で金属間化合物の生成は認められず、また共晶点温度は779℃と高温である。このため、Cu−Agの接合部は、ろう付により組織的な変化は観察されず、AlやCuの反応やそれによる脆弱な金属間化合物の形成は認められない。   According to the binary equilibrium diagram of Ag—Cu, this combination is a typical eutectic reaction system, formation of intermetallic compounds is not observed in all composition ranges, and the eutectic point temperature is 779 ° C. And high temperature. For this reason, no structural change is observed in the Cu-Ag joint due to brazing, and the reaction of Al and Cu and the formation of fragile intermetallic compounds due to the reaction are not observed.

一方、Ag−Alの接合部における反応領域では複雑な形態をとっており、図2の模式図に示すように、4つの領域に分類される。ろう材とAgの反応界面には不定形相の第1相が生成しており、この第1相中に塊状の生成相からなる第2相が認められる。第1相からろう材側には板状の生成物が第4相中に網目状に生成して、第3相を構成している。   On the other hand, the reaction region in the Ag-Al junction has a complicated form and is classified into four regions as shown in the schematic diagram of FIG. A first phase of an amorphous phase is generated at the reaction interface between the brazing filler metal and Ag, and a second phase consisting of a massive generated phase is recognized in the first phase. From the first phase to the brazing filler metal side, a plate-like product is generated in the form of a mesh in the fourth phase to constitute the third phase.

X線マイクロアナライザー(EPMA)による元素分析によれば、第1相および第3相はAlとAgの金属間化合物であるAg2Alである。また、第2相はろう材に含有されているSiであり、第4相はろう材中のAlである。 According to elemental analysis by an X-ray microanalyzer (EPMA), the first phase and the third phase are Ag 2 Al which is an intermetallic compound of Al and Ag. The second phase is Si contained in the brazing material, and the fourth phase is Al in the brazing material.

ろう付接合部のせん断破壊試験を行うと、変形挙動は母材Al領域での延性的な破壊を示しており、接合部の引張強さも母材Alと同等であって、Al−Cuを直接ろう付した接合に比べ、強度が飛躍的に向上している。   When the shear fracture test of the brazed joint is performed, the deformation behavior shows ductile fracture in the base material Al region, and the tensile strength of the joint is equivalent to that of the base material Al. Compared to brazed joints, the strength is dramatically improved.

このように、Al−Cuの接合面にインサート材としてAgを挿入して、ろう付け接合することによって、ろう付接合部の強度および変形挙動は母材Alと同等であって、しかも、延性的な破壊を発生するのは、主に母材Al領域になる。   Thus, by inserting Ag as an insert material into the Al-Cu joint surface and brazing, the strength and deformation behavior of the brazed joint are equivalent to that of the base material Al, and it is ductile. It is mainly in the base material Al region that a large fracture occurs.

一方、電子機器の小型化、薄肉化、軽量化、および高性能化に伴って、優れた寸法特性を発揮するには、冷間または熱間での圧延加工を施して、圧延素材の減肉加工を行うのが有効である。すなわち、冷間または熱間での圧延加工を施すことによって、所定の寸法精度を確保することができる。さらに、必要とする最終の目標寸法に応じて、適宜、加工率を設定することによって、所定の機器寸法を採用することができるので、要求される寸法適用性に対応することができる。   On the other hand, with the downsizing, thinning, lightening, and high performance of electronic equipment, in order to exhibit excellent dimensional characteristics, cold rolling or hot rolling is performed to reduce the thickness of the rolled material. It is effective to perform processing. That is, a predetermined dimensional accuracy can be ensured by performing a cold or hot rolling process. Furthermore, since a predetermined equipment dimension can be adopted by setting the processing rate as appropriate according to the final target dimension required, it is possible to meet the required dimension applicability.

前述のAl−Cu接合部材の変形挙動は母材Alと同等であって、延性的な破壊は主に母材Al領域で発生する。したがって、従来から行われているAl材の圧延加工を、このAl−Cu接合部材に適用することができ、これにより、寸法特性に優れたAl−Cu接合構造材を製造することができる。   The deformation behavior of the Al—Cu bonding member described above is equivalent to that of the base material Al, and ductile fracture occurs mainly in the base material Al region. Therefore, the conventional rolling process of the Al material can be applied to the Al—Cu bonded member, and thereby an Al—Cu bonded structure material excellent in dimensional characteristics can be manufactured.

Al−Cu接合部材の圧延においては、加工硬化等による変形能の低下、および接合部における金属間化合物の成長を抑制することが重要になる。冷間圧延によって減肉加工を行う場合には、金属間化合物の成長は抑制されるが、加工硬化により部材の変形能が低下し、十分な減肉を行うことが困難である。このため、1回の冷間圧延毎に熱処理を行い、加工硬化等による変形能の低下を回復させる必要がある。   In rolling the Al—Cu joint member, it is important to suppress the deterioration of deformability due to work hardening and the like and the growth of intermetallic compounds in the joint. When thinning is performed by cold rolling, growth of an intermetallic compound is suppressed, but deformability of the member is lowered by work hardening, and it is difficult to perform sufficient thinning. For this reason, it is necessary to perform heat treatment for each cold rolling to recover the deterioration of deformability due to work hardening or the like.

これに対し、金属間化合物の成長を抑制でき、かつ変形能を低下させないような温度範囲で熱間加工を実施することができれば、加工毎に改めて熱処理を行う必要がない。このような観点から、Al−Cu接合部材の圧延においては、熱間圧延によって減肉加工するのが望ましい。   On the other hand, if the hot working can be performed in a temperature range in which the growth of the intermetallic compound can be suppressed and the deformability is not deteriorated, it is not necessary to perform a heat treatment again every processing. From such a point of view, it is desirable to reduce the thickness by hot rolling in rolling the Al—Cu bonding member.

本発明は、上記の知見に基づいて完成されたものであり、下記(1)の薄型Al−Cu接合構造物、および(2)の薄型Al−Cu接合構造物の製造方法を要旨としている。
(1)Al部材とCu部材との接合面にAgをインサート材として用いたろう付け接合部材を圧延加工したことを特徴とする薄型Al−Cu接合構造物である。
The present invention has been completed on the basis of the above findings, and the gist of the present invention is the following (1) thin Al—Cu bonded structure and (2) a method for manufacturing a thin Al—Cu bonded structure.
(1) A thin Al—Cu joint structure obtained by rolling a brazed joint member using Ag as an insert material on a joint surface between an Al member and a Cu member.

上記薄型Al−Cu接合構造物は、厚さが0.1mm以上であり、熱間圧延によって前記ろう付け接合部材を減肉圧下するのが望ましい。
(2)Al部材とCu部材との接合面にAgをインサート材として用いたろう付け接合部材を出発素材として、圧延加工を施すことを特徴とする薄型Al−Cu接合構造物の製造方法である。
The thin Al—Cu bonded structure has a thickness of 0.1 mm or more, and it is desirable to reduce the thickness of the brazed bonded member by hot rolling.
(2) A method for producing a thin Al—Cu joint structure, characterized in that rolling processing is performed on a joining surface between an Al member and a Cu member, using a brazing joint member using Ag as an insert material as a starting material.

上記薄型Al−Cu接合構造物の製造方法では、熱間圧延を350℃〜500℃で行ったり、熱間圧延を繰り返す場合に各圧延での圧下率を20%±10%にしたり、さらに熱間圧延の仕上後に焼鈍を施すのが望ましい。   In the manufacturing method of the thin Al—Cu bonded structure, hot rolling is performed at 350 ° C. to 500 ° C., and when the hot rolling is repeated, the rolling reduction in each rolling is set to 20% ± 10%, It is desirable to perform annealing after finishing the hot rolling.

本発明で採用する「ろう付け」は、特にその条件を限定するものでなく、Al−Ag接合に通常用いられる方法であればよい。ろう付け接合部に安定してAl−Agの金属間化合物であるAg2Alを形成させるには、Al−Si系ろう材を用いるのが望ましく、前記ろう材のうちでAl−Si−Mg−Bi系の合金ろうを使用するのが更に望ましい。 The “brazing” employed in the present invention is not particularly limited in terms of conditions, and any method that is usually used for Al—Ag bonding may be used. In order to stably form Ag 2 Al, which is an intermetallic compound of Al—Ag, at the brazed joint, it is desirable to use an Al—Si based brazing material. Among the brazing materials, Al—Si—Mg— It is further desirable to use a Bi-based alloy braze.

本発明で採用する「圧延加工」は、従来からAlの圧延法として慣用されている冷間または熱間圧延の方法、条件を適用するものであり、特に圧延設備、圧延条件等を限定するものではない。   The “rolling process” employed in the present invention applies cold and hot rolling methods and conditions conventionally used as an Al rolling method, and particularly limits rolling equipment, rolling conditions, etc. is not.

本発明の製造方法によれば、加工性に優れたAl−Cu異材接合部を有する部材を確保し、これを圧延加工により減肉することによって、優れた寸法精度を有するとともに、寸法の多様化に伴う寸法適用性に対応できる薄型Al−Cu接合構造物を製造できる。この薄型Al−Cu接合構造物は、Alの軽量性とCuの伝熱性、熱拡散性、耐食性とを併せ持つものであり、電子機器の小型化、薄肉化、軽量化、および高性能化の要請に対応できる。   According to the manufacturing method of the present invention, by securing a member having an Al—Cu dissimilar material joint excellent in workability and reducing the thickness by rolling, it has excellent dimensional accuracy and diversification of dimensions. It is possible to manufacture a thin Al—Cu bonded structure that can cope with the dimensional applicability associated with. This thin Al-Cu bonded structure combines the lightness of Al with the heat transfer, thermal diffusivity, and corrosion resistance of Cu, and demands for smaller, thinner, lighter, and higher performance electronic devices. It can correspond to.

本発明は、Al−Cu接合部材を圧延加工した薄型Al−Cu接合構造物およびその製造方法に関するものであり、その内容をAl−Cu接合部材の加工性およびその圧延加工に項分けして説明する。
1.Al−Cu接合部材の加工性
前記図2に示すように、Al−Si系ろう材を用いてろう付けする際に、Al−Cuの接合面にインサート材としてAgを挿入して異材接合を行うと、ろう付部に初期のAgが残存し、Al−Cu接合部材の加工性に好適な作用を及ぼすことになる。その作用は、次の通りである。
The present invention relates to a thin Al-Cu bonded structure obtained by rolling an Al-Cu bonded member and a method for manufacturing the same, and the contents are divided into the workability of the Al-Cu bonded member and the rolling process. To do.
1. Workability of Al—Cu bonding member As shown in FIG. 2, when brazing using an Al—Si brazing material, Ag is inserted into the Al—Cu bonding surface as an insert material to perform dissimilar material bonding. As a result, the initial Ag remains in the brazed portion, which has a suitable effect on the workability of the Al—Cu bonded member. The operation is as follows.

第一には、ろう付されたAl−Cu接合部にAg層を残存させることにより、Al−Cuの直接反応を阻害することである。これにより、Al−Cuによる有害な金属間化合物であるδ相やθ相の生成を抑制できる。   The first is to inhibit the direct reaction of Al—Cu by allowing the Ag layer to remain in the brazed Al—Cu joint. Thereby, generation | occurrence | production of (delta) phase and (theta) phase which are harmful intermetallic compounds by Al-Cu can be suppressed.

第二としては、ろう付けの反応初期にAg層を残存させることによって、Ag−Alの金属間化合物であるAg2Alが網目状に形成するのを促進し、この形成促進を維持することができる。 Secondly, by leaving the Ag layer in the initial stage of the brazing reaction, it is possible to promote the formation of Ag 2 Al, which is an intermetallic compound of Ag—Al, in a network form and maintain this formation promotion. it can.

一般に、金属間化合物は脆性的であり、Ag2Alもその硬さからみて、Al−Cuの金属間化合物であるδ相やθ相と同様に、低強度を示すことが予測される。しかし、Ag2Alは周辺のAl中に網目状に分散する形態で形成されているため、例え、その一部が破壊したとしても、直ちに全体の破壊に至らず、周辺のAlの延性的な変形挙動に基づいて、延性的な変形を示す。このため、接合部の強度は、母材Alと同等の強度を示すことができる。 In general, an intermetallic compound is brittle, and Ag 2 Al is expected to exhibit low strength in the same way as the δ phase and the θ phase, which are Al—Cu intermetallic compounds, in view of its hardness. However, since Ag 2 Al is formed in a form dispersed in the surrounding Al in the surrounding Al, even if a part of it is broken, the entire Al is not immediately destroyed, and the ductility of the surrounding Al Based on the deformation behavior, ductile deformation is shown. For this reason, the strength of the joint portion can show the same strength as that of the base material Al.

さらに、Ag−Alの金属間化合物であるAg2Alは、接合部の応力分布状態にも影響を及ぼすことになる。本発明者らの解析によれば、前記図1に示すAl−Cuの直接接合部では、引張負荷により、θ相の内部に最大主応力の最も大きな応力集中部が生じる。 Furthermore, Ag 2 Al, which is an intermetallic compound of Ag—Al, also affects the stress distribution state of the joint. According to the analysis by the present inventors, in the Al—Cu direct bonding portion shown in FIG. 1, a stress concentration portion having the largest maximum principal stress is generated inside the θ phase due to the tensile load.

一方、前記図2に示すAgインサート材を用いた接合部では、網目状Ag2Alの交差部に最大主応力の応力集中部が生じる。このため、周辺のAlには、特に顕著な応力集中部もなく、ほぼ均一な分布状態となる。 On the other hand, in the joint portion using the Ag insert material shown in FIG. 2, a stress concentration portion of the maximum principal stress is generated at the intersection of the mesh Ag 2 Al. For this reason, there is no particularly conspicuous stress concentration portion in the surrounding Al, and a substantially uniform distribution state is obtained.

このため、両者の変形挙動を比較すると、前記図1に示すAl−Cuの直接接合部では、引張負荷によりθ相内部に発生した最大主応力の応力集中部を起点に破壊が発生し、これが瞬時に伝播し破壊に至る。   For this reason, when comparing the deformation behavior of the two, the Al—Cu direct joint shown in FIG. 1 breaks starting from the stress concentration part of the maximum principal stress generated in the θ phase due to the tensile load. Propagates instantly and leads to destruction.

これに対し、前記図2に示す接合部、すなわち、Al−Cuの接合面にインサート材としてAgを挿入した接合部では、同様に、引張負荷により第3相中の網目状に形成されたAg2Alに応力集中部が生じるが、ここで局部的に破壊が発生しても、瞬時に破断に至るような挙動は示さず、引張負荷は周辺のAlに負担され、延性的な変形挙動をとることになる。 On the other hand, in the joint shown in FIG. 2, that is, the joint where Ag is inserted as the insert material into the Al—Cu joint surface, similarly, the Ag formed in a mesh shape in the third phase by the tensile load. 2 Although stress concentration occurs in Al, even if local fracture occurs here, it does not show any behavior that leads to instantaneous fracture, the tensile load is borne by the surrounding Al, and ductile deformation behavior is exhibited. I will take it.

図3は、ろう付温度をパラメータとした場合のAl−Cu接合部材の引張強さとろう付時間の関係を示す図である。ろう付け温度は813K〜830K(540℃〜557℃)の範囲で変化させている。   FIG. 3 is a diagram showing the relationship between the tensile strength of the Al—Cu bonding member and the brazing time when the brazing temperature is used as a parameter. The brazing temperature is changed in the range of 813K to 830K (540 ° C to 557 ° C).

ろう付温度813K(540℃)では、接合部は十分な液相が発生せず、ろう付けができなかったため、全てのろう付時間において母材変形を殆ど伴わない脆性的な破壊である。しかも、破断位置はすべてろう付部であり、引張強さは平均で約15Mpaと極めて低い値であった。   At a brazing temperature of 813 K (540 ° C.), a sufficient liquid phase was not generated at the joint, and brazing could not be performed. Therefore, the fracture was brittle with almost no deformation of the base material during all brazing times. Moreover, all the breaking positions were brazed portions, and the tensile strength was an extremely low value of about 15 Mpa on average.

また、ろう付け温度が830K(557℃)の場合には、母材Alの溶融が激しくなり、接合部は母材変形を伴わない脆性的な変形挙動を示し、破断位置はろう付部である。   Further, when the brazing temperature is 830 K (557 ° C.), the base material Al melts violently, the joint shows brittle deformation behavior without base material deformation, and the fracture position is the brazed part. .

これに対して、ろう付け温度が818K(545℃)および823K(550℃)の場合には、ろう付け時間が1800sec以下では、接合部の引張強さは65Mpaと母材Alの引張強さにまで上昇しており、母材Al側で破壊するものもみられる。また、破壊に至るまでに大きな母材変形をともなっており、延性的な変形挙動を示したのち、破壊に至っている。   In contrast, when the brazing temperatures are 818K (545 ° C) and 823K (550 ° C), the tensile strength of the joint is 65 Mpa and the tensile strength of the base material Al when the brazing time is 1800 sec or less. Some of them break down on the base material Al side. In addition, it is accompanied by a large deformation of the base material before the destruction, and after exhibiting a ductile deformation behavior, it has been destroyed.

したがって、Al部材とCu部材との接合面にAgをインサート材として用いたろう付け接合部材にあっては、適切なろう付温度範囲とともに、適切な保持時間を設定することによって、Al−Cu接合面に有効なAg層を残存させることができる。これにより、延性的な変形挙動を示し、接合部の強度も母材Alと同等の強度を確保でき、優れた加工性を発揮すことができるので、圧延加工における加工素材とすることができる。
2.Al−Cu接合部材の圧延加工
本発明の製造方法では、冷間、または熱間いずれかの圧延加工によってAl−Cu接合部材に減肉加工を施す。この場合において、低下したAlの機械的性質を回復させるに必要な温度範囲で熱間圧延を実施すれば、圧延加工毎に低下した強度を回復させる熱処理が不要となる。
Therefore, in the brazed joint member using Ag as an insert material on the joint surface between the Al member and the Cu member, by setting an appropriate holding time together with an appropriate brazing temperature range, the Al-Cu joint surface Therefore, an effective Ag layer can be left. Thereby, ductile deformation behavior is exhibited, the strength of the joint portion can be ensured as high as that of the base material Al, and excellent workability can be exhibited, so that it can be used as a work material in rolling.
2. Rolling of Al—Cu Joining Member In the manufacturing method of the present invention, the Al—Cu joining member is thinned by either cold or hot rolling. In this case, if hot rolling is performed in a temperature range necessary for recovering the reduced mechanical properties of Al, a heat treatment for recovering the reduced strength for each rolling process becomes unnecessary.

このため、本発明で採用する圧延加工では、熱間圧延を採用すれのが望ましいが、このときの加工温度は、接合部での金属間化合物の成長を抑制できる温度以下にする必要がある。   For this reason, in the rolling process employed in the present invention, it is desirable to employ hot rolling, but the processing temperature at this time needs to be equal to or lower than a temperature at which the growth of the intermetallic compound at the joint can be suppressed.

本発明で、安定して熱間加工を繰り返すために、加工温度は350℃〜500℃で行うのが望ましい。加工温度を350℃未満にすると、低下した変形能の回復が充分に行われず、新たな熱処理を必要とする場合がある。   In the present invention, in order to repeat hot working stably, it is desirable that the working temperature is 350 ° C. to 500 ° C. If the processing temperature is lower than 350 ° C., the lowered deformability may not be sufficiently recovered, and a new heat treatment may be required.

一方、加工温度の上限を500℃にするのが望ましい。500℃を超えて圧延を行うと、前記図2における第1相の成長の著しい活発化により残存しているAg層の厚さが急激に減少する可能性があり、さらに圧延を繰り返すことより、ついにAg層が消滅し、AlとCuの直接反応による有害なAl−Cuの金属間化合物が形成される可能性があることによる。   On the other hand, it is desirable to set the upper limit of the processing temperature to 500 ° C. When rolling above 500 ° C., the thickness of the remaining Ag layer may decrease sharply due to the significant activation of the growth of the first phase in FIG. 2, and further repeating the rolling, This is because the Ag layer eventually disappears, and a harmful Al—Cu intermetallic compound may be formed by a direct reaction between Al and Cu.

本発明の製造方法では、寸法適用性を確保するため、圧延加工後においてAl−Cu接合構造物の肉厚が最少0.1mmまで選択することができる。この場合において、最終の目標寸法に基づいて、圧延加工における加工スケジュールを設定することになるが、熱間圧延を繰り返す場合には各圧延での圧下率を20%±10%に設定するのが望ましい。ただし、圧下率(Rd)は、(加工前肉厚−加工後肉厚)/(加工前肉厚)×100%で示すものとする。   In the production method of the present invention, the thickness of the Al—Cu bonded structure can be selected to a minimum of 0.1 mm after the rolling process in order to ensure dimensional applicability. In this case, the processing schedule in the rolling process is set based on the final target dimension, but when hot rolling is repeated, the reduction ratio in each rolling is set to 20% ± 10%. desirable. However, the rolling reduction (Rd) is expressed by (thickness before processing−thickness after processing) / (thickness before processing) × 100%.

さらに、本発明の製造方法では、仕上圧延後に、焼鈍を施すことが望ましい。圧延加工によって低下したAlの機械的性質を回復させ、薄型Al−Cu接合構造物の機械的性質の回復および強度の安定を図るためである。仕上圧延後の焼鈍は、400℃×30分の処理条件が基準となる。   Furthermore, in the manufacturing method of the present invention, it is desirable to perform annealing after finish rolling. This is for recovering the mechanical properties of Al lowered by the rolling process, restoring the mechanical properties of the thin Al-Cu bonded structure, and stabilizing the strength. The annealing after finish rolling is based on the processing conditions of 400 ° C. × 30 minutes.

本発明の薄型Al−Cu接合構造物は、上述したAl−Cu接合部材に圧延加工を施すことによって、優れた寸法精度を有するとともに、寸法の多様化に伴う寸法適用性に対応でき、さらに、Alの軽量性とCuの伝熱性、熱拡散性、耐食性とを併せ持つことができ、熱交換用材料として、また放熱用材料として好適に使用できる。   The thin Al-Cu joined structure of the present invention has excellent dimensional accuracy by rolling the Al-Cu joined member described above, and can cope with dimensional applicability accompanying diversification of dimensions, It can have both the lightness of Al and the heat conductivity, thermal diffusivity, and corrosion resistance of Cu, and can be suitably used as a heat exchange material and a heat dissipation material.

本発明の薄型Al−Cu接合構造物およびその製造方法の効果を、具体的な実施例に基づいて説明する。
(1)Al−Cu接合部材の作製
実施例に使用した母材Alは、市販の工業用純アルミニウム(A1050)とし、インサート材に用いたAgとして純銀箔(純度99.99%)を使用し、これを無酸素鋼(C1020)にクラッドした市販のAgクラッドCu板(Ag厚さ:100μm、Cu厚さ:3mm)を用いた。
The effects of the thin Al—Cu bonded structure and the manufacturing method thereof according to the present invention will be described based on specific examples.
(1) Production of Al-Cu bonding member The base material Al used in the examples is commercially available pure aluminum (A1050), and pure silver foil (purity 99.99%) is used as Ag used in the insert material. A commercially available Ag clad Cu plate (Ag thickness: 100 μm, Cu thickness: 3 mm) clad with oxygen-free steel (C1020) was used.

まず、母材Cuの表面にインサート層を形成するため、母材Cuの表面に鏡面仕上げ加工を施したのち、厚さ100μmのAg箔を母材Cuの表面に接触するように載置し、固相拡散処理を行った。このときの拡散条件は、拡散温度が765℃(1038K)で、拡散時間を5Hrとして、接触荷重は2.54MPaとした。拡散接合は、5×10-3Torrの真空中で、加圧には油圧を用いた。 First, in order to form an insert layer on the surface of the base material Cu, the surface of the base material Cu is mirror-finished, and then a 100 μm thick Ag foil is placed in contact with the surface of the base material Cu. Solid phase diffusion treatment was performed. The diffusion conditions at this time were a diffusion temperature of 765 ° C. (1038 K), a diffusion time of 5 hours, and a contact load of 2.54 MPa. In diffusion bonding, a hydraulic pressure was used for pressurization in a vacuum of 5 × 10 −3 Torr.

ろう材は、市販のAl−10Si−1.5Mg−0.1Bi系ろう材箔(4104相当、固相線温度:559℃(832K)、液相線温度:591℃(864K)、厚さ:100μm)として、インサート層と母材Al(Al厚さ:3mm)のろう付けを行った。   The brazing material is a commercially available Al-10Si-1.5Mg-0.1Bi based brazing foil (corresponding to 4104, solidus temperature: 559 ° C. (832 K), liquidus temperature: 591 ° C. (864 K), thickness: 100 μm), the insert layer and the base material Al (Al thickness: 3 mm) were brazed.

接合に際して、接合面をアセトンで充分に脱脂した後、スプリングで0.294MPaを付加し、3×10-3Torrの真空中において、接合温度が550℃(823K)で10分の条件で炉中ろう付とした。ろう付け後のAl−Cu接合部材の寸法は肉厚6mmであり、ほぼCu厚さ:3mm、Al厚さ:3mmの比率であった。
(2)圧延加工および接合部の組織
得られたAl−Cu接合部材を出発素材として、多数回に亘る熱間圧延を施して最終肉厚0.8mmの薄型Al−Cu接合構造物を製造した。熱間圧延の加工温度は400℃とし、各圧延での圧下率は20%とした。
At the time of joining, the joint surfaces are sufficiently degreased with acetone, 0.294 MPa is added with a spring, and the inside of the furnace is 10 minutes at a joining temperature of 550 ° C. (823 K) in a vacuum of 3 × 10 −3 Torr. It was brazed. The dimension of the Al—Cu joined member after brazing was 6 mm thick, and the ratio was approximately Cu thickness: 3 mm and Al thickness: 3 mm.
(2) Rolling process and bonded structure Using the obtained Al-Cu bonded member as a starting material, hot rolling was performed many times to produce a thin Al-Cu bonded structure having a final thickness of 0.8 mm. . The processing temperature of hot rolling was 400 ° C., and the rolling reduction in each rolling was 20%.

具体的な加工スケジュールは、全肉厚6mm→4.8mm(Rd:20%)→3.84mm(Rd:20%)→3.07mm(Rd:20%)→2.46mm(Rd:20%)→1.97mm(Rd:20%)→1.58mm(Rd:20%)→1.26mm(Rd:20%)→1.0mm(Rd:21%)→0.8mm(Rd:20%)として、9回に亘る熱間圧延を繰り返した。熱間圧延でトータル圧下率を87%として、最終肉厚を0.8mmに仕上げた後に、400℃×30分の条件で焼鈍を行った。   The specific processing schedule is as follows: Total thickness 6 mm → 4.8 mm (Rd: 20%) → 3.84 mm (Rd: 20%) → 3.07 mm (Rd: 20%) → 2.46 mm (Rd: 20%) ) → 1.97 mm (Rd: 20%) → 1.58 mm (Rd: 20%) → 1.26 mm (Rd: 20%) → 1.0 mm (Rd: 21%) → 0.8 mm (Rd: 20%) ), 9 times of hot rolling was repeated. After finishing the final thickness to 0.8 mm by hot rolling with a total reduction rate of 87%, annealing was performed under conditions of 400 ° C. × 30 minutes.

図4は、熱間圧延で肉厚0.8mmに仕上げた後の接合部の組織をSEM観察した結果を示す図である。同図に示すように、接合部は図面の右方より、母材Cu、Ag層、Ag−Al反応領域および母材Alで構成されている。Ag層は処理前には厚さ100μmであったが、接合処理後に残存した層厚さは5〜8μmとなっていた。また、母材Cuおよび母材Alも圧下率に応じて均等の減肉状況を示していた。   FIG. 4 is a diagram showing the result of SEM observation of the structure of the joint after finishing to a thickness of 0.8 mm by hot rolling. As shown in the figure, the joining portion is composed of a base material Cu, an Ag layer, an Ag—Al reaction region, and a base material Al from the right side of the drawing. The Ag layer had a thickness of 100 μm before the treatment, but the layer thickness remaining after the joining treatment was 5 to 8 μm. In addition, the base material Cu and the base material Al also showed a uniform thickness reduction according to the rolling reduction.

反応領域では複雑な形態をとっているが、前記図2の模式図に示すように、出発部材としてAl−Cu接合部材で得られた第1相〜第4相の形成形態をそのまま具備していることが分かる。肉厚0.8mmに仕上げた後においても、母材Cu、母材Al、Ag層、および接合部の反応領域のいずれにおいても欠陥等の発生は見られなかった。   Although the reaction region takes a complicated form, as shown in the schematic diagram of FIG. 2, the first to fourth phase formation forms obtained with the Al—Cu bonding member as a starting member are provided as they are. I understand that. Even after finishing to a wall thickness of 0.8 mm, no defects or the like were observed in any of the base material Cu, base material Al, Ag layer, and reaction region of the joint.

さらに、同様の多数回に亘る熱間圧延を施して、最終肉厚が0.1mmまでの減肉加工を行い、母材Cu、母材Al、Ag層およびAg−Alの反応領域のいずれにも欠陥等が発生することがなく、本発明の薄型Al−Cu接合構造物が製造できることを確認している。   Furthermore, it is subjected to the same hot rolling over many times to reduce the thickness to a final thickness of 0.1 mm, and in any of the reaction regions of the base material Cu, base material Al, Ag layer and Ag-Al. It has been confirmed that the thin Al—Cu bonded structure of the present invention can be manufactured without any defects.

本発明の薄型Al−Cu接合構造物および製造方法によれば、加工性に優れたAl−Cu異材接合部を有する部材を確保し、これを圧延加工により減肉することによって、優れた寸法精度を有するとともに、寸法の多様化に伴う寸法適用性に対応できる。得られた薄型Al−Cu接合構造物は、Alの軽量性とCuの伝熱性、熱拡散性、耐食性とを併せ持つものであり、電子機器の小型化、薄肉化、軽量化、および高性能化の要請に対応でき、熱交換用材料、または熱伝達用材料として広く利用することができる。   According to the thin Al—Cu joint structure and the manufacturing method of the present invention, excellent dimensional accuracy is obtained by securing a member having an Al—Cu dissimilar material joint having excellent workability and reducing the thickness by rolling. In addition, it can cope with dimensional applicability accompanying diversification of dimensions. The resulting thin Al-Cu bonded structure has both the lightness of Al and the heat transfer, thermal diffusivity, and corrosion resistance of Cu, making electronic devices smaller, thinner, lighter, and higher performance. Therefore, it can be widely used as a heat exchange material or a heat transfer material.

Al−Si系ろう材を用いてAlとCuを直接ろう付した異材接合における、接合部の代表的な組織を模式的に示した図である。It is the figure which showed typically the typical structure | tissue of the junction part in the dissimilar material joining which brazed Al and Cu directly using the Al-Si type brazing material. Al−Si系ろう材を用いてAl−Cuの接合面にインサート材としてAgを挿入した異材接合における、接合部の代表的な組織を模式的に示した図である。It is the figure which showed typically the typical structure | tissue of the junction part in the dissimilar material joining which inserted Ag as an insert material in the joining surface of Al-Cu using the Al-Si type brazing material. ろう付温度をパラメータとした場合のAl−Cu接合部材の引張強さとろう付時間の関係を示す図である。It is a figure which shows the relationship between the tensile strength of an Al-Cu joining member when brazing temperature is made into a parameter, and brazing time. 熱間圧延で肉厚0.8mmに仕上げた後の接合部の組織をSEM観察した結果を示す図である。It is a figure which shows the result of having observed the structure of the junction part after finishing to thickness 0.8mm by hot rolling by SEM.

Claims (8)

Al部材とCu部材との接合面にAgをインサート材として用いたろう付け接合部材を圧延加工したことを特徴とする薄型Al−Cu接合構造物。   A thin Al-Cu joint structure obtained by rolling a brazed joint member using Ag as an insert material on a joint surface between an Al member and a Cu member. 熱間圧延によって前記ろう付け接合部材を加工したことを特徴とする請求項1に記載の薄型Al−Cu接合構造物。   The thin Al-Cu joint structure according to claim 1, wherein the brazed joint member is processed by hot rolling. 前記構造物の厚さが0.1mm以上であることを特徴とする請求項1または2に記載の薄型Al−Cu接合構造物。   The thin Al-Cu bonded structure according to claim 1 or 2, wherein the thickness of the structure is 0.1 mm or more. Al部材とCu部材との接合面にAgをインサート材として用いたろう付け接合部材を出発素材として、圧延加工を施すことを特徴とする薄型Al−Cu接合構造物の製造方法。   A method for producing a thin Al-Cu joint structure, characterized in that rolling is performed using a brazed joint member using Ag as an insert material on a joint surface between an Al member and a Cu member. 前記加工を熱間圧延で行うことを特徴とする薄型Al−Cu接合構造物の製造方法。   A method for producing a thin Al-Cu bonded structure, wherein the processing is performed by hot rolling. 前記熱間圧延を350℃〜500℃で行うことを特徴とする請求項5に記載の薄型Al−Cu接合構造物の製造方法。   The method for producing a thin Al-Cu bonded structure according to claim 5, wherein the hot rolling is performed at 350C to 500C. 前記熱間圧延を繰り返す場合に各圧延での圧下率が20%±10%であることを特徴とする請求項5または6に記載の薄型Al−Cu接合構造物の製造方法。   The method for producing a thin Al-Cu bonded structure according to claim 5 or 6, wherein when the hot rolling is repeated, the rolling reduction in each rolling is 20% ± 10%. 前記熱間圧延の仕上後に焼鈍を施すことを特徴とする請求項4〜7のいずれかに記載の薄型Al−Cu接合構造物の製造方法。

The method for producing a thin Al-Cu bonded structure according to any one of claims 4 to 7, wherein annealing is performed after finishing the hot rolling.

JP2003289357A 2003-08-07 2003-08-07 Thin Al-Cu bonded structure and manufacturing method thereof Expired - Fee Related JP4522678B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003289357A JP4522678B2 (en) 2003-08-07 2003-08-07 Thin Al-Cu bonded structure and manufacturing method thereof
PCT/JP2003/010324 WO2005014217A1 (en) 2003-08-07 2003-08-13 Al-Cu JUNCTION STRUCTURE AND METHOD FOR MANUFACTURING SAME
AU2003257838A AU2003257838A1 (en) 2003-08-07 2003-08-13 Al-Cu JUNCTION STRUCTURE AND METHOD FOR MANUFACTURING SAME
US10/781,358 US6921583B2 (en) 2003-08-07 2004-02-17 Al-Cu bonded structure and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003289357A JP4522678B2 (en) 2003-08-07 2003-08-07 Thin Al-Cu bonded structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005052888A true JP2005052888A (en) 2005-03-03
JP4522678B2 JP4522678B2 (en) 2010-08-11

Family

ID=34367724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003289357A Expired - Fee Related JP4522678B2 (en) 2003-08-07 2003-08-07 Thin Al-Cu bonded structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4522678B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138306A (en) * 2010-12-27 2012-07-19 Toshiba Corp Joined body, method for producing joined body, and battery pack
CN113414237A (en) * 2021-06-21 2021-09-21 西安理工大学 Method for preparing high-performance Al-Cu-Al composite material by rolling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4999941A (en) * 1973-01-31 1974-09-20
JPH11254127A (en) * 1998-03-12 1999-09-21 Ichiro Kawakatsu Method for brazing copper and aluminum
JP2002113569A (en) * 2000-10-04 2002-04-16 Sumitomo Precision Prod Co Ltd Method for joining aluminum member and copper member, and heat exchanger and its manufacturing method
JP3917503B2 (en) * 2002-04-05 2007-05-23 住友精密工業株式会社 Method of joining aluminum member and copper member and joining structure thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4999941A (en) * 1973-01-31 1974-09-20
JPH11254127A (en) * 1998-03-12 1999-09-21 Ichiro Kawakatsu Method for brazing copper and aluminum
JP2002113569A (en) * 2000-10-04 2002-04-16 Sumitomo Precision Prod Co Ltd Method for joining aluminum member and copper member, and heat exchanger and its manufacturing method
JP3917503B2 (en) * 2002-04-05 2007-05-23 住友精密工業株式会社 Method of joining aluminum member and copper member and joining structure thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138306A (en) * 2010-12-27 2012-07-19 Toshiba Corp Joined body, method for producing joined body, and battery pack
CN113414237A (en) * 2021-06-21 2021-09-21 西安理工大学 Method for preparing high-performance Al-Cu-Al composite material by rolling

Also Published As

Publication number Publication date
JP4522678B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
JP5698947B2 (en) Heat sink for electronic device and method for manufacturing the same
JP4350753B2 (en) Heat sink member and manufacturing method thereof
TWI683403B (en) Method of producing power module substrate with heat sink
JP5284542B1 (en) Method for producing aluminum alloy clad material
WO2016152648A1 (en) Copper alloy sheet for heat dissipating component and heat dissipating component
JP6109615B2 (en) Aluminum alloy fin clad material for brazing
JP6031576B2 (en) Copper alloy plate for heat dissipation parts
JP2009129983A (en) Junction structure and method of manufacturing the same, and power semiconductor module and method of manufacturing the same
US6921583B2 (en) Al-Cu bonded structure and method for making the same
JP4522678B2 (en) Thin Al-Cu bonded structure and manufacturing method thereof
JP3398204B2 (en) Brazing filler metal for aluminum alloys and aluminum alloy products
JP6528559B2 (en) Method of manufacturing ceramic / aluminum bonded body, method of manufacturing power module substrate, ceramic / aluminum bonded body, power module substrate
JP6426883B2 (en) Method of manufacturing joined body excellent in corrosion resistance
JPH07223090A (en) Brazing filler metal for joining aluminum alloy with copper, and composite material joined thereby
JP2004001069A (en) Method for joining aluminum member with copper member and its joined structure
JP2004066324A (en) Brazing method between aluminum-based metal and different metal
JP5247293B2 (en) Brazing and joining structure of steel and aluminum material and brazing method
JP4196776B2 (en) Brazing composite material and method for producing the same
JP2002248597A (en) High thermal conductive composite material and metallic mold
JP4522677B2 (en) Al-Cu bonded structure and manufacturing method thereof
CN114227064B (en) Silver-copper-titanium active solder laminated composite strip and preparation method thereof
JP4239764B2 (en) Brazing composite material and brazing method using the same
JP2017147285A (en) CONJUGATE JOINED BY CLAD MATERIAL OF Pb-free Zn-Al-based ALLOY SOLDER AND METAL BASE MATERIAL
JP4461809B2 (en) Brazing method and brazed product using the method
JP2010100892A (en) High purity iron alloy having excellent solid phase joinability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100526

R150 Certificate of patent or registration of utility model

Ref document number: 4522678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees