WO2019082973A1 - Bonded body, insulated circuit board with heat sink, and heat sink - Google Patents

Bonded body, insulated circuit board with heat sink, and heat sink

Info

Publication number
WO2019082973A1
WO2019082973A1 PCT/JP2018/039693 JP2018039693W WO2019082973A1 WO 2019082973 A1 WO2019082973 A1 WO 2019082973A1 JP 2018039693 W JP2018039693 W JP 2018039693W WO 2019082973 A1 WO2019082973 A1 WO 2019082973A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat sink
intermetallic compound
copper
aluminum alloy
Prior art date
Application number
PCT/JP2018/039693
Other languages
French (fr)
Japanese (ja)
Inventor
伸幸 寺▲崎▼
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018198468A external-priority patent/JP7135716B2/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP18870413.4A priority Critical patent/EP3703116B1/en
Priority to US16/755,922 priority patent/US11094606B2/en
Priority to CN201880067121.4A priority patent/CN111226315B/en
Publication of WO2019082973A1 publication Critical patent/WO2019082973A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • a heat sink is joined to a joined body in which an aluminum alloy member made of aluminum alloy and a copper member made of copper or copper alloy are joined, and an insulating circuit board having a circuit layer formed on one side of the insulating layer.
  • the present invention relates to an insulated circuit board with a heat sink, and a heat sink in which a copper member layer is formed on a heat sink body.
  • a semiconductor element is bonded on a circuit layer made of a conductive material.
  • a power semiconductor element for large power control used to control a wind power generation, an electric car, a hybrid car, etc.
  • the calorific value is large, and as a substrate mounting this, for example, aluminum nitride (AlN), alumina
  • AlN aluminum nitride
  • Al 2 O 3 alumina
  • An insulating circuit board comprising a ceramic substrate made of (Al 2 O 3 ) or the like and a circuit layer formed by bonding a metal plate having excellent conductivity to one surface of the ceramic substrate has been widely used conventionally. It is done.
  • substrate for power joules is also provided.
  • an insulating circuit board in which a circuit layer and a metal layer made of aluminum or aluminum alloy are formed on one surface and the other surface of a ceramic substrate, and a solder material on this circuit layer And a semiconductor element bonded via the semiconductor device.
  • a heat sink is bonded to the metal layer side of the insulated circuit board, and the heat transferred from the semiconductor element to the insulated circuit board is dissipated to the outside through the heat sink.
  • Patent Document 2 proposes an insulated circuit board in which the circuit layer and the metal layer have a laminated structure of an Al layer and a Cu layer.
  • the Cu layer is disposed on the surface of the circuit layer and the metal layer, so that the semiconductor element and the heat sink can be favorably joined using a solder material. Therefore, the thermal resistance in the stacking direction is reduced, and heat generated from the semiconductor element can be efficiently transferred to the heat sink side.
  • the thing of the structure which uses a heat sink as a heat sink and screws this heat sink to a cooling part by a fastening screw is also proposed.
  • one of the metal layer and the heat sink is made of aluminum or an aluminum alloy, and the other is made of copper or a copper alloy, and the metal layer and the heat sink are solid phase diffusion bonded.
  • Insulated circuit boards with heat sinks have been proposed. In this insulated circuit board with a heat sink, the metal layer and the heat sink are in solid phase diffusion bonding, so the thermal resistance is small and the heat dissipation characteristics are excellent.
  • Patent Document 4 proposes an insulated circuit board with a heat sink in which a heat sink made of an aluminum alloy having a Si concentration of 1 mass% to 25 mass% and a metal layer made of copper are solid phase diffusion bonded.
  • a heat sink has been proposed in which a heat sink main body made of an aluminum alloy having a Si concentration of 1 mass% to 25 mass% and a metal member layer made of copper are solid phase diffusion bonded.
  • the intermetallic compound layer formed at the bonding interface between the aluminum member and the copper member has a structure in which each phase such as ⁇ phase, 2 2 phase, ⁇ 2 phase, ⁇ phase, and ⁇ 2 phase is stacked.
  • each phase such as ⁇ phase, 2 2 phase, ⁇ 2 phase, ⁇ phase, and ⁇ 2 phase is stacked.
  • the 2 2 phase, the ⁇ 2 phase, and the ⁇ phase are relatively hard, there is a problem that when the heating and cooling cycle is applied, the metal compound layer is cracked to increase the thermal resistance and decrease the bonding rate. there were.
  • the present invention has been made in view of the above-mentioned circumstances, and even when solid-phase diffusion bonding an aluminum member made of aluminum or an aluminum alloy and a copper member made of copper or a copper alloy,
  • a joined body capable of suppressing formation of a relatively hard intermetallic compound layer at the interface, and suppressing rise in thermal resistance and decrease in bonding rate during cold thermal cycle load, insulation with a heat sink provided with this joined body It aims at providing a circuit board and a heat sink.
  • the bonded body of the present invention is a bonded body in which an aluminum alloy member made of an aluminum alloy and a copper member made of copper or a copper alloy are bonded, and the aluminum alloy member is It is made of an aluminum alloy in which the Mg concentration is in the range of 0.4 mass% to 7.0 mass% and the Si concentration is less than 1 mass%, and the aluminum alloy member and the copper member are solid phase diffusion bonded And a compound layer formed by diffusion of metal atoms of the aluminum alloy member and Cu atoms of the copper member at a bonding interface between the aluminum alloy member and the copper member, and the compound layer is formed of the aluminum
  • a second intermetallic compound layer formed of gamma 2 phase during compounds are those with Cu-Al-Mg layer formed between the first intermetallic compound layer and the second intermetallic compound layer, in
  • a compound layer formed by diffusion of metal atoms of the aluminum alloy member and Cu atoms of the copper member is provided, and the compound layer is disposed on the aluminum alloy member side.
  • a first intermetallic compound layer comprising a ⁇ phase intermetallic compound of Cu and Al was, the copper member second intermetallic compound consisting of gamma 2 phase intermetallic compound of disposed the Cu and Al in the side layer and Since the Cu-Al-Mg layer formed between the first intermetallic compound layer and the second intermetallic compound layer is formed, the Cu-Al-Mg layer is formed between Cu and Al.
  • a magnesium oxide film may be formed on the bonding surface of the aluminum alloy member.
  • the diffusion of Al atoms can be suppressed by the magnesium oxide film, and the growth of the intermetallic compound can be suppressed more than necessary. Thereby, the occurrence of cracking of the compound layer can be further suppressed when the heating and cooling cycle is applied.
  • the magnesium oxide film preferably has crystalline particles.
  • the strength of the magnesium oxide film is improved, and the bonding strength can be further improved.
  • the insulating circuit substrate with a heat sink comprises an insulating layer, a circuit layer formed on one side of the insulating layer, a metal layer formed on the other side of the insulating layer, and the insulation of the metal layer
  • the bonding surface with the metal layer is made of an aluminum alloy having an Mg concentration of 0.4 mass% or more and 7.0 mass% or less and an Si concentration of less than 1 mass%, and the heat sink and the metal layer And a solid-phase diffusion bonded compound layer formed by diffusion of metal atoms of the aluminum alloy and Cu atoms of the copper member at the bonding interface between the heat sink and the metal layer.
  • the compound layer includes a first intermetallic compound layer composed of a ⁇ phase of an intermetallic compound of Cu and Al disposed on the heat sink side, and an intermetallic compound of Cu and Al disposed on the metal layer side.
  • a second intermetallic compound layer formed of gamma 2 phase compound, and Cu-Al-Mg layer is formed between these first intermetallic compound layer and the second intermetallic compound layer, in that it is constituted It is characterized by
  • a compound layer formed by diffusion of metal atoms of the aluminum alloy and Cu atoms of the copper member is provided at the bonding interface between the heat sink and the metal layer,
  • the compound layer includes a first intermetallic compound layer formed of the ⁇ phase of an intermetallic compound of Cu and Al disposed on the heat sink side, and an intermetallic compound of Cu and Al disposed on the metal layer side.
  • a magnesium oxide film may be formed on the bonding surface of the heat sink.
  • the diffusion of Al atoms can be suppressed by the magnesium oxide film, and the growth of the intermetallic compound can be suppressed more than necessary. Thereby, the occurrence of cracking of the compound layer can be further suppressed when the heating and cooling cycle is applied.
  • the magnesium oxide film preferably has crystalline particles.
  • the strength of the magnesium oxide film is improved, and the bonding strength can be further improved.
  • the heat sink according to the present invention is a heat sink comprising a heat sink body and a copper member layer made of copper or a copper alloy joined to the heat sink body, and the heat sink body has an Mg concentration of 0.4 mass% or more.
  • the heat sink main body and the copper member layer are solid-phase diffusion bonded, and the heat sink main body and the copper member are made of an aluminum alloy having a Si concentration of less than 1 mass%, and the solid content is diffusion bonded.
  • a compound layer formed by diffusion of metal atoms of the heat sink body and Cu atoms of the copper member layer is provided at a bonding interface with the layer, and the compound layer is formed of Cu disposed on the heat sink body side.
  • a first intermetallic compound layer comprising a ⁇ phase intermetallic compound of Al, from gamma 2 phase intermetallic compound of the copper disposed member layer side has been Cu and Al
  • That a second intermetallic compound layer is characterized in that the Cu-Al-Mg layer is formed, in being configured between these first intermetallic compound layer and the second intermetallic compound layer.
  • a compound layer formed by diffusion of metal atoms of the heat sink body and Cu atoms of the copper member layer is provided at the bonding interface between the heat sink body and the copper member layer,
  • the compound layer includes a first intermetallic compound layer formed of the ⁇ phase of an intermetallic compound of Cu and Al disposed on the heat sink main body side, and an intermetallic compound of Cu and Al disposed on the copper member layer side.
  • a second intermetallic compound layer formed of gamma 2 phase is a Cu-Al-Mg layer formed between these first intermetallic compound layer and the second intermetallic compound layer, a configuration and Therefore, the growth of the intermetallic compound layer of Cu and Al is suppressed by the Cu-Al-Mg layer, and the relatively hard ⁇ 2 phase, ⁇ 2 phase, and ⁇ phase are not formed, and the cold thermal cycle is applied. Suppress the occurrence of cracks in the metal compound layer can do.
  • a magnesium oxide film may be formed on the bonding surface of the heat sink body.
  • the diffusion of Al atoms can be suppressed by the magnesium oxide film, and the growth of the intermetallic compound can be suppressed more than necessary. Thereby, the occurrence of cracking of the compound layer can be further suppressed when the heating and cooling cycle is applied.
  • the magnesium oxide film has crystalline particles.
  • the strength of the magnesium oxide film is improved, and the bonding strength can be further improved.
  • a relatively hard intermetallic compound layer is formed at the bonding interface Can be suppressed, and it is possible to provide a bonded body capable of suppressing an increase in thermal resistance and a decrease in bonding rate during a thermal cycle load, and an insulated circuit board and a heat sink provided with this heat sink.
  • FIG. 3 is an enlarged cross-sectional view of a bonding interface between a heat sink and a metal layer (Cu layer) of the insulating circuit board with a heat sink shown in FIG. 2; It is a flowchart explaining the manufacturing method of the insulation circuit board with a heat sink concerning a first embodiment. It is a schematic explanatory drawing of the manufacturing method of the insulated circuit board with a heat sink which concerns on 1st embodiment. It is a schematic explanatory drawing of the heat sink which concerns on 2nd embodiment of this invention.
  • FIG. 3 is an enlarged cross-sectional view of a bonding interface between a heat sink and a metal layer (Cu layer) of the insulating circuit board with a heat sink shown in FIG. 2; It is a flowchart explaining the manufacturing method of the insulation circuit board with a heat sink concerning a first embodiment. It is a schematic explanatory drawing of the manufacturing method of the insulated circuit board with a heat sink which concerns on 1st embodiment. It is a schematic explanatory drawing of the
  • Example 7 is an enlarged cross-sectional view of a bonding interface between a heat sink main body and a copper member layer of the heat sink shown in FIG. 6. It is a flowchart explaining the manufacturing method of the heat sink concerning a second embodiment. It is a schematic explanatory drawing of the manufacturing method of the heat sink which concerns on 2nd embodiment. It is a schematic explanatory drawing of the power module provided with the insulated circuit board with a heat sink which is other embodiment of this invention. It is a schematic explanatory drawing which shows the condition which performs solid phase diffusion bonding by a current-flow heating method. In Example 2, it is a photograph in which an observation result of a magnesium oxide film of the present invention example 16 is shown.
  • the power module 1 using the insulated circuit board 30 with a heat sink which is 1st embodiment of this invention in FIG. 2 is shown.
  • the power module 1 includes an insulated circuit board 30 with a heat sink, and a semiconductor element 3 joined to one surface (upper surface in FIG. 2) of the insulated circuit board 30 with a heat sink via a solder layer 2.
  • the insulating circuit board 30 with a heat sink includes an insulating circuit board 10 and a heat sink 31 joined to the insulating circuit board 10.
  • Insulating circuit substrate 10 is provided on ceramic substrate 11 forming the insulating layer, circuit layer 12 disposed on one surface (upper surface in FIG. 2) of ceramic substrate 11, and on the other surface of ceramic substrate 11. And the metal layer 13.
  • the ceramic substrate 11 is made of a ceramic such as silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), or alumina (Al 2 O 3 ), which is excellent in insulation and heat dissipation.
  • the ceramic substrate 11 is made of aluminum nitride (AlN) which is particularly excellent in heat dissipation.
  • the thickness of the ceramic substrate 11 is set, for example, in the range of 0.2 to 1.5 mm, and in the present embodiment, it is set to 0.635 mm.
  • the circuit layer 12 is formed by bonding an aluminum plate 22 made of aluminum or an aluminum alloy to one surface of the ceramic substrate 11.
  • a rolled plate (aluminum plate 22) of aluminum (2N aluminum) having a purity of 99 mass% or more or aluminum (4N aluminum) having a purity of 99.99 mass% or more is bonded to the ceramic substrate 11. It is formed by being done.
  • the thickness of the aluminum plate 22 used as the circuit layer 12 is set in the range of 0.1 mm or more and 1.0 mm or less, and is set to 0.6 mm in this embodiment.
  • the metal layer 13 is laminated on an Al layer 13A disposed on the other surface of the ceramic substrate 11 and a surface of the Al layer 13A opposite to the surface to which the ceramic substrate 11 is joined. And the Cu layer 13B.
  • the Al layer 13A is formed by bonding an aluminum plate 23A made of aluminum or an aluminum alloy to the other surface of the ceramic substrate 11.
  • a rolled plate (aluminum plate 23A) of aluminum (2N aluminum) having a purity of 99 mass% or more or aluminum (4N aluminum) having a purity of 99.99 mass% or more is bonded to the ceramic substrate 11. It is formed by being done.
  • the thickness of the aluminum plate 23A to be joined is set in the range of 0.1 mm or more and 3.0 mm or less, and in the present embodiment, it is set to 0.6 mm.
  • the Cu layer 13B is formed by bonding a copper plate 23B made of copper or a copper alloy to the other surface of the Al layer 13A.
  • the Cu layer 13B is formed by bonding a rolled plate (copper plate 23B) of oxygen-free copper.
  • the thickness of the Cu layer 13B is set in the range of 0.1 mm or more and 6 mm or less, and is set to 1 mm in the present embodiment.
  • the heat sink 31 is for dissipating the heat on the side of the insulating circuit board 10.
  • a flow path 32 through which a cooling medium flows is provided.
  • the heat sink 31 is made of an aluminum alloy in which the Mg concentration is in the range of 0.4 mass% to 7.0 mass% and the Si concentration is less than 1 mass%.
  • the Si concentration is less than 1 mass%, and precipitation Si is absent.
  • the Si-containing intermetallic compound may be precipitated.
  • the heat sink 31 and the metal layer 13 are in solid phase diffusion bonding.
  • a compound layer 40 is formed at the bonding interface between the metal layer 13 (Cu layer 13 ⁇ / b> B) and the heat sink 31.
  • the compound layer 40 is formed by mutual diffusion of the metal atoms of the heat sink 31 and the Cu atoms of the metal layer 13 (Cu layer 13B).
  • this compound layer 40 is, as shown in FIG. 3, a first intermetallic compound layer 41 consisting of the ⁇ phase of an intermetallic compound of Cu and Al disposed on the heat sink 31 side, and a metal layer 13 (Cu layer 13B)
  • a second intermetallic compound layer 42 composed of a ⁇ 2 phase of an intermetallic compound of Cu and Al disposed on the side, and between the first intermetallic compound layer 41 and the second intermetallic compound layer 42 And the formed Cu—Al—Mg layer 43.
  • the Cu-Al-Mg layer 43 is made of Cu 6 Al 5 Mg 2 which is an intermetallic compound of Cu, Al and Mg, or CuAl 2 Mg, Cu 3 Al 7 Mg 6 , CuAlMg, etc. It is done. Further, Mg of the Cu—Al—Mg layer 43 is a diffusion of Mg contained in the aluminum alloy constituting the heat sink 31. For this reason, a Mg-depleted Mg-depleted layer is formed in the vicinity of the bonding interface of the heat sink 31.
  • the thickness of the compound layer 40 is set in the range of 10 ⁇ m to 70 ⁇ m, preferably in the range of 15 ⁇ m to 40 ⁇ m.
  • the thickness of the Cu-Al-Mg layer 43 is set in the range of 1 ⁇ m to 45 ⁇ m, preferably in the range of 2.5 ⁇ m to 30 ⁇ m.
  • a magnesium oxide film may be formed on the bonding surface of the heat sink 31 at the bonding interface between the heat sink 31 and the metal layer 13 (Cu layer 13B).
  • the magnesium oxide film is formed by reacting an alumina film formed on the surface of the heat sink 31 with Mg of the heat sink 31 (aluminum alloy).
  • This magnesium oxide film is composed of MgO or MgAl 2 O 4 .
  • the magnesium oxide film preferably has crystalline particles. The reaction of the alumina film with Mg is sufficiently progressed by the presence of the crystalline particles, since the amorphous particles of the alumina film react with Mg to form crystalline particles. Become.
  • an aluminum plate 22 to be the circuit layer 12 is laminated on one surface of the ceramic substrate 11 through the brazing foil 26 of Al—Si system. Further, it is laminated on the other surface of the ceramic substrate 11 through the aluminum plate 23A to be the Al layer 13A and the brazing material foil 26 of Al-Si system.
  • an Al-8 mass% Si alloy foil having a thickness of 10 ⁇ m is used as the brazing material foil 26 of the Al-Si system.
  • Circuit layer and Al layer forming step S02 Then, it is placed in a vacuum heating furnace in a state of being pressurized (pressure 1 to 35 kgf / cm 2 (0.1 to 3.5 MPa)) in the stacking direction and heated to bond the aluminum plate 22 and the ceramic substrate 11.
  • the circuit layer 12 is formed. Further, the ceramic substrate 11 and the aluminum plate 23A are joined to form an Al layer 13A.
  • the pressure in the vacuum heating furnace is in the range of 10 ⁇ 6 Pa to 10 ⁇ 3 Pa
  • the heating temperature is in the range of 600 ° C. to 650 ° C.
  • the holding time at the heating temperature is 15 minutes to 180 minutes It is preferable to set in the range of
  • a copper plate 23B to be the Cu layer 13B is stacked on the other surface side of the Al layer 13A. And it arranges in a vacuum heating furnace and heats in the state pressurized (pressure 3-35kgf / cm 2 (0.3-3.5MPa)) in the lamination direction, solid phase diffusion of Al layer 13A and copper plate 23B Bonding to form a metal layer 13.
  • the pressure in the vacuum heating furnace is in the range of 10 ⁇ 6 Pa to 10 ⁇ 3 Pa
  • the heating temperature is in the range of 400 ° C.
  • the holding time at the heating temperature is 5 minutes to 240 minutes It is preferable to set in the range of The respective bonding surfaces of the Al layer 13A and the copper plate 23B to be subjected to solid phase diffusion bonding are smoothed by removing the flaws of the surfaces in advance.
  • Metal layer / heat sink bonding step S04 Next, the metal layer 13 (Cu layer 13B) and the heat sink 31 are stacked, and in the vacuum heating furnace in a state in which pressure (pressure 5 to 35 kgf / cm 2 (0.5 to 3.5 MPa)) is applied in the stacking direction.
  • the metal layer 13 (Cu layer 13B) and the heat sink 31 are solid phase diffusion bonded by arranging and heating.
  • the bonding surfaces of the metal layer 13 (Cu layer 13B) and the heat sink 31 to be bonded by solid phase diffusion bonding are smoothed by removing the flaws of the surfaces in advance.
  • the pressure in the vacuum heating furnace is in the range of 10 ⁇ 6 Pa to 10 ⁇ 3 Pa
  • the heating temperature is in the range of 400 ° C. to 520 ° C.
  • the holding time at the heating temperature is 30 minutes to 240 minutes It is preferable to set in the range of
  • the Cu atoms in the Cu layer 13B and the Al atoms and Mg atoms in the heat sink 31 mutually diffuse, and as shown in FIG. 3, the first intermetallic compound layer 41 and Cu—Al
  • a compound layer 40 composed of the -Mg layer 43 and the second intermetallic compound layer 42 is formed.
  • a magnesium oxide film may be formed on the surface portion of the heat sink 31 at the bonding interface between the heat sink 31 and the metal layer 13 (Cu layer 13B). Further, in the case of the magnesium oxide film, the reaction between the alumina film and Mg is promoted by the high heating temperature of the metal layer / heat sink bonding step S04 and the long holding time, and the amorphous to crystalline state is obtained. Will change. In this manner, the heat sink equipped insulated circuit board 30 according to the present embodiment is manufactured.
  • semiconductor element bonding step S05 Next, the semiconductor element 3 is stacked on one surface (surface) of the circuit layer 12 via a solder material, and soldered in a reduction furnace. As described above, the power module 1 according to the present embodiment is manufactured.
  • the Al atom of the aluminum alloy that constitutes the heat sink 31 at the bonding interface between the heat sink 31 and the metal layer 13 (Cu layer 13B) And Mg atoms and Cu atoms of the metal layer 13 (Cu layer 13B) are mutually diffused to form a compound layer 40.
  • the compound layer 40 is formed of Cu disposed on the heat sink 31 side.
  • the compound layer 42 and the Cu-Al-Mg layer 43 formed between the first intermetallic compound layer 41 and the second intermetallic compound layer 42, the Cu-Al-Mg layer is formed.
  • the thickness of the compound layer 40 is 10 ⁇ m or more, Cu atoms and Al atoms are sufficiently interdiffused, and the heat sink 31 and the metal layer 13 (Cu layer 13B) Solid phase diffusion bonding can be ensured. Furthermore, in the present embodiment, since the thickness of the compound layer 40 is 70 ⁇ m or less, the intermetallic compound does not grow more than necessary, and the occurrence of cracking or the like in the compound layer 40 can be suppressed. .
  • the thickness of the Cu—Al—Mg layer 43 is 1 ⁇ m or more, the growth of the intermetallic compound can be reliably suppressed. Furthermore, in the present embodiment, since the thickness of the Cu-Al-Mg layer 43 is 45 ⁇ m or less, the growth of the intermetallic compound is not inhibited more than necessary, and the heat sink 31 and the metal layer 13 (Cu layer 13B Solid phase diffusion bonding).
  • the diffusion of Al atoms can be suppressed by the magnesium oxide film, and the intermetallic compound grows more than necessary. Can be suppressed. Thereby, the occurrence of cracking of the compound layer 40 can be further suppressed when the thermal cycling is applied. Furthermore, when the magnesium oxide film has crystalline granules, the strength of the magnesium oxide film is improved, and the bonding strength between the heat sink 31 and the metal layer 13 (Cu layer 13B) is further improved. It becomes possible.
  • FIG. 6 shows a heat sink 101 according to a second embodiment of the present invention.
  • the heat sink 101 includes a heat sink main body 110 and a copper member layer 117 made of copper or a copper alloy laminated on one surface (upper side in FIG. 6) of the heat sink main body 110.
  • the copper member layer 117 is configured by bonding a copper plate 127 made of a rolled plate of oxygen free copper.
  • the heat sink body 110 is provided with a flow path 111 through which the cooling medium flows.
  • the heat sink body 110 is made of an aluminum alloy in which the Mg concentration is in the range of 0.4 mass% to 7.0 mass%, and the Si concentration is less than 1 mass%. In this aluminum alloy, the Si concentration is less than 1 mass%, and Si is considered to be solid-solved in the matrix phase.
  • the heat sink body 110 and the copper member layer 117 are bonded by solid phase diffusion.
  • a compound layer 140 containing Al and Cu is formed at the bonding interface between the heat sink main body 110 and the copper member layer 117.
  • the compound layer 140 is formed by mutual diffusion of the metal atoms of the heat sink body 110 and the Cu atoms of the copper member layer 117.
  • the compound layer 140 includes the first intermetallic compound layer 141 composed of the ⁇ phase of the intermetallic compound of Cu and Al disposed on the heat sink main body 110 side, and the copper member layer 117 side. Formed between the first intermetallic compound layer 141 and the second intermetallic compound layer 142, and the second intermetallic compound layer 142 composed of the ⁇ 2 phase of the intermetallic compound of Cu and Al disposed in And a Cu-Al-Mg layer 143.
  • the Cu-Al-Mg layer 143 is made of Cu 6 Al 5 Mg 2 which is an intermetallic compound of Cu, Al and Mg, or CuAl 2 Mg, Cu 3 Al 7 Mg 6 , CuAlMg, etc. It is done. Further, Mg of the Cu—Al—Mg layer 143 is a diffusion of Mg contained in the aluminum alloy constituting the heat sink main body 110. For this reason, in the vicinity of the bonding interface of the heat sink body 110, a Mg-depleted Mg-depleted layer is formed.
  • the magnesium oxide film 112 is formed on the surface portion of the heat sink body 110 at the bonding interface between the heat sink body 110 and the copper member layer 117.
  • the magnesium oxide film 112 is formed by the reaction of the alumina film formed on the surface of the heat sink body 110 with Mg of the heat sink body 110 (aluminum alloy).
  • the magnesium oxide film 112 is made of MgO or MgAl 2 O 4 .
  • the magnesium oxide film preferably has crystalline particles.
  • the reaction of the alumina film with Mg is sufficiently progressed by the presence of the crystalline particles, since the amorphous particles of the alumina film react with Mg to form crystalline particles. Become.
  • Heat sink heat treatment step S101 First, heat treatment is performed on the heat sink main body 110 to be bonded, and the magnesium oxide film 112 is formed on the surface of the heat sink main body 110.
  • the heat treatment conditions at this time are as follows: atmosphere: vacuum or nitrogen atmosphere in a range of 10 ⁇ 6 Pa to 10 ⁇ 3 Pa, heat treatment temperature: 250 ° C. to 400 ° C., holding time at heat treatment temperature: 10 minutes to 30 minutes It is said below.
  • Heat sink body / copper member layer bonding step S102 Next, as shown in FIG. 9, the heat sink body 110 and the copper plate 127 to be the copper member layer 117 are laminated, and pressure is applied in the laminating direction (pressure 5 to 35 kgf / cm 2 (0.5 to 3.5 MPa))
  • the copper plate 127 and the heat sink main body 110 are solid phase diffusion bonded by placing and heating in a vacuum heating furnace in the above state.
  • the bonding surfaces of the copper plate 127 and the heat sink main body 110 to be subjected to solid phase diffusion bonding are smoothed by removing the flaws of the surfaces in advance.
  • the pressure in the vacuum heating furnace is in the range of 10 ⁇ 6 Pa to 10 ⁇ 3 Pa
  • the heating temperature is in the range of 450 ° C. to 520 ° C.
  • the holding time at the heating temperature is 30 minutes to 240 minutes It is preferable to set in the range of
  • the Cu atoms in the copper plate 127 and the Al atoms and Mg atoms in the heat sink main body 110 mutually diffuse, and as shown in FIG. A compound layer 140 composed of the Al—Mg layer 143 and the second intermetallic compound layer 142 is formed.
  • the heat sink 101 according to the present embodiment is manufactured.
  • the copper member layer 117 is formed by joining the copper plate 127 made of a rolled sheet of oxygen-free copper on one surface side of the heat sink body 110 Therefore, the heat can be spread in the surface direction by the copper member layer 117, and the heat dissipation characteristics can be significantly improved.
  • other members and the heat sink 101 can be joined well by using solder or the like.
  • the compound layer 140 is formed by diffusion of Mg atoms and Cu atoms constituting the copper member layer 117.
  • the compound layer 140 is an intermetallic compound of Cu and Al disposed on the heat sink main body 110 side.
  • first intermetallic compound layer 141 made of ⁇ phase
  • second intermetallic layer 142 consisting of gamma 2 phase intermetallic compound of disposed the Cu and Al in the copper member layer 117 side, these first metal Since the Cu—Al—Mg layer 143 formed between the intermetallic compound layer 141 and the second intermetallic compound layer 142, the intermetallic compound is formed of the Cu—Al—Mg layer 143.
  • the growth of suppression, relatively hard eta 2-phase, zeta 2-phase, no ⁇ -phase is formed, it is possible to suppress the occurrence of cracking of the compound layer 140 in the case loaded with thermal cycle.
  • the magnesium oxide film 112 is formed on the surface of the heat sink body 110, diffusion of Al atoms can be suppressed by the magnesium oxide film 112, and the intermetallic compound is more than necessary. Growth can be further suppressed. Further, when the magnesium oxide film 112 has crystalline particles, the strength of the magnesium oxide film 112 is improved, and the bonding strength between the heat sink main body 110 and the copper member layer 117 is improved. Become.
  • the metal layer 13 is described as having the Al layer 13A and the Cu layer 13B, the present invention is not limited to this, and as shown in FIG. Or you may comprise by a copper alloy.
  • a copper plate is joined to the other surface (lower side in FIG. 10) of the ceramic substrate 11 by DBC method or active metal brazing method, and is made of copper or copper alloy.
  • a metal layer 213 is formed.
  • the metal layer 213 and the heat sink 31 are solid phase diffusion bonded.
  • the circuit layer 212 is also made of copper or a copper alloy.
  • the circuit layer is described as being formed by bonding an aluminum plate having a purity of 99 mass%, but the present invention is not limited to this. Pure aluminum having a purity of 99.99 mass% or more It may be composed of other aluminum or other metal such as aluminum alloy, copper or copper alloy. Also, the circuit layer may have a two-layer structure of an Al layer and a Cu layer. The same applies to the insulating circuit board 210 shown in FIG.
  • the metal layer 13 (Cu layer 13B) and the heat sink 31 are stacked and placed in a vacuum heating furnace in a state of being pressurized in the stacking direction.
  • the heat sink main body / copper member layer bonding step S102 of the second embodiment the heat sink main body 110 and the copper plate 127 to be the copper member layer 117 are stacked, and pressure is applied in the stacking direction (pressure 5 to 35 kgf).
  • pressure is applied in the stacking direction (pressure 5 to 35 kgf).
  • an aluminum alloy member 301 and a copper member 302 are laminated, and these laminated bodies are laminated by a pair of electrodes 312 and 312 via carbon plates 311 and 311.
  • the pressure is applied in the direction, and the aluminum alloy member 301 and the copper member 302 are energized.
  • the carbon plates 311 and 311, the aluminum alloy member 301, and the copper member 302 are heated by Joule heat, and the aluminum alloy member 301 and the copper member 302 are solid phase diffusion bonded.
  • the temperature rising rate can be made relatively fast, for example, 30 to 100 ° C./min. Diffusion bonding can be performed. As a result, the influence of oxidation on the bonding surface is small, and bonding can be performed even in, for example, an air atmosphere. Further, depending on the resistance value or specific heat of the aluminum alloy member 301 and the copper member 302, it is also possible to join the aluminum alloy member 301 and the copper member 302 in a state where a temperature difference occurs, thereby reducing the difference in thermal expansion. Thermal stress can also be reduced.
  • pressure load by the pair of electrodes 312 and 312 is preferably in the range of 30 kgf / cm 2 or more 100 kgf / cm 2 or less (3 MPa or 10MPa or less).
  • the surface roughness of the aluminum alloy member 301 and the copper member 302 is 0.3 ⁇ m or more and 0.6 ⁇ m or less in arithmetic average roughness Ra, or 1. in the maximum height Rz. It is preferable to set it in the range of 3 micrometers or more and 2.3 micrometers or less.
  • the surface roughness of the bonding surface is preferably small, but in the case of electric heating, if the surface roughness of the bonding surface is too small, the interfacial contact resistance decreases and the bonding interface is Since it becomes difficult to heat locally, it is preferable to set it in the above-mentioned range.
  • the ceramic substrate 11 is an insulator in that case, for example, jig etc. which consist of carbon etc. It is necessary to short-circuit the carbon plates 311, 311.
  • the bonding conditions are the same as the bonding of the aluminum alloy member 301 and the copper member 302 described above.
  • the surface roughness of the metal layer 13 (Cu layer 13B) and the heat sink 31 is the same as in the case of the aluminum alloy member 301 and the copper member 302 described above.
  • Example 1 On one side of the aluminum alloy plate (50 mm ⁇ 50 mm, thickness 5 mm) shown in Table 1, a copper plate (40 mm ⁇ 40 mm, thickness 5 mm) made of oxygen free copper was solid phaseed by the method described in the above embodiment. Diffusion bonded. In the invention examples 6 and 7, the heat treatment was performed on the aluminum alloy plate, and then solid phase diffusion bonding was performed with the copper plate. In Inventive Example 1-7 and Comparative Example 1-3, the aluminum plate and the metal plate are pressed in the stacking direction with a load of 15 kgf / cm 2 (1.5 MPa), and the condition of 500 ° C. ⁇ 180 min in a vacuum heating furnace Solid phase diffusion bonding was performed.
  • the electron diffraction pattern was analyzed using a transmission electron microscope (Fita Titan ChemiSTEM, accelerating voltage 200 kV), the composition was analyzed using energy dispersive X-ray analysis (NSS7 manufactured by Thermo Scientific Co., Ltd.), and the formed layer was Were determined.
  • the electron diffraction pattern was obtained by irradiation with an electron beam narrowed to about 1 nm (NBD method).
  • the bonding rate of the bonding portion between the aluminum plate and the metal plate of the bonded body was evaluated using an ultrasonic flaw detector, and calculated from the following equation.
  • the initial bonding area is the area to be bonded before bonding, that is, the area of the aluminum plate. Since peeling is indicated by a white portion in the ultrasonic flaw detection image, the area of this white portion is regarded as a peeling area.
  • Bonding ratio (%) ⁇ (initial bonding area)-(peeling area) ⁇ / (initial bonding area) x 100
  • Comparative Example 1 in which the Si concentration of the aluminum alloy plate is 6.0 mass% and the Mg concentration is 12.7 mass%, the ⁇ phase and the Mg-Si phase exist in the compound layer, and the bonding after the cold thermal cycle is performed. The rate was low and the thermal resistance increased.
  • Comparative Example 2 in which the Mg concentration of the aluminum alloy plate is 0.1 mass%, ⁇ 2 phase, ⁇ 2 phase, and ⁇ phase, which are intermetallic compounds of Cu and Al, are formed in the compound layer, and the thermal cycle is The subsequent bonding rate was low, and the thermal resistance increased.
  • Comparative Example 3 in which the Mg concentration of the aluminum alloy plate was 10.3 mass%, the bonding ratio after the cold thermal cycle was low, and the thermal resistance was large.
  • the thick Cu-Al-Mg phase in the compound layer inhibits the growth of the intermetallic compound more than necessary, the thickness of the intermetallic compound layer becomes uneven, and the hardness of the aluminum alloy plate increases. It is presumed that the stress load on the interface is increased, which causes a crack.
  • the Cu-Al-Mg phase was properly formed in the compound layer, and the bonding ratio was high before and after the thermal cycle, and the thermal resistance could be suppressed small. .
  • the aluminum member made of aluminum alloy and the copper member made of copper or copper alloy are solid phase diffusion bonded, and a relatively hard intermetallic compound layer is formed at the bonding interface. It has been confirmed that a conjugate can be provided that can be inhibited from being formed.
  • Example 2 On one side of the aluminum alloy plate (10 mm ⁇ 10 mm, thickness 3 mm) shown in Table 2, a copper plate (2 mm ⁇ 2 mm, thickness 1 mm) made of oxygen free copper was solid phase by the method described in the above embodiment. Diffusion bonded. The aluminum plate and the metal plate were pressed in the stacking direction with a load of 15 kgf / cm 2 (1.5 MPa), and solid phase diffusion bonding was performed at the temperature and holding time shown in Table 2.
  • each of Invention Examples 11 to 22 had a layer structure of “ ⁇ / Cu—Al—Mg / ⁇ 2 ”. Further, the presence or absence of a magnesium oxide film, the presence or absence of particles in the magnesium oxide film, and bonding strength (shear strength) were evaluated as follows.
  • an electron diffraction pattern was obtained by a nanobeam diffraction method (NBD method) using an electron beam narrowed to 1 nm.
  • NBD method nanobeam diffraction method
  • the shear strength was measured by the share test. When the aluminum alloy plate is horizontally fixed with the copper plate on top, and the copper plate is pressed horizontally from the side with a shear tool (share speed 0.1 mm / sec), the bond between the copper plate and the aluminum alloy plate is broken The strength and location of failure (fracture mode) were confirmed. In addition, intensity
  • the bonding strength is further improved by the high bonding temperature and the long holding time.
  • the alumina film formed on the surface of the aluminum alloy plate and the Mg of the aluminum alloy plate react to form a magnesium oxide film, and it is presumed that the proportion of crystalline particles is increased in this magnesium oxide film. Be done.
  • a relatively hard intermetallic compound layer is formed at the bonding interface Can be suppressed, and it is possible to provide a bonded body capable of suppressing an increase in thermal resistance and a decrease in bonding rate during a thermal cycle load, and an insulated circuit board and a heat sink provided with this heat sink.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

An aluminum alloy member (31) is configured from an aluminum alloy in which Mg concentration is within a range of 0.4-7.0 mass% and Si concentration is less than 1 mass%, and the aluminum alloy member (31) and a copper member (13B) are bonded with solid phase diffusion bonding. At the bonding interface between the aluminum alloy member (31) and the copper member (13B), a compound layer (40) is formed which is configured from: a first intermetallic compound layer (41) comprising a θ phase of a Cu and Al intermetallic compound, arranged on the side of the aluminum alloy member (31); a second intermetallic compound layer (42) comprising a γ2 phase of a Cu and Al intermetallic compound, arranged on the side of the copper member (13B); and a Cu-Al-Mg layer (43) formed between the first intermetallic compound layer (41) and the second intermetallic compound layer (42).

Description

接合体、ヒートシンク付絶縁回路基板、及び、ヒートシンクBonding body, insulated circuit board with heat sink, and heat sink
 この発明は、アルミニウム合金からなるアルミニウム合金部材と、銅又銅合金からなる銅部材とが接合された接合体、絶縁層の一方の面に回路層が形成された絶縁回路基板にヒートシンクが接合されたヒートシンク付絶縁回路基板、ヒートシンク本体に銅部材層が形成されたヒートシンクに関するものである。
 本願は、2017年10月27日に日本に出願された特願2017-208318号、および、2018年10月22日に日本に出願された特願2018-198468号について優先権を主張し、その内容をここに援用する。
In the present invention, a heat sink is joined to a joined body in which an aluminum alloy member made of aluminum alloy and a copper member made of copper or copper alloy are joined, and an insulating circuit board having a circuit layer formed on one side of the insulating layer. The present invention relates to an insulated circuit board with a heat sink, and a heat sink in which a copper member layer is formed on a heat sink body.
Priority is claimed on Japanese Patent Application No. 2017-208318, filed Oct. 27, 2017, and Japanese Patent Application No. 2018-98468, filed Oct. 22, 2018, the present application The contents are incorporated herein.
 LEDやパワーモジュール等の半導体装置においては、導電材料からなる回路層の上に半導体素子が接合された構造とされている。
 風力発電、電気自動車、ハイブリッド自動車等を制御するために用いられる大電力制御用のパワー半導体素子においては、発熱量が多いことから、これを搭載する基板としては、例えば窒化アルミニウム(AlN)、アルミナ(Al)などからなるセラミックス基板と、このセラミックス基板の一方の面に導電性の優れた金属板を接合して形成した回路層と、を備えた絶縁回路基板が、従来から広く用いられている。なお、パワージュール用基板としては、セラミックス基板の他方の面に金属層を形成したものも提供されている。
In a semiconductor device such as an LED or a power module, a semiconductor element is bonded on a circuit layer made of a conductive material.
In the case of a power semiconductor element for large power control used to control a wind power generation, an electric car, a hybrid car, etc., the calorific value is large, and as a substrate mounting this, for example, aluminum nitride (AlN), alumina An insulating circuit board comprising a ceramic substrate made of (Al 2 O 3 ) or the like and a circuit layer formed by bonding a metal plate having excellent conductivity to one surface of the ceramic substrate has been widely used conventionally. It is done. In addition, what formed the metal layer in the other surface of the ceramic substrate as a board | substrate for power joules is also provided.
 例えば、特許文献1に示すパワーモジュールにおいては、セラミックス基板の一方の面及び他方の面にアルミニウム又はアルミニウム合金からなる回路層及び金属層が形成された絶縁回路基板と、この回路層上にはんだ材を介して接合された半導体素子と、を備えた構造とされている。
 そして、絶縁回路基板の金属層側には、ヒートシンクが接合されており、半導体素子から絶縁回路基板側に伝達された熱を、ヒートシンクを介して外部へ放散する構成とされている。
 ところで、特許文献1に記載されたパワーモジュールのように、回路層及び金属層をアルミニウム又はアルミニウム合金で構成した場合には、その表面にAlの酸化皮膜が形成されるため、はんだ材によって半導体素子やヒートシンクを接合することができないといった問題があった。
For example, in the power module shown in Patent Document 1, an insulating circuit board in which a circuit layer and a metal layer made of aluminum or aluminum alloy are formed on one surface and the other surface of a ceramic substrate, and a solder material on this circuit layer And a semiconductor element bonded via the semiconductor device.
A heat sink is bonded to the metal layer side of the insulated circuit board, and the heat transferred from the semiconductor element to the insulated circuit board is dissipated to the outside through the heat sink.
By the way, when a circuit layer and a metal layer are comprised with aluminum or aluminum alloy like the power module described in patent document 1, since the oxide film of Al is formed in the surface, a semiconductor element is made by a solder material. And heat sinks can not be joined.
 そこで、特許文献2には、回路層及び金属層をAl層とCu層の積層構造とした絶縁回路基板が提案されている。この絶縁回路基板においては、回路層及び金属層の表面にはCu層が配置されるため、はんだ材を用いて半導体素子及びヒートシンクを良好に接合することができる。このため、積層方向の熱抵抗が小さくなり、半導体素子から発生した熱をヒートシンク側へと効率良く伝達することが可能となる。
 なお、この特許文献2に示すように、ヒートシンクを放熱板とし、この放熱板を冷却部に締結ネジによってネジ止めする構造のものも提案されている。
Therefore, Patent Document 2 proposes an insulated circuit board in which the circuit layer and the metal layer have a laminated structure of an Al layer and a Cu layer. In this insulated circuit board, the Cu layer is disposed on the surface of the circuit layer and the metal layer, so that the semiconductor element and the heat sink can be favorably joined using a solder material. Therefore, the thermal resistance in the stacking direction is reduced, and heat generated from the semiconductor element can be efficiently transferred to the heat sink side.
In addition, as shown to this patent document 2, the thing of the structure which uses a heat sink as a heat sink and screws this heat sink to a cooling part by a fastening screw is also proposed.
 また、特許文献3には、金属層及びヒートシンクの一方がアルミニウム又はアルミニウム合金で構成され、他方が銅又は銅合金で構成されており、これら前記金属層と前記ヒートシンクとが固相拡散接合されたヒートシンク付絶縁回路基板が提案されている。このヒートシンク付絶縁回路基板においては、金属層とヒートシンクとが固相拡散接合されているので、熱抵抗が小さく、放熱特性に優れている。 Further, in Patent Document 3, one of the metal layer and the heat sink is made of aluminum or an aluminum alloy, and the other is made of copper or a copper alloy, and the metal layer and the heat sink are solid phase diffusion bonded. Insulated circuit boards with heat sinks have been proposed. In this insulated circuit board with a heat sink, the metal layer and the heat sink are in solid phase diffusion bonding, so the thermal resistance is small and the heat dissipation characteristics are excellent.
 さらに、特許文献4には、Si濃度が1mass%以上25mass%以下のアルミニウム合金からなるヒートシンクと銅からなる金属層とが固相拡散接合されたヒートシンク付絶縁回路基板が提案されている。また、Si濃度が1mass%以上25mass%以下のアルミニウム合金からなるヒートシンク本体と銅からなる金属部材層とが固相拡散接合されたヒートシンクが提案されている。 Further, Patent Document 4 proposes an insulated circuit board with a heat sink in which a heat sink made of an aluminum alloy having a Si concentration of 1 mass% to 25 mass% and a metal layer made of copper are solid phase diffusion bonded. In addition, a heat sink has been proposed in which a heat sink main body made of an aluminum alloy having a Si concentration of 1 mass% to 25 mass% and a metal member layer made of copper are solid phase diffusion bonded.
特許第3171234号公報Patent No. 3171234 特開2014-160799号公報JP, 2014-160799, A 特開2014-099596号公報JP, 2014-099596, A 特開2016-208010号公報JP, 2016-208010, A
 ところで、特許文献2-4に記載されたように、アルミニウム又はアルミニウム合金からなるアルミニウム部材と、銅又は銅合金からなる銅部材と、を固相拡散接合した場合には、アルミニウム部材と銅部材との接合界面には、銅とアルミニウムとからなる金属間化合物層が形成される。ここで、銅とアルミニウムとからなる金属間化合物としては、図1に示すように複数の相がある。このため、アルミニウム部材と銅部材との接合界面に形成された金属間化合物層は、θ相、η相、ζ相、δ相、γ相といった各相が積層された構造とされている。
 ここで、η相、ζ相、δ相は、比較的硬いため、冷熱サイクルを負荷した際に、金属化合物層に割れが生じ、熱抵抗が高くなるとともに接合率が低下するといった問題があった。
By the way, as described in Patent Document 2-4, when solid-phase diffusion bonding an aluminum member made of aluminum or an aluminum alloy and a copper member made of copper or a copper alloy, the aluminum member and the copper member An intermetallic compound layer composed of copper and aluminum is formed at the bonding interface of Here, as an intermetallic compound composed of copper and aluminum, there are a plurality of phases as shown in FIG. Therefore, the intermetallic compound layer formed at the bonding interface between the aluminum member and the copper member has a structure in which each phase such as θ phase, 2 2 phase, ζ 2 phase, δ phase, and γ 2 phase is stacked. There is.
Here, since the 2 2 phase, the ζ 2 phase, and the δ phase are relatively hard, there is a problem that when the heating and cooling cycle is applied, the metal compound layer is cracked to increase the thermal resistance and decrease the bonding rate. there were.
 この発明は、前述した事情に鑑みてなされたものであって、アルミニウム又はアルミニウム合金からなるアルミニウム部材と、銅又は銅合金からなる銅部材と、を固相拡散接合した場合であっても、接合界面に比較的硬い金属間化合物層が形成されることを抑制でき、冷熱サイクル負荷時の熱抵抗の上昇や接合率の低下を抑制することができる接合体、この接合体を備えたヒートシンク付絶縁回路基板及びヒートシンクを提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and even when solid-phase diffusion bonding an aluminum member made of aluminum or an aluminum alloy and a copper member made of copper or a copper alloy, A joined body capable of suppressing formation of a relatively hard intermetallic compound layer at the interface, and suppressing rise in thermal resistance and decrease in bonding rate during cold thermal cycle load, insulation with a heat sink provided with this joined body It aims at providing a circuit board and a heat sink.
 前述の課題を解決するために、本発明の接合体は、アルミニウム合金からなるアルミニウム合金部材と、銅又銅合金からなる銅部材とが接合された接合体であって、前記アルミニウム合金部材は、Mg濃度が0.4mass%以上7.0mass%以下の範囲内とされ、Si濃度が1mass%未満とされたアルミニウム合金で構成され、前記アルミニウム合金部材と前記銅部材とが固相拡散接合されており、前記アルミニウム合金部材と前記銅部材との接合界面に、前記アルミニウム合金部材の金属原子と前記銅部材のCu原子とが拡散して形成された化合物層を備え、この化合物層は、前記アルミニウム合金部材側に配設されたCuとAlの金属間化合物のθ相からなる第1金属間化合物層と、前記銅部材側に配設されたCuとAlの金属間化合物のγ相からなる第2金属間化合物層と、これら第1金属間化合物層と第2金属間化合物層との間に形成されたCu-Al-Mg層と、で構成されていることを特徴としている。 In order to solve the above-described problems, the bonded body of the present invention is a bonded body in which an aluminum alloy member made of an aluminum alloy and a copper member made of copper or a copper alloy are bonded, and the aluminum alloy member is It is made of an aluminum alloy in which the Mg concentration is in the range of 0.4 mass% to 7.0 mass% and the Si concentration is less than 1 mass%, and the aluminum alloy member and the copper member are solid phase diffusion bonded And a compound layer formed by diffusion of metal atoms of the aluminum alloy member and Cu atoms of the copper member at a bonding interface between the aluminum alloy member and the copper member, and the compound layer is formed of the aluminum A first intermetallic compound layer formed of the θ phase of an intermetallic compound of Cu and Al disposed on the alloy member side, and gold of Cu and Al disposed on the copper member side A second intermetallic compound layer formed of gamma 2 phase during compounds are those with Cu-Al-Mg layer formed between the first intermetallic compound layer and the second intermetallic compound layer, in configuration It is characterized by
 この構成の接合体によれば、前記アルミニウム合金部材の金属原子と前記銅部材のCu原子とが拡散して形成された化合物層を備え、この化合物層は、前記アルミニウム合金部材側に配設されたCuとAlの金属間化合物のθ相からなる第1金属間化合物層と、前記銅部材側に配設されたCuとAlの金属間化合物のγ相からなる第2金属間化合物層と、これら第1金属間化合物層と第2金属間化合物層との間に形成されたCu-Al-Mg層と、で構成されているので、Cu-Al-Mg層によってCuとAlの金属間化合物層の成長が抑制されることにより、比較的硬いη相、ζ相、δ相が形成されておらず、冷熱サイクルを負荷した際における化合物層の割れの発生を抑制することができる。 According to the joined body of this configuration, a compound layer formed by diffusion of metal atoms of the aluminum alloy member and Cu atoms of the copper member is provided, and the compound layer is disposed on the aluminum alloy member side. a first intermetallic compound layer comprising a θ phase intermetallic compound of Cu and Al was, the copper member second intermetallic compound consisting of gamma 2 phase intermetallic compound of disposed the Cu and Al in the side layer and Since the Cu-Al-Mg layer formed between the first intermetallic compound layer and the second intermetallic compound layer is formed, the Cu-Al-Mg layer is formed between Cu and Al. By suppressing the growth of the compound layer, relatively hard η 2 phase, ζ 2 phase and δ phase are not formed, and it is possible to suppress the occurrence of cracking of the compound layer when the thermal cycle is applied. .
 ここで、本発明の接合体においては、前記アルミニウム合金部材の接合面にマグネシウム酸化物膜が形成されていてもよい。
 この場合、マグネシウム酸化物膜によってAl原子の拡散を抑制することができ、金属間化合物が必要以上に成長することを抑制できる。これにより、冷熱サイクルを負荷した際における化合物層の割れの発生をさらに抑制することができる。
Here, in the bonded body of the present invention, a magnesium oxide film may be formed on the bonding surface of the aluminum alloy member.
In this case, the diffusion of Al atoms can be suppressed by the magnesium oxide film, and the growth of the intermetallic compound can be suppressed more than necessary. Thereby, the occurrence of cracking of the compound layer can be further suppressed when the heating and cooling cycle is applied.
 また、本発明の接合体においては、前記マグネシウム酸化物膜は、結晶性の粒状体を有していることが好ましい。
 この場合、マグネシウム酸化物膜の強度が向上し、接合強度をさらに向上させることが可能となる。
Further, in the bonded body of the present invention, the magnesium oxide film preferably has crystalline particles.
In this case, the strength of the magnesium oxide film is improved, and the bonding strength can be further improved.
 本発明のヒートシンク付絶縁回路基板は、絶縁層と、この絶縁層の一方の面に形成された回路層と、前記絶縁層の他方の面に形成された金属層と、この金属層の前記絶縁層とは反対側の面に配置されたヒートシンクと、を備えたヒートシンク付絶縁回路基板であって、前記金属層のうち前記ヒートシンクとの接合面は、銅又は銅合金で構成され、前記ヒートシンクのうち前記金属層との接合面は、Mg濃度が0.4mass%以上7.0mass%以下の範囲内とされ、Si濃度が1mass%未満とされたアルミニウム合金で構成され、前記ヒートシンクと前記金属層とが固相拡散接合されており、前記ヒートシンクと前記金属層との接合界面に、前記アルミニウム合金の金属原子と前記銅部材のCu原子とが拡散して形成された化合物層を備え、この化合物層は、前記ヒートシンク側に配設されたCuとAlの金属間化合物のθ相からなる第1金属間化合物層と、前記金属層側に配設されたCuとAlの金属間化合物のγ相からなる第2金属間化合物層と、これら第1金属間化合物層と第2金属間化合物層との間に形成されたCu-Al-Mg層と、で構成されていることを特徴としている。 The insulating circuit substrate with a heat sink according to the present invention comprises an insulating layer, a circuit layer formed on one side of the insulating layer, a metal layer formed on the other side of the insulating layer, and the insulation of the metal layer A heat sink provided with a heat sink disposed on the side opposite to the layer, wherein the bonding surface of the metal layer to the heat sink is made of copper or a copper alloy; The bonding surface with the metal layer is made of an aluminum alloy having an Mg concentration of 0.4 mass% or more and 7.0 mass% or less and an Si concentration of less than 1 mass%, and the heat sink and the metal layer And a solid-phase diffusion bonded compound layer formed by diffusion of metal atoms of the aluminum alloy and Cu atoms of the copper member at the bonding interface between the heat sink and the metal layer. The compound layer includes a first intermetallic compound layer composed of a θ phase of an intermetallic compound of Cu and Al disposed on the heat sink side, and an intermetallic compound of Cu and Al disposed on the metal layer side. a second intermetallic compound layer formed of gamma 2 phase compound, and Cu-Al-Mg layer is formed between these first intermetallic compound layer and the second intermetallic compound layer, in that it is constituted It is characterized by
 この構成のヒートシンク付絶縁回路基板によれば、前記ヒートシンクと前記金属層との接合界面に、前記アルミニウム合金の金属原子と前記銅部材のCu原子とが拡散して形成された化合物層を備え、この化合物層は、前記ヒートシンク側に配設されたCuとAlの金属間化合物のθ相からなる第1金属間化合物層と、前記金属層側に配設されたCuとAlの金属間化合物のγ相からなる第2金属間化合物層と、これら第1金属間化合物層と第2金属間化合物層との間に形成されたCu-Al-Mg層と、で構成されているので、Cu-Al-Mg層によってCuとAlの金属間化合物層の成長が抑制されることにより、比較的硬いη相、ζ相、δ相が形成されておらず、冷熱サイクルを負荷した際における化合物層の割れの発生を抑制することができる。 According to the insulating circuit substrate with a heat sink of this configuration, a compound layer formed by diffusion of metal atoms of the aluminum alloy and Cu atoms of the copper member is provided at the bonding interface between the heat sink and the metal layer, The compound layer includes a first intermetallic compound layer formed of the θ phase of an intermetallic compound of Cu and Al disposed on the heat sink side, and an intermetallic compound of Cu and Al disposed on the metal layer side. Since it is composed of the second intermetallic compound layer consisting of γ 2 phase and the Cu-Al-Mg layer formed between the first intermetallic compound layer and the second intermetallic compound layer, Cu When the growth of the intermetallic compound layer of Cu and Al is suppressed by the -Al-Mg layer, relatively hard η 2 phase, ζ 2 phase, and δ phase are not formed, and the cold heat cycle is applied. Suppress the occurrence of compound layer cracking can do.
 ここで、本発明のヒートシンク付絶縁回路基板においては、前記ヒートシンクの接合面にマグネシウム酸化物膜が形成されていてもよい。
 この場合、マグネシウム酸化物膜によってAl原子の拡散を抑制することができ、金属間化合物が必要以上に成長することを抑制できる。これにより、冷熱サイクルを負荷した際における化合物層の割れの発生をさらに抑制することができる。
Here, in the insulating circuit substrate with a heat sink of the present invention, a magnesium oxide film may be formed on the bonding surface of the heat sink.
In this case, the diffusion of Al atoms can be suppressed by the magnesium oxide film, and the growth of the intermetallic compound can be suppressed more than necessary. Thereby, the occurrence of cracking of the compound layer can be further suppressed when the heating and cooling cycle is applied.
 また、本発明のヒートシンク付絶縁回路基板においては、前記マグネシウム酸化物膜は、結晶性の粒状体を有していることが好ましい。
 この場合、マグネシウム酸化物膜の強度が向上し、接合強度をさらに向上させることが可能となる。
In the insulating circuit substrate with a heat sink according to the present invention, the magnesium oxide film preferably has crystalline particles.
In this case, the strength of the magnesium oxide film is improved, and the bonding strength can be further improved.
 本発明のヒートシンクは、ヒートシンク本体と、前記ヒートシンク本体に接合された銅又は銅合金からなる銅部材層と、を備えたヒートシンクであって、前記ヒートシンク本体は、Mg濃度が0.4mass%以上7.0mass%以下の範囲内とされ、Si濃度が1mass%未満とされたアルミニウム合金で構成され、前記ヒートシンク本体と前記銅部材層とが固相拡散接合されており、前記ヒートシンク本体と前記銅部材層との接合界面に、前記ヒートシンク本体の金属原子と前記銅部材層のCu原子とが拡散して形成された化合物層を備え、この化合物層は、前記ヒートシンク本体側に配設されたCuとAlの金属間化合物のθ相からなる第1金属間化合物層と、前記銅部材層側に配設されたCuとAlの金属間化合物のγ相からなる第2金属間化合物層と、これら第1金属間化合物層と第2金属間化合物層との間に形成されたCu-Al-Mg層と、で構成されていることを特徴としている。 The heat sink according to the present invention is a heat sink comprising a heat sink body and a copper member layer made of copper or a copper alloy joined to the heat sink body, and the heat sink body has an Mg concentration of 0.4 mass% or more. The heat sink main body and the copper member layer are solid-phase diffusion bonded, and the heat sink main body and the copper member are made of an aluminum alloy having a Si concentration of less than 1 mass%, and the solid content is diffusion bonded. A compound layer formed by diffusion of metal atoms of the heat sink body and Cu atoms of the copper member layer is provided at a bonding interface with the layer, and the compound layer is formed of Cu disposed on the heat sink body side. a first intermetallic compound layer comprising a θ phase intermetallic compound of Al, from gamma 2 phase intermetallic compound of the copper disposed member layer side has been Cu and Al That a second intermetallic compound layer, is characterized in that the Cu-Al-Mg layer is formed, in being configured between these first intermetallic compound layer and the second intermetallic compound layer.
 この構成のヒートシンクによれば、前記ヒートシンク本体と前記銅部材層との接合界面に、前記ヒートシンク本体の金属原子と前記銅部材層のCu原子とが拡散して形成された化合物層を備え、この化合物層は、前記ヒートシンク本体側に配設されたCuとAlの金属間化合物のθ相からなる第1金属間化合物層と、前記銅部材層側に配設されたCuとAlの金属間化合物のγ相からなる第2金属間化合物層と、これら第1金属間化合物層と第2金属間化合物層との間に形成されたCu-Al-Mg層と、からなる構成とされているので、Cu-Al-Mg層によってCuとAlの金属間化合物層の成長が抑制され、比較的硬いη相、ζ相、δ相が形成されておらず、冷熱サイクルを負荷した際における金属化合物層の割れの発生を抑制することができる。 According to the heat sink of this configuration, a compound layer formed by diffusion of metal atoms of the heat sink body and Cu atoms of the copper member layer is provided at the bonding interface between the heat sink body and the copper member layer, The compound layer includes a first intermetallic compound layer formed of the θ phase of an intermetallic compound of Cu and Al disposed on the heat sink main body side, and an intermetallic compound of Cu and Al disposed on the copper member layer side. a second intermetallic compound layer formed of gamma 2 phase is a Cu-Al-Mg layer formed between these first intermetallic compound layer and the second intermetallic compound layer, a configuration and Therefore, the growth of the intermetallic compound layer of Cu and Al is suppressed by the Cu-Al-Mg layer, and the relatively hard η 2 phase, ζ 2 phase, and δ phase are not formed, and the cold thermal cycle is applied. Suppress the occurrence of cracks in the metal compound layer can do.
 ここで、本発明のヒートシンクにおいては、前記ヒートシンク本体の接合面にマグネシウム酸化物膜が形成されていてもよい。
 この場合、マグネシウム酸化物膜によってAl原子の拡散を抑制することができ、金属間化合物が必要以上に成長することを抑制できる。これにより、冷熱サイクルを負荷した際における化合物層の割れの発生をさらに抑制することができる。
Here, in the heat sink of the present invention, a magnesium oxide film may be formed on the bonding surface of the heat sink body.
In this case, the diffusion of Al atoms can be suppressed by the magnesium oxide film, and the growth of the intermetallic compound can be suppressed more than necessary. Thereby, the occurrence of cracking of the compound layer can be further suppressed when the heating and cooling cycle is applied.
 また、本発明のヒートシンクにおいては、前記マグネシウム酸化物膜は、結晶性の粒状体を有していることが好ましい。
 この場合、マグネシウム酸化物膜の強度が向上し、接合強度をさらに向上させることが可能となる。
In the heat sink of the present invention, preferably, the magnesium oxide film has crystalline particles.
In this case, the strength of the magnesium oxide film is improved, and the bonding strength can be further improved.
 本発明によれば、アルミニウム又はアルミニウム合金からなるアルミニウム部材と、銅又は銅合金からなる銅部材と、を固相拡散接合した場合であっても、接合界面に比較的硬い金属間化合物層が形成されることを抑制でき、冷熱サイクル負荷時の熱抵抗の上昇や接合率の低下を抑制することができる接合体、この接合体を備えたヒートシンク付絶縁回路基板及びヒートシンクを提供することが可能となる。 According to the present invention, even when solid-phase diffusion bonding an aluminum member made of aluminum or an aluminum alloy and a copper member made of copper or a copper alloy, a relatively hard intermetallic compound layer is formed at the bonding interface Can be suppressed, and it is possible to provide a bonded body capable of suppressing an increase in thermal resistance and a decrease in bonding rate during a thermal cycle load, and an insulated circuit board and a heat sink provided with this heat sink. Become.
CuとAlの2元状態図である。It is a binary phase diagram of Cu and Al. 本発明の第一実施形態に係るヒートシンク付絶縁回路基板を備えたパワーモジュールの概略説明図である。It is a schematic explanatory drawing of the power module provided with the insulated circuit board with a heat sink which concerns on 1st embodiment of this invention. 図2に示すヒートシンク付絶縁回路基板のヒートシンクと金属層(Cu層)との接合界面の断面拡大説明図である。FIG. 3 is an enlarged cross-sectional view of a bonding interface between a heat sink and a metal layer (Cu layer) of the insulating circuit board with a heat sink shown in FIG. 2; 第一実施形態に係るヒートシンク付絶縁回路基板の製造方法を説明するフロー図である。It is a flowchart explaining the manufacturing method of the insulation circuit board with a heat sink concerning a first embodiment. 第一実施形態に係るヒートシンク付絶縁回路基板の製造方法の概略説明図である。It is a schematic explanatory drawing of the manufacturing method of the insulated circuit board with a heat sink which concerns on 1st embodiment. 本発明の第二実施形態に係るヒートシンクの概略説明図である。It is a schematic explanatory drawing of the heat sink which concerns on 2nd embodiment of this invention. 図6に示すヒートシンクのヒートシンク本体と銅部材層との接合界面の断面拡大説明図である。FIG. 7 is an enlarged cross-sectional view of a bonding interface between a heat sink main body and a copper member layer of the heat sink shown in FIG. 6. 第二実施形態に係るヒートシンクの製造方法を説明するフロー図である。It is a flowchart explaining the manufacturing method of the heat sink concerning a second embodiment. 第二実施形態に係るヒートシンクの製造方法の概略説明図である。It is a schematic explanatory drawing of the manufacturing method of the heat sink which concerns on 2nd embodiment. 本発明の他の実施形態であるヒートシンク付絶縁回路基板を備えたパワーモジュールの概略説明図である。It is a schematic explanatory drawing of the power module provided with the insulated circuit board with a heat sink which is other embodiment of this invention. 通電加熱法によって固相拡散接合を行う状況を示す概略説明図である。It is a schematic explanatory drawing which shows the condition which performs solid phase diffusion bonding by a current-flow heating method. 実施例2において、本発明例16のマグネシウム酸化物膜の観察結果を示す写真である。In Example 2, it is a photograph in which an observation result of a magnesium oxide film of the present invention example 16 is shown.
(第一実施形態)
 以下に、本発明の実施形態について、添付した図面を参照して説明する。
 図2に、本発明の第一実施形態であるヒートシンク付絶縁回路基板30を用いたパワーモジュール1を示す。
 このパワーモジュール1は、ヒートシンク付絶縁回路基板30と、このヒートシンク付絶縁回路基板30の一方の面(図2において上面)にはんだ層2を介して接合された半導体素子3と、を備えている。
 ヒートシンク付絶縁回路基板30は、絶縁回路基板10と、絶縁回路基板10に接合されたヒートシンク31と、を備えている。
First Embodiment
Hereinafter, embodiments of the present invention will be described with reference to the attached drawings.
The power module 1 using the insulated circuit board 30 with a heat sink which is 1st embodiment of this invention in FIG. 2 is shown.
The power module 1 includes an insulated circuit board 30 with a heat sink, and a semiconductor element 3 joined to one surface (upper surface in FIG. 2) of the insulated circuit board 30 with a heat sink via a solder layer 2. .
The insulating circuit board 30 with a heat sink includes an insulating circuit board 10 and a heat sink 31 joined to the insulating circuit board 10.
 絶縁回路基板10は、絶縁層を構成するセラミックス基板11と、このセラミックス基板11の一方の面(図2において上面)に配設された回路層12と、セラミックス基板11の他方の面に配設された金属層13と、を備えている。 Insulating circuit substrate 10 is provided on ceramic substrate 11 forming the insulating layer, circuit layer 12 disposed on one surface (upper surface in FIG. 2) of ceramic substrate 11, and on the other surface of ceramic substrate 11. And the metal layer 13.
 セラミックス基板11は、絶縁性および放熱性に優れた窒化ケイ素(Si)、窒化アルミニウム(AlN)、アルミナ(Al)等のセラミックスで構成されている。本実施形態では、セラミックス基板11は、特に放熱性の優れた窒化アルミニウム(AlN)で構成されている。また、セラミックス基板11の厚さは、例えば、0.2~1.5mmの範囲内に設定されており、本実施形態では、0.635mmに設定されている。 The ceramic substrate 11 is made of a ceramic such as silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), or alumina (Al 2 O 3 ), which is excellent in insulation and heat dissipation. In the present embodiment, the ceramic substrate 11 is made of aluminum nitride (AlN) which is particularly excellent in heat dissipation. The thickness of the ceramic substrate 11 is set, for example, in the range of 0.2 to 1.5 mm, and in the present embodiment, it is set to 0.635 mm.
 回路層12は、図5に示すように、セラミックス基板11の一方の面に、アルミニウム又はアルミニウム合金からなるアルミニウム板22が接合されることにより形成されている。本実施形態においては、回路層12は、純度が99mass%以上のアルミニウム(2Nアルミニウム)または純度が99.99mass%以上のアルミニウム(4Nアルミニウム)の圧延板(アルミニウム板22)がセラミックス基板11に接合されることで形成されている。なお、回路層12となるアルミニウム板22の厚さは0.1mm以上1.0mm以下の範囲内に設定されており、本実施形態では、0.6mmに設定されている。 As shown in FIG. 5, the circuit layer 12 is formed by bonding an aluminum plate 22 made of aluminum or an aluminum alloy to one surface of the ceramic substrate 11. In the present embodiment, in the circuit layer 12, a rolled plate (aluminum plate 22) of aluminum (2N aluminum) having a purity of 99 mass% or more or aluminum (4N aluminum) having a purity of 99.99 mass% or more is bonded to the ceramic substrate 11. It is formed by being done. In addition, the thickness of the aluminum plate 22 used as the circuit layer 12 is set in the range of 0.1 mm or more and 1.0 mm or less, and is set to 0.6 mm in this embodiment.
 金属層13は、図2に示すように、セラミックス基板11の他方の面に配設されたAl層13Aと、このAl層13Aのうちセラミックス基板11が接合された面と反対側の面に積層されたCu層13Bと、を有している。
 Al層13Aは、図5に示すように、セラミックス基板11の他方の面に、アルミニウム又はアルミニウム合金からなるアルミニウム板23Aが接合されることにより形成されている。本実施形態においては、Al層13Aは、純度が99mass%以上のアルミニウム(2Nアルミニウム)または純度が99.99mass%以上のアルミニウム(4Nアルミニウム)の圧延板(アルミニウム板23A)がセラミックス基板11に接合されることで形成されている。接合されるアルミニウム板23Aの厚さは0.1mm以上3.0mm以下の範囲内に設定されており、本実施形態では、0.6mmに設定されている。Cu層13Bは、図5に示すように、Al層13Aの他方の面に、銅又は銅合金からなる銅板23Bが接合されることにより形成されている。本実施形態においては、Cu層13Bは、無酸素銅の圧延板(銅板23B)が接合されることで形成されている。Cu層13Bの厚さは0.1mm以上6mm以下の範囲内に設定されており、本実施形態では、1mmに設定されている。
As shown in FIG. 2, the metal layer 13 is laminated on an Al layer 13A disposed on the other surface of the ceramic substrate 11 and a surface of the Al layer 13A opposite to the surface to which the ceramic substrate 11 is joined. And the Cu layer 13B.
As shown in FIG. 5, the Al layer 13A is formed by bonding an aluminum plate 23A made of aluminum or an aluminum alloy to the other surface of the ceramic substrate 11. In the present embodiment, in the Al layer 13A, a rolled plate (aluminum plate 23A) of aluminum (2N aluminum) having a purity of 99 mass% or more or aluminum (4N aluminum) having a purity of 99.99 mass% or more is bonded to the ceramic substrate 11. It is formed by being done. The thickness of the aluminum plate 23A to be joined is set in the range of 0.1 mm or more and 3.0 mm or less, and in the present embodiment, it is set to 0.6 mm. As shown in FIG. 5, the Cu layer 13B is formed by bonding a copper plate 23B made of copper or a copper alloy to the other surface of the Al layer 13A. In the present embodiment, the Cu layer 13B is formed by bonding a rolled plate (copper plate 23B) of oxygen-free copper. The thickness of the Cu layer 13B is set in the range of 0.1 mm or more and 6 mm or less, and is set to 1 mm in the present embodiment.
 ヒートシンク31は、絶縁回路基板10側の熱を放散するためのものであり、本実施形態では、図2に示すように、冷却媒体が流通する流路32が設けられている。このヒートシンク31は、Mg濃度が0.4mass%以上7.0mass%以下の範囲内とされ、Si濃度が1mass%未満とされたアルミニウム合金で構成されている。なお、このアルミニウム合金においては、Si濃度が1mass%未満であり、析出Siがないことが好ましい。なお、Si含有金属間化合物は析出していてもよい。 The heat sink 31 is for dissipating the heat on the side of the insulating circuit board 10. In the present embodiment, as shown in FIG. 2, a flow path 32 through which a cooling medium flows is provided. The heat sink 31 is made of an aluminum alloy in which the Mg concentration is in the range of 0.4 mass% to 7.0 mass% and the Si concentration is less than 1 mass%. In addition, in this aluminum alloy, it is preferable that Si concentration is less than 1 mass%, and precipitation Si is absent. The Si-containing intermetallic compound may be precipitated.
 ここで、ヒートシンク31と金属層13(Cu層13B)とは、固相拡散接合されている。
 金属層13(Cu層13B)とヒートシンク31との接合界面には、図3に示すように、化合物層40が形成されている。この化合物層40は、ヒートシンク31の金属原子と金属層13(Cu層13B)のCu原子とが相互に拡散することによって形成されたものである。
Here, the heat sink 31 and the metal layer 13 (Cu layer 13B) are in solid phase diffusion bonding.
As shown in FIG. 3, a compound layer 40 is formed at the bonding interface between the metal layer 13 (Cu layer 13 </ b> B) and the heat sink 31. The compound layer 40 is formed by mutual diffusion of the metal atoms of the heat sink 31 and the Cu atoms of the metal layer 13 (Cu layer 13B).
 そして、この化合物層40は、図3に示すように、ヒートシンク31側に配設されたCuとAlの金属間化合物のθ相からなる第1金属間化合物層41と、金属層13(Cu層13B)側に配設されたCuとAlの金属間化合物のγ相からなる第2金属間化合物層42と、これら第1金属間化合物層41と第2金属間化合物層42との間に形成されたCu-Al-Mg層43と、で構成されている。 And this compound layer 40 is, as shown in FIG. 3, a first intermetallic compound layer 41 consisting of the θ phase of an intermetallic compound of Cu and Al disposed on the heat sink 31 side, and a metal layer 13 (Cu layer 13B) A second intermetallic compound layer 42 composed of a γ 2 phase of an intermetallic compound of Cu and Al disposed on the side, and between the first intermetallic compound layer 41 and the second intermetallic compound layer 42 And the formed Cu—Al—Mg layer 43.
 本実施形態においては、Cu-Al-Mg層43は、CuとAlとMgの金属間化合物であるCuAlMg、あるいは、CuAlMg、CuAlMg、CuAlMg等で構成されている。
 また、このCu-Al-Mg層43のMgは、ヒートシンク31を構成するアルミニウム合金に含まれたMgが拡散したものである。このため、ヒートシンク31の接合界面近傍には、Mgが欠乏したMg欠乏層が形成されることになる。
In the present embodiment, the Cu-Al-Mg layer 43 is made of Cu 6 Al 5 Mg 2 which is an intermetallic compound of Cu, Al and Mg, or CuAl 2 Mg, Cu 3 Al 7 Mg 6 , CuAlMg, etc. It is done.
Further, Mg of the Cu—Al—Mg layer 43 is a diffusion of Mg contained in the aluminum alloy constituting the heat sink 31. For this reason, a Mg-depleted Mg-depleted layer is formed in the vicinity of the bonding interface of the heat sink 31.
 ここで、化合物層40の厚さは、10μm以上70μm以下の範囲内、好ましくは、15μm以上40μm以下の範囲内に設定されている。
 また、Cu-Al-Mg層43の厚さは、1μm以上45μm以下の範囲内、好ましくは、2.5μm以上30μm以下の範囲内に設定されている。
Here, the thickness of the compound layer 40 is set in the range of 10 μm to 70 μm, preferably in the range of 15 μm to 40 μm.
The thickness of the Cu-Al-Mg layer 43 is set in the range of 1 μm to 45 μm, preferably in the range of 2.5 μm to 30 μm.
 なお、ヒートシンク31と金属層13(Cu層13B)との接合界面において、ヒートシンク31の接合面にマグネシウム酸化物膜が形成されていてもよい。このマグネシウム酸化物膜は、ヒートシンク31の表面に形成されたアルミナ皮膜が、ヒートシンク31(アルミニウム合金)のMgと反応することで形成されるものである。
 このマグネシウム酸化物膜は、MgO、又は、MgAlで構成されている。また、マグネシウム酸化物膜においては、結晶性の粒状体を有していることが好ましい。非晶質のアルミナ皮膜がMgと反応することで結晶性の粒状体が生成することから、結晶性の粒状体が存在することで、アルミナ皮膜とMgの反応が十分に進行していることになる。
A magnesium oxide film may be formed on the bonding surface of the heat sink 31 at the bonding interface between the heat sink 31 and the metal layer 13 (Cu layer 13B). The magnesium oxide film is formed by reacting an alumina film formed on the surface of the heat sink 31 with Mg of the heat sink 31 (aluminum alloy).
This magnesium oxide film is composed of MgO or MgAl 2 O 4 . The magnesium oxide film preferably has crystalline particles. The reaction of the alumina film with Mg is sufficiently progressed by the presence of the crystalline particles, since the amorphous particles of the alumina film react with Mg to form crystalline particles. Become.
 次に、本実施形態であるヒートシンク付絶縁回路基板30の製造方法について、図4及び図5を参照して説明する。 Next, a method of manufacturing the insulated circuit board 30 with a heat sink according to the present embodiment will be described with reference to FIGS. 4 and 5.
(アルミニウム板積層工程S01)
 まず、図5に示すように、セラミックス基板11の一方の面に、回路層12となるアルミニウム板22を、Al-Si系のろう材箔26を介して積層する。
 また、セラミックス基板11の他方の面に、Al層13Aとなるアルミニウム板23A、Al-Si系のろう材箔26を介して積層する。なお、本実施形態では、Al-Si系のろう材箔26として、厚さ10μmのAl-8mass%Si合金箔を用いた。
(Aluminum sheet lamination process S01)
First, as shown in FIG. 5, an aluminum plate 22 to be the circuit layer 12 is laminated on one surface of the ceramic substrate 11 through the brazing foil 26 of Al—Si system.
Further, it is laminated on the other surface of the ceramic substrate 11 through the aluminum plate 23A to be the Al layer 13A and the brazing material foil 26 of Al-Si system. In the present embodiment, an Al-8 mass% Si alloy foil having a thickness of 10 μm is used as the brazing material foil 26 of the Al-Si system.
(回路層及びAl層形成工程S02)
 そして、積層方向に加圧(圧力1~35kgf/cm(0.1~3.5MPa))した状態で真空加熱炉内に配置し加熱して、アルミニウム板22とセラミックス基板11を接合して回路層12を形成する。また、セラミックス基板11とアルミニウム板23Aを接合してAl層13Aを形成する。
 ここで、真空加熱炉内の圧力は10-6Pa以上10-3Pa以下の範囲内、加熱温度は600℃以上650℃以下の範囲内、加熱温度での保持時間は15分以上180分以下の範囲内に設定されることが好ましい。
(Circuit layer and Al layer forming step S02)
Then, it is placed in a vacuum heating furnace in a state of being pressurized (pressure 1 to 35 kgf / cm 2 (0.1 to 3.5 MPa)) in the stacking direction and heated to bond the aluminum plate 22 and the ceramic substrate 11. The circuit layer 12 is formed. Further, the ceramic substrate 11 and the aluminum plate 23A are joined to form an Al layer 13A.
Here, the pressure in the vacuum heating furnace is in the range of 10 −6 Pa to 10 −3 Pa, the heating temperature is in the range of 600 ° C. to 650 ° C., and the holding time at the heating temperature is 15 minutes to 180 minutes It is preferable to set in the range of
(Cu層(金属層)形成工程S03)
 次に、Al層13Aの他方の面側に、Cu層13Bとなる銅板23Bを積層する。
 そして、積層方向に加圧(圧力3~35kgf/cm(0.3~3.5MPa))した状態で真空加熱炉内に配置し加熱して、Al層13Aと銅板23Bとを固相拡散接合し、金属層13を形成する。
 ここで、真空加熱炉内の圧力は10-6Pa以上10-3Pa以下の範囲内、加熱温度は400℃以上548℃以下の範囲内、加熱温度での保持時間は5分以上240分以下の範囲内に設定されることが好ましい。
 なお、Al層13A、銅板23Bのうち固相拡散接合されるそれぞれの接合面は、予め当該面の傷が除去されて平滑にされている。
(Cu layer (metal layer) forming step S03)
Next, a copper plate 23B to be the Cu layer 13B is stacked on the other surface side of the Al layer 13A.
And it arranges in a vacuum heating furnace and heats in the state pressurized (pressure 3-35kgf / cm 2 (0.3-3.5MPa)) in the lamination direction, solid phase diffusion of Al layer 13A and copper plate 23B Bonding to form a metal layer 13.
Here, the pressure in the vacuum heating furnace is in the range of 10 −6 Pa to 10 −3 Pa, the heating temperature is in the range of 400 ° C. to 548 ° C., and the holding time at the heating temperature is 5 minutes to 240 minutes It is preferable to set in the range of
The respective bonding surfaces of the Al layer 13A and the copper plate 23B to be subjected to solid phase diffusion bonding are smoothed by removing the flaws of the surfaces in advance.
(金属層/ヒートシンク接合工程S04)
 次に、金属層13(Cu層13B)とヒートシンク31とを積層し、積層方向に加圧(圧力5~35kgf/cm(0.5~3.5MPa))した状態で真空加熱炉内に配置し加熱して、金属層13(Cu層13B)とヒートシンク31を固相拡散接合する。なお、金属層13(Cu層13B)及びヒートシンク31のうち固相拡散接合されるそれぞれの接合面は、予め当該面の傷が除去されて平滑にされている。
 ここで、真空加熱炉内の圧力は10-6Pa以上10-3Pa以下の範囲内、加熱温度は400℃以上520℃以下の範囲内、加熱温度での保持時間は30分以上240分以下の範囲内に設定されることが好ましい。
(Metal layer / heat sink bonding step S04)
Next, the metal layer 13 (Cu layer 13B) and the heat sink 31 are stacked, and in the vacuum heating furnace in a state in which pressure (pressure 5 to 35 kgf / cm 2 (0.5 to 3.5 MPa)) is applied in the stacking direction. The metal layer 13 (Cu layer 13B) and the heat sink 31 are solid phase diffusion bonded by arranging and heating. The bonding surfaces of the metal layer 13 (Cu layer 13B) and the heat sink 31 to be bonded by solid phase diffusion bonding are smoothed by removing the flaws of the surfaces in advance.
Here, the pressure in the vacuum heating furnace is in the range of 10 −6 Pa to 10 −3 Pa, the heating temperature is in the range of 400 ° C. to 520 ° C., and the holding time at the heating temperature is 30 minutes to 240 minutes It is preferable to set in the range of
 この金属層/ヒートシンク接合工程S04において、Cu層13B中のCu原子及びヒートシンク31中のAl原子及びMg原子が相互拡散し、図3に示すように、第1金属間化合物層41とCu-Al-Mg層43と第2金属間化合物層42とからなる化合物層40が形成される。
 なお、ヒートシンク31と金属層13(Cu層13B)との接合界面において、ヒートシンク31の表面部分にマグネシウム酸化物膜が形成されることもある。また、マグネシウム酸化物膜においては、金属層/ヒートシンク接合工程S04の加熱温度が高く、かつ、保持時間が長くなることで、アルミナ皮膜とMgとの反応が促進され、非晶質から結晶質へと変化することになる。
 このようにして、本実施形態であるヒートシンク付絶縁回路基板30が製造される。
In this metal layer / heat sink bonding step S04, the Cu atoms in the Cu layer 13B and the Al atoms and Mg atoms in the heat sink 31 mutually diffuse, and as shown in FIG. 3, the first intermetallic compound layer 41 and Cu—Al A compound layer 40 composed of the -Mg layer 43 and the second intermetallic compound layer 42 is formed.
A magnesium oxide film may be formed on the surface portion of the heat sink 31 at the bonding interface between the heat sink 31 and the metal layer 13 (Cu layer 13B). Further, in the case of the magnesium oxide film, the reaction between the alumina film and Mg is promoted by the high heating temperature of the metal layer / heat sink bonding step S04 and the long holding time, and the amorphous to crystalline state is obtained. Will change.
In this manner, the heat sink equipped insulated circuit board 30 according to the present embodiment is manufactured.
(半導体素子接合工程S05)
 次いで、回路層12の一方の面(表面)に、はんだ材を介して半導体素子3を積層し、還元炉内においてはんだ接合する。
 上記のようにして、本実施形態であるパワーモジュール1が製造される。
(Semiconductor element bonding step S05)
Next, the semiconductor element 3 is stacked on one surface (surface) of the circuit layer 12 via a solder material, and soldered in a reduction furnace.
As described above, the power module 1 according to the present embodiment is manufactured.
 以上のような構成とされた本実施形態に係るヒートシンク付絶縁回路基板30によれば、ヒートシンク31と金属層13(Cu層13B)との接合界面に、ヒートシンク31を構成するアルミニウム合金のAl原子及びMg原子と、金属層13(Cu層13B)のCu原子とが相互に拡散して形成された化合物層40を備えており、この化合物層40が、ヒートシンク31側に配設されたCuとAlの金属間化合物のθ相からなる第1金属間化合物層41と、金属層13(Cu層13B)側に配設されたCuとAlの金属間化合物のγ相からなる第2金属間化合物層42と、これら第1金属間化合物層41と第2金属間化合物層42との間に形成されたCu-Al-Mg層43と、で構成されているので、Cu-Al-Mg層43によって金属間化合物の成長が抑制され、比較的硬いη相、ζ相、δ相が形成されておらず、冷熱サイクルを負荷した際における化合物層40の割れの発生を抑制することができる。 According to the insulated circuit board 30 with a heat sink according to the present embodiment configured as described above, the Al atom of the aluminum alloy that constitutes the heat sink 31 at the bonding interface between the heat sink 31 and the metal layer 13 (Cu layer 13B) And Mg atoms and Cu atoms of the metal layer 13 (Cu layer 13B) are mutually diffused to form a compound layer 40. The compound layer 40 is formed of Cu disposed on the heat sink 31 side. A first intermetallic compound layer 41 composed of the θ phase of the intermetallic compound of Al, and a second intermetallic compound composed of γ 2 phase of the intermetallic compound of Cu and Al disposed on the metal layer 13 (Cu layer 13B) side Since the compound layer 42 and the Cu-Al-Mg layer 43 formed between the first intermetallic compound layer 41 and the second intermetallic compound layer 42, the Cu-Al-Mg layer is formed. By 43 It suppressed the growth of intermetallic compounds, relatively hard eta 2-phase, zeta 2-phase, no δ-phase is formed, it is possible to suppress the occurrence of cracking of the compound layer 40 at the time loaded with thermal cycle.
 また、本実施形態においては、化合物層40の厚さが10μm以上とされているので、Cu原子とAl原子とが十分に相互拡散しており、ヒートシンク31と金属層13(Cu層13B)を確実に固相拡散接合することができる。
 さらに、本実施形態においては、化合物層40の厚さが70μm以下とされているので、金属間化合物が必要以上に成長しておらず、化合物層40における割れの発生等を抑制することができる。
Further, in the present embodiment, since the thickness of the compound layer 40 is 10 μm or more, Cu atoms and Al atoms are sufficiently interdiffused, and the heat sink 31 and the metal layer 13 (Cu layer 13B) Solid phase diffusion bonding can be ensured.
Furthermore, in the present embodiment, since the thickness of the compound layer 40 is 70 μm or less, the intermetallic compound does not grow more than necessary, and the occurrence of cracking or the like in the compound layer 40 can be suppressed. .
 また、本実施形態においては、Cu-Al-Mg層43の厚さが1μm以上とされているので、金属間化合物の成長を確実に抑制することができる。
 さらに、本実施形態においては、Cu-Al-Mg層43の厚さが45μm以下とされているので、金属間化合物の成長が必要以上に阻害されず、ヒートシンク31と金属層13(Cu層13B)を確実に固相拡散接合することができる。
Further, in the present embodiment, since the thickness of the Cu—Al—Mg layer 43 is 1 μm or more, the growth of the intermetallic compound can be reliably suppressed.
Furthermore, in the present embodiment, since the thickness of the Cu-Al-Mg layer 43 is 45 μm or less, the growth of the intermetallic compound is not inhibited more than necessary, and the heat sink 31 and the metal layer 13 (Cu layer 13B Solid phase diffusion bonding).
 また、本実施形態において、ヒートシンク31の接合面にマグネシウム酸化物膜が形成されていた場合には、マグネシウム酸化物膜によってAl原子の拡散を抑制することができ、金属間化合物が必要以上に成長することを抑制できる。これにより、冷熱サイクルを負荷した際における化合物層40の割れの発生をさらに抑制することができる。
 さらに、マグネシウム酸化物膜が結晶性の粒状体を有している場合には、マグネシウム酸化物膜の強度が向上し、ヒートシンク31と金属層13(Cu層13B)との接合強度をさらに向上させることが可能となる。
Further, in the present embodiment, when the magnesium oxide film is formed on the bonding surface of the heat sink 31, the diffusion of Al atoms can be suppressed by the magnesium oxide film, and the intermetallic compound grows more than necessary. Can be suppressed. Thereby, the occurrence of cracking of the compound layer 40 can be further suppressed when the thermal cycling is applied.
Furthermore, when the magnesium oxide film has crystalline granules, the strength of the magnesium oxide film is improved, and the bonding strength between the heat sink 31 and the metal layer 13 (Cu layer 13B) is further improved. It becomes possible.
(第二実施形態)
 次に、本発明の第二実施形態であるヒートシンクについて説明する。図6に、本発明の第二実施形態に係るヒートシンク101を示す。
 このヒートシンク101は、ヒートシンク本体110と、ヒートシンク本体110の一方の面(図6において上側)に積層された銅又は銅合金からなる銅部材層117と、を備えている。本実施形態では、銅部材層117は、図9に示すように、無酸素銅の圧延板からなる銅板127を接合することによって構成されている。
Second Embodiment
Next, a heat sink according to a second embodiment of the present invention will be described. FIG. 6 shows a heat sink 101 according to a second embodiment of the present invention.
The heat sink 101 includes a heat sink main body 110 and a copper member layer 117 made of copper or a copper alloy laminated on one surface (upper side in FIG. 6) of the heat sink main body 110. In the present embodiment, as shown in FIG. 9, the copper member layer 117 is configured by bonding a copper plate 127 made of a rolled plate of oxygen free copper.
 ヒートシンク本体110は、冷却媒体が流通する流路111が設けられている。このヒートシンク本体110は、Mg濃度が0.4mass%以上7.0mass%以下の範囲内とされ、Si濃度が1mass%未満とされたアルミニウム合金で構成されている。なお、このアルミニウム合金においては、Si濃度が1mass%未満であり、Siが母相中に固溶したものとされている。 The heat sink body 110 is provided with a flow path 111 through which the cooling medium flows. The heat sink body 110 is made of an aluminum alloy in which the Mg concentration is in the range of 0.4 mass% to 7.0 mass%, and the Si concentration is less than 1 mass%. In this aluminum alloy, the Si concentration is less than 1 mass%, and Si is considered to be solid-solved in the matrix phase.
 ここで、ヒートシンク本体110と銅部材層117は、固相拡散接合されている。
 ヒートシンク本体110と銅部材層117との接合界面には、図7に示すように、AlとCuを含有する化合物層140が形成されている。この化合物層140は、ヒートシンク本体110の金属原子と銅部材層117のCu原子とが相互に拡散して形成されたものである。
Here, the heat sink body 110 and the copper member layer 117 are bonded by solid phase diffusion.
As shown in FIG. 7, a compound layer 140 containing Al and Cu is formed at the bonding interface between the heat sink main body 110 and the copper member layer 117. The compound layer 140 is formed by mutual diffusion of the metal atoms of the heat sink body 110 and the Cu atoms of the copper member layer 117.
 そして、この化合物層140は、図7に示すように、ヒートシンク本体110側に配設されたCuとAlの金属間化合物のθ相からなる第1金属間化合物層141と、銅部材層117側に配設されたCuとAlの金属間化合物のγ相からなる第2金属間化合物層142と、これら第1金属間化合物層141と第2金属間化合物層142との間に形成されたCu-Al-Mg層143と、で構成されている。 Then, as shown in FIG. 7, the compound layer 140 includes the first intermetallic compound layer 141 composed of the θ phase of the intermetallic compound of Cu and Al disposed on the heat sink main body 110 side, and the copper member layer 117 side. Formed between the first intermetallic compound layer 141 and the second intermetallic compound layer 142, and the second intermetallic compound layer 142 composed of the γ 2 phase of the intermetallic compound of Cu and Al disposed in And a Cu-Al-Mg layer 143.
 本実施形態においては、Cu-Al-Mg層143は、CuとAlとMgの金属間化合物であるCuAlMg、あるいは、CuAlMg、CuAlMg、CuAlMg等で構成されている。
 また、このCu-Al-Mg層143のMgは、ヒートシンク本体110を構成するアルミニウム合金に含まれたMgが拡散したものである。このため、ヒートシンク本体110の接合界面近傍には、Mgが欠乏したMg欠乏層が形成されることになる。
In the present embodiment, the Cu-Al-Mg layer 143 is made of Cu 6 Al 5 Mg 2 which is an intermetallic compound of Cu, Al and Mg, or CuAl 2 Mg, Cu 3 Al 7 Mg 6 , CuAlMg, etc. It is done.
Further, Mg of the Cu—Al—Mg layer 143 is a diffusion of Mg contained in the aluminum alloy constituting the heat sink main body 110. For this reason, in the vicinity of the bonding interface of the heat sink body 110, a Mg-depleted Mg-depleted layer is formed.
 なお、本実施形態においては、ヒートシンク本体110と銅部材層117との接合界面において、ヒートシンク本体110の表面部分にマグネシウム酸化物膜112が形成されている。
 このマグネシウム酸化物膜112は、ヒートシンク本体110の表面に形成されたアルミナ皮膜が、ヒートシンク本体110(アルミニウム合金)のMgと反応することで形成されたものである。
In the present embodiment, the magnesium oxide film 112 is formed on the surface portion of the heat sink body 110 at the bonding interface between the heat sink body 110 and the copper member layer 117.
The magnesium oxide film 112 is formed by the reaction of the alumina film formed on the surface of the heat sink body 110 with Mg of the heat sink body 110 (aluminum alloy).
 ここで、マグネシウム酸化物膜112は、MgO、又は、MgAlで構成されている。
 また、マグネシウム酸化物膜においては、結晶性の粒状体を有していることが好ましい。非晶質のアルミナ皮膜がMgと反応することで結晶性の粒状体が生成することから、結晶性の粒状体が存在することで、アルミナ皮膜とMgの反応が十分に進行していることになる。
Here, the magnesium oxide film 112 is made of MgO or MgAl 2 O 4 .
The magnesium oxide film preferably has crystalline particles. The reaction of the alumina film with Mg is sufficiently progressed by the presence of the crystalline particles, since the amorphous particles of the alumina film react with Mg to form crystalline particles. Become.
 次に、本実施形態であるヒートシンク101の製造方法について、図8及び図9を参照して説明する。 Next, a method of manufacturing the heat sink 101 according to the present embodiment will be described with reference to FIGS. 8 and 9.
(ヒートシンク本体熱処理工程S101)
 まず、接合するヒートシンク本体110に対して熱処理を行い、ヒートシンク本体110の表面にマグネシウム酸化物膜112を形成する。このときの熱処理条件は、雰囲気:10-6Pa以上10-3Pa以下の範囲内の真空または窒素雰囲気、熱処理温度:250℃以上400℃以下、熱処理温度での保持時間:10分以上30分以下、としている。
(Heat sink heat treatment step S101)
First, heat treatment is performed on the heat sink main body 110 to be bonded, and the magnesium oxide film 112 is formed on the surface of the heat sink main body 110. The heat treatment conditions at this time are as follows: atmosphere: vacuum or nitrogen atmosphere in a range of 10 −6 Pa to 10 −3 Pa, heat treatment temperature: 250 ° C. to 400 ° C., holding time at heat treatment temperature: 10 minutes to 30 minutes It is said below.
(ヒートシンク本体/銅部材層接合工程S102)
 次に、図9に示すように、ヒートシンク本体110と銅部材層117となる銅板127とを積層し、積層方向に加圧(圧力5~35kgf/cm(0.5~3.5MPa))した状態で真空加熱炉内に配置して加熱することにより、銅板127とヒートシンク本体110とを固相拡散接合する。なお、銅板127、ヒートシンク本体110のうち固相拡散接合されるそれぞれの接合面は、予め当該面の傷が除去されて平滑にされている。
 ここで、真空加熱炉内の圧力は10-6Pa以上10-3Pa以下の範囲内、加熱温度は450℃以上520℃以下の範囲内、加熱温度での保持時間は30分以上240分以下の範囲内に設定されることが好ましい。
(Heat sink body / copper member layer bonding step S102)
Next, as shown in FIG. 9, the heat sink body 110 and the copper plate 127 to be the copper member layer 117 are laminated, and pressure is applied in the laminating direction (pressure 5 to 35 kgf / cm 2 (0.5 to 3.5 MPa)) The copper plate 127 and the heat sink main body 110 are solid phase diffusion bonded by placing and heating in a vacuum heating furnace in the above state. The bonding surfaces of the copper plate 127 and the heat sink main body 110 to be subjected to solid phase diffusion bonding are smoothed by removing the flaws of the surfaces in advance.
Here, the pressure in the vacuum heating furnace is in the range of 10 −6 Pa to 10 −3 Pa, the heating temperature is in the range of 450 ° C. to 520 ° C., and the holding time at the heating temperature is 30 minutes to 240 minutes It is preferable to set in the range of
 このヒートシンク本体/銅部材層接合工程S102において、銅板127中のCu原子及びヒートシンク本体110中のAl原子及びMg原子が相互拡散し、図7に示すように、第1金属間化合物層141とCu-Al-Mg層143と第2金属間化合物層142とからなる化合物層140が形成される。
 このようにして、本実施形態であるヒートシンク101が製造される。
In this heat sink main body / copper member layer bonding step S102, the Cu atoms in the copper plate 127 and the Al atoms and Mg atoms in the heat sink main body 110 mutually diffuse, and as shown in FIG. A compound layer 140 composed of the Al—Mg layer 143 and the second intermetallic compound layer 142 is formed.
Thus, the heat sink 101 according to the present embodiment is manufactured.
 以上のような構成とされた本実施形態に係るヒートシンク101によれば、ヒートシンク本体110の一方の面側に、無酸素銅の圧延板からなる銅板127を接合することによって銅部材層117が形成されているので、熱を銅部材層117によって面方向に広げることができ、放熱特性を大幅に向上させることができる。また、はんだ等を用いて他の部材とヒートシンク101とを良好に接合することができる。 According to the heat sink 101 according to the present embodiment configured as described above, the copper member layer 117 is formed by joining the copper plate 127 made of a rolled sheet of oxygen-free copper on one surface side of the heat sink body 110 Therefore, the heat can be spread in the surface direction by the copper member layer 117, and the heat dissipation characteristics can be significantly improved. In addition, other members and the heat sink 101 can be joined well by using solder or the like.
 そして、本実施形態では、ヒートシンク本体110と銅部材層117との接合界面には、図7に示すように、ヒートシンク本体110と銅部材層117との接合界面に、ヒートシンク本体110のAl原子及びMg原子と銅部材層117を構成するCu原子とが拡散して形成された化合物層140を備えており、この化合物層140は、ヒートシンク本体110側に配設されたCuとAlの金属間化合物のθ相からなる第1金属間化合物層141と、銅部材層117側に配設されたCuとAlの金属間化合物のγ相からなる第2金属間化合物層142と、これら第1金属間化合物層141と第2金属間化合物層142との間に形成されたCu-Al-Mg層143と、で構成されているので、Cu-Al-Mg層143によって金属間化合物の成長が抑制され、比較的硬いη相、ζ相、δ相が形成されておらず、冷熱サイクルを負荷した際における化合物層140の割れの発生を抑制することができる。 Then, in the present embodiment, as shown in FIG. 7, at the bonding interface between the heat sink main body 110 and the copper member layer 117, at the bonding interface between the heat sink main body 110 and the copper member layer 117 The compound layer 140 is formed by diffusion of Mg atoms and Cu atoms constituting the copper member layer 117. The compound layer 140 is an intermetallic compound of Cu and Al disposed on the heat sink main body 110 side. a first intermetallic compound layer 141 made of θ phase, and the second intermetallic layer 142 consisting of gamma 2 phase intermetallic compound of disposed the Cu and Al in the copper member layer 117 side, these first metal Since the Cu—Al—Mg layer 143 formed between the intermetallic compound layer 141 and the second intermetallic compound layer 142, the intermetallic compound is formed of the Cu—Al—Mg layer 143. The growth of suppression, relatively hard eta 2-phase, zeta 2-phase, no δ-phase is formed, it is possible to suppress the occurrence of cracking of the compound layer 140 in the case loaded with thermal cycle.
 さらに、本実施形態においては、ヒートシンク本体110の表面にマグネシウム酸化物膜112が形成されているので、このマグネシウム酸化物膜112によってAl原子が拡散することを抑制でき、金属間化合物が必要以上に成長することをさらに抑制することができる。
 また、マグネシウム酸化物膜112が結晶性の粒状体を有している場合には、マグネシウム酸化物膜112の強度が向上し、ヒートシンク本体110と銅部材層117との接合強度が向上することになる。
Furthermore, in the present embodiment, since the magnesium oxide film 112 is formed on the surface of the heat sink body 110, diffusion of Al atoms can be suppressed by the magnesium oxide film 112, and the intermetallic compound is more than necessary. Growth can be further suppressed.
Further, when the magnesium oxide film 112 has crystalline particles, the strength of the magnesium oxide film 112 is improved, and the bonding strength between the heat sink main body 110 and the copper member layer 117 is improved. Become.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、第一実施形態では、金属層13を、Al層13AとCu層13Bとを有するものとして説明したが、これに限定されることはなく、図10に示すように、金属層全体を銅又は銅合金で構成してもよい。この図10に示すヒートシンク付絶縁回路基板230においては、セラミックス基板11の他方の面(図10において下側)に銅板がDBC法あるいは活性金属ろう付け法等によって接合され、銅又は銅合金からなる金属層213が形成されている。そして、この金属層213とヒートシンク31とが、固相拡散接合されている。なお、図10に示す絶縁回路基板210においては、回路層212も銅又は銅合金によって構成されたものとされている。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, in the first embodiment, although the metal layer 13 is described as having the Al layer 13A and the Cu layer 13B, the present invention is not limited to this, and as shown in FIG. Or you may comprise by a copper alloy. In the insulating circuit substrate 230 with a heat sink shown in FIG. 10, a copper plate is joined to the other surface (lower side in FIG. 10) of the ceramic substrate 11 by DBC method or active metal brazing method, and is made of copper or copper alloy. A metal layer 213 is formed. The metal layer 213 and the heat sink 31 are solid phase diffusion bonded. In the insulating circuit board 210 shown in FIG. 10, the circuit layer 212 is also made of copper or a copper alloy.
 また、第一実施形態において、回路層を純度99mass%のアルミニウム板を接合することで形成したものとして説明したが、これに限定されることはなく、純度99.99mass%以上の純アルミニウムや、他のアルミニウム又はアルミニウム合金、銅又は銅合金等の他の金属で構成したものであってもよい。また、回路層をAl層とCu層の2層構造のものとしてもよい。これは、図10に示す絶縁回路基板210でも同様である。 In the first embodiment, the circuit layer is described as being formed by bonding an aluminum plate having a purity of 99 mass%, but the present invention is not limited to this. Pure aluminum having a purity of 99.99 mass% or more It may be composed of other aluminum or other metal such as aluminum alloy, copper or copper alloy. Also, the circuit layer may have a two-layer structure of an Al layer and a Cu layer. The same applies to the insulating circuit board 210 shown in FIG.
 また、第一の実施形態の金属層/ヒートシンク接合工程S04においては、金属層13(Cu層13B)とヒートシンク31とを積層し、積層方向に加圧した状態で真空加熱炉内に配置して加熱する構成とし、第二の実施形態のヒートシンク本体/銅部材層接合工程S102においては、ヒートシンク本体110と銅部材層117となる銅板127とを積層し、積層方向に加圧(圧力5~35kgf/cm(0.5~3.5MPa))した状態で真空加熱炉内に配置して加熱する構成として、説明したが、これに限定されることはなく、図11に示すように、アルミニウム合金部材301(ヒートシンク31、ヒートシンク本体110)と銅部材302(金属層13、銅部材層117)とを固相拡散接合する際に通電加熱法を適用してもよい。 Further, in the metal layer / heat sink bonding step S04 of the first embodiment, the metal layer 13 (Cu layer 13B) and the heat sink 31 are stacked and placed in a vacuum heating furnace in a state of being pressurized in the stacking direction. In the heat sink main body / copper member layer bonding step S102 of the second embodiment, the heat sink main body 110 and the copper plate 127 to be the copper member layer 117 are stacked, and pressure is applied in the stacking direction (pressure 5 to 35 kgf). Although the configuration has been described in which the inside of the vacuum heating furnace is placed and heated in a state of 0.5 cm 3 / cm 2 (0.5 to 3.5 MPa), the present invention is not limited thereto. As shown in FIG. Even when solid-phase diffusion bonding is performed on the alloy member 301 (heat sink 31, heat sink body 110) and the copper member 302 (metal layer 13, copper member layer 117), the electric heating method is applied. There.
 通電加熱を行う場合には、図11に示すように、アルミニウム合金部材301と銅部材302とを積層し、これらの積層体を、カーボン板311,311を介して一対の電極312、312によって積層方向に加圧するとともに、アルミニウム合金部材301及び銅部材302に対して通電を行う。すると、ジュール熱によってカーボン板311,311及びアルミニウム合金部材301と銅部材302が加熱され、アルミニウム合金部材301と銅部材302とが固相拡散接合される。 When conducting heating, as shown in FIG. 11, an aluminum alloy member 301 and a copper member 302 are laminated, and these laminated bodies are laminated by a pair of electrodes 312 and 312 via carbon plates 311 and 311. The pressure is applied in the direction, and the aluminum alloy member 301 and the copper member 302 are energized. Then, the carbon plates 311 and 311, the aluminum alloy member 301, and the copper member 302 are heated by Joule heat, and the aluminum alloy member 301 and the copper member 302 are solid phase diffusion bonded.
 上述の通電加熱法においては、アルミニウム合金部材301及び銅部材302が直接通電加熱されることから、昇温速度を例えば30~100℃/minと比較的速くすることができ、短時間で固相拡散接合を行うことができる。これにより、接合面の酸化の影響が小さく、例えば大気雰囲気でも接合することが可能となる。また、アルミニウム合金部材301及び銅部材302の抵抗値や比熱によっては、これらアルミニウム合金部材301及び銅部材302に温度差が生じた状態で接合することも可能となり、熱膨張の差を小さくし、熱応力の低減を図ることもできる。 In the above-described electric heating method, since the aluminum alloy member 301 and the copper member 302 are directly heated by electric current, the temperature rising rate can be made relatively fast, for example, 30 to 100 ° C./min. Diffusion bonding can be performed. As a result, the influence of oxidation on the bonding surface is small, and bonding can be performed even in, for example, an air atmosphere. Further, depending on the resistance value or specific heat of the aluminum alloy member 301 and the copper member 302, it is also possible to join the aluminum alloy member 301 and the copper member 302 in a state where a temperature difference occurs, thereby reducing the difference in thermal expansion. Thermal stress can also be reduced.
 ここで、上述の通電加熱法においては、一対の電極312,312による加圧荷重は、30kgf/cm以上100kgf/cm以下(3MPa以上10MPa以下)の範囲内とすることが好ましい。
 また、通電加熱法を適用する場合には、アルミニウム合金部材301及び銅部材302の表面粗さは、算術平均粗さRaで0.3μm以上0.6μm以下、または、最大高さRzで1.3μm以上2.3μm以下の範囲内とすることが好ましい。通常の固相拡散接合では、接合面の表面粗さは小さいことが好ましいが、通電加熱法の場合には、接合面の表面粗さが小さすぎると、界面接触抵抗が低下し、接合界面を局所的に加熱することが困難となるため、上述の範囲内とすることが好ましい。
Here, in the electric heating method described above, pressure load by the pair of electrodes 312 and 312 is preferably in the range of 30 kgf / cm 2 or more 100 kgf / cm 2 or less (3 MPa or 10MPa or less).
In the case of applying the electric heating method, the surface roughness of the aluminum alloy member 301 and the copper member 302 is 0.3 μm or more and 0.6 μm or less in arithmetic average roughness Ra, or 1. in the maximum height Rz. It is preferable to set it in the range of 3 micrometers or more and 2.3 micrometers or less. In normal solid phase diffusion bonding, the surface roughness of the bonding surface is preferably small, but in the case of electric heating, if the surface roughness of the bonding surface is too small, the interfacial contact resistance decreases and the bonding interface is Since it becomes difficult to heat locally, it is preferable to set it in the above-mentioned range.
 なお、第一の実施形態の金属層/ヒートシンク接合工程S04に上述の通電加熱法を用いることも可能であるが、その場合、セラミックス基板11が絶縁体であるため、例えば、カーボンからなる冶具等でカーボン板311,311を短絡する必要がある。接合条件は、上述したアルミニウム合金部材301と銅部材302の接合と同様である。
 また、金属層13(Cu層13B)とヒートシンク31の表面粗さについては、上述したアルミニウム合金部材301及び銅部材302の場合と同様である。
In addition, although it is also possible to use the above-mentioned electric heating method for metal layer / heat sink joining process S04 of 1st embodiment, since the ceramic substrate 11 is an insulator in that case, for example, jig etc. which consist of carbon etc. It is necessary to short-circuit the carbon plates 311, 311. The bonding conditions are the same as the bonding of the aluminum alloy member 301 and the copper member 302 described above.
The surface roughness of the metal layer 13 (Cu layer 13B) and the heat sink 31 is the same as in the case of the aluminum alloy member 301 and the copper member 302 described above.
 以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。 Below, the result of the confirmation experiment performed in order to confirm the effect of this invention is demonstrated.
<実施例1>
 表1に示すアルミニウム合金板(50mm×50mm、厚さ5mm)の一方の面に、無酸素銅からなる銅板(40mm×40mm、厚さ5mm)を、上述の実施形態に記載した方法によって固相拡散接合した。本発明例6および7においては、アルミニウム合金板に対して熱処理を行い、その後、銅板と固相拡散接合した。
 本発明例1-7及び比較例1-3においては、アルミニウム板と金属板とを積層方向に15kgf/cm(1.5MPa)の荷重で押圧し、真空加熱炉で500℃×180minの条件で固相拡散接合を実施した。
Example 1
On one side of the aluminum alloy plate (50 mm × 50 mm, thickness 5 mm) shown in Table 1, a copper plate (40 mm × 40 mm, thickness 5 mm) made of oxygen free copper was solid phaseed by the method described in the above embodiment. Diffusion bonded. In the invention examples 6 and 7, the heat treatment was performed on the aluminum alloy plate, and then solid phase diffusion bonding was performed with the copper plate.
In Inventive Example 1-7 and Comparative Example 1-3, the aluminum plate and the metal plate are pressed in the stacking direction with a load of 15 kgf / cm 2 (1.5 MPa), and the condition of 500 ° C. × 180 min in a vacuum heating furnace Solid phase diffusion bonding was performed.
(化合物層の構造)
 固相拡散接合されたアルミニウム合金板と金属板との接合体の断面観察を行い、接合界面に形成された化合物層の構造を以下のように評価した。評価結果を表1に示す。
(Structure of compound layer)
The cross-section of the solid-phase diffusion bonded aluminum alloy plate-metal plate assembly was observed, and the structure of the compound layer formed at the bonding interface was evaluated as follows. The evaluation results are shown in Table 1.
(層構造)
 透過型電子顕微鏡(FEI社製Titan ChemiSTEM、加速電圧200kV)を用いて電子回折図形を、エネルギー分散型X線分析法(サーモサイエンティフィック社製NSS7)を用いて組成を分析し、形成層を決定した。なお、電子回折図形は、1nm程度に絞った電子ビームを照射することで得た(NBD法)。
(Layer structure)
The electron diffraction pattern was analyzed using a transmission electron microscope (Fita Titan ChemiSTEM, accelerating voltage 200 kV), the composition was analyzed using energy dispersive X-ray analysis (NSS7 manufactured by Thermo Scientific Co., Ltd.), and the formed layer was Were determined. The electron diffraction pattern was obtained by irradiation with an electron beam narrowed to about 1 nm (NBD method).
(冷熱サイクル試験)
 次に、このようにして製造された接合体において、冷熱サイクル試験を実施した。冷熱衝撃試験機エスペック社製TSA-72ESを使用し、試験片(ヒートシンク付パワーモジュール)に対して、気槽で、-50℃で45分、175℃で45分のヒートサイクルを2500回実施した。
 そして、冷熱サイクル試験前における接合体の積層方向の熱抵抗と接合率、及び、冷熱サイクル試験後における接合体の積層方向の熱抵抗と接合率を、以下のようにして評価した。
(Cool cycle test)
Next, a thermal cycle test was performed on the thus-produced bonded body. Using a TSA-72 ES manufactured by ESPEC Co., Ltd., a heat cycle was carried out 2500 times at a temperature of -50 ° C for 45 minutes and at 175 ° C for 45 minutes on a test piece (power module with a heat sink) .
Then, the thermal resistance and bonding rate in the stacking direction of the bonded body before the thermal cycle test, and the thermal resistance and bonding rate in the stacking direction of the bonded body after the thermal cycle test were evaluated as follows.
(接合率評価)
 接合体のアルミニウム板と金属板との接合部の接合率について超音波探傷装置を用いて評価し、以下の式から算出した。ここで、初期接合面積とは、接合前における接合すべき面積、すなわちアルミニウム板の面積とした。超音波探傷像において剥離は白色部で示されることから、この白色部の面積を剥離面積とした。評価結果を表1に示す。
 接合率(%)={(初期接合面積)-(剥離面積)}/(初期接合面積)×100
(Evaluation of bonding rate)
The bonding rate of the bonding portion between the aluminum plate and the metal plate of the bonded body was evaluated using an ultrasonic flaw detector, and calculated from the following equation. Here, the initial bonding area is the area to be bonded before bonding, that is, the area of the aluminum plate. Since peeling is indicated by a white portion in the ultrasonic flaw detection image, the area of this white portion is regarded as a peeling area. The evaluation results are shown in Table 1.
Bonding ratio (%) = {(initial bonding area)-(peeling area)} / (initial bonding area) x 100
(熱抵抗の測定)
 ヒータチップ(13mm×10mm×0.25mm)を金属板の表面に半田付けし、アルミニウム合金板を冷却器にろう付け接合した。次に、ヒータチップを100Wの電力で加熱し、熱電対を用いてヒータチップの温度を実測した。また、冷却器を流通する冷却媒体(エチレングリコール:水=9:1)の温度を実測した。そして、ヒータチップの温度と冷却媒体の温度差を電力で割った値を熱抵抗とした。
 なお、比較例1のヒートサイクル試験前の熱抵抗を基準として1とし、この比較例1との比率で熱抵抗を評価した。評価結果を表1に示す。
(Measurement of thermal resistance)
The heater chip (13 mm × 10 mm × 0.25 mm) was soldered to the surface of the metal plate, and the aluminum alloy plate was brazed to the cooler. Next, the heater chip was heated at a power of 100 W, and the temperature of the heater chip was measured using a thermocouple. Moreover, the temperature of the cooling medium (ethylene glycol: water = 9: 1) which distribute | circulates a cooler was measured. Then, a value obtained by dividing the difference between the temperature of the heater chip and the temperature of the cooling medium by the power was taken as the thermal resistance.
In addition, the heat resistance was evaluated by the ratio with this comparative example 1 on the basis of the thermal resistance before the heat cycle test of the comparative example 1 as a reference. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 アルミニウム合金板のSi濃度が6.0mass%、Mg濃度が12.7mass%とされた比較例1においては、化合物層にθ相とMg-Si相とが存在しており、冷熱サイクル後の接合率が低く、かつ、熱抵抗が大きくなった。
 アルミニウム合金板のMg濃度が0.1mass%とされた比較例2においては、化合物層にCuとAlの金属間化合物であるη相、ζ相、δ相が形成されており、冷熱サイクル後の接合率が低く、かつ、熱抵抗が大きくなった。
 アルミニウム合金板のMg濃度が10.3mass%とされた比較例3においては、冷熱サイクル後の接合率が低く、かつ、熱抵抗が大きくなった。化合物層にCu-Al-Mg相が厚く形成されることで、金属間化合物の成長が必要以上に阻害され、金属間化合物層の厚さが不均一となり、さらにアルミニウム合金板の硬度が増加し、界面への応力負荷が増加し、これによりクラックが生じたためと推測される。
In Comparative Example 1 in which the Si concentration of the aluminum alloy plate is 6.0 mass% and the Mg concentration is 12.7 mass%, the θ phase and the Mg-Si phase exist in the compound layer, and the bonding after the cold thermal cycle is performed. The rate was low and the thermal resistance increased.
In Comparative Example 2 in which the Mg concentration of the aluminum alloy plate is 0.1 mass%, η 2 phase, ζ 2 phase, and δ phase, which are intermetallic compounds of Cu and Al, are formed in the compound layer, and the thermal cycle is The subsequent bonding rate was low, and the thermal resistance increased.
In Comparative Example 3 in which the Mg concentration of the aluminum alloy plate was 10.3 mass%, the bonding ratio after the cold thermal cycle was low, and the thermal resistance was large. The thick Cu-Al-Mg phase in the compound layer inhibits the growth of the intermetallic compound more than necessary, the thickness of the intermetallic compound layer becomes uneven, and the hardness of the aluminum alloy plate increases. It is presumed that the stress load on the interface is increased, which causes a crack.
 これに対して、本発明例によれば、化合物層にCu-Al-Mg相が適正に形成されており、冷熱サイクル前後において、接合率が高く、かつ、熱抵抗を小さく抑えることができた。 On the other hand, according to the example of the present invention, the Cu-Al-Mg phase was properly formed in the compound layer, and the bonding ratio was high before and after the thermal cycle, and the thermal resistance could be suppressed small. .
 以上のことから、本発明例1-7によれば、アルミニウム合金からなるアルミニウム部材と、銅又は銅合金からなる銅部材とが固相拡散接合され、接合界面に比較的硬い金属間化合物層が形成されることを抑制することができる接合体を提供可能であることが確認された。 From the above, according to Invention Example 1-7, the aluminum member made of aluminum alloy and the copper member made of copper or copper alloy are solid phase diffusion bonded, and a relatively hard intermetallic compound layer is formed at the bonding interface. It has been confirmed that a conjugate can be provided that can be inhibited from being formed.
<実施例2>
 表2に示すアルミニウム合金板(10mm×10mm、厚さ3mm)の一方の面に、無酸素銅からなる銅板(2mm×2mm、厚さ1mm)を、上述の実施形態に記載した方法によって固相拡散接合した。アルミニウム板と金属板とを積層方向に15kgf/cm(1.5MPa)の荷重で押圧し、表2に示す温度及び保持時間で固相拡散接合を実施した。
Example 2
On one side of the aluminum alloy plate (10 mm × 10 mm, thickness 3 mm) shown in Table 2, a copper plate (2 mm × 2 mm, thickness 1 mm) made of oxygen free copper was solid phase by the method described in the above embodiment. Diffusion bonded. The aluminum plate and the metal plate were pressed in the stacking direction with a load of 15 kgf / cm 2 (1.5 MPa), and solid phase diffusion bonding was performed at the temperature and holding time shown in Table 2.
 得られた接合体について、実施例1と同様の方法により、接合界面に形成された化合物層の層構造を確認した。その結果、本発明例11-22は、いずれも、「θ/Cu-Al-Mg/γ」の層構造であった。
 また、以下のようにして、マグネシウム酸化物膜の有無、マグネシウム酸化物膜における粒状体の有無、接合強度(シェア強度)について評価した。
The layer structure of the compound layer formed at the bonding interface was confirmed in the same manner as in Example 1 for the obtained bonded body. As a result, each of Invention Examples 11 to 22 had a layer structure of “θ / Cu—Al—Mg / γ 2 ”.
Further, the presence or absence of a magnesium oxide film, the presence or absence of particles in the magnesium oxide film, and bonding strength (shear strength) were evaluated as follows.
(マグネシウム酸化物膜の有無/非晶質酸化物膜の有無/粒状体の有無)
 透過型電子顕微鏡(FEI社製Titan ChemiSTEM、加速電圧200kV)を用いて倍率60000倍で測定し、エネルギー分散型X線分析法(サーモサイエンティフィック社製NSS7)により、Cu、Al、Mg及びOの元素マッピングを取得した。CuとAlが同一に存在する領域内においてMgとOが同一領域に存在する領域をマグネシウム酸化物層とした。そして、マグネシウム酸化物膜における粒状体の有無を確認した。本発明例16のマグネシウム酸化物膜の観察結果を図12に示す。
 また、1nmに絞った電子ビームを用いたナノビーム回折法(NBD法)によって電子回折図形を得た。そして、電子回折図形がハローパターンを有する場合には、非晶質酸化物膜が「有」と判断した。
(Existence of magnesium oxide film / presence of amorphous oxide film / presence of granular material)
Measurement was performed at a magnification of 60000 using a transmission electron microscope (Titanium ChemiSTEM manufactured by FEI, acceleration voltage 200 kV), Cu, Al, Mg and O were measured by energy dispersive X-ray analysis (NSS7 manufactured by Thermo Scientific Co.) The elemental mapping of was obtained. A region in which Mg and O are present in the same region in the region in which Cu and Al are present is referred to as a magnesium oxide layer. And the presence or absence of the granular body in a magnesium oxide film was confirmed. The observation results of the magnesium oxide film of Inventive Example 16 are shown in FIG.
In addition, an electron diffraction pattern was obtained by a nanobeam diffraction method (NBD method) using an electron beam narrowed to 1 nm. When the electron diffraction pattern had a halo pattern, the amorphous oxide film was judged to be "present".
(接合強度)
 シェアテストによって、シェア強度(せん断強度)の測定を行った。銅板を上にしてアルミニウム合金板を水平に固定し、銅板をシェアツールで横から水平に押圧(シェア速度0.1mm/sec)して、銅板とアルミニウム合金板との接合が破壊されたときの強度及び破壊の位置(破壊モード)を確認した。なお、強度は、20回のシェア強度試験を実施してその平均値とした。評価結果を表2に示す。
(Joining strength)
The shear strength (shear strength) was measured by the share test. When the aluminum alloy plate is horizontally fixed with the copper plate on top, and the copper plate is pressed horizontally from the side with a shear tool (share speed 0.1 mm / sec), the bond between the copper plate and the aluminum alloy plate is broken The strength and location of failure (fracture mode) were confirmed. In addition, intensity | strength carried out the shear strength test of 20 times, and made it the average value. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 接合温度が高く、かつ、保持時間が長くなることで、接合強度がさらに向上することが確認された。アルミニウム合金板の表面に形成されたアルミナ皮膜とアルミニウム合金板のMgとが反応してマグネシウム酸化物膜が形成され、このマグネシウム酸化物膜において、結晶性の粒状体の割合が多くなったためと推測される。 It was confirmed that the bonding strength is further improved by the high bonding temperature and the long holding time. The alumina film formed on the surface of the aluminum alloy plate and the Mg of the aluminum alloy plate react to form a magnesium oxide film, and it is presumed that the proportion of crystalline particles is increased in this magnesium oxide film. Be done.
 本発明によれば、アルミニウム又はアルミニウム合金からなるアルミニウム部材と、銅又は銅合金からなる銅部材と、を固相拡散接合した場合であっても、接合界面に比較的硬い金属間化合物層が形成されることを抑制でき、冷熱サイクル負荷時の熱抵抗の上昇や接合率の低下を抑制することができる接合体、この接合体を備えたヒートシンク付絶縁回路基板及びヒートシンクを提供することが可能となる。 According to the present invention, even when solid-phase diffusion bonding an aluminum member made of aluminum or an aluminum alloy and a copper member made of copper or a copper alloy, a relatively hard intermetallic compound layer is formed at the bonding interface Can be suppressed, and it is possible to provide a bonded body capable of suppressing an increase in thermal resistance and a decrease in bonding rate during a thermal cycle load, and an insulated circuit board and a heat sink provided with this heat sink. Become.
10、210 絶縁回路基板
11 セラミックス基板
13、213 金属層
13B Cu層(銅部材)
31 ヒートシンク(アルミニウム合金部材)
40 化合物層
41 第1金属間化合物層
42 第2金属間化合物層
43 Cu-Al-Mg層
101 ヒートシンク
110 ヒートシンク本体(アルミニウム合金部材)
117 銅部材層
140 化合物層
141 第1金属間化合物層
142 第2金属間化合物層
143 Cu-Al-Mg層
10, 210 Insulated Circuit Board 11 Ceramics Board 13, 213 Metal Layer 13B Cu Layer (Copper Member)
31 Heatsink (Aluminum alloy member)
40 compound layer 41 first intermetallic compound layer 42 second intermetallic compound layer 43 Cu-Al-Mg layer 101 heat sink 110 heat sink main body (aluminum alloy member)
117 Copper Member Layer 140 Compound Layer 141 First Intermetallic Compound Layer 142 Second Intermetallic Compound Layer 143 Cu-Al-Mg Layer

Claims (9)

  1.  アルミニウム合金からなるアルミニウム合金部材と、銅又銅合金からなる銅部材とが接合された接合体であって、
     前記アルミニウム合金部材は、Mg濃度が0.4mass%以上7.0mass%以下の範囲内とされ、Si濃度が1mass%未満とされたアルミニウム合金で構成され、前記アルミニウム合金部材と前記銅部材とが固相拡散接合されており、
     前記アルミニウム合金部材と前記銅部材との接合界面に、前記アルミニウム合金部材の金属原子と前記銅部材のCu原子とが拡散して形成された化合物層を備え、
     この化合物層は、前記アルミニウム合金部材側に配設されたCuとAlの金属間化合物のθ相からなる第1金属間化合物層と、前記銅部材側に配設されたCuとAlの金属間化合物のγ相からなる第2金属間化合物層と、これら第1金属間化合物層と第2金属間化合物層との間に形成されたCu-Al-Mg層と、で構成されていること特徴とする接合体。
    A joined body in which an aluminum alloy member made of an aluminum alloy and a copper member made of copper or a copper alloy are joined,
    The aluminum alloy member is made of an aluminum alloy having a Mg concentration of 0.4 mass% or more and 7.0 mass% or less and a Si concentration of less than 1 mass%, and the aluminum alloy member and the copper member Solid phase diffusion bonding,
    The bonding interface of the aluminum alloy member and the copper member is provided with a compound layer formed by diffusion of metal atoms of the aluminum alloy member and Cu atoms of the copper member,
    This compound layer is composed of a first intermetallic compound layer consisting of a θ phase of an intermetallic compound of Cu and Al disposed on the aluminum alloy member side, and an intermetallic compound of Cu and Al disposed on the copper member side. a second intermetallic compound layer formed of gamma 2 phase compound, and Cu-Al-Mg layer is formed between these first intermetallic compound layer and the second intermetallic compound layer, in that it is constituted Characteristic junction body.
  2.  前記アルミニウム合金部材の接合面にマグネシウム酸化物膜が形成されていることを特徴とする請求項1に記載の接合体。 The joined body according to claim 1, wherein a magnesium oxide film is formed on a joining surface of the aluminum alloy member.
  3.  前記マグネシウム酸化物膜は、結晶性の粒状体を有していることを特徴とする請求項2に記載の接合体。 The joined body according to claim 2, wherein the magnesium oxide film has crystalline particles.
  4.  絶縁層と、この絶縁層の一方の面に形成された回路層と、前記絶縁層の他方の面に形成された金属層と、この金属層の前記絶縁層とは反対側の面に配置されたヒートシンクと、を備えたヒートシンク付絶縁回路基板であって、
     前記金属層のうち前記ヒートシンクとの接合面は、銅又は銅合金で構成され、
     前記ヒートシンクのうち前記金属層との接合面は、Mg濃度が0.4mass%以上7.0mass%以下の範囲内とされ、Si濃度が1mass%未満とされたアルミニウム合金で構成され、
     前記ヒートシンクと前記金属層とが固相拡散接合されており、
     前記ヒートシンクと前記金属層との接合界面に、前記アルミニウム合金の金属原子と前記銅部材のCu原子とが拡散して形成された化合物層を備え、
     この化合物層は、前記ヒートシンク側に配設されたCuとAlの金属間化合物のθ相からなる第1金属間化合物層と、前記金属層側に配設されたCuとAlの金属間化合物のγ相からなる第2金属間化合物層と、これら第1金属間化合物層と第2金属間化合物層との間に形成されたCu-Al-Mg層と、で構成されていることを特徴とするヒートシンク付絶縁回路基板。
    An insulating layer, a circuit layer formed on one side of the insulating layer, a metal layer formed on the other side of the insulating layer, and a surface of the metal layer opposite to the insulating layer A heat sink and an insulated circuit board having the heat sink,
    The bonding surface of the metal layer to the heat sink is made of copper or a copper alloy,
    The bonding surface of the heat sink to the metal layer is made of an aluminum alloy in which the Mg concentration is in the range of 0.4 mass% to 7.0 mass% and the Si concentration is less than 1 mass%,
    Solid phase diffusion bonding of the heat sink and the metal layer;
    The bonding interface between the heat sink and the metal layer includes a compound layer formed by diffusion of metal atoms of the aluminum alloy and Cu atoms of the copper member,
    The compound layer includes a first intermetallic compound layer formed of the θ phase of an intermetallic compound of Cu and Al disposed on the heat sink side, and an intermetallic compound of Cu and Al disposed on the metal layer side. wherein a second intermetallic compound layer formed of gamma 2 phase, and Cu-Al-Mg layer is formed between these first intermetallic compound layer and the second intermetallic compound layer, in that it is constituted An insulated circuit board with a heat sink.
  5.  前記ヒートシンクの接合面にマグネシウム酸化物膜が形成されていることを特徴とする請求項4に記載のヒートシンク付絶縁回路基板。 The insulating circuit board with a heat sink according to claim 4, wherein a magnesium oxide film is formed on a bonding surface of the heat sink.
  6.  前記マグネシウム酸化物膜は、結晶性の粒状体を有していることを特徴とする請求項5に記載のヒートシンク付絶縁回路基板。 The said magnesium oxide film | membrane has a crystalline granular material, The insulated circuit board with a heat sink of Claim 5 characterized by the above-mentioned.
  7.  ヒートシンク本体と、前記ヒートシンク本体に接合された銅又は銅合金からなる銅部材層と、を備えたヒートシンクであって、
     前記ヒートシンク本体は、Mg濃度が0.4mass%以上7.0mass%以下の範囲内とされ、Si濃度が1mass%未満とされたアルミニウム合金で構成され、
     前記ヒートシンク本体と前記銅部材層とが固相拡散接合されており、
     前記ヒートシンク本体と前記銅部材層との接合界面に、前記ヒートシンク本体の金属原子と前記銅部材層のCu原子とが拡散して形成された化合物層を備え、
     この化合物層は、前記ヒートシンク本体側に配設されたCuとAlの金属間化合物のθ相からなる第1金属間化合物層と、前記銅部材層側に配設されたCuとAlの金属間化合物のγ相からなる第2金属間化合物層と、これら第1金属間化合物層と第2金属間化合物層との間に形成されたCu-Al-Mg層と、で構成されていることを特徴とするヒートシンク。
    A heat sink comprising: a heat sink body; and a copper member layer made of copper or a copper alloy joined to the heat sink body,
    The heat sink body is made of an aluminum alloy in which the Mg concentration is in the range of 0.4 mass% or more and 7.0 mass% or less, and the Si concentration is less than 1 mass%,
    The heat sink body and the copper member layer are bonded by solid phase diffusion bonding,
    The bonding interface between the heat sink body and the copper member layer is provided with a compound layer formed by diffusion of metal atoms of the heat sink body and Cu atoms of the copper member layer,
    This compound layer is composed of a first intermetallic compound layer composed of a θ phase of an intermetallic compound of Cu and Al disposed on the heat sink main body side, and an intermetallic compound of Cu and Al disposed on the copper member layer side. a second intermetallic compound layer formed of gamma 2 phase compound, and Cu-Al-Mg layer is formed between these first intermetallic compound layer and the second intermetallic compound layer, in that it is constituted Heatsink characterized by
  8.  前記ヒートシンク本体の接合面にマグネシウム酸化物膜が形成されていることを特徴とする請求項7に記載のヒートシンク。 The heat sink according to claim 7, wherein a magnesium oxide film is formed on a bonding surface of the heat sink body.
  9.  前記マグネシウム酸化物膜は、結晶性の粒状体を有していることを特徴とする請求項8に記載のヒートシンク。 The heat sink according to claim 8, wherein the magnesium oxide film has crystalline particles.
PCT/JP2018/039693 2017-10-27 2018-10-25 Bonded body, insulated circuit board with heat sink, and heat sink WO2019082973A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18870413.4A EP3703116B1 (en) 2017-10-27 2018-10-25 Bonded body, insulated circuit board with heat sink, and heat sink
US16/755,922 US11094606B2 (en) 2017-10-27 2018-10-25 Bonded body, insulated circuit board with heat sink, and heat sink
CN201880067121.4A CN111226315B (en) 2017-10-27 2018-10-25 Joint body, insulating circuit substrate with radiator and radiator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017208318 2017-10-27
JP2017-208318 2017-10-27
JP2018-198468 2018-10-22
JP2018198468A JP7135716B2 (en) 2017-10-27 2018-10-22 Joined body, insulated circuit board with heat sink, and heat sink

Publications (1)

Publication Number Publication Date
WO2019082973A1 true WO2019082973A1 (en) 2019-05-02

Family

ID=66247869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039693 WO2019082973A1 (en) 2017-10-27 2018-10-25 Bonded body, insulated circuit board with heat sink, and heat sink

Country Status (1)

Country Link
WO (1) WO2019082973A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3171234B2 (en) 1997-03-26 2001-05-28 三菱マテリアル株式会社 Ceramic circuit board with heat sink
JP2014099596A (en) 2012-10-16 2014-05-29 Mitsubishi Materials Corp Substrate for power module with heat sink, power module with heat sink, and method for producing substrate for power module with heat sink
JP2014160799A (en) 2013-01-22 2014-09-04 Mitsubishi Materials Corp Substrate for power module, substrate for power module with heat sink, and power module with heat sink
JP2016208010A (en) 2015-04-16 2016-12-08 三菱マテリアル株式会社 Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP2016208009A (en) * 2015-04-16 2016-12-08 三菱マテリアル株式会社 Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP2017139508A (en) * 2017-05-23 2017-08-10 三菱マテリアル株式会社 Joined body for manufacturing substrate for power module
JP2017208318A (en) 2016-05-17 2017-11-24 鈴木 良延 Lighting fitting, open type lighting apparatus with the lighting fitting, and operation room
JP2018198468A (en) 2018-09-21 2018-12-13 Nttエレクトロニクス株式会社 Video processing apparatus and video processing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3171234B2 (en) 1997-03-26 2001-05-28 三菱マテリアル株式会社 Ceramic circuit board with heat sink
JP2014099596A (en) 2012-10-16 2014-05-29 Mitsubishi Materials Corp Substrate for power module with heat sink, power module with heat sink, and method for producing substrate for power module with heat sink
JP2014160799A (en) 2013-01-22 2014-09-04 Mitsubishi Materials Corp Substrate for power module, substrate for power module with heat sink, and power module with heat sink
JP2016208010A (en) 2015-04-16 2016-12-08 三菱マテリアル株式会社 Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP2016208009A (en) * 2015-04-16 2016-12-08 三菱マテリアル株式会社 Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP2017208318A (en) 2016-05-17 2017-11-24 鈴木 良延 Lighting fitting, open type lighting apparatus with the lighting fitting, and operation room
JP2017139508A (en) * 2017-05-23 2017-08-10 三菱マテリアル株式会社 Joined body for manufacturing substrate for power module
JP2018198468A (en) 2018-09-21 2018-12-13 Nttエレクトロニクス株式会社 Video processing apparatus and video processing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3703116A4 *

Similar Documents

Publication Publication Date Title
US10818585B2 (en) Copper/ceramic joined body, insulated circuit board, method for producing copper/ceramic joined body, and method for producing insulated circuit board
CN107534033B (en) Bonded body, substrate for power module with heat sink, method for manufacturing bonded body, method for manufacturing substrate for power module with heat sink, and method for manufacturing heat sink
JP6696214B2 (en) Bonded body, power module substrate with heat sink, heat sink, and method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, and method of manufacturing heat sink
TWI695778B (en) Bonded body, power module substrate with heat sink, heat sink, method of producing bonded body, method of producing power module substrate with heat sink and method of producing heat sink
WO2014061588A1 (en) Substrate for power module with heat sink, power module with heat sink, and method for producing substrate for power module with heat sink
TWI581342B (en) Power module
WO2013147142A1 (en) Power module substrate, power module substrate with heat sink, and power module
JP6822247B2 (en) Manufacturing method of insulated circuit board with heat sink
JP7192451B2 (en) COPPER/CERAMIC JOINT, INSULATED CIRCUIT BOARD, METHOD FOR MANUFACTURING COPPER/CERAMIC JOINT, AND METHOD FOR MANUFACTURING INSULATED CIRCUIT BOARD
TWI661516B (en) Bonded body, power module substrate with heat sink, heat sink, method of producing bonded body, method of producing power module substrate with heat sink and method of producing heat sink
TWI813747B (en) Copper/ceramic bonded body, insulated circuit board, method for producing copper/ceramic bonded body, and method for producing insulated circuit board
WO2018180159A1 (en) Method for producing insulated circuit board with heat sink
JP2022023954A (en) Ceramic/aluminum bonded body, insulating circuit board, led module and ceramic member
JP7081686B2 (en) Joined body, insulated circuit board with heat sink, and heat sink
JP6645368B2 (en) Joint body, power module substrate, method of manufacturing joined body, and method of manufacturing power module substrate
JP7135716B2 (en) Joined body, insulated circuit board with heat sink, and heat sink
WO2019082973A1 (en) Bonded body, insulated circuit board with heat sink, and heat sink
WO2016167217A1 (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP6673635B2 (en) Method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, method of manufacturing heat sink, and bonded body, power module substrate with heat sink, and heat sink
JP2019087608A (en) Conjugate, insulation circuit board, insulation circuit board with heat sink, heat sink, and manufacturing method of conjugate, manufacturing method of insulation circuit board, manufacturing method of insulation circuit board with heat sink, and manufacturing method of heat sink
JP7167642B2 (en) Joined body, insulated circuit board with heat sink, and heat sink
JP7424043B2 (en) Copper/ceramic bonded body, insulated circuit board, method for manufacturing copper/ceramic bonded body, method for manufacturing insulated circuit board
JP2017168730A (en) Circuit board and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018870413

Country of ref document: EP

Effective date: 20200527