JP3171234B2 - Ceramic circuit board with heat sink - Google Patents

Ceramic circuit board with heat sink

Info

Publication number
JP3171234B2
JP3171234B2 JP07296297A JP7296297A JP3171234B2 JP 3171234 B2 JP3171234 B2 JP 3171234B2 JP 07296297 A JP07296297 A JP 07296297A JP 7296297 A JP7296297 A JP 7296297A JP 3171234 B2 JP3171234 B2 JP 3171234B2
Authority
JP
Japan
Prior art keywords
heat sink
circuit board
aluminum foil
aluminum
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07296297A
Other languages
Japanese (ja)
Other versions
JPH10270596A (en
Inventor
祥郎 黒光
敏之 長瀬
邦夫 菅村
真人 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP07296297A priority Critical patent/JP3171234B2/en
Priority to US08/916,258 priority patent/US6033787A/en
Publication of JPH10270596A publication Critical patent/JPH10270596A/en
Application granted granted Critical
Publication of JP3171234B2 publication Critical patent/JP3171234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パワーモジュール
用基板等の半導体装置のセラミック回路基板に関する。
更に詳しくは半導体チップ等の発熱体から発生する熱を
放散させるヒートシンクを有するセラミック回路基板に
関するものである。
The present invention relates to a ceramic circuit board for a semiconductor device such as a power module board.
More particularly, the present invention relates to a ceramic circuit board having a heat sink for dissipating heat generated from a heating element such as a semiconductor chip.

【0002】[0002]

【従来の技術】従来、この種のセラミック回路基板とし
て、図6に示すように、セラミック基板3がAlNによ
り形成され、このセラミック基板3の両面に第1及び第
2銅板1,2が積層接着された構造体4を、AlSiC
複合材料により形成されたヒートシンク8の上面にはん
だ6を介して接合されたものが知られている。この回路
基板9では、第1及び第2銅板1,2のセラミック基板
3への接合は第1銅板1の上にセラミック基板3及び第
2銅板2を重ねた状態で、これらに荷重0.5〜2kg
f/cm2を加え、N2雰囲気中で1065〜1075℃
に加熱するDBC(Direct Bond Copper)法により構造
体4が作られ、構造体4の第2銅板2はエッチングによ
り所定のパターンの回路となる。この後、上面にNiめ
っきが形成されたヒートシンク8が構造体4の第1銅板
1にはんだ6を介して接合され、第2銅板2上に半導体
チップ等(図示せず)が搭載される。このように構成さ
れたセラミック回路基板では、半導体チップ等が発した
熱は第2銅板2、セラミック基板3、第1銅板1及びは
んだ6を介してヒートシンク8の表面から放散されるよ
うになっている。
2. Description of the Related Art Conventionally, as a ceramic circuit board of this kind, as shown in FIG. 6, a ceramic board 3 is formed of AlN, and first and second copper plates 1 and 2 are laminated and adhered to both sides of the ceramic board 3. Structure 4 is converted to AlSiC
There is known a heat sink 8 joined to the upper surface of a heat sink 8 formed of a composite material via solder 6. In the circuit board 9, the first and second copper plates 1 and 2 are joined to the ceramic substrate 3 in a state where the ceramic substrate 3 and the second copper plate 2 are stacked on the first copper plate 1 and a load of 0.5 ~ 2kg
f / cm 2 and 1065 to 1075 ° C. in N 2 atmosphere
The structure 4 is formed by a direct bond copper (DBC) method of heating the second copper plate 2 of the structure 4 into a circuit having a predetermined pattern by etching . Thereafter, a heat sink 8 having Ni plating formed on the upper surface is joined to the first copper plate 1 of the structure 4 via the solder 6, and a semiconductor chip or the like (not shown) is mounted on the second copper plate 2. In the ceramic circuit board thus configured, heat generated by the semiconductor chip and the like is radiated from the surface of the heat sink 8 via the second copper plate 2, the ceramic substrate 3, the first copper plate 1, and the solder 6. I have.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来のセ
ラミック回路基板は、ヒートシンク8と第1銅板1の接
合に使用するはんだ6の熱抵抗が比較的大きい不具合が
ある。このため、半導体チップ等から発した熱をヒート
シンク8から有効に外部に放散することができない未だ
解決すべき問題点が残存していた。この点を解消するた
めに熱抵抗値の小さい金属を介してヒートシンク8と第
1銅板1をロー付することも考えられるが、このような
金属のロー付は一般的に比較的高温により行う必要があ
り、高温でロー付することに起因する接合後のヒートシ
ンク8、第1若しくは第2銅板1,2及びセラミック基
板3の内部応力の増大を招来し、半導体チップ等の発熱
及び非発熱により基板温度が高温と低温との間で繰返し
変化することにより、セラミック基板3等にクラックが
生じる恐れがあった。本発明の目的は、放熱特性を向上
させるヒートシンク付セラミック回路基板を提供するこ
とにある。本発明の別の目的は、熱サイクル寿命が長い
ヒートシンク付セラミック回路基板を提供することにあ
る。
However, the above-mentioned conventional ceramic circuit board has a disadvantage that the thermal resistance of the solder 6 used for joining the heat sink 8 and the first copper plate 1 is relatively large. Therefore, there still remains a problem to be solved in which heat generated from the semiconductor chip or the like cannot be effectively dissipated from the heat sink 8 to the outside. In order to solve this problem, it is conceivable to braze the heat sink 8 and the first copper plate 1 via a metal having a small thermal resistance value. However, such a brazing of the metal generally needs to be performed at a relatively high temperature. This causes an increase in the internal stress of the heat sink 8, the first or second copper plates 1, 2 and the ceramic substrate 3 due to the brazing at a high temperature, and the heat generation and non-heat generation of the semiconductor chip and the like. When the temperature repeatedly changes between the high temperature and the low temperature, cracks may be generated in the ceramic substrate 3 or the like. An object of the present invention is to provide a ceramic circuit board with a heat sink that improves heat radiation characteristics. Another object of the present invention is to provide a ceramic circuit board with a heat sink having a long heat cycle life.

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は、
図1及び図2に示すように、セラミック基板13の両面
に第1及び第2アルミニウム板11,12又は第1及び
第2銅板がそれぞれ積層接着された構造体14がアルミ
ニウム11又は銅板を介してヒートシンク16に接合
されたヒートシンク付セラミック回路基板の改良であ
る。その特徴ある構成は、構造体14とヒートシンク1
6が両面にAl融点降下層17aが形成された純度99
重量%以上のアルミニウム箔17を介して接合されたと
ころにある。
The invention according to claim 1 is
As shown in FIGS. 1 and 2, a structure 14 in which first and second aluminum plates 11 and 12 or first and second copper plates are laminated and bonded to both surfaces of a ceramic substrate 13 via the aluminum plate 11 or the copper plate, respectively. This is an improvement of the ceramic circuit board with a heat sink bonded to the heat sink 16. Its characteristic configuration is that the structure 14 and the heat sink 1
6 is a purity 99 having an Al melting point depressed layer 17a formed on both surfaces.
It is at the place where it is joined via the aluminum foil 17 of not less than% by weight.

【0005】請求項2に係る発明は、請求項1に係る発
明であって、Al融点降下層17aがAl−Si合金
層、Al−Cu合金層、Al−Mg合金層、Al−Ni
合金層、Al−Ag合金層又はAl−Ce合金層である
ヒートシンク付セラミック回路基板である。この請求項
1又は2に係る回路基板では、従来のろう材やはんだの
代りに熱伝導率の高い純度99重量%以上のアルミニウ
ム箔17を用いてヒートシンク16をアルミニウム板1
1又は銅板に接合するので放熱特性が向上する。また、
Al融点降下層17aによりAlの融点より低い温度で
接合できる。更に、アルミニウム箔17は変形抵抗が小
さいので、接合後の回路基板に熱サイクルを付加しても
セラミック基板13にクラックが発生することがなく、
その寿命を長くすることができる。
The invention according to claim 2 is the invention according to claim 1, wherein the Al melting point depressing layer 17a is formed of an Al—Si alloy layer, an Al—Cu alloy layer, an Al—Mg alloy layer, an Al—Ni alloy layer.
It is a ceramic circuit board with a heat sink, which is an alloy layer, an Al-Ag alloy layer or an Al-Ce alloy layer. In the circuit board according to claim 1 or 2, the heat sink 16 is connected to the aluminum plate 1 by using an aluminum foil 17 having a high thermal conductivity and a purity of 99% by weight or more instead of the conventional brazing material or solder.
1 or a copper plate, so that heat radiation characteristics are improved. Also,
The bonding can be performed at a temperature lower than the melting point of Al by the Al melting point lowering layer 17a. Further, since the aluminum foil 17 has a small deformation resistance, the ceramic substrate 13 does not crack even if a heat cycle is applied to the circuit board after bonding.
Its life can be lengthened.

【0006】請求項3に係る発明は、請求項1又は2に
係る発明であって、図1に示すように、構造体14及び
ヒートシンク16のアルミニウム箔17とのそれぞれの
接合面がNiめっき11a,16aされたヒートシンク
付セラミック回路基板である。この請求項3に係る回路
基板では、Niめっき11a,16aを施すことによ
り、ヒートシンク16をアルミニウム板11又は銅板に
比較的低温で容易に接合できる。
The invention according to claim 3 is the invention according to claim 1 or 2, wherein, as shown in FIG. 1, the joint surfaces of the structure 14 and the heat sink 16 with the aluminum foil 17 are formed by Ni plating 11a. , 16a. In the circuit board according to the third aspect, by applying the Ni platings 11a and 16a, the heat sink 16 can be easily joined to the aluminum plate 11 or the copper plate at a relatively low temperature.

【0007】請求項4に係る発明は、請求項1ないし3
いずれかに係る発明であって、セラミック基板13がA
lN,Si34又はAl23により形成され、ヒートシ
ンク16がCu、Al又はAlSiC系複合材料により
形成されたヒートシンク付セラミック回路基板である。
この請求項4に係る回路基板では、セラミック基板13
としてAlNを用いると熱伝導率及び耐熱性が向上し、
Si34を用いると強度及び耐熱性が向上し、Al23
を用いると耐熱性が向上する。また、ヒートシンク16
をCu、Al又はAlSiC系複合材料により形成する
ことにより、半導体チップ等から発した熱をヒートシン
ク16から有効に外部に放散する。
The invention according to claim 4 is the invention according to claims 1 to 3
The invention according to any one of the above, wherein the ceramic substrate 13
The heat sink 16 is a ceramic circuit board with a heat sink formed of 1N, Si 3 N 4 or Al 2 O 3 , and the heat sink 16 is formed of Cu, Al or AlSiC-based composite material.
In the circuit board according to the fourth aspect, the ceramic substrate 13
When AlN is used, the thermal conductivity and heat resistance are improved,
When Si 3 N 4 is used, strength and heat resistance are improved, and Al 2 O 3
When heat is used, heat resistance is improved. The heat sink 16
Is formed of a Cu, Al or AlSiC-based composite material, thereby effectively dissipating heat generated from a semiconductor chip or the like from the heat sink 16 to the outside.

【0008】請求項5に係る発明は、請求項1ないし4
いずれかに係る発明であって、アルミニウム箔17が5
〜500μmの厚さを有するヒートシンク付セラミック
回路基板である。アルミニウム箔17が5μm未満であ
ると構造体14とヒートシンク16との接合が困難にな
り、アルミニウム箔17が500μmを越えると熱抵抗
値が上昇する。
The invention according to claim 5 is the invention according to claims 1 to 4
The invention according to any one of the above, wherein the aluminum foil 17 is 5
It is a ceramic circuit board with a heat sink having a thickness of about 500 μm. If the aluminum foil 17 is less than 5 μm, it becomes difficult to join the structure 14 and the heat sink 16, and if the aluminum foil 17 exceeds 500 μm, the thermal resistance increases.

【0009】[0009]

【発明の実施の形態】次に本発明の第1の実施の形態を
図面に基づいて詳しく説明する。 (a) 構造体 図1及び図5に示すように、構造体14,24はセラミ
ック基板13,23の両面に第1及び第2アルミニウム
板11,12又は第1及び第2銅板21,22がそれぞ
れ積層接着されて構成され、セラミック基板13,23
はAlN,Si34又はAl23により形成される。図
1に示すように、セラミック基板13の両面に第1及び
第2アルミニウム板11,12を積層接着するには、第
1アルミニウム板11の上にAl−Si系ろう材(図示
せず)、セラミック基板13、Al−Si系ろう材(図
示せず)及び第2アルミニウム板12を重ねた状態で、
これらに荷重0.5〜5kgf/cm2を加え、真空中
で600〜630℃に加熱することにより行われる。積
層接着後、第2アルミニウム板12はエッチングにより
所定のパターンの回路となる。Al−Si系ろう材は9
0〜95重量%のAlと5〜10重量%のSiとの合金
が好ましい。図5に示すように、セラミック基板23の
両面に第1及び第2銅板21,22を積層接着するに
は、第1銅板21の上にセラミック基板13及び第2銅
板22を重ねた状態で、これらに荷重0.5〜2kgf
/cm2を加え、N2雰囲気中で1065〜1075℃に
加熱するDBC(Direct Bond Copper)法により作ら
れ、構造体24の第2銅板22はエッチングにより所定
のパターンの回路となる。
Next, a first embodiment of the present invention will be described in detail with reference to the drawings. (a) Structure As shown in FIGS. 1 and 5, structures 14 and 24 are formed on both surfaces of ceramic substrates 13 and 23 by first and second aluminum substrates.
Plates 11 and 12 or first and second copper plates 21 and 22 are laminated and bonded, respectively, and ceramic substrates 13 and 23 are formed.
Is formed of AlN, Si 3 N 4 or Al 2 O 3 . As shown in FIG. 1, in order to laminate and bond the first and second aluminum plates 11 and 12 on both sides of the ceramic substrate 13, an Al—Si brazing material (not shown) is placed on the first aluminum plate 11. In a state where the ceramic substrate 13, the Al-Si brazing material (not shown) and the second aluminum plate 12 are stacked,
A load of 0.5 to 5 kgf / cm 2 is applied to these, and heating is performed at 600 to 630 ° C. in a vacuum. After lamination and bonding, the second aluminum plate 12 becomes a circuit having a predetermined pattern by etching. Al-Si brazing material is 9
An alloy of 0 to 95% by weight of Al and 5 to 10% by weight of Si is preferred. As shown in FIG. 5, in order to laminate and bond the first and second copper plates 21 and 22 on both sides of the ceramic substrate 23, the ceramic substrate 13 and the second copper plate 22 are stacked on the first copper plate 21. Load 0.5-2kgf
/ Cm 2 and heated to 1065 to 1075 ° C. in a N 2 atmosphere by a DBC (Direct Bond Copper) method, and the second copper plate 22 of the structure 24 becomes a circuit having a predetermined pattern by etching .

【0010】(b) ヒートシンク ヒートシンク16はCu、Al又はAlSiC系複合材
料により形成される。ヒートシンクがAlSiC系複合
材料である場合には、SiCの焼成前の粉体を加圧した
状態で、この粉体間の隙間にAl合金を流込むことによ
りAlSiC系複合材料が形成される。
(B) Heat sink The heat sink 16 is formed of a Cu, Al or AlSiC-based composite material. When the heat sink is an AlSiC-based composite material, the AlSiC-based composite material is formed by pouring an Al alloy into gaps between the powders before firing the SiC powder before firing.

【0011】(c) アルミニウム箔 アルミニウム箔17は純度99重量%以上のアルミニウ
ム箔であって、図2に示すように、両面にAl融点降下
層17a,17aが形成される。アルミニウム箔17は
5〜500μmの厚さを有し、Al融点降下層17aに
はAl−Si合金層、Al−Cu合金層、Al−Mg合
金層、Al−Ni合金層、Al−Ag合金層又はAl−
Ce合金層が挙げられる。なお、Al融点降下層17a
のアルミニウム箔17への形成は図2に示すようにAl
融点降下層17aをアルミニウム箔17にコーティング
して形成してもよく、図3に示すように、微粒子形状の
Al融点降下層17aをアルミニウム箔17に蒸着等に
より形成しても良い。
(C) Aluminum foil The aluminum foil 17 is an aluminum foil having a purity of 99% by weight or more. As shown in FIG. 2, Al melting point depressing layers 17a, 17a are formed on both surfaces. The aluminum foil 17 has a thickness of 5 to 500 μm, and the Al melting point lowering layer 17a has an Al—Si alloy layer, an Al—Cu alloy layer, an Al—Mg alloy layer, an Al—Ni alloy layer, and an Al—Ag alloy layer. Or Al-
A Ce alloy layer is exemplified. Note that the Al melting point lowering layer 17a
Is formed on the aluminum foil 17 as shown in FIG.
The melting point lowering layer 17a may be formed by coating the aluminum foil 17, or as shown in FIG. 3, an Al melting point lowering layer 17a in the form of fine particles may be formed on the aluminum foil 17 by vapor deposition or the like.

【0012】(d) ヒートシンクの第1アルミニウム板又
は第1銅板への接合 図4に示すように、ヒートシンク16の上に第1アルミ
ニウム板11又は第2銅板21を下側にした構造体1
4,24を重ね、これらに荷重3kgf/cm2を加
え、真空中で520〜570℃に加熱保持することによ
り、アルミニウム箔の両側に形成されたAl融点降下層
17a中のAl合金が溶融してアルミニウム箔17を介
してヒートシンク16が構造体14,24に接合され
る。なお、第1アルミニウム板11又は第1銅板21を
エッチングにより所定のパターンの回路とし、第2アル
ミニウム板12又は第2銅板22にアルミニウム箔17
を介してヒートシンク16を接合してもよい。
(D) Bonding of heat sink to first aluminum plate or first copper plate As shown in FIG. 4, the structure 1 in which the first aluminum plate 11 or the second copper plate 21 is placed on the bottom of the heat sink 16
4 and 24, and a load of 3 kgf / cm 2 was applied thereto and heated and maintained at 520 to 570 ° C. in a vacuum to melt the Al alloy in the Al melting point depressed layer 17 a formed on both sides of the aluminum foil. The heat sink 16 is joined to the structures 14 and 24 via the aluminum foil 17. The first aluminum plate 11 or the first copper plate 21 is formed into a circuit having a predetermined pattern by etching, and the aluminum foil 17 is formed on the second aluminum plate 12 or the second copper plate 22.
The heat sink 16 may be joined via the heat sink.

【0013】[0013]

【実施例】次に本発明の実施例を比較例とともに詳しく
説明する。 <実施例1>図1に示すように、縦、横及び厚さがそれ
ぞれ50mm、50mm及び0.6mmのAlNにより
形成されたセラミック基板13と、縦、横及び厚さがそ
れぞれ30mm、30mm及び0.4mmのAlにより
形成された第1及び第2アルミニウム板11,12と、
縦、横及び厚さがそれぞれ30mm、30mm及び0.
03mmのAl−7.5重量%Si合金であるAl−S
i系ろう材(図示せず)とを用意し、構造体14を製作
した。
Next, examples of the present invention will be described in detail together with comparative examples. <Example 1> As shown in FIG. 1, a ceramic substrate 13 made of AlN having a length, width and thickness of 50 mm, 50 mm and 0.6 mm respectively, and a length, width and thickness of 30 mm, 30 mm and First and second aluminum plates 11, 12 formed of 0.4 mm Al;
The length, width and thickness are 30 mm, 30 mm and 0.3 mm, respectively.
Al-S which is an Al-7.5 wt% Si alloy of 03 mm
An i-type brazing material (not shown) was prepared, and the structure 14 was manufactured.

【0014】構造体14の製作には先ず、第1アルミニ
ウム板11の上にAl−Si系ろう材、セラミック基板
13、Al−Si系ろう材及び第2アルミニウム板12
を重ねた状態で、これらに荷重2kgf/cm2を加
え、真空中で630℃に加熱することにより、セラミッ
ク基板13の両面に第1及び第2アルミニウム板11,
12を積層接着した。積層接着後、第2アルミニウム板
12をエッチングにより所定のパターンの回路として構
造体14を得た。次に、この構造体14とともに縦、横
及び厚さがそれぞれ70mm、70mm及び2.0mm
のAlSiC系複合材料により形成されたヒートシンク
16と、両面にAl融点降下層17aが形成された縦、
横及び厚さがそれぞれ30mm、30mm及び0.1m
mの純度99重量%以上のアルミニウム箔17を用意し
た。Al融点降下層17aにはAl−7.5重量%Si
合金をコーティングによりアルミニウム箔17の両表面
に0.05mmの厚さで形成した。
To manufacture the structure 14, first, an Al—Si brazing material, a ceramic substrate 13, an Al—Si brazing material, and a second aluminum plate 12 are placed on the first aluminum plate 11.
In a state in which the first and second aluminum plates 11 and 11 are attached to both sides of the ceramic substrate 13 by applying a load of 2 kgf / cm 2 and heating the same to 630 ° C. in a vacuum.
12 were laminated and bonded. After the lamination and bonding, the second aluminum plate 12 was etched to obtain a structure 14 as a circuit having a predetermined pattern. Next, with this structure 14, the vertical, horizontal and thickness are 70 mm, 70 mm and 2.0 mm, respectively.
A heat sink 16 formed of an AlSiC-based composite material, and a vertical structure having an Al melting point depressed layer 17a formed on both surfaces.
30mm, 30mm and 0.1m respectively in width and thickness
An aluminum foil 17 having a purity of 99% by weight or more was prepared. Al-7.5 wt% Si is used for the Al melting point lowering layer 17a.
The alloy was formed on both surfaces of the aluminum foil 17 by coating to a thickness of 0.05 mm.

【0015】構造体14の第1アルミニウム板11及び
ヒートシンク16のアルミニウム箔17とのそれぞれの
接合面には厚さ0.005mmのNiめっき11a,1
6aをそれぞれ施し、ヒートシンク16の上にアルミニ
ウム箔17を介して第1アルミニウム板11を下側にし
た構造体14とを重ねた。これらに荷重2kgf/cm
2を加え、真空中で530℃に加熱して2時間放置する
ことによりヒートシンク16を第1アルミニウム板11
にアルミニウム箔17を介して接合し、ヒートシンク付
セラミック回路基板10を得た。
The joint surfaces between the first aluminum plate 11 of the structure 14 and the aluminum foil 17 of the heat sink 16 are each provided with a Ni plating 11a, 1 having a thickness of 0.005 mm.
6a was applied, and the structure 14 with the first aluminum plate 11 on the lower side was overlaid on the heat sink 16 via the aluminum foil 17. Load 2kgf / cm
2 and then heated to 530 ° C. in a vacuum and left for 2 hours to remove the heat sink 16 from the first aluminum plate 11.
And a ceramic circuit board 10 with a heat sink.

【0016】<実施例2>図示しないが実施例1と同一
の構造体及びヒートシンクを用意した。次に、図3に示
すように、両面にAl融点降下層17aが形成された
縦、横及び厚さがそれぞれ30mm、30mm及び0.
2mmの純度99重量%以上のアルミニウム箔17を用
意した。Al融点降下層17aは、Al−7.5重量%
Si合金粉末(粒径1.0μm)をアルミニウム箔17
上に圧着した。構造体の第1アルミニウム板及びヒート
シンクのアルミニウム箔とのそれぞれの接合面には厚さ
0.003mmのNiめっきをそれぞれ施し、ヒートシ
ンクの上にアルミニウム箔を介して第1アルミニウム板
を下側にした構造体とを重ねた。これらに荷重2kgf
/cm2を加え、真空中で520℃に加熱した状態で2
時間放置することによりヒートシンクを第1アルミニウ
ム板にアルミニウム箔を介して接合し、ヒートシンク付
セラミック回路基板を得た。
<Example 2> Although not shown, the same structure and heat sink as in Example 1 were prepared. Next, as shown in FIG. 3, the length, width and thickness of the Al-melting point depressed layer 17a formed on both surfaces are 30 mm, 30 mm and 0.3 mm, respectively.
A 2 mm aluminum foil 17 having a purity of 99% by weight or more was prepared. The Al melting point lowering layer 17a is composed of Al-7.5% by weight.
Aluminum foil 17 with Si alloy powder (particle size 1.0 μm)
Crimped on top. Each of the joining surfaces of the first aluminum plate of the structure and the aluminum foil of the heat sink was plated with Ni having a thickness of 0.003 mm, and the first aluminum plate was placed on the lower side of the heat sink via the aluminum foil. Structure and superimposed. Load 2kgf
/ Cm 2 and heated to 520 ° C. in a vacuum.
By leaving it for a while, the heat sink was bonded to the first aluminum plate via an aluminum foil to obtain a ceramic circuit board with a heat sink.

【0017】<実施例3>図示しないが、構造体の第1
アルミニウム板及びヒートシンクのアルミニウム箔との
それぞれの接合面にNiめっきを施さないこと以外、実
施例1と同じヒートシンク付セラミック回路基板を製造
した。即ち、構造体の第1アルミニウム板及びヒートシ
ンクのアルミニウム箔とのそれぞれの接合面には何の処
理もせずに、ヒートシンクの上に第1実施例と同一のア
ルミニウム箔を介して第1アルミニウム板を下側にした
構造体とを重ね、これらに荷重2kgf/cm2を加
え、真空中で520℃に加熱した状態で2時間放置する
ことによりヒートシンクを第1アルミニウム板にアルミ
ニウム箔を介して接合し、ヒートシンク付セラミック回
路基板を得た。
<Embodiment 3> Although not shown, the first structure
A ceramic circuit board with a heat sink was manufactured in the same manner as in Example 1 except that the respective joining surfaces of the aluminum plate and the heat sink with the aluminum foil were not plated with Ni. That is, the first aluminum plate of the structure and the aluminum foil of the heat sink are not subjected to any treatment, and the first aluminum plate is placed on the heat sink via the same aluminum foil as in the first embodiment. A heat sink was bonded to the first aluminum plate via an aluminum foil by stacking the lower structure and applying a load of 2 kgf / cm 2 thereto and leaving the structure heated at 520 ° C. in vacuum for 2 hours. Thus, a ceramic circuit board with a heat sink was obtained.

【0018】<実施例4>図示しないが、セラミック基
板にSi34を使用した以外実施例1と同じ構造体を製
造した。即ち、縦、横及び厚さがそれぞれ50mm、5
0mm及び0.6mmのSi34により形成されたセラ
ミック基板と、実施例1と同一の第1及び第2アルミニ
ウム板及びAl−Si系ろう材を用意し、第1アルミニ
ウム板の上にAl−Si系ろう材、Si34からなるセ
ラミック基板、Al−Si系ろう材及び第2アルミニウ
ム板を重ねた状態で、これらに荷重3kgf/cm2
加え、真空中で640℃に加熱することにより、セラミ
ック基板の両面に第1及び第2アルミニウム板を積層接
着した。積層接着後、第2アルミニウム板をエッチング
により所定のパターンの回路として構造体を得た。
Example 4 Although not shown, the same structure as in Example 1 was manufactured except that Si 3 N 4 was used for the ceramic substrate. That is, the vertical, horizontal and thickness are each 50 mm, 5
A ceramic substrate formed of 0 mm and 0.6 mm Si 3 N 4 , the same first and second aluminum plates and Al-Si brazing material as in Example 1 were prepared, and Al was placed on the first aluminum plate. -Si-based brazing material, a ceramic substrate made of Si 3 N 4, in a laminated state Al-Si based brazing material and the second aluminum plate, these load 3 kgf / cm 2 and heat to 640 ° C. in vacuo Thereby, the first and second aluminum plates were laminated and bonded to both surfaces of the ceramic substrate. After lamination and bonding, a structure was obtained as a circuit having a predetermined pattern by etching the second aluminum plate.

【0019】次に、この構造体とともに縦、横及び厚さ
がそれぞれ70mm、70mm及び2.0mmのAlに
より形成されたヒートシンクと、両面にAl−Cu合金
からなるAl融点降下層が形成された縦、横及び厚さが
それぞれ30mm、30mm及び0.1mmの純度99
重量%以上のアルミニウム箔17を用意した。Al−C
u合金はAl−5重量%Cu合金をコーティングにより
アルミニウム箔17の両表面に0.008mmの厚さで
形成した。構造体の第1アルミニウム板及びヒートシン
クのアルミニウム箔とのそれぞれの接合面には厚さ0.
005mmのNiめっきをそれぞれ施し、Alからなる
ヒートシンクの上にアルミニウム箔を介して第1アルミ
ニウム板を下側にした構造体とを重ねた。これらに荷重
3kgf/cm2を加え、真空中で570℃に加熱して
2時間放置することによりヒートシンクを第1アルミニ
ウム板にアルミニウム箔を介して接合し、ヒートシンク
付セラミック回路基板を得た。
Next, a heat sink made of Al having a length, width and thickness of 70 mm, 70 mm and 2.0 mm, respectively, and an Al melting point depressed layer made of an Al-Cu alloy were formed on both sides together with this structure. Purity 99 with vertical, horizontal and thickness of 30mm, 30mm and 0.1mm respectively
A weight percent or more of aluminum foil 17 was prepared. Al-C
The u alloy was formed with a thickness of 0.008 mm on both surfaces of the aluminum foil 17 by coating an Al-5% by weight Cu alloy. Each of the joining surfaces between the first aluminum plate of the structure and the aluminum foil of the heat sink has a thickness of 0.1 mm.
005 mm of Ni plating was applied, and a structure having a first aluminum plate on the lower side was overlaid on a heat sink made of Al via an aluminum foil. A heat sink was bonded to the first aluminum plate via an aluminum foil by applying a load of 3 kgf / cm 2 , heating to 570 ° C. in a vacuum, and allowing to stand for 2 hours to obtain a ceramic circuit board with a heat sink.

【0020】<実施例5>図示しないが、セラミック基
板にAl23を使用した以外実施例1と同じ構造体を製
造した。即ち、縦、横及び厚さがそれぞれ50mm、5
0mm及び0.6mmのAl23により形成されたセラ
ミック基板と、実施例1と同一の第1及び第2アルミニ
ウム板及びAl−Si系ろう材を用意し、第1アルミニ
ウム板の上にAl−Si系ろう材、Al23からなるセ
ラミック基板、Al−Si系ろう材及び第2アルミニウ
ム板を重ねた状態で、これらに荷重2kgf/cm2
加え、真空中で630℃に加熱することにより、セラミ
ック基板の両面に第1及び第2アルミニウム板を積層接
着した。積層接着後、第2アルミニウム板をエッチング
により所定のパターンの回路として構造体を得た。
<Example 5> Although not shown, the same structure as in Example 1 was manufactured except that Al 2 O 3 was used for the ceramic substrate. That is, the vertical, horizontal and thickness are each 50 mm, 5
A ceramic substrate formed of Al 2 O 3 of 0 mm and 0.6 mm, the same first and second aluminum plates and Al-Si brazing material as in Example 1 were prepared, and Al was placed on the first aluminum plate. -Si-based brazing material, a ceramic substrate of Al 2 O 3, in the state of extensive Al-Si based brazing material and the second aluminum plate, these load 2 kgf / cm 2 and heat to 630 ° C. in vacuo Thereby, the first and second aluminum plates were laminated and bonded to both surfaces of the ceramic substrate. After lamination and bonding, a structure was obtained as a circuit having a predetermined pattern by etching the second aluminum plate.

【0021】次に、この構造体とともに縦、横及び厚さ
がそれぞれ70mm、70mm及び2mmのCuにより
形成されたヒートシンクと、両面にAl−Mg合金から
なるAl融点降下層が形成された縦、横及び厚さがそれ
ぞれ30mm、30mm及び0.2mmの純度99重量
%以上のアルミニウム箔17を用意した。Al−Mg合
金はAl−6重量%Mg合金をコーティングによりアル
ミニウム箔17の両表面に0.004mmの厚さで形成
した。構造体の第1アルミニウム板及びヒートシンクの
アルミニウム箔とのそれぞれの接合面には厚さ0.00
8mmのNiめっきをそれぞれ施し、Cuからなるヒー
トシンクの上にアルミニウム箔を介して第1アルミニウ
ム板を下側にした構造体とを重ねた。これらに荷重3k
gf/cm2を加え、真空中で520℃に加熱して3時
間放置することによりヒートシンクを第1アルミニウム
板にアルミニウム箔を介して接合し、ヒートシンク付セ
ラミック回路基板を得た。
Next, a heat sink formed of Cu having a length, width, and thickness of 70 mm, 70 mm, and 2 mm, respectively, with this structure, and a vertical heat sink having an Al-Mg alloy formed on both surfaces thereof, Aluminum foil 17 having a width and a thickness of 30 mm, 30 mm, and 0.2 mm, respectively, and having a purity of 99% by weight or more was prepared. The Al-Mg alloy was formed to a thickness of 0.004 mm on both surfaces of the aluminum foil 17 by coating an Al-6 wt% Mg alloy. A thickness of 0.001 mm is applied to each joint surface between the first aluminum plate of the structure and the aluminum foil of the heat sink.
An Ni plating of 8 mm was applied, and a structure having a first aluminum plate on the lower side was overlaid on a heat sink made of Cu via an aluminum foil. Load 3k on these
gf / cm 2 was added, and the mixture was heated to 520 ° C. in a vacuum and allowed to stand for 3 hours to join a heat sink to the first aluminum plate via an aluminum foil to obtain a ceramic circuit board with a heat sink.

【0022】<実施例6> 図5に示すように、縦、横及び厚さがそれぞれ50m
m、50mm及び0.6mmのAlNにより形成された
セラミック基板13と、縦、横及び厚さがそれぞれ70
mm、70mm及び2mmのCu合金により形成された
第1及び第2銅板21,22とを用意し、構造体24を
製作した。構造体24の製作は、第1銅板21の上にセ
ラミック基板13及び第2銅板22を重ねた状態で、こ
れらに荷重0.5〜2kgf/cm2を加え、N2雰囲気
中で1065〜1075℃に加熱するDBC(Direct B
ond Copper)法により行われ、第2銅板22はエッチン
により所定のパターンの回路として構造体24を得
た。
<Embodiment 6> As shown in FIG. 5, the height, width and thickness are each 50 m.
m, 50 mm and 0.6 mm ceramic substrate 13 formed of AlN, and each having a vertical, horizontal and thickness of 70
First and second copper plates 21 and 22 formed of Cu alloys of mm, 70 mm and 2 mm were prepared, and the structure 24 was manufactured. The structure 24 is manufactured by stacking the ceramic substrate 13 and the second copper plate 22 on the first copper plate 21 and applying a load of 0.5 to 2 kgf / cm 2 to them in an N 2 atmosphere. DBC (Direct B)
performed by ond Copper) method, the second copper plate 22 is etching
Thus, the structure 24 was obtained as a circuit having a predetermined pattern.

【0023】次に、この構造体24とともに縦、横及び
厚さがそれぞれ70mm、70mm及び3.0mmのA
lSiC系複合材料により形成されたヒートシンク16
と、両面にAl−Ni合金からなるAl融点降下層が形
成された縦、横及び厚さがそれぞれ30mm、30mm
及び0.3mmの純度99重量%以上のアルミニウム箔
17を用意した。Al−Ni合金はAl−3重量%Ni
合金をコーティングによりアルミニウム箔17の両表面
に0.05mmの厚さで形成した。構造体24の第1銅
板21及びヒートシンク16のアルミニウム箔17との
それぞれの接合面には厚さ0.005mmのNiめっき
をそれぞれ施し、AlSiC系複合材料からなるヒート
シンク16の上にアルミニウム箔17を介して第1銅板
を下側にした構造体24とを重ねた。これらに荷重3k
gf/cm2を加え、真空中で530℃に加熱して3時
間放置することによりヒートシンク16を第1銅板21
にアルミニウム箔17を介して接合し、ヒートシンク付
セラミック回路基板20を得た。
Next, with this structure 24, A, 70 mm, and 3.0 mm A,
Heat sink 16 made of lSiC-based composite material
And an aluminum-melting point depressed layer made of an Al-Ni alloy is formed on both sides, and the length, width and thickness are 30 mm and 30 mm, respectively.
And a 0.3 mm aluminum foil 17 having a purity of 99% by weight or more. Al-Ni alloy is Al-3wt% Ni
The alloy was formed on both surfaces of the aluminum foil 17 by coating to a thickness of 0.05 mm. The joint surface between the first copper plate 21 of the structure 24 and the aluminum foil 17 of the heat sink 16 is subjected to Ni plating with a thickness of 0.005 mm, and the aluminum foil 17 is placed on the heat sink 16 made of an AlSiC-based composite material. And the structure 24 with the first copper plate on the lower side. Load 3k on these
gf / cm 2 , heated to 530 ° C. in a vacuum and allowed to stand for 3 hours, so that the heat sink 16
Was bonded via an aluminum foil 17 to obtain a ceramic circuit board 20 with a heat sink.

【0024】<実施例7> 図示しないが、セラミック基板にSi34を使用した以
実施例6と同じ構造体を製造した。即ち、縦、横及び
厚さがそれぞれ50mm、50mm及び0.6mmのS
34により形成されたセラミック基板と、実施例6
同一の第1及び第2銅板を用意し、第1銅板の上にSi
34からなるセラミック基板及び第2銅板を重ねた状態
で、これらに荷重0.5〜2kgf/cm2を加え、N2
雰囲気中で1065〜1075℃に加熱して積層接着し
た後、第2銅板をエッチングにより所定のパターンの回
路として構造体を得た。次に、この構造体とともに縦、
横及び厚さがそれぞれ70mm、70mm及び2mmの
Alにより形成されたヒートシンクと、両面にAl−A
g合金からなるAl融点降下層が形成された縦、横及び
厚さがそれぞれ30mm、30mm及び0.2mmの純
度99重量%以上のアルミニウム箔を用意した。Al−
Ag合金はAl−4重量%Ag合金をコーティングによ
りアルミニウム箔の両表面に0.2mmの厚さで形成し
た。構造体の第1銅板及びヒートシンクのアルミニウム
箔とのそれぞれの接合面には厚さ0.01mmのNiめ
っきをそれぞれ施し、Alからなるヒートシンクの上に
アルミニウム箔を介して第1銅板を下側にした構造体と
を重ねた。これらに荷重3kgf/cm2を加え、真空
中で530℃に加熱して5時間放置することによりヒー
トシンクを第1銅板にアルミニウム箔を介して接合し、
ヒートシンク付セラミック回路基板を得た。
<Example 7> Although not shown, the same structure as in Example 6 was manufactured except that Si 3 N 4 was used for the ceramic substrate. That is, S of 50 mm, 50 mm and 0.6 mm in length, width and thickness respectively.
A ceramic substrate formed of i 3 N 4 and the same first and second copper plates as in Example 6 were prepared, and Si was placed on the first copper plate.
A load of 0.5 to 2 kgf / cm 2 is applied to the ceramic substrate made of 3 N 4 and the second copper plate in a state where they are stacked, and N 2
After heating to 1065 to 1075 ° C. in an atmosphere for laminating and bonding, the structure was obtained as a circuit having a predetermined pattern by etching the second copper plate. Next, with this structure,
A heat sink formed of Al having a width and a thickness of 70 mm, 70 mm and 2 mm, respectively, and Al-A on both surfaces
Aluminum foil having a purity of 99% by weight or more having a length, a width and a thickness of 30 mm, 30 mm and 0.2 mm, respectively, on which an Al melting point depressed layer made of a g alloy was formed was prepared. Al-
The Ag alloy was formed by coating an Al-4% by weight Ag alloy on both surfaces of the aluminum foil with a thickness of 0.2 mm. The joint surface between the first copper plate of the structure and the aluminum foil of the heat sink is plated with 0.01 mm thick Ni, and the first copper plate is placed on the heat sink made of Al via the aluminum foil with the first copper plate facing down. With the structure. A heat sink was bonded to the first copper plate via an aluminum foil by applying a load of 3 kgf / cm 2 thereto, heating to 530 ° C. in a vacuum, and allowing to stand for 5 hours.
A ceramic circuit board with a heat sink was obtained.

【0025】<実施例8> 図示しないが、セラミック基板にAl23を使用した以
実施例6と同じ構造体を製造した。即ち、縦、横及び
厚さがそれぞれ50mm、50mm及び0.6mmのA
23により形成されたセラミック基板と、実施例6
同一の第1及び第2銅板を用意し、第1銅板の上にAl
23からなるセラミック基板及び第2銅板を重ねた状態
で、これらに荷重0.5〜2kgf/cm2を加え、N2
雰囲気中で1065〜1075℃に加熱して積層接着し
た後、第2銅板をエッチングにより所定のパターンの回
路として構造体を得た。次に、この構造体とともに縦、
横及び厚さがそれぞれ70mm、70mm及び2mmの
Cuにより形成されたヒートシンクと、両面にAl−C
e合金からなるAl融点降下層が形成された縦、横及び
厚さがそれぞれ30mm、30mm及び0.1mmの純
度99重量%以上のアルミニウム箔を用意した。Al−
Ce合金はAl−7重量%Ce合金をコーティングによ
りアルミニウム箔の両表面に0.05mmの厚さで形成
した。構造体の第1銅板及びヒートシンクのアルミニウ
ム箔とのそれぞれの接合面には厚さ0.007mmのN
iめっきをそれぞれ施し、Cuからなるヒートシンクの
上にアルミニウム箔を介して第1銅板を下側にした構造
体とを重ねた。これらに荷重4kgf/cm2を加え、
真空中で525℃に加熱して1時間放置することにより
ヒートシンクを第1銅板にアルミニウム箔を介して接合
し、ヒートシンク付セラミック回路基板を得た。
Example 8 Although not shown, the same structure as in Example 6 was manufactured except that Al 2 O 3 was used for the ceramic substrate. That is, A having a length, width and thickness of 50 mm, 50 mm and 0.6 mm, respectively.
A ceramic substrate made of l 2 O 3 and the same first and second copper plates as in Example 6 were prepared, and Al was placed on the first copper plate.
In a state where the ceramic substrate made of 2 O 3 and the second copper plate are stacked, a load of 0.5 to 2 kgf / cm 2 is applied to them, and N 2
After heating to 1065 to 1075 ° C. in an atmosphere for laminating and bonding, the structure was obtained as a circuit having a predetermined pattern by etching the second copper plate. Next, with this structure,
A heat sink formed of Cu having a width and a thickness of 70 mm, 70 mm and 2 mm, respectively, and Al-C
Aluminum foil having a purity of 99% by weight or more with a length, width and thickness of 30 mm, 30 mm and 0.1 mm, respectively, on which an Al melting point depressed layer made of an e-alloy was formed was prepared. Al-
The Ce alloy was formed by coating an Al-7% by weight Ce alloy on both surfaces of the aluminum foil with a thickness of 0.05 mm. The joining surface between the first copper plate of the structure and the aluminum foil of the heat sink has a thickness of 0.007 mm N
Each of them was subjected to i-plating, and a structure having the first copper plate on the lower side was overlaid on a heat sink made of Cu via an aluminum foil. A load of 4 kgf / cm 2 is applied to these,
The heat sink was joined to the first copper plate via an aluminum foil by heating to 525 ° C. in a vacuum and left for 1 hour to obtain a ceramic circuit board with a heat sink.

【0026】<比較例1> 図6に示すように、実施例6の構造体と同形同大にかつ
同一材料により形成された構造体4と、実施例8のヒー
トシンクと同形同大にかつ同一材料のCuにより形成さ
れたヒートシンク8と、縦、横及び厚さがそれぞれ30
mm、30mm及び0.1mmのはんだ6とを用意し
た。先ず、ヒートシンク8の上にはんだ6と第1銅板1
を下側にした構造体4とを重ねた状態で、N2ガス及び
2ガスの混合ガス雰囲気中で250℃に加熱してヒー
トシンク8を第1銅板1に接合し、このヒートシンク付
セラミック回路基板5を比較例1とした。
Comparative Example 1 As shown in FIG. 6, a structure 4 having the same shape and size and the same material as the structure of Example 6 and a heat sink of Example 8 having the same shape and size. And a heat sink 8 made of the same material Cu and having a length, width and thickness of 30
mm, 30 mm, and 0.1 mm of solder 6 were prepared. First, the solder 6 and the first copper plate 1 are placed on the heat sink 8.
The heat sink 8 is joined to the first copper plate 1 by heating to 250 ° C. in a mixed gas atmosphere of N 2 gas and H 2 gas in a state where the structure 4 with the heat sink on the lower side is overlapped. Substrate 5 was used as Comparative Example 1.

【0027】<比較例2>図示しないが、ヒートシンク
をAlSiC系複合材料により形成し、ヒートシンクを
はんだを介して第1銅板1に接合する前にヒートシンク
の接着面にNiめっきを施したことを除いて、比較例1
と同様に構成し、このヒートシンク付セラミック回路基
板を比較例2とした。なお上述した実施例1〜8、比較
例1及び比較例2のそれぞれの回路基板の構成を表1に
示す。
<Comparative Example 2> Although not shown, except that the heat sink was formed of an AlSiC-based composite material and that the bonding surface of the heat sink was Ni-plated before joining the heat sink to the first copper plate 1 via solder. And Comparative Example 1
This ceramic circuit board with a heat sink was used as Comparative Example 2. Table 1 shows the configurations of the circuit boards of Examples 1 to 8 and Comparative Examples 1 and 2 described above.

【0028】<比較試験及び評価> 実施例1〜8、比較例1及び比較例2の回路基板の熱抵
抗及びセラミックスクラックをそれぞれ測定した。熱抵
抗の測定は以下の方法により行った、即ち、実施例1〜
8の第2アルミニウム板及び第2銅板の上面と、比較例
1及び比較例2の銅板の上面とに、20mm×15mm
の発熱体をシリコーングリースにてそれぞれ接着し、ヒ
ートシンクの下面に放熱器を取付けた。先ずこの状態で
発熱体を30Wで発熱して発熱体と周囲空気との間にて
熱抵抗(温度サイクル直前の熱抵抗)を測定した。次に
上記実施例1〜8、比較例1及び比較例2の回路基板に
冷熱衝撃試験器にて−55℃〜室温〜150℃を1サイ
クルとして1000サイクルの温度サイクルを付加し
た。更に温度サイクルを1000回付加した後に発熱体
を30Wで発熱したときの発熱体と周囲空気との間にて
熱抵抗(温度サイクル1000回後の熱抵抗)を測定し
た。この結果を表1に示す。セラミックス基板のクラッ
クの測定は以下の方法により行った、即ち、温度サイク
ル1000回後の熱抵抗を測定した実施例1〜8のセラ
ミック基板上の第1及び第2アルミニウム板、第1及び
第2銅板と、比較例1及び比較例2のセラミック基板上
の第1及び第2銅板とをそれぞれエッチングで除去し、
セラミック基板にクラックが生じているか否かを拡大鏡
により確認することにより行った。
<Comparative Test and Evaluation> The circuit boards of Examples 1 to 8 and Comparative Examples 1 and 2 were measured for thermal resistance and ceramic crack, respectively. The measurement of thermal resistance was performed by the following method, that is, Examples 1 to
20 mm × 15 mm on the upper surfaces of the second aluminum plate and the second copper plate of Comparative Example 1 and the copper plates of Comparative Examples 1 and 2.
The heating elements were bonded with silicone grease, and a radiator was attached to the lower surface of the heat sink. First, the heating element was heated at 30 W in this state, and the thermal resistance (the thermal resistance immediately before the temperature cycle) was measured between the heating element and the surrounding air. Next, the circuit boards of Examples 1 to 8 and Comparative Examples 1 and 2 were subjected to a temperature cycle of -55 ° C. to room temperature to 150 ° C. for 1000 cycles using a thermal shock tester. Furthermore, the thermal resistance (heat resistance after 1000 temperature cycles) was measured between the heating element and the surrounding air when the heating element was heated at 30 W after 1000 additional temperature cycles. Table 1 shows the results. The cracks of the ceramic substrate were measured by the following method, that is, the first and second aluminum plates, the first and second aluminum plates on the ceramic substrates of Examples 1 to 8 where the thermal resistance was measured after 1000 temperature cycles. The copper plate and the first and second copper plates on the ceramic substrates of Comparative Examples 1 and 2 are removed by etching , respectively.
This was performed by checking with a magnifying glass whether or not cracks had occurred in the ceramic substrate.

【0029】[0029]

【表1】 [Table 1]

【0030】表1から明らかなように、実施例1及び2
の結果からアルミニウム箔の両面に形成するAl融点降
下層はコーティングでも蒸着でも実質的に変化が見られ
なかった。また、実施例1及び実施例3の結果から、構
造体及びヒートシンクのアルミニウム箔とのそれぞれの
接合面をNiめっきすることにより更に低温での接合が
可能になることが判明した。また実施例1〜8では温度
サイクル直前の熱抵抗に対して温度サイクル1000回
後の熱抵抗が変化しなかったのに対し、比較例1では温
度サイクル1000回後の熱抵抗が約77%増大し、比
較例2では温度サイクル1000回後の熱抵抗が約98
%増大した。更に実施例1〜8ではセラミックスクラッ
クが温度サイクル1000回後であっても全く生じなか
ったのに対し、比較例1及び2では温度サイクル100
0回後にセラミックスクラックが生じたことが確認され
た。
As apparent from Table 1, Examples 1 and 2
As a result, the Al melting point depressed layers formed on both surfaces of the aluminum foil showed substantially no change in coating or vapor deposition. Further, from the results of Example 1 and Example 3, it was found that bonding at a lower temperature can be achieved by Ni plating the respective bonding surfaces of the structure and the heat sink with the aluminum foil. In Examples 1 to 8, the thermal resistance after 1000 temperature cycles did not change from the thermal resistance immediately before the temperature cycle, whereas in Comparative Example 1, the thermal resistance after 1000 temperature cycles increased by about 77%. In Comparative Example 2, the thermal resistance after 1000 temperature cycles was about 98.
% Increased. Further, in Examples 1 to 8, no ceramic crack was generated even after 1000 temperature cycles, whereas in Comparative Examples 1 and 2, the temperature cycle was 100%.
After 0 times, it was confirmed that ceramic cracks occurred.

【0031】[0031]

【発明の効果】以上述べたように、本発明によれば、構
造体とヒートシンクを両面にAl融点降下層が形成され
た熱伝導率の高い純度99重量%以上のアルミニウム箔
を介して接合するので、放熱特性を向上させることがで
きる。また、アルミニウム箔は変形抵抗が小さいので、
回路基板に熱サイクルを付加してもセラミック基板にク
ラックが発生することはなく、その寿命を長くすること
ができる。また、構造体及びヒートシンクのアルミニウ
ム箔とのそれぞれの接合面にNiめっきを施せば、ヒー
トシンクをアルミニウム板又は銅板に比較的低温で容易
に接合することもできる。更に、セラミック基板をAl
N,Si34又はAl23により形成し、ヒートシンク
をCu、Al又はAlSiC系複合材料により形成すれ
ば、熱伝導率、耐熱性及び強度等を向上することがで
き、半導体チップ等から発した熱をヒートシンクから有
効に外部に放散することができる。
As described above, according to the present invention, the structure and the heat sink are joined via the aluminum foil having a high thermal conductivity and having a purity of 99% by weight or more, having the Al melting point depressed layer formed on both surfaces. Therefore, heat radiation characteristics can be improved. Also, aluminum foil has low deformation resistance,
Even if a thermal cycle is applied to the circuit board, no cracks are generated in the ceramic board, and the life thereof can be extended. Also, by applying Ni plating to each of the bonding surfaces of the structure and the heat sink with the aluminum foil, the heat sink can be easily bonded to the aluminum plate or the copper plate at a relatively low temperature. Further, the ceramic substrate is
If the heat sink is formed of N, Si 3 N 4 or Al 2 O 3 and the heat sink is formed of Cu, Al or AlSiC-based composite material, the thermal conductivity, heat resistance, strength, etc. can be improved, and the semiconductor chip and the like can be improved. The generated heat can be effectively dissipated from the heat sink to the outside.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のヒートシンク付セラミック回路基板の
断面図。
FIG. 1 is a sectional view of a ceramic circuit board with a heat sink according to the present invention.

【図2】そのAl融点降下層が形成されたアルミニウム
箔の断面図。
FIG. 2 is a cross-sectional view of the aluminum foil on which the Al melting point lowering layer is formed.

【図3】別のAl融点降下層が形成されたアルミニウム
箔の断面図。
FIG. 3 is a cross-sectional view of an aluminum foil on which another Al melting point lowering layer is formed.

【図4】そのアルミニウム箔を介して構造体とヒートシ
ンクを接合した状態を示す断面図。
FIG. 4 is a sectional view showing a state where the structure and the heat sink are joined via the aluminum foil.

【図5】本発明の別のヒートシンク付セラミック回路基
板の断面図。
FIG. 5 is a cross-sectional view of another ceramic circuit board with a heat sink according to the present invention.

【図6】 従来例のヒートシンク付セラミック回路基板を
示す図1に対応する断面図。
FIG. 6 is a cross-sectional view corresponding to FIG. 1, showing a conventional ceramic circuit board with a heat sink;

【符号の説明】[Explanation of symbols]

11 第1アルミニウム板 11a,16a Niめっき 12 第2アルミニウム板 13 セラミック基板 14,24 構造体 16 ヒートシンク 17 アルミニウム箔 17a Al融点降下層 21 第1銅板 22 第2銅板 DESCRIPTION OF SYMBOLS 11 1st aluminum plate 11a, 16a Ni plating 12 2nd aluminum plate 13 ceramic board 14, 24 structure 16 heat sink 17 aluminum foil 17a Al melting | melting point depressed layer 21 1st copper plate 22 2nd copper plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大槻 真人 埼玉県大宮市北袋町1丁目297番地 三 菱マテリアル株式会社総合研究所内 (56)参考文献 特開 平4−192341(JP,A) 特開 平4−363052(JP,A) 特開 平8−23145(JP,A) 特開 平8−83867(JP,A) 実開 平3−57945(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01L 23/36 H01L 23/12 H01L 23/373 H01L 25/00 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masato Otsuki 1-297 Kitabukuro-cho, Omiya-shi, Saitama Prefecture Mitsubishi Materials Research Institute (56) References JP-A-4-192341 (JP, A) Hei 4-363052 (JP, A) JP-A-8-23145 (JP, A) JP-A-8-83867 (JP, A) JP-A-3-57945 (JP, U) (58) Fields investigated (Int) .Cl. 7 , DB name) H01L 23/36 H01L 23/12 H01L 23/373 H01L 25/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 セラミック基板(13,23)の両面に第1及
び第2アルミニウム板(11,12)又は第1及び第2銅板(2
1,22)がそれぞれ積層接着された構造体(14,24)が前記ア
ルミニウム(11)又は銅板(21)を介してヒートシンク(1
6)に接合されたヒートシンク付セラミック回路基板にお
いて、 前記構造体(14,24)と前記ヒートシンク(16)が両面にA
l融点降下層(17a)が形成された純度99重量%以上の
アルミニウム箔(17)を介して接合されたことを特徴とす
るヒートシンク付セラミック回路基板。
The first and second aluminum plates (11, 12) or the first and second copper plates (2, 3) are provided on both sides of a ceramic substrate (13, 23).
Structures (14, 24), on which the heat sinks (1, 22) are laminated and bonded, respectively, via the aluminum plate (11) or the copper plate (21).
In the ceramic circuit board with a heat sink bonded to 6), the structure (14, 24) and the heat sink (16) are A
1. A ceramic circuit board with a heat sink, wherein said ceramic circuit board is bonded via an aluminum foil (17) having a purity of 99% by weight or more and having a melting point lowering layer (17a) formed thereon.
【請求項2】 Al融点降下層(17a)がAl−Si合金
層、Al−Cu合金層、Al−Mg合金層、Al−Ni
合金層、Al−Ag合金層又はAl−Ce合金層である
請求項1記載のヒートシンク付セラミック回路基板。
2. An Al melting point lowering layer (17a) comprising an Al—Si alloy layer, an Al—Cu alloy layer, an Al—Mg alloy layer, and an Al—Ni alloy layer.
The ceramic circuit board with a heat sink according to claim 1, which is an alloy layer, an Al-Ag alloy layer, or an Al-Ce alloy layer.
【請求項3】 構造体(14,24)及びヒートシンク(16)の
アルミニウム箔(17)とのそれぞれの接合面がNiめっき
(11a,16a)された請求項1又は2記載のヒートシンク付
セラミック回路基板。
3. The bonding surfaces of the structure (14, 24) and the heat sink (16) with the aluminum foil (17) are Ni-plated.
The ceramic circuit board with a heat sink according to claim 1 or 2, wherein the ceramic circuit board is provided with (11a, 16a) .
【請求項4】 セラミック基板(13,23)がAlN,Si3
4又はAl23により形成され、ヒートシンク(16)が
Cu、Al又はAlSiC系複合材料により形成された
請求項1ないし3いずれか記載のヒートシンク付セラミ
ック回路基板。
4. The ceramic substrate (13, 23) is made of AlN, Si 3
Formed by N 4 or Al 2 O 3, the heat sink (16) is Cu, Al, or AlSiC system according to claim 1 to the ceramic circuit board with 3 heat sink according to any one formed of a composite material.
【請求項5】 アルミニウム箔(17)が5〜500μmの
厚さを有する請求項1ないし4いずれか記載のヒートシ
ンク付セラミック回路基板。
5. The ceramic circuit board with a heat sink according to claim 1, wherein the aluminum foil has a thickness of 5 to 500 μm.
JP07296297A 1996-08-22 1997-03-26 Ceramic circuit board with heat sink Expired - Lifetime JP3171234B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP07296297A JP3171234B2 (en) 1997-03-26 1997-03-26 Ceramic circuit board with heat sink
US08/916,258 US6033787A (en) 1996-08-22 1997-08-22 Ceramic circuit board with heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07296297A JP3171234B2 (en) 1997-03-26 1997-03-26 Ceramic circuit board with heat sink

Publications (2)

Publication Number Publication Date
JPH10270596A JPH10270596A (en) 1998-10-09
JP3171234B2 true JP3171234B2 (en) 2001-05-28

Family

ID=13504525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07296297A Expired - Lifetime JP3171234B2 (en) 1996-08-22 1997-03-26 Ceramic circuit board with heat sink

Country Status (1)

Country Link
JP (1) JP3171234B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116439A1 (en) 2008-03-17 2009-09-24 三菱マテリアル株式会社 Substrate for power module with heat sink and method for producing the same, power module with heat sink, and substrate for power module
WO2013024813A1 (en) 2011-08-12 2013-02-21 三菱マテリアル株式会社 Substrate for power module, substrate for power module with heat sink, power module, and method for manufacturing substrate for power module
WO2013115359A1 (en) 2012-02-01 2013-08-08 三菱マテリアル株式会社 Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, and paste for bonding copper member
WO2013147144A1 (en) 2012-03-30 2013-10-03 三菱マテリアル株式会社 Substrate for power module, substrate for power module with heat sink, power module, and method for manufacturing substrate for power module
WO2013147142A1 (en) 2012-03-30 2013-10-03 三菱マテリアル株式会社 Power module substrate, power module substrate with heat sink, and power module
WO2014088025A1 (en) 2012-12-06 2014-06-12 三菱マテリアル株式会社 Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, paste for copper plate bonding, and method for producing bonded body
KR20140096074A (en) * 2012-02-15 2014-08-04 쿠라미크 엘렉트로닉스 게엠베하 Metal-ceramic substrate and method for producing such a metal-ceramic substrate
WO2014142310A1 (en) 2013-03-14 2014-09-18 三菱マテリアル株式会社 Bonded body, substrate for power modules, and substrate with heat sink for power modules
WO2014157112A1 (en) 2013-03-29 2014-10-02 三菱マテリアル株式会社 Substrate for power modules, substrate with heat sink for power modules, and power module
KR101572586B1 (en) 2011-07-11 2015-11-27 니혼 하츠쵸 가부시키가이샤 Layered body and manufacturing method for layered body
KR20170046649A (en) 2014-08-26 2017-05-02 미쓰비시 마테리알 가부시키가이샤 Assembly, power-module substrate provided with heat sink, heat sink, method for manufacturing assembly, method for manufacturing power-module substrate provided with heat sink, and method for manufacturing heat sink
WO2017222061A1 (en) 2016-06-23 2017-12-28 三菱マテリアル株式会社 Method for manufacturing insulated circuit board, insulated circuit board, and thermoelectric conversion module
WO2018143470A1 (en) 2017-02-06 2018-08-09 三菱マテリアル株式会社 Ceramic/aluminum conjugate, insulated circuit board, led module, ceramic member, method for producing ceramic/aluminum conjugate, and method for producing insulated circuit board
WO2018168476A1 (en) 2017-03-17 2018-09-20 三菱マテリアル株式会社 Method for producing bonded body, method for producing insulated circuit board, and method for producing insulated circuit board with heatsink
WO2018180159A1 (en) 2017-03-29 2018-10-04 三菱マテリアル株式会社 Method for producing insulated circuit board with heat sink
WO2019082973A1 (en) 2017-10-27 2019-05-02 三菱マテリアル株式会社 Bonded body, insulated circuit board with heat sink, and heat sink
US10283431B2 (en) 2014-08-26 2019-05-07 Mitsubishi Materials Corporation Bonded body, power module substrate with heat sink, heat sink, method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, and method of manufacturing heat sink
US10319664B2 (en) 2015-04-16 2019-06-11 Mitsubishi Materials Corporation Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
WO2019189090A1 (en) 2018-03-27 2019-10-03 三菱マテリアル株式会社 Method of manufacturing insulating circuit board with heatsink
KR20190116246A (en) 2017-02-06 2019-10-14 미쓰비시 마테리알 가부시키가이샤 Ceramics / Aluminum Junction, Insulated Circuit Board, LED Module, Ceramics Member, Manufacturing Method of Ceramics / Aluminum Junction, Manufacturing Method of Insulation Circuit Board
US10497637B2 (en) 2015-04-16 2019-12-03 Mitsubishi Materials Corporation Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
US10497585B2 (en) 2015-04-16 2019-12-03 Mitsubishi Materials Corporation Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
US10526252B2 (en) 2015-11-26 2020-01-07 Mitsubishi Materials Corporation Ceramic/aluminum joined body, insulating circuit board, power module, LED module, and thermoelectric module
WO2020096040A1 (en) 2018-11-08 2020-05-14 三菱マテリアル株式会社 Bonded body, insulated circuit board with heat sink, and heat sink
WO2020111107A1 (en) 2018-11-28 2020-06-04 三菱マテリアル株式会社 Bonded body, heat sink-attached insulated circuit board, and heat sink
US10798824B2 (en) 2016-06-23 2020-10-06 Mitsubishi Materials Corporation Method for manufacturing insulated circuit board, insulated circuit board, and thermoelectric conversion module
US11094606B2 (en) 2017-10-27 2021-08-17 Mitsubishi Materials Corporation Bonded body, insulated circuit board with heat sink, and heat sink
WO2021187464A1 (en) 2020-03-18 2021-09-23 三菱マテリアル株式会社 Insulated circuit board
WO2023100939A1 (en) 2021-11-30 2023-06-08 三菱マテリアル株式会社 Temporary fastening material, and manufacturing method for joined body
WO2023100917A1 (en) 2021-11-30 2023-06-08 三菱マテリアル株式会社 Metal paste for joining, and method for manufacturing joined body and method for manufacturing insulated circuit board

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143363A (en) * 1998-11-04 2000-05-23 Shin Etsu Chem Co Ltd Ceramic joined product and its joining
JP3837688B2 (en) * 1999-02-04 2006-10-25 同和鉱業株式会社 Aluminum-aluminum nitride insulated circuit board
JP3769139B2 (en) * 1999-03-04 2006-04-19 三菱電機株式会社 Power semiconductor module
JP4649027B2 (en) * 1999-09-28 2011-03-09 株式会社東芝 Ceramic circuit board
JP2001168250A (en) * 1999-12-10 2001-06-22 Sumitomo Electric Ind Ltd Insulating substrate for semiconductor device, semiconductor device using that and manufacturing method of substrate
US6485816B2 (en) 2000-01-31 2002-11-26 Ngk Insulators, Ltd. Laminated radiation member, power semiconductor apparatus, and method for producing the same
JP2002009212A (en) * 2000-06-23 2002-01-11 Denki Kagaku Kogyo Kk Method for manufacturing heat dissipation structure
JP4556307B2 (en) * 2000-08-11 2010-10-06 三菱マテリアル株式会社 Power module and method for manufacturing power module cushioning material
JP2002118202A (en) * 2000-10-05 2002-04-19 Sanyo Electric Co Ltd Heat dissipation substrate and semiconductor module
JP2002334959A (en) * 2001-05-10 2002-11-22 Denki Kagaku Kogyo Kk Module structure
JP2003163315A (en) 2001-11-29 2003-06-06 Denki Kagaku Kogyo Kk Module
JP5067187B2 (en) * 2007-11-06 2012-11-07 三菱マテリアル株式会社 Power module substrate with heat sink and power module with heat sink
EP2282334B1 (en) * 2008-05-16 2020-08-19 Mitsubishi Materials Corporation Method for producing substrate for power module
JP4973608B2 (en) * 2008-06-30 2012-07-11 三菱マテリアル株式会社 Power module substrate manufacturing method and power module substrate
JP5018737B2 (en) * 2008-10-31 2012-09-05 トヨタ自動車株式会社 Manufacturing method of semiconductor device
JP2010177414A (en) * 2009-01-29 2010-08-12 Sumitomo Light Metal Ind Ltd Aluminum-made cladding material for heat-emitting parts cooling apparatus
JP5736807B2 (en) * 2011-02-02 2015-06-17 三菱マテリアル株式会社 Power module substrate with heat sink, manufacturing method of power module substrate with heat sink, and power module
JP5668507B2 (en) * 2011-02-03 2015-02-12 三菱マテリアル株式会社 Power module substrate manufacturing method and power module substrate
DE102011103746A1 (en) * 2011-05-31 2012-12-06 Ixys Semiconductor Gmbh Method for joining metal-ceramic substrates to metal bodies
JP6024477B2 (en) * 2013-01-25 2016-11-16 三菱マテリアル株式会社 Manufacturing method of power module substrate with heat sink
JP6303420B2 (en) * 2013-11-14 2018-04-04 三菱マテリアル株式会社 Power module substrate
JP6432373B2 (en) * 2015-02-04 2018-12-05 三菱マテリアル株式会社 Power module substrate with heat sink, power module, and method for manufacturing power module substrate with heat sink
JP6717238B2 (en) * 2017-03-07 2020-07-01 三菱マテリアル株式会社 Power module substrate with heat sink
JP6776953B2 (en) 2017-03-07 2020-10-28 三菱マテリアル株式会社 Board for power module with heat sink
JP6973158B2 (en) * 2018-02-19 2021-11-24 三菱マテリアル株式会社 How to manufacture a board for a power module with a heat sink
JP6973218B2 (en) * 2018-03-19 2021-11-24 三菱マテリアル株式会社 How to manufacture a board for a power module with a heat sink
CN110734295B (en) * 2019-09-17 2022-02-18 昆山市柳鑫电子有限公司 Preparation method of aluminum nitride ceramic copper-clad plate

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116439A1 (en) 2008-03-17 2009-09-24 三菱マテリアル株式会社 Substrate for power module with heat sink and method for producing the same, power module with heat sink, and substrate for power module
KR101572586B1 (en) 2011-07-11 2015-11-27 니혼 하츠쵸 가부시키가이샤 Layered body and manufacturing method for layered body
US9066433B2 (en) 2011-08-12 2015-06-23 Mitsubishi Materials Corporation Power module substrate, power module substrate with heat sink, power module, and method of manufacturing power module substrate
WO2013024813A1 (en) 2011-08-12 2013-02-21 三菱マテリアル株式会社 Substrate for power module, substrate for power module with heat sink, power module, and method for manufacturing substrate for power module
WO2013115359A1 (en) 2012-02-01 2013-08-08 三菱マテリアル株式会社 Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, and paste for bonding copper member
US10375825B2 (en) 2012-02-01 2019-08-06 Mitsubishi Materials Corporation Power module substrate, power module substrate with heat sink, power module, method of manufacturing power module substrate, and copper member-bonding paste
US9504144B2 (en) 2012-02-01 2016-11-22 Mitsubishi Materials Corporation Power module substrate, power module substrate with heat sink, power module, method of manufacturing power module substrate, and copper member-bonding paste
US9730310B2 (en) 2012-02-15 2017-08-08 Rogers Germany Gmbh Metal-ceramic substrate
KR20140096074A (en) * 2012-02-15 2014-08-04 쿠라미크 엘렉트로닉스 게엠베하 Metal-ceramic substrate and method for producing such a metal-ceramic substrate
KR101649426B1 (en) * 2012-02-15 2016-08-19 로저스 저매니 게엠베하 Metal-ceramic substrate and method for producing such a metal-ceramic substrate
US9723707B2 (en) 2012-03-30 2017-08-01 Mitsubishi Materials Corporation Power module substrate, power module substrate with heatsink, power module, and method for producing power module substrate
US9480144B2 (en) 2012-03-30 2016-10-25 Mitsubishi Materials Corporation Power module substrate, power module substrate with heat sink, and power module
WO2013147142A1 (en) 2012-03-30 2013-10-03 三菱マテリアル株式会社 Power module substrate, power module substrate with heat sink, and power module
WO2013147144A1 (en) 2012-03-30 2013-10-03 三菱マテリアル株式会社 Substrate for power module, substrate for power module with heat sink, power module, and method for manufacturing substrate for power module
KR20140142235A (en) 2012-03-30 2014-12-11 미쓰비시 마테리알 가부시키가이샤 Substrate for power module, substrate for power module with heat sink, power module, and method for manufacturing substrate for power module
WO2014088025A1 (en) 2012-12-06 2014-06-12 三菱マテリアル株式会社 Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, paste for copper plate bonding, and method for producing bonded body
WO2014142310A1 (en) 2013-03-14 2014-09-18 三菱マテリアル株式会社 Bonded body, substrate for power modules, and substrate with heat sink for power modules
US9560755B2 (en) 2013-03-14 2017-01-31 Mitsubishi Materials Corporation Bonding body, power module substrate, and heat-sink-attached power module substrate
US9807865B2 (en) 2013-03-29 2017-10-31 Mitsubishi Materials Corporation Substrate for power modules, substrate with heat sink for power modules, and power module
WO2014157112A1 (en) 2013-03-29 2014-10-02 三菱マテリアル株式会社 Substrate for power modules, substrate with heat sink for power modules, and power module
KR20170046649A (en) 2014-08-26 2017-05-02 미쓰비시 마테리알 가부시키가이샤 Assembly, power-module substrate provided with heat sink, heat sink, method for manufacturing assembly, method for manufacturing power-module substrate provided with heat sink, and method for manufacturing heat sink
US10600719B2 (en) 2014-08-26 2020-03-24 Mitsubishi Materials Corporation Bonded body, power module substrate with heat sink, heat sink, method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, and method of manufacturing heat sink
US10283431B2 (en) 2014-08-26 2019-05-07 Mitsubishi Materials Corporation Bonded body, power module substrate with heat sink, heat sink, method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, and method of manufacturing heat sink
US10319664B2 (en) 2015-04-16 2019-06-11 Mitsubishi Materials Corporation Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
US10410951B2 (en) 2015-04-16 2019-09-10 Mitsubishi Materials Corporation Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
US10497637B2 (en) 2015-04-16 2019-12-03 Mitsubishi Materials Corporation Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
US10497585B2 (en) 2015-04-16 2019-12-03 Mitsubishi Materials Corporation Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
US10526252B2 (en) 2015-11-26 2020-01-07 Mitsubishi Materials Corporation Ceramic/aluminum joined body, insulating circuit board, power module, LED module, and thermoelectric module
US10798824B2 (en) 2016-06-23 2020-10-06 Mitsubishi Materials Corporation Method for manufacturing insulated circuit board, insulated circuit board, and thermoelectric conversion module
EP3734654A1 (en) 2016-06-23 2020-11-04 Mitsubishi Materials Corporation Method for manufacturing insulated circuit board, insulated circuit board, and thermoelectric conversion module
WO2017222061A1 (en) 2016-06-23 2017-12-28 三菱マテリアル株式会社 Method for manufacturing insulated circuit board, insulated circuit board, and thermoelectric conversion module
US11798856B2 (en) 2017-02-06 2023-10-24 Mitsubishi Materials Corporation Ceramic/aluminum bonded body, insulating substrate, LED module, ceramic member, method for producing ceramic/aluminum bonded body, and method for producing insulating substrate
WO2018143470A1 (en) 2017-02-06 2018-08-09 三菱マテリアル株式会社 Ceramic/aluminum conjugate, insulated circuit board, led module, ceramic member, method for producing ceramic/aluminum conjugate, and method for producing insulated circuit board
KR20190116246A (en) 2017-02-06 2019-10-14 미쓰비시 마테리알 가부시키가이샤 Ceramics / Aluminum Junction, Insulated Circuit Board, LED Module, Ceramics Member, Manufacturing Method of Ceramics / Aluminum Junction, Manufacturing Method of Insulation Circuit Board
WO2018168476A1 (en) 2017-03-17 2018-09-20 三菱マテリアル株式会社 Method for producing bonded body, method for producing insulated circuit board, and method for producing insulated circuit board with heatsink
US11478868B2 (en) 2017-03-17 2022-10-25 Mitsubishi Materials Corporation Method for producing bonded body, method for producing insulated circuit board, and method for producing insulated circuit board with heatsink
WO2018180159A1 (en) 2017-03-29 2018-10-04 三菱マテリアル株式会社 Method for producing insulated circuit board with heat sink
US11735434B2 (en) 2017-03-29 2023-08-22 Mitsubishi Materials Corporation Method for producing insulating circuit substrate with heat sink
EP3605601A4 (en) * 2017-03-29 2020-12-30 Mitsubishi Materials Corporation Method for producing insulated circuit board with heat sink
WO2019082973A1 (en) 2017-10-27 2019-05-02 三菱マテリアル株式会社 Bonded body, insulated circuit board with heat sink, and heat sink
US11094606B2 (en) 2017-10-27 2021-08-17 Mitsubishi Materials Corporation Bonded body, insulated circuit board with heat sink, and heat sink
WO2019189090A1 (en) 2018-03-27 2019-10-03 三菱マテリアル株式会社 Method of manufacturing insulating circuit board with heatsink
US11355408B2 (en) 2018-03-27 2022-06-07 Mitsubishi Materials Corporation Method of manufacturing insulating circuit board with heatsink
WO2020096040A1 (en) 2018-11-08 2020-05-14 三菱マテリアル株式会社 Bonded body, insulated circuit board with heat sink, and heat sink
US12035468B2 (en) 2018-11-08 2024-07-09 Mitsubishi Materials Corporation Bonded body, insulated circuit board with heat sink, and heat sink
WO2020111107A1 (en) 2018-11-28 2020-06-04 三菱マテリアル株式会社 Bonded body, heat sink-attached insulated circuit board, and heat sink
KR20220154663A (en) 2020-03-18 2022-11-22 미쓰비시 마테리알 가부시키가이샤 insulated circuit board
WO2021187464A1 (en) 2020-03-18 2021-09-23 三菱マテリアル株式会社 Insulated circuit board
US12089342B2 (en) 2020-03-18 2024-09-10 Mitsubishi Materials Corporation Insulated circuit board
WO2023100939A1 (en) 2021-11-30 2023-06-08 三菱マテリアル株式会社 Temporary fastening material, and manufacturing method for joined body
WO2023100917A1 (en) 2021-11-30 2023-06-08 三菱マテリアル株式会社 Metal paste for joining, and method for manufacturing joined body and method for manufacturing insulated circuit board

Also Published As

Publication number Publication date
JPH10270596A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
JP3171234B2 (en) Ceramic circuit board with heat sink
JP3180677B2 (en) Ceramic circuit board with heat sink
KR101720921B1 (en) Power module substrate unit and power module
TWI637466B (en) Jointed body and power module substrate
JP5526632B2 (en) Insulating substrate, insulating circuit substrate, semiconductor device, manufacturing method of insulating substrate, and manufacturing method of insulating circuit substrate
JP5957862B2 (en) Power module substrate
JP2017183716A (en) Manufacturing method of insulation circuit board with heat sink, and insulation circuit board with heat sink
JP3152344B2 (en) Ceramic circuit board
JP6958441B2 (en) Manufacturing method of insulated circuit board with heat sink
JP6343993B2 (en) Power module substrate and manufacturing method thereof
JPH04363052A (en) Board for semiconductor-device mounting use
JP5828352B2 (en) Copper / ceramic bonding body and power module substrate
JP2001144234A (en) Semiconductor mounting insulation circuit substrate
JP2003168770A (en) Silicon nitride circuit board
JP2003007939A (en) Ceramic circuit board with heat sink and manufacturing method therefor
JP2017228693A (en) Conjugate, substrate for power module, manufacturing method of conjugate, and manufacturing method of substrate for power module
JPH0810202Y2 (en) Lightweight substrates for semiconductor devices
JP6561886B2 (en) Manufacturing method of power module substrate with heat sink
JP3139523B2 (en) Radiation fin
JP4387658B2 (en) Ceramic circuit board with heat sink and manufacturing method thereof
JP2004152972A (en) Ceramic circuit board with heat sink and its manufacturing method
JP6756189B2 (en) Manufacturing method for power module board with heat sink and power module board with heat sink
JP2607700Y2 (en) Lightweight substrates for semiconductor devices
JP6614256B2 (en) Insulated circuit board
JP2689687B2 (en) IC mounting substrate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080323

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 13

EXPY Cancellation because of completion of term