WO2014057828A1 - 半芳香族ポリアミドフィルム - Google Patents

半芳香族ポリアミドフィルム Download PDF

Info

Publication number
WO2014057828A1
WO2014057828A1 PCT/JP2013/076473 JP2013076473W WO2014057828A1 WO 2014057828 A1 WO2014057828 A1 WO 2014057828A1 JP 2013076473 W JP2013076473 W JP 2013076473W WO 2014057828 A1 WO2014057828 A1 WO 2014057828A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
semi
aromatic polyamide
thermoplastic elastomer
stretched
Prior art date
Application number
PCT/JP2013/076473
Other languages
English (en)
French (fr)
Inventor
乾 由起子
直樹 高石
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to CN201380049231.5A priority Critical patent/CN104662094B/zh
Priority to KR1020157004157A priority patent/KR101867495B1/ko
Priority to JP2014540803A priority patent/JP5959662B2/ja
Priority to US14/433,398 priority patent/US9580565B2/en
Priority to EP13846075.3A priority patent/EP2907852B1/en
Publication of WO2014057828A1 publication Critical patent/WO2014057828A1/ja
Priority to HK15110225.9A priority patent/HK1209447A1/xx

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer

Definitions

  • the present invention relates to a semi-aromatic polyamide film.
  • Semi-aromatic polyamide which is a polycondensate of aliphatic diamine and phthalic acid, is superior in various performances including heat resistance, compared to aliphatic polyamide. Therefore, in recent years, development for using a semi-aromatic polyamide for the purpose of a film or a molded body has been advanced.
  • JP09-017144A describes nylon 9T, which is composed of an aliphatic diamine having 9 carbon atoms and terephthalic acid as a semi-aromatic polyamide.
  • Nylon 9T has a high melting point in the vicinity of 300 ° C., and thus has high heat resistance and relatively low water absorption. Therefore, dimensional change due to water absorption is unlikely to occur. Therefore, the use of nylon 9T is attracting attention in various industrial applications.
  • nylon 9T Since nylon 9T has the characteristics as described above, the film can achieve both heat resistance and dimensional stability, which was difficult with a conventional thermoplastic film. Accordingly, the development of nylon 9T as a film material has been actively promoted. In particular, it is expected that a film obtained from nylon 9T will be applied in the field of so-called industrial films such as electronic / electrical parts and optical applications.
  • a film made of nylon 9T has a high elastic modulus at room temperature, and therefore may not have sufficient resistance to deformation. Furthermore, there is a problem that deformation resistance is lowered by heat treatment at high temperature.
  • JP 2004-217698A discloses a resin composition in which an elastomer and a crosslinking agent are added to polyamide.
  • this resin composition it is possible to obtain oil resistance, heat resistance, gas barrier properties, and flexibility by dispersing an elastomer in polyamide.
  • an elastomer is formed into a fine sphere having a diameter of about 0.1 to 30 ⁇ m, and dispersed in polyamide to obtain thermoplasticity, such as extrusion molding, injection molding, press molding, etc.
  • General-purpose heat-melt molding is possible.
  • it is already known as an incompatible polymer alloy technology to improve impact resistance by finely dispersing an elastomer in polyamide.
  • JP2004-217698A is applied to a method for producing a stretched thin film, in which the processing method is completely different from heat melt molding, and deformation occurs during processing and anisotropy increases in the deformation direction. It is difficult to apply. Furthermore, the above-mentioned problem that the known film composed of nylon 9T is not sufficiently resistant to deformation, and the resistance to deformation after heat treatment is not satisfactory is solved by the technique described in JP2004-217698A. It is impossible.
  • an object of the present invention is to obtain a semi-aromatic polyamide film composed of nylon 9T and sufficiently provided with deformation resistance such as flexibility, bending resistance and keystroke durability. To do.
  • the present inventors have found that the above object can be achieved by mixing a semi-aromatic polyamide and a specific elastomer, and allowing the elastomer to exist in a specific dispersion state in the semi-aromatic polyamide, thereby completing the present invention. It came to do.
  • the gist of the present invention is as follows.
  • a semi-aromatic polyamide film comprising 2 to 10% by mass of a thermoplastic elastomer (B) having a stretched structure.
  • thermoplastic elastomer (B) having a functional group is an olefin-based thermoplastic elastomer modified with dicarboxylic acid and / or a derivative thereof.
  • thermoplastic elastomer (B) The average minor axis of the domains of the thermoplastic elastomer (B) is 0.01 to 1.0 ⁇ m, and the average domain spacing of the thermoplastic elastomer (B) in the longitudinal section of the film is 0.1 to 1
  • thermoplastic elastomer (B) is dispersed in the film in a state of 0.5 ⁇ m.
  • the semiaromatic polyamide film of the present invention comprises 98 to 90% by mass of a semiaromatic polyamide (A) containing a specific dicarboxylic acid and a specific diamine, and 2 to 10% by mass of a thermoplastic elastomer (B) having a functional group. % And is stretched. Therefore, according to the present invention, it is possible to provide a semi-aromatic polyamide film having high heat resistance, excellent stretchability and deformation resistance, and small thickness unevenness. Therefore, the semi-aromatic polyamide film of the present invention is used as a film for electronic / electrical parts or optical applications, that is, a so-called industrial film, in particular, a substrate film or coverlay film for FPC, or an insulation for a switch or touch panel. It can be suitably used as a film or the like.
  • the semi-aromatic polyamide film of the present invention contains a dicarboxylic acid containing terephthalic acid as a main component and a semi-aromatic polyamide (A) 98 to 90 containing a diamine containing an aliphatic diamine having 9 carbon atoms as a main component.
  • A semi-aromatic polyamide
  • This is a stretched film containing 2% by mass and 2 to 10% by mass of a thermoplastic elastomer (B) having a functional group.
  • the dicarboxylic acid component constituting the semi-aromatic polyamide (A) needs to have terephthalic acid as a main component.
  • the proportion of terephthalic acid in the dicarboxylic acid component is preferably 60 to 100 mol%, more preferably 70 to 100 mol%, and still more preferably 85 to 100 mol%.
  • the proportion of terephthalic acid in the dicarboxylic acid component is 60 to 100 mol%, a polyamide having high heat resistance and low water absorption can be obtained.
  • dicarboxylic acid components other than terephthalic acid contained in the dicarboxylic acid component constituting the semi-aromatic polyamide (A) include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedioic acid, and tetradecane.
  • dicarboxylic acids such as diacid and octadecanedioic acid
  • aromatic dicarboxylic acids such as 1,4-naphthalenedicarboxylic acid, 1,3-naphthalenedicarboxylic acid, 1,2-naphthalenedicarboxylic acid and isophthalic acid.
  • the diamine component of the semi-aromatic polyamide (A) needs to have an aliphatic diamine having 9 carbon atoms as a main component.
  • the proportion of the aliphatic diamine having 9 carbon atoms in the diamine component is preferably 60 to 100 mol%, more preferably 75 to 100 mol%, and further preferably 90 to 100 mol%. preferable.
  • the proportion of the aliphatic diamine having 9 carbon atoms is 60 to 100 mol%, the heat resistance and chemical resistance of the resulting film are improved, and the water absorption is lowered.
  • Examples of the aliphatic diamine having 9 carbon atoms include linear aliphatic diamines such as 1,9-nonanediamine, 2-methyl-1,8-octanediamine, and 4-methyl-1,8-octanediamine. And branched aliphatic diamines such as These may be used alone or in combination of two or more. Of these, 1,9-nonanediamine and 2-methyl-1,8-octanediamine are preferably used in combination from the viewpoint of moldability.
  • Examples of the diamine component other than the aliphatic diamine having 9 carbon atoms contained in the diamine component constituting the semi-aromatic polyamide (A) include 1,4-butanediamine, 1,5-pentanediamine, Linear aliphatic diamines such as 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, Branched chain aliphatic diamines such as 4-methyl-1,8-octaneamine and 5-methyl-1,9-nonanediamine, alicyclic diamines such as isophoronediamine, norbornanedimethylamine, and tricyclodecanedimethylamine; And aromatic diamines such as phenylenediamine.
  • the semi-aromatic polyamide (A) may be copolymerized with lactams such as ⁇ -caprolactam, ⁇ -enantolactam, ⁇ -capryllactam, and ⁇ -laurolactam, as long as the object of the present invention is not impaired. .
  • a dicarboxylic acid component consisting only of terephthalic acid (100 mol% terephthalic acid);
  • a semi-aromatic polyamide (A) comprising a diamine component containing 9 to nonanediamine and 2-methyl-1,8-octanediamine in a total amount of 60 to 100 mol% in the diamine component is preferred.
  • the copolymerization ratio (molar ratio) of 1,9-nonanediamine and 2-methyl-1,8-octanediamine is (1,9-nonanediamine) / (2-methyl).
  • -1,8-octanediamine) 50/50 to 100/0, more preferably 70/30 to 100/0, and even more preferably 75/25 to 95/5.
  • the copolymerization ratio (molar ratio) of 1,9-nonanediamine and 2-methyl-1,8-octanediamine is 50/50 to 100/0, the heat resistance of the resulting film is improved and the water absorption is improved. Sexuality decreases.
  • the type and copolymerization ratio of the monomers constituting the semiaromatic polyamide (A) are preferably selected so that the Tm (melting point) of the semiaromatic polyamide (A) to be obtained is in the range of 280 to 350 ° C. .
  • Tm melting point
  • the type and copolymerization ratio of the monomers constituting the semiaromatic polyamide (A) are preferably selected so that the Tm (melting point) of the semiaromatic polyamide (A) to be obtained is in the range of 280 to 350 ° C. .
  • the intrinsic viscosity of the semi-aromatic polyamide (A) is preferably 0.8 to 2.0 dL / g, and more preferably 0.9 to 1.8 dL / g.
  • the intrinsic viscosity of (A) is 0.8 to 2.0 dL / g, a film having excellent mechanical properties can be obtained.
  • the intrinsic viscosity of the semi-aromatic polyamide (A) is less than 0.8 dL / g, it may be difficult to form a film and maintain the film shape. On the other hand, if it exceeds 2.0 dL / g, adhesion to the cooling roll becomes difficult during film production, and the appearance of the film may deteriorate.
  • a commercially available product can be suitably used as the semi-aromatic polyamide (A).
  • Examples of such commercially available products include “Genesta (registered trademark)” manufactured by Kuraray Co., Ltd.
  • Semi-aromatic polyamide (A) can be produced by using any method known as a method for producing crystalline polyamide. Examples thereof include a solution polymerization method or an interfacial polymerization method using an acid chloride and a diamine component as raw materials. Alternatively, a method of preparing a prepolymer using a dicarboxylic acid component and a diamine component as raw materials and increasing the molecular weight of the prepolymer by melt polymerization or solid phase polymerization can be mentioned.
  • the prepolymer can be obtained, for example, by heat-polymerizing a nylon salt prepared by mixing a diamine component, a dicarboxylic acid component and a polymerization catalyst at a temperature of 200 to 250 ° C.
  • the intrinsic viscosity of the prepolymer is preferably 0.1 to 0.6 dL / g.
  • the intrinsic viscosity of the prepolymer is preferably 0.1 to 0.6 dL / g.
  • the solid phase polymerization of the prepolymer is preferably performed under reduced pressure or under an inert gas flow.
  • the temperature of the solid phase polymerization is preferably 200 to 280 ° C.
  • the temperature of the solid phase polymerization is less than 200 ° C., the polymerization time becomes long, and thus the productivity may be poor.
  • the melt polymerization of the prepolymer is preferably performed at a temperature of 350 ° C. or lower. By carrying out the polymerization at a temperature of 350 ° C. or lower, the polymerization can be carried out efficiently while suppressing decomposition and thermal deterioration.
  • the above melt polymerization includes melt polymerization using a melt extruder.
  • a polymerization catalyst is used.
  • a phosphorus-based catalyst is preferably used from the viewpoints of reaction rate and economy.
  • the phosphorus-based catalyst include hypophosphorous acid, phosphorous acid, phosphoric acid, salts thereof (for example, sodium hypophosphite), or esters thereof (for example, 2,2-methylenebis (di-t-)).
  • Butylphenyl) octyl phosphite and the like may be used alone or in combination of two or more.
  • a semi-aromatic polyamide (A) obtained by polymerization using phosphorous acid as a polymerization catalyst is more preferable.
  • phosphorous acid as the polymerization catalyst, a filter is used in film formation as compared with the case of using a semi-aromatic polyamide polymerized using another polymerization catalyst (for example, hypophosphorous acid catalyst). The increase in the filtration pressure at the time of filtration of the film forming raw material by this can be suppressed.
  • the content of the polymerization catalyst in the obtained semi-aromatic polyamide (A) is preferably 0.01 to 5% by mass, and 0.05 to 2% by mass with respect to the total amount of the dicarboxylic acid component and the diamine component. % Is more preferable, and 0.07 to 1% by mass is even more preferable.
  • the content of the polymerization catalyst is 0.01 to 5% by mass, the semiaromatic polyamide can be efficiently polymerized while suppressing the deterioration of the semiaromatic polyamide.
  • the content of the polymerization catalyst is less than 0.01% by mass, the catalytic action may not be exhibited. On the other hand, when it exceeds 5 mass%, it may become disadvantageous from an economical viewpoint.
  • an end-capping agent may be used together with the diamine component, dicarboxylic acid component and polymerization catalyst as necessary.
  • a terminal blocking agent is not particularly limited as long as it is a monofunctional compound having reactivity with an amino group or a carboxyl group at the terminal of the semi-aromatic polyamide (A).
  • Examples of such end-capping agents include monocarboxylic acids, monoamines, acid anhydrides, monoisocyanates, monohalides, monoesters, and monoalcohols.
  • monocarboxylic acids or monoamines are preferable from the viewpoints of reactivity and stability of the sealed end groups, and monocarboxylic acids are more preferable from the viewpoint of ease of handling.
  • monocarboxylic acid include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, and benzoic acid.
  • the amount of the end-capping agent used can be appropriately selected depending on the reactivity, boiling point, reaction apparatus, reaction conditions, etc. of the end-capping agent used.
  • the detailed amount of the end-capping agent is preferably 0.1 to 15 mol% with respect to the total number of moles of the dicarboxylic acid component and the diamine component, from the viewpoint of adjusting the molecular weight and suppressing the decomposition of the resin.
  • the end group of the molecular chain is sealed with the above-described end-capping agent.
  • the ratio of the amount of terminal groups that are end-capped with respect to the total amount of terminal groups is preferably 10 mol% or more, more preferably 40 mol% or more, and even more preferably 70 mol% or more.
  • thermoplastic elastomer (B) having a functional group used in the present invention will be described.
  • thermoplastic elastomer (B) used in the present invention includes a hard segment and a soft segment.
  • the hard segment may be a crystalline resin or an amorphous resin.
  • the melting point thereof is preferably 150 ° C. or lower, more preferably 130 ° C. or lower.
  • the glass transition temperature is preferably 120 ° C. or lower.
  • the melting point of the resin used for the hard segment is 150 ° C. or lower or the glass transition temperature is 120 ° C. or lower, the polymer containing the semiaromatic polyamide (A) and the thermoplastic elastomer (B) is biaxially stretched. Stretching can be efficiently performed with improved stretchability.
  • thermoplastic elastomer (B) When the melting point of the resin used for the hard segment exceeds 150 ° C, or when the glass transition temperature exceeds 120 ° C, uniform stretching cannot be performed, and the predetermined dispersion state of the thermoplastic elastomer (B) is When it cannot obtain, the planarity of a stretched film may deteriorate. Moreover, a void may generate
  • the soft segment is a rubber-based resin.
  • the glass transition temperature of the resin is preferably ⁇ 30 ° C. or lower, and more preferably ⁇ 40 ° C. or lower. When the glass transition temperature of the resin used for the soft segment is ⁇ 30 ° C. or lower, the bending resistance and keystroke durability of the obtained stretched film are improved.
  • thermoplastic elastomer (B) examples include polyolefin-based thermoplastic elastomers, polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, and styrene-based thermoplastic elastomers. These thermoplastic elastomers (B) may be used independently and 2 or more types may be used together.
  • polyolefin-based thermoplastic elastomer examples include those in which the hard segment is a thermoplastic highly crystalline polyolefin and the soft segment is an ethylene- ⁇ -olefin copolymer rubber.
  • the hard segment includes, for example, an ⁇ -olefin homopolymer having 1 to 4 carbon atoms or a copolymer of two or more thereof.
  • polyethylene or polypropylene is preferable.
  • soft segments examples include butyl rubber, halobutyl rubber, EPDM (ethylene / propylene / diene rubber), EPR (ethylene / propylene rubber), acrylonitrile / butadiene rubber, NBR (nitrile rubber), EBR (ethylene / 1-butene rubber), natural Rubber.
  • polyester-based thermoplastic elastomer for example, high melting point and highly crystalline aromatic polyester such as polybutylene terephthalate (PBT) is used for the hard segment, and amorphous such as polytetramethylene ether glycol (PTMG) is used for the soft segment. And multi-block polymers in which a functional polyether is used.
  • PBT polybutylene terephthalate
  • PTMG polytetramethylene ether glycol
  • multi-block polymers in which a functional polyether is used.
  • polyamide-based thermoplastic elastomer examples include block polymers in which the hard segment is polyamide such as nylon and the soft segment is polyester or polyol.
  • styrene-based thermoplastic elastomer examples include a polymer whose hard segment is polystyrene and whose soft segment is a copolymer of a conjugated diene compound and a hydrogenated product thereof.
  • soft segment examples include isoprene rubber, butadiene rubber, hexadiene rubber, and 2,3-dimethyl-1,3-butadiene.
  • the thermoplastic elastomer (B) used in the present invention needs to have a functional group capable of reacting with an amino group or a carboxyl group which is a terminal group of the semi-aromatic polyamide (A) and an amide group of the main chain.
  • the functional group is preferably at least one functional group selected from a carboxyl group or an anhydride thereof, an amino group, a hydroxyl group, an epoxy group, an amide group and an isocyanate group, and more preferably a dicarboxylic acid and / or a derivative thereof.
  • thermoplastic elastomer that does not have a functional group capable of reacting with the terminal group of the semi-aromatic polyamide (A)
  • the stretchability during biaxial stretching may be reduced, and a uniform stretched film may not be obtained.
  • the deformation resistance of the obtained stretched film may become insufficient.
  • thermoplastic elastomer is preferably a polyolefin-based thermoplastic resin.
  • a resin include Tuffmer manufactured by Mitsui Chemicals.
  • the biaxially stretched semi-aromatic polyamide film of the present invention has a blending ratio (A) / (B) of the semi-aromatic polyamide (A) and the thermoplastic elastomer (B) of 98/2 to 90/10 (mass ratio). It is necessary that it is 96/4 to 92/8 (mass ratio).
  • the blending ratio of the thermoplastic elastomer (B) is less than 2% by mass, the effect of addition is small, and the stretch resistance of the stretched film may be insufficient.
  • thermoplastic elastomer (B) exceeds 10% by mass, not only is the quality excessive, but the melt viscosity at the time of extrusion film formation is too high, resulting in poor film formability, and stretching at the biaxial stretching. In some cases, a uniform stretched film cannot be obtained due to a decrease in properties.
  • the kneader used for kneading the semi-aromatic polyamide (A) and the thermoplastic elastomer (B) is not particularly limited.
  • a well-known melt kneader is mentioned.
  • a twin screw extruder is preferable from the viewpoint of improving the dispersibility of the thermoplastic elastomer (B).
  • the melt kneading temperature is usually not less than the melting point of the semi-aromatic polyamide (A).
  • thermoplastic elastomer (B) may be kneaded with the semi-aromatic polyamide (A) at the time of film production, or after preparing a master batch in which the thermoplastic elastomer (B) is blended at a high concentration, the master batch May be kneaded with the semi-aromatic polyamide (A).
  • the semi-aromatic polyamide film of the present invention is to improve thermal stability during film formation, prevent deterioration of film strength and elongation, and prevent deterioration of the film due to oxidation or decomposition during use. It is preferable to contain a heat stabilizer.
  • the heat stabilizer include a hindered phenol heat stabilizer, a hindered amine heat stabilizer, a phosphorus heat stabilizer, a sulfur heat stabilizer, and a bifunctional heat stabilizer.
  • hindered phenol heat stabilizer examples include Irganox 1010 (registered trademark) (manufactured by BASF Japan, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]), Irganox 1076 (Registered trademark) (manufactured by BASF Japan, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), Cyanox 1790 (registered trademark) (manufactured by Cyanamid, 1,3,5-Tris) (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanuric acid), Irganox 1098 (registered trademark) (manufactured by BASF Japan, N, N ′-(hexane-1,6-diyl) bis [3 -(3,5-di-tert-but
  • hindered amine heat stabilizer examples include Nylostab S-EED (registered trademark) (manufactured by Clariant Japan, 2-ethyl-2'-ethoxy-oxalanilide).
  • Examples of phosphorus heat stabilizers include Irgafos 168 (registered trademark) (manufactured by BASF Japan, Tris (2,4-di-tert-butylphenyl) phosphite), Irgafos 12 (registered trademark) (manufactured by BASF Japan, 6 , 6 ', 6 "-[nitrilotris (ethyleneoxy)] tris (2,4,8,10-tetra-tert-butyldibenzo [d, f] [1,3,2] dioxaphosphine)) Irgafos 38 (registered trademark) (manufactured by BASF Japan, bis (2,4-bis (1,1-dimethylethyl) -6-methylphenyl) ethyl ester phosphorous acid), ADKSTAB329K (registered trademark) (manufactured by Asahi Denka Co., Ltd.) , Tris (mono
  • sulfur-based heat stabilizer examples include DSTP (registered trademark) (manufactured by Yoshitomi Co., Ltd., chemical name: distearyl thiodipropionate), Seeox 412S (registered trademark) (manufactured by Cypro Kasei Co., Ltd., pentaerythritol tetrakis- (3- Dodecylthiopropionate)), Cyanox 1212 (registered trademark) (produced by Cyanamid Co., Ltd., lauryl stearyl thiodipropionate).
  • DSTP registered trademark
  • Seeox 412S registered trademark
  • Cypro Kasei Co., Ltd. pentaerythritol tetrakis- (3- Dodecylthiopropionate)
  • Cyanox 1212 registered trademark
  • bifunctional heat stabilizer examples include Sumilizer GM (registered trademark) (Sumitomo Chemical Co., Ltd., 2-tert-butyl-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4. -Methylphenyl acrylate), Sumilizer GS (registered trademark) (manufactured by Sumitomo Chemical Co., Ltd., 2- [1- (2-hydroxy-3,5-di-tert-pentylphenyl) ethyl] -4,6-di-tert- Pentylphenyl acrylate).
  • a hindered phenol heat stabilizer is preferred.
  • the thermal decomposition temperature of the hindered phenol heat stabilizer is preferably 320 ° C or higher, more preferably 350 ° C or higher.
  • Examples of hindered phenol heat stabilizers having a thermal decomposition temperature of 320 ° C. or higher include Sumilizer GA-80.
  • the hindered phenol heat stabilizer has an amide bond, it is possible to prevent deterioration of film strength.
  • examples of the hindered phenol heat stabilizer having an amide bond include Irganox 1098.
  • a bifunctional heat stabilizer is used in combination with the hindered phenol heat stabilizer, the deterioration of the film strength can be further reduced.
  • heat stabilizers may be used alone or in combination of two or more.
  • a hindered phenol heat stabilizer and a phosphorus heat stabilizer are used in combination, it is possible to prevent pressure increase of the raw material filter during film formation and to prevent deterioration of film strength.
  • a hindered phenol heat stabilizer, a phosphorus heat stabilizer, and a bifunctional heat stabilizer are used in combination, it is possible to prevent the pressure increase of the filter for raw material filtration during film formation, and to improve the film strength. Degradation can be further reduced.
  • a combination of a hindered phenol heat stabilizer and a phosphorus heat stabilizer a combination of Hostanox P-EPQ or GSY-P101 and Sumilizer GA-80 or Irganox 1098 is preferable.
  • a combination of a hindered phenol heat stabilizer, a phosphorus heat stabilizer, and a bifunctional heat stabilizer a combination of HostanoxP-EPQ or GSY-P101, Sumilizer GA-80 or Irganox 1098, and Sumilizer GS is preferable.
  • GSY-P101, a combination of a Summarizer GA-80 and a Summarizer GS is more preferable.
  • the content of the heat stabilizer in the semiaromatic polyamide film of the present invention is preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the semiaromatic polyamide (A), preferably 0.05 to More preferably, it is 1 part by mass.
  • the content of the heat stabilizer is 0.01 to 2 parts by mass, thermal decomposition can be more efficiently suppressed.
  • the semi-aromatic polyamide film of the present invention may contain lubricant particles in order to improve the slipperiness.
  • lubricant particles include inorganic particles such as silica, alumina, titanium dioxide, calcium carbonate, kaolin, and barium sulfate, and organic fine particles such as acrylic resin particles, melamine resin particles, silicone resin particles, and crosslinked polystyrene particles. It is done.
  • the semi-aromatic polyamide film of the present invention may contain various additives as required within a range not impairing the effects of the present invention.
  • additives include colorants such as pigments and dyes, anti-coloring agents, antioxidants different from the above heat stabilizers, weather resistance improvers, flame retardants, plasticizers, mold release agents, reinforcing agents, and modifiers.
  • Examples of the pigment include titanium oxide.
  • Examples of the weather resistance improver include benzotriazole compounds.
  • Examples of the flame retardant include bromine-based flame retardant and phosphorus-based flame retardant.
  • Examples of the reinforcing agent include talc.
  • the semi-aromatic polyamide film of the present invention needs to be stretched, that is, stretched uniaxially or biaxially, and preferably biaxially stretched. It is preferable that the polyamide resin is oriented and crystallized by stretching.
  • the stretching conditions and magnification are not particularly limited, but when stretched in the biaxial direction, the longitudinal direction (hereinafter sometimes abbreviated as “MD”) and the width direction (hereinafter abbreviated as “TD”). Both are preferably stretched 2 times or more, more preferably 2.5 times or more.
  • MD longitudinal direction
  • TD width direction
  • Both are preferably stretched 2 times or more, more preferably 2.5 times or more.
  • the thickness unevenness of the stretched semi-aromatic polyamide film of the present invention is preferably 10% or less, more preferably 8% or less, and further preferably 6% or less.
  • the thickness unevenness is 10% or less, sagging and wrinkles of the film when processing the film can be reduced.
  • a method of adjusting the shape of the unstretched film or adjusting the stretching conditions can be mentioned. The definition of thickness unevenness and the measuring method thereof will be described in detail in the “Example” section below.
  • the stretched semi-aromatic polyamide film of the present invention preferably has a smaller heat shrinkage rate.
  • the thermal shrinkage rate by hot air heating at 200 ° C. for 15 minutes is preferably 3.0% or less, more preferably 1.0% or less, and further preferably 0.5% or less.
  • a method of adjusting the conditions of heat treatment or relaxation treatment treatment for continuously reducing the width of the film to adjust the heat shrink property of the film. Is done.
  • the tensile strength of the stretched semi-aromatic polyamide film of the present invention is preferably 130 MPa or more for both MD and TD, and the tensile elongation is preferably 50% or more for both TD and MD.
  • a technique of adjusting the draw ratio is employed.
  • the domain of the thermoplastic elastomer (B) in the stretched semi-aromatic polyamide film is usually plate-like and substantially parallel to the film surface.
  • the dispersion state of the domains in the film can be evaluated by TEM photograph observation described later.
  • the average minor axis of the domain of the thermoplastic elastomer (B) in the film, the average anisotropic index of the domain, the average domain interval, and the like can be evaluated.
  • Deformation resistance due to force applied from the surface direction of the film because the average minor axis of the domain of the thermoplastic elastomer (B) is 0.01 to 1.0 ⁇ m and the average domain interval is 0.1 to 1.5 ⁇ m. Can be improved.
  • the effect of improving deformation resistance may be insufficient, or the film quality such as thickness unevenness of the stretched film may be reduced. is there.
  • the average anisotropic index is 10 to 50, the deformation resistance due to the force applied from the surface direction of the film can be further improved.
  • the average minor axis of the domain of the thermoplastic elastomer (B) is more preferably 0.03 to 1.0 ⁇ m.
  • the average domain interval of the thermoplastic elastomer (B) is more preferably 0.1 to 1.0 ⁇ m.
  • the average anisotropic index of the domain of the thermoplastic elastomer (B) is more preferably 20-50.
  • the improvement effect of deformation resistance may be insufficient, or the thickness unevenness of the stretched film, etc. The film quality may deteriorate.
  • the average particle diameter of the thermoplastic elastomer (B) in the unstretched film is preferably 0.01 to 10 ⁇ m, and more preferably 0.05 to 5 ⁇ m.
  • the melt viscosity of the semi-aromatic polyamide (A) and the thermoplastic elastomer (B) is approximated.
  • thermoplastic elastomer (B) When mixing the semi-aromatic polyamide (A) and the thermoplastic elastomer (B), the blending ratio of the thermoplastic elastomer (B) is reduced, or the kneading screw is strongly kneaded based on the configuration and temperature conditions of the kneading screw. That's fine.
  • the dispersion state of domains after stretching can be adjusted by controlling stretching conditions, specifically, stretching temperature, stretching ratio, relaxation treatment, and other conditions. For example, when an unstretched film is stretched, the anisotropy of the thermoplastic elastomer (B) can be increased and the domain spacing can be decreased by stretching the film with high orientation and high magnification.
  • the stretched semi-aromatic polyamide film of the present invention can be subjected to a treatment for improving the adhesion of the surface, if necessary.
  • a treatment for improving the adhesion include corona treatment, plasma treatment, acid treatment, and flame treatment.
  • the surface of the stretched semi-aromatic polyamide film of the present invention may be coated with various coating agents in order to impart functions such as easy adhesion, antistatic properties, release properties, and gas barrier properties.
  • the stretched semi-aromatic polyamide film of the present invention may be laminated with inorganic materials such as metals or oxides thereof, other polymers, paper, woven fabric, non-woven fabric, and wood.
  • the semi-aromatic polyamide (A) and the thermoplastic elastomer (B) are blended in an appropriate ratio, and the blend is put in an extruder. Melt and mix at a temperature of 280 to 340 ° C. for 3 to 15 minutes, and then extrude into a sheet through a T-die. The extruded product is closely adhered to a drum whose temperature is adjusted to 30 to 80 ° C. and cooled.
  • An unstretched film is manufactured, and the obtained unstretched film is then guided to a simultaneous biaxial stretching machine, and at a temperature of 120 to 150 ° C., both TD and MD are simultaneously stretched so that the stretching ratio is about 2 to 4 times.
  • Examples of the method include biaxial stretching and heat treatment at 150 to 300 ° C. for several seconds with TD relaxation being several percent.
  • the film Prior to the simultaneous biaxial stretching machine, the film may be subjected to preliminary longitudinal stretching of about 1 to 1.2 times.
  • the biaxially stretched semi-aromatic polyamide film of the present invention can also be produced by a sequential stretching method.
  • a sequential stretching method there is a method in which an unstretched film is obtained by performing the same operation as described above, and then subjected to a heat treatment such as roll heating or infrared heating, and then stretched in the longitudinal direction to obtain a longitudinally stretched film.
  • This longitudinal stretching uses the difference in the peripheral speed of two or more rolls, and the glass transition point of the semi-aromatic polyamide is Tg and is 2.0 to 3.6 times in the temperature range of Tg to (Tg + 40 ° C.). It is preferable to stretch.
  • the longitudinally stretched film is successively subjected to lateral stretching, heat setting, and relaxation treatment in order, thereby forming a biaxially stretched film.
  • the transverse stretching starts in the same temperature range of Tg to (Tg + 40 ° C.) as in the longitudinal stretching, and the maximum temperature is 100 to 150 ° C. lower than the melting point (Tm) of the semiaromatic polyamide. preferable.
  • the transverse stretching ratio is adjusted according to the required physical properties of the final film, but is preferably 2.5 times or more, and more preferably 3.0 times or more.
  • an extension of 2 to 20% may be applied in the transverse direction, that is, the width direction of the film.
  • the stretch ratio is included in the total draw ratio.
  • a relaxation treatment is performed, and then the film is cooled below its Tg to obtain a biaxially stretched film.
  • the surface of cylinders, barrel melting parts, metering parts, single tubes, filters, T dies, etc. is treated to reduce the surface roughness in order to prevent resin stagnation. It is preferable.
  • a method for reducing the surface roughness include a method of modifying with a substance having a low polarity. Or the method of vapor-depositing silicon nitride and diamond-like carbon on the surface is mentioned.
  • Examples of the method for stretching the film include a flat sequential biaxial stretching method, a flat simultaneous biaxial stretching method, and a tubular method. Among these, it is preferable to employ the flat simultaneous biaxial stretching method from the viewpoint of improving the thickness accuracy of the film and making the physical properties of the MD of the film uniform.
  • Examples of the stretching apparatus for adopting the flat simultaneous biaxial stretching method include a screw type tenter, a pantograph type tenter, and a linear motor drive clip type tenter.
  • the heat treatment after stretching is a process necessary for imparting dimensional stability of the film.
  • the heat treatment method include known methods such as a method of blowing hot air, a method of irradiating infrared rays, and a method of irradiating microwaves. Among them, a method of blowing hot air is preferable because it can be heated uniformly and accurately.
  • the obtained semi-aromatic polyamide film may be a single sheet or may be in the form of a film roll by being wound on a winding roll. From the viewpoint of productivity when used for various purposes, it is preferable to use a film roll. When it is a film roll, it may be slit to a desired width.
  • the stretched semi-aromatic polyamide film of the present invention obtained as described above has flexibility and resistance in addition to the mechanical properties, heat resistance, moist heat resistance, chemical resistance and low water absorption inherent in nylon 9T. Excellent deformation resistance such as flexibility and keystroke durability.
  • the stretched semi-aromatic polyamide film of the present invention is used for pharmaceutical packaging materials; food packaging materials such as retort foods; packaging materials for electronic components such as semiconductor packages; electricity for motors, transformers, cables, etc. Insulating materials; Dielectric materials for capacitor applications; Magnetic tape materials such as cassette tapes, magnetic tapes for data storage for digital data storage, and video tapes; solar cell substrates, liquid crystal plates, conductive films, display devices, etc.
  • Protective plate for electronic substrate materials such as LED mounting substrate, flexible printed wiring board, flexible flat cable, etc .
  • heat-resistant adhesive tape such as cover-lay film for flexible printed wiring, heat-resistant masking tape, industrial process tape; Heat resistant reflector; various release films; heat resistant adhesive Scan film; photographic film; molding material; agricultural materials; medical materials; civil engineering, building material; filtration membrane or the like, domestic, as a film for industrial materials can be suitably used.
  • Intrinsic viscosity of semi-aromatic polyamide The semi-aromatic polyamide was added in concentrated sulfuric acid having a concentration of 96% by mass at 30 ° C. to 0.05 g / dL, 0.1 g / dL, and 0.2 g, respectively. / DL, dissolved at a concentration of 0.4 g / dL, and the reduced viscosity of the semi-aromatic polyamide was determined. And the value which extrapolated the density
  • Thermal Decomposition Temperature of Thermal Stabilizer From 30 ° C. to 500 ° C. under a nitrogen atmosphere of 200 ml / min using a differential thermothermal gravimetric simultaneous measurement device (STG Nanotechnology, “TG / DTA 7000”). The temperature was raised at 20 ° C / min. The temperature at which the mass decreased by 5 mass% with respect to the mass before the temperature elevation was defined as the thermal decomposition temperature.
  • Thickness unevenness of stretched film With respect to a range of 20 cm ⁇ 20 cm at the center in the width direction of the stretched film, 30 points of thickness were randomly measured in an environment of a temperature of 20 ° C. and a humidity of 65%. The maximum value of the measured values was Lmax, the minimum value was Lmin, and the average value was La. And the value represented by the following formula
  • FIG. 2 shows a schematic diagram thereof. Measure the major axis and minor axis of 20 domains D randomly per TEM photograph, measure the major axis and minor axis of a total of 120 domains using 6 TEM photographs, and calculate their average values respectively. , “Average major axis” and “average minor axis”.
  • thermoplastic elastomer in stretched film JEM-1230 transmission electron microscope manufactured by JEOL Ltd. was used for 5 sections in the longitudinal section of the portion taken at random from the center in the width direction of the stretched film.
  • TEM observation was performed (acceleration voltage 100 kV, direct magnification 20000 times).
  • a 100 nm-thick slice cut out with a frozen ultramicrotome was used.
  • the number of domains N existing in 5 ⁇ m in the thickness direction of the film was measured at any two locations separated by 5 ⁇ m or more in the longitudinal direction of the film, and the domain interval was obtained by the following formula. .
  • Domain interval 5 / N ( ⁇ m)
  • the domain spacing is about 0.38 ⁇ m.
  • Two domain intervals were measured for each TEM photograph, and a total of 10 domain intervals were measured using five TEM photographs, and the average value thereof was defined as “average domain interval”.
  • Raw material ⁇ Raw material monomer> (1) Linear aliphatic diamine 1,9-nonanediamine (hereinafter sometimes abbreviated as “NMDA”) (2) Branched aliphatic diamine 2-methyl-1,8-octanediamine (hereinafter sometimes abbreviated as “MODA”) (3) Dicarboxylic acid terephthalic acid (hereinafter sometimes abbreviated as “TPA”) (4) End-capping agent Benzoic acid (hereinafter sometimes abbreviated as “BA”) ⁇ Catalyst> Phosphorous acid (hereinafter sometimes abbreviated as “PA”) ⁇ Heat stabilizer> Sumilyzer GA-80: manufactured by Sumitomo Chemical Co., Ltd., thermal decomposition temperature: 392 ° C [Semi-aromatic polyamide (A)] (1) Semi-aromatic polyamide A1 1343 g of NMDA, 237 g of MODA, 1627 g of TPA (average particle size: 80 ⁇ m)
  • the mixture was stirred at 80 ° C. for 0.5 hour and 28 revolutions per minute, and then heated to 230 ° C. Then, it heated at 230 degreeC for 3 hours. Thereafter, the mixture was cooled and the reaction product was taken out. After the reaction product was pulverized, the polymer was obtained by solid phase polymerization by heating at 220 ° C. for 5 hours under a nitrogen stream in a dryer.
  • Table 1 shows the copolymerization ratios and characteristic values of the semi-aromatic polyamides A1 to A3.
  • Tuffmer MH7020 manufactured by Mitsui Chemicals, maleic anhydride-modified polyolefin, melt viscosity 1.5 g / 10 min, Tg ⁇ 65 ° C.
  • Tuffmer MA8510 manufactured by Mitsui Chemicals, maleic anhydride-modified polyolefin, melt viscosity 5.0 g / 10 min, Tg -55 ° C.
  • Tuftec M1913 manufactured by Asahi Kasei Co., Ltd., maleic anhydride modified polystyrene-hydrogenated polybutadiene copolymer, melt viscosity 5 g / 10 min, Tg ⁇ 20 ° C. and 105 ° C.
  • Tuffmer A1050S manufactured by Mitsui Chemicals, unacid-modified polyolefin, melt viscosity 2.2 g / 10 min, Tg -65 ° C.
  • thermoplastic elastomer-containing masterbatch M1 75% by mass of semi-aromatic polyamide A1, 25% by mass of Tuffmer MH7020, which is a thermoplastic elastomer, and Sumilizer GA-80, which is a thermal stabilizer, for a total of 100 parts by mass of semi-aromatic polyamide and thermoplastic elastomer. 4 parts by mass were dry blended. And this was thrown into the twin-screw extruder whose screw diameter is 26 mm when the cylinder temperature was heated to 310 degreeC, it melt-kneaded, and was extruded in the shape of a strand. Then, it cooled and cut
  • Table 2 shows the mixing ratio of the raw materials in the thermoplastic elastomer-containing master batches M1 to M6.
  • Unstretched film N1 84 parts by mass of semi-aromatic polyamide A1 and 16 parts by mass of thermoplastic elastomer-containing master batch M1 were charged into a single screw extruder having a screw diameter of 50 mm when heated at a cylinder temperature of 320 ° C. and melted. As a result, a molten polymer was obtained. The molten polymer was filtered using a metal fiber sintered filter (manufactured by Nippon Seisen Co., Ltd., “NF-13”, absolute particle size: 60 ⁇ m). Thereafter, the molten polymer was extruded into a film form from a T-die set at 320 ° C. to obtain a film-form melt. The melt was brought into close contact with a cooling roll set at 50 ° C. by an electrostatic application method and cooled to obtain a substantially non-oriented unstretched film (average thickness: 230 ⁇ m).
  • Table 3 shows the blending ratio of the semi-aromatic polyamide and the thermoplastic elastomer-containing masterbatch used for the unstretched film N1 and the resin composition of the unstretched film N1.
  • Example 1 Biaxial stretching was performed with a flat simultaneous biaxial stretching machine while holding both ends of the unstretched film N1 with clips.
  • the stretching conditions were as follows: the temperature of the preheating portion was 125 ° C., the temperature of the stretching portion was 130 ° C., the MD stretching strain rate was 2400% / min, the TD stretching strain rate was 2760% / min, and the MD stretching ratio was 3.0. The draw ratio of TD was 3.3 times.
  • heat setting was performed at 270 ° C. in the same tenter of the biaxial stretching machine, and 5% relaxation treatment was performed in the width direction of the film to obtain a biaxially stretched film having an average thickness of 25 ⁇ m.
  • Example 2 to 12 Comparative Examples 1 to 3 As shown in Table 4, the stretching ratio, stretching temperature, and relaxation ratio were changed as compared with Example 1. Other than that was carried out similarly to Example 1, and manufactured the semi-aromatic polyamide film.
  • Example 13 The unstretched film N1 was biaxially stretched by a flat sequential axial stretching machine.
  • the unstretched film was heated to 125 ° C. by roll heating, infrared heating, or the like, and stretched 2.5 times at a stretching strain rate of 4000% / min in the longitudinal direction to obtain a longitudinally stretched film.
  • both ends in the width direction of the film were continuously held by clips of a transverse stretching machine, and transverse stretching was performed.
  • the temperature of the preheating portion of the transverse stretching was 130 ° C.
  • the temperature of the stretching portion was 145 ° C.
  • the stretching strain rate was 2000% / min
  • the stretching ratio of TD was 3.0 times.
  • heat setting was performed at 270 ° C. in the same tenter of the transverse stretching machine, and 5% relaxation treatment was performed in the width direction of the film to obtain a biaxially stretched film having an average thickness of 25 ⁇ m.
  • Table 4 shows the unstretched films used, stretch conditions, and evaluation results of stretched films for Examples 1 to 13 and Comparative Examples 1 to 3.
  • the semi-aromatic polyamide films of Examples 1 to 13 had high heat resistance, excellent deformation resistance such as bending resistance and stretchability, and small thickness unevenness.
  • the semi-aromatic polyamide films of Example 2, Example 5, and Example 7 have a stretching ratio higher than that of the semi-aromatic polyamide films of Examples 3 and 4, Example 6, and Example 8 having the same resin composition, respectively. It was low. Therefore, the average anisotropic index of the domains of the thermoplastic elastomer is small, the average domain interval is slightly large, and the bending resistance is slightly deteriorated.
  • the semi-aromatic polyamide films of Examples 7 and 8 were the minimum limit value within the range defined by the present invention for the thermoplastic elastomer content. Therefore, only the content of the thermoplastic elastomer used is different from Examples 7 and 8, respectively, and the average domain interval is higher than those of Examples 2 and 4 in which the content exceeds the minimum limit value specified in the present invention. Slightly large and slightly improved in flex resistance, particularly flex resistance after heat treatment.
  • the semi-aromatic polyamide film of Example 11 had the maximum limit value within the range defined by the present invention for the thermoplastic elastomer content. Therefore, only the content of the thermoplastic elastomer used is different from that of Example 11, and the stretchability is lower than those of Examples 4 and 10 in which the content is below the maximum limit value of the range defined in the present invention, and the thickness of the film. The unevenness was slightly large and the tensile strength elongation was slightly low.
  • the semi-aromatic polyamide film of Example 12 had a small intrinsic viscosity of the semi-aromatic polyamide used. Therefore, the stretchability was lower, the film thickness unevenness was slightly larger, and the effect of improving the bending resistance after heat treatment was slightly smaller than in Example 4 in which only the intrinsic viscosity of the semi-aromatic polyamide used was different.
  • thermoplastic elastomer used in the semi-aromatic polyamide film of Comparative Example 1, the content of the thermoplastic elastomer used was lower than the range specified in the present invention. Therefore, it was inferior in bending resistance, especially bending resistance after heat treatment.
  • thermoplastic elastomer used did not have a functional group. Therefore, the stretchability was low and the film thickness unevenness was remarkably large. Further, the average minor axis and the average domain interval were large, and the bending resistance was poor.
  • thermoplastic elastomer used in the semi-aromatic polyamide film of Comparative Example 3 was larger than the range specified in the present invention. Therefore, the stretchability is inferior, and a stretched film having a surface magnification of 10 times cannot be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

 半芳香族ポリアミドフィルムであって、半芳香族ポリアミド(A)98~90質量%と、熱可塑性エラストマー(B)2~10質量%とを含有する。半芳香族ポリアミド(A)は、テレフタル酸を主成分とするジカルボン酸と、炭素数が9である脂肪族ジアミンを主成分とするジアミンとを含む。熱可塑性エラストマー(B)は、官能基を有する。このフィルムは、延伸されたフィルムである。

Description

半芳香族ポリアミドフィルム
 本発明は半芳香族ポリアミドフィルムに関する。
 脂肪族ジアミンとフタル酸との重縮合体である半芳香族ポリアミドは、脂肪族ポリアミドと比較して、耐熱性をはじめとする種々の性能に優れている。そのため、近年、半芳香族ポリアミドをフィルムや成形体の用途に用いるための開発が進められている。例えば、JP09-012714Aには、半芳香族ポリアミドとして、炭素数が9である脂肪族ジアミンと、テレフタル酸とを構成要素とするナイロン9Tが記載されている。ナイロン9Tは、300℃近辺の高い融点を有することで耐熱性が高く、かつ吸水性が比較的低く従って吸水による寸法変化が生じにくい。そのため、各種の産業用途においてナイロン9Tを用いることが注目を浴びている。
 ナイロン9Tが上記のような特性を有することから、そのフィルムは、従来の熱可塑性フィルムでは困難であったところの、耐熱性および寸法安定性を両立することが可能である。従って、フィルム素材としての、ナイロン9Tの開発が盛んに進められている。特に、ナイロン9Tから得られたフィルムを、電子・電気部品、光学用途等のいわゆる工業用フィルム分野において適用することが期待されている。
 その中には、フレキシブル・プリント回路(Flexible Printed Circuits、FPC)用の基板フィルムやカバーレイフィルム、またスイッチやタッチパネル用の絶縁フィルムのように、フレキシブル性や耐屈曲性や打鍵耐久性等の変形耐性が必要な用途が多い。特に、FPC用途等のように加工時にリフロー処理といった高温での熱処理工程を必要とする場合には、熱処理を施した後の変形耐性が求められている。
 しかしながら、ナイロン9Tにて構成されたフィルムは、室温での弾性率が高く、このため上記変形に対する耐性が不十分な場合がある。さらに、高温での熱処理により変形耐性が低下する問題がある。
 JP2004-217698Aには、ポリアミドにエラストマーと架橋剤とを添加した樹脂組成物が開示されている。この樹脂組成物では、ポリアミドにエラストマーを分散させることにより、耐油性、耐熱性、ガスバリア性、柔軟性を得ることが可能である。この樹脂組成物は、エラストマーを直径0.1~30μm程度の微細な球状に形成したうえでポリアミド中に分散させることにより、熱可塑性を得ることができて、押出成形、射出成型、プレス成形等の汎用の加熱溶融成形が可能である。そもそも、ポリアミドにエラストマーを微細に分散させて耐衝撃性を向上させることは、非相溶系のポリマーアロイ技術としてすでに公知である。しかし一方で、エラストマーの分散状態等のモルフォロジーが異なると、成形品の特性が大きく異なることも公知である。従って、加熱溶融成形とは加工方法が全く異なり、加工時に変形を伴い、かつ、変形方向に異方性が高くなるところの、薄膜の延伸フィルムの製造方法に、JP2004-217698Aに記載の技術を当てはめることは困難である。ましてや、ナイロン9Tにて構成された公知のフィルムは変形耐性が十分ではなく、熱処理を施した後の変形耐性も満足なものではないという上述の問題を、JP2004-217698Aに記載の技術で解決することは不可能である。
 上記の問題を解決するため、本発明は、ナイロン9Tにて構成され、かつフレキシブル性や耐屈曲性や打鍵耐久性等の変形耐性を十分に備えた半芳香族ポリアミドフィルムを得ることを目的とする。
 本発明者らは、半芳香族ポリアミドと特定のエラストマーを混合し、半芳香族ポリアミド中にエラストマーを特定の分散状態で存在させることで、上記目的が達成されることを見出し、本発明を完成するに至った。
 すなわち、本発明の要旨は以下の通りである。
 (1)テレフタル酸を主成分とするジカルボン酸を含むとともに、炭素数が9である脂肪族ジアミンを主成分とするジアミンを含む半芳香族ポリアミド(A)98~90質量%と、官能基を有する熱可塑性エラストマー(B)2~10質量%とを含有し、延伸されていることを特徴とする半芳香族ポリアミドフィルム。
 (2)官能基を有する熱可塑性エラストマー(B)が、ジカルボン酸および/またはその誘導体で変性されたオレフィン系の熱可塑性エラストマーであることを特徴とする(1)の半芳香族ポリアミドフィルム。
 (3)熱可塑性エラストマー(B)のドメインの平均短径が0.01~1.0μmであり、かつフィルムの長手方向の断面における熱可塑性エラストマー(B)の平均ドメイン間隔が0.1~1.5μmである状態で、熱可塑性エラストマー(B)がフィルム中に分散していることを特徴とする(1)または(2)の半芳香族ポリアミドフィルム。
 本発明の半芳香族ポリアミドフィルムは、特定のジカルボン酸を含むとともに特定のジアミンを含む半芳香族ポリアミド(A)98~90質量%と、官能基を有する熱可塑性エラストマー(B)2~10質量%とを含有し、延伸されている。よって、本発明によれば、耐熱性が高く、延伸性、変形耐性に優れ、厚みムラが小さい半芳香族ポリアミドフィルムを提供することができる。そのため、本発明の半芳香族ポリアミドフィルムは、電子・電気部品用途や光学用途等のフィルム、すなわちいわゆる工業用フィルムとして、特に、FPC用の基板フィルムやカバーレイフィルム、あるいはスイッチやタッチパネル用の絶縁フィルム等として、好適に使用することができる。
フィルムの長手方向の断面におけるドメインの分布状態を示す模式図である。 フィルム中のドメインにおける長径と短径を示す模式図である。
 本発明の半芳香族ポリアミドフィルムは、テレフタル酸を主成分とするジカルボン酸を含むとともに、炭素数が9である脂肪族ジアミンを主成分とするジアミンを含む半芳香族ポリアミド(A)98~90質量%と、官能基を有する熱可塑性エラストマー(B)2~10質量%とを含有し、延伸されているフィルムである。
 まず、本発明に用いられる半芳香族ポリアミド(A)について説明する。
 半芳香族ポリアミド(A)を構成するジカルボン酸成分は、テレフタル酸を主成分とすることが必要である。ジカルボン酸成分中のテレフタル酸の割合は、60~100モル%であることが好ましく、70~100モル%であることがより好ましく、85~100モル%であることがさらに好ましい。ジカルボン酸成分におけるテレフタル酸の割合が60~100モル%であることにより、耐熱性が高く、かつ吸水性の低いポリアミドとすることができる。
 半芳香族ポリアミド(A)を構成するジカルボン酸成分に含まれる、テレフタル酸以外のジカルボン酸成分としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、ドデカン二酸、テトラデカン二酸、オクタデカン二酸等の脂肪族ジカルボン酸や、1,4-ナフタレンジカルボン酸、1,3-ナフタレンジカルボン酸、1,2-ナフタレンジカルボン酸、イソフタル酸等の芳香族ジカルボン酸が挙げられる。
 半芳香族ポリアミド(A)のジアミン成分は、炭素数が9である脂肪族ジアミンを主成分とすることが必要である。ジアミン成分中における炭素数が9である脂肪族ジアミンの割合は、60~100モル%であることが好ましく、75~100モル%であることがより好ましく、90~100モル%であることがさらに好ましい。炭素数が9である脂肪族ジアミンの割合が60~100モル%であることにより、得られるフィルムの耐熱性、耐薬品性が向上し、また、吸水性が低下する。
 炭素数が9である脂肪族ジアミンとしては、例えば、1,9-ノナンジアミン等の直鎖状脂肪族ジアミンや、2-メチル-1,8-オクタンジアミン、4-メチル-1,8-オクタンジアミン等の分岐鎖状脂肪族ジアミンを挙げることができる。これらは、単独で用いてもよいし、2種以上を併用してもよい。中でも、成形性の観点から、1,9-ノナンジアミンと2-メチル-1,8-オクタンジアミンを併用することが好ましい。
 半芳香族ポリアミド(A)を構成するジアミン成分に含まれる、上記の炭素数が9である脂肪族ジアミン以外のジアミン成分としては、例えば、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン等の直鎖状脂肪族ジアミンや、4-メチル-1,8-オクタンアミン、5-メチル-1,9-ノナンジアミン等の分岐鎖状脂肪族ジアミンや、イソホロンジアミン、ノルボルナンジメチルアミン、トリシクロデカンジメチルアミン等の脂環式ジアミンや、フェニレンジアミン等の芳香族ジアミンが挙げられる。
 半芳香族ポリアミド(A)には、本発明の目的を損なわない範囲で、ε-カプロラクタム、ζ-エナントラクタム、η-カプリルラクタム、ω-ラウロラクタム等のラクタム類が共重合されていてもよい。
 前記モノマーの組み合わせで得られる半芳香族ポリアミド(A)の中でも、耐熱性とフィルムの成形性との観点から、テレフタル酸のみからなる(テレフタル酸100モル%である)ジカルボン酸成分と;1,9-ノナンジアミンと2-メチル-1,8-オクタンジアミンとを合計でジアミン成分中に60~100モル%含有するジアミン成分とを含む半芳香族ポリアミド(A)が好ましい。
 上記の半芳香族ポリアミド(A)において、1,9-ノナンジアミンと2-メチル-1,8-オクタンジアミンとの共重合比率(モル比)は、(1,9-ノナンジアミン)/(2-メチル-1,8-オクタンジアミン)=50/50~100/0であることが好ましく、70/30~100/0であることがより好ましく、75/25~95/5であることがさらに好ましい。1,9-ノナンジアミンと2-メチル-1,8-オクタンジアミンとの共重合比率(モル比)が50/50~100/0であることにより、得られるフィルムの耐熱性が向上し、また吸水性が低下する。
 半芳香族ポリアミド(A)を構成するモノマーの種類および共重合比率は、得られる半芳香族ポリアミド(A)のTm(融点)が280~350℃の範囲になるように選択されることが好ましい。半芳香族ポリアミド(A)のTmを前記範囲とすることにより、フィルムに加工する際の半芳香族ポリアミド(A)の熱分解を効率よく抑制することができる。Tmが280℃未満であると、得られるフィルムの耐熱性が不十分となる場合がある。一方、Tmが350℃を超えると、フィルム製造時に熱分解が起こる場合がある。
 半芳香族ポリアミド(A)の極限粘度は、0.8~2.0dL/gであることが好ましく、0.9~1.8dL/gであることがより好ましい。(A)の極限粘度が0.8~2.0dL/gであることにより、力学的特性が優れたフィルムを得ることができる。半芳香族ポリアミド(A)の極限粘度が0.8dL/g未満であると、製膜してフィルム形状を保つのが困難となる場合がある。一方、2.0dL/gを超えると、フィルム製造時に、冷却ロールへの密着が困難となって、フィルムの外観が悪化する場合がある。
 半芳香族ポリアミド(A)として、市販品を好適に使用することができる。このような市販品としては、例えば、クラレ社製の「ジェネスタ(登録商標)」が挙げられる。
 半芳香族ポリアミド(A)は、結晶性ポリアミドを製造する方法として知られている任意の方法を用いて、製造することができる。例えば、酸クロライドとジアミン成分とを原料とする溶液重合法または界面重合法が挙げられる。あるいは、ジカルボン酸成分とジアミン成分とを原料としてプレポリマーを作製し、該プレポリマーを溶融重合または固相重合により高分子量化する方法が挙げられる。
 前記プレポリマーは、例えば、ジアミン成分、ジカルボン酸成分および重合触媒を一括で混合することにより調製されたナイロン塩を、200~250℃の温度で加熱重合させることにより、得ることができる。
 上記のプレポリマーの極限粘度は、0.1~0.6dL/gであることが好ましい。プレポリマーの極限粘度を前記範囲とすることにより、続く固相重合や溶融重合において、ジカルボン酸成分におけるカルボキシル基とジアミン成分におけるアミノ基とのモルバランスの崩れを生じさせず、重合速度を速くすることができるという利点がある。上記のプレポリマーの極限粘度が0.1dL/g未満であると、重合時間が長くなり、生産性に劣る場合がある。一方、0.6dL/gを超えると、得られる半芳香族ポリアミドが着色してしまう場合がある。
 上記のプレポリマーの固相重合は、好ましくは、減圧下または不活性ガス流通下でおこなわれる。固相重合の温度は200~280℃であることが好ましい。固相重合の温度を前記範囲とすることにより、特に範囲の上限を280℃とすることにより、得られる半芳香族ポリアミドの着色やゲル化を抑制することができる。一方、固相重合の温度が200℃未満であると、重合時間が長くなるため生産性に劣る場合がある。
 上記のプレポリマーの溶融重合は、好ましくは、350℃以下の温度でおこなわれる。重合が350℃以下の温度でおこなわれることにより、分解や熱劣化を抑制しつつ、効率よく重合することができる。なお、上記の溶融重合には、溶融押出機を用いた溶融重合も含まれる。
 上記した半芳香族ポリアミド(A)の重合に際して、重合触媒が用いられる。重合触媒としては、反応速度や経済性の観点から、リン系触媒が用いられることが好ましい。リン系触媒としては、例えば、次亜リン酸、亜リン酸、リン酸、それらの塩(例えば、次亜リン酸ナトリウム)、またはそれらのエステル(例えば、2,2-メチレンビス(ジ-t-ブチルフェニル)オクチルホスファイト等)が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
 中でも、重合触媒として亜リン酸を用いて重合されて得られた半芳香族ポリアミド(A)であることがより好ましい。重合触媒を亜リン酸とすることにより、他の重合触媒(例えば、次亜リン酸触媒)を用いて重合された半芳香族ポリアミドを用いる場合と比較して、フィルム製膜において、フィルターを用いることによる製膜原料の濾過の際の濾圧の上昇を抑制することができる。
 また、触媒である亜リン酸を用いて重合されて得られた半芳香族ポリアミド(A)を用いることにより、得られる樹脂のゲル化そのものを抑制することができる。その結果、フィッシュアイの発生が抑制される。
 得られた半芳香族ポリアミド(A)における重合触媒の含有量は、ジカルボン酸成分とジアミン成分の合計量に対して、0.01~5質量%であることが好ましく、0.05~2質量%であることがより好ましく、0.07~1質量%であることがさらに好ましい。重合触媒の含有量が0.01~5質量%であることにより、半芳香族ポリアミドの劣化を抑制しつつ、該半芳香族ポリアミドを効率よく重合することができる。重合触媒の含有量が0.01質量%未満であると、触媒作用が発現しない場合がある。一方、5質量%を超えると、経済性の観点で不利となる場合がある。
 さらに、ジアミン成分、ジカルボン酸成分および重合触媒と共に、必要に応じて末端封止剤が用いられてもよい。このような末端封止剤としては、半芳香族ポリアミド(A)の末端におけるアミノ基またはカルボキシル基との反応性を有する単官能性の化合物であれば、特に限定されない。このような末端封止剤としては、例えば、モノカルボン酸、モノアミン、酸無水物、モノイソシアネート、モノハロゲン化物、モノエステル類、モノアルコール類が挙げられる。
 中でも、反応性、および封止された末端基の安定性等の観点から、モノカルボン酸またはモノアミンが好ましく、取扱いの容易さ等の観点から、モノカルボン酸がより好ましい。モノカルボン酸としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、安息香酸が挙げられる。
 末端封止剤の使用量は、用いられる末端封止剤の反応性、沸点、反応装置、反応条件等によって適宜に選択することができる。末端封止剤の詳細な使用量は、分子量の調整や樹脂の分解抑制の観点から、ジカルボン酸成分とジアミン成分の総モル数に対して、0.1~15モル%であることが好ましい。
 本発明に用いる半芳香族ポリアミド(A)は、上記のような末端封止剤により分子鎖の末端基が封止されていることが好ましい。末端基の全量に対する末端封止されている末端基量の割合は、10モル%以上であることが好ましく、40モル%以上であることがより好ましく、70モル%以上であることがさらに好ましい。封止されている末端基量の割合が10モル%以上であることにより、溶融成形時における樹脂の分解や、縮合が進行することによる分子量の増加を、抑制することができる。また、これに伴って樹脂の分解による気泡の発生が抑制されるため、該半芳香族ポリアミド(A)を用いて得られるフィルムの外観を優れたものとすることができる。
 次に、本発明に用いられる、官能基を有する熱可塑性エラストマー(B)について説明する。
 本発明に用いられる熱可塑性エラストマー(B)は、ハードセグメントとソフトセグメントとを含んだ構成である。
 ハードセグメントは、結晶性樹脂でも非晶性樹脂でもよい。ハードセグメントが結晶性樹脂である場合には、その融点は150℃以下であることが好ましく、130℃以下であることがさらに好ましい。一方、ハードセグメントが非晶性樹脂である場合には、そのガラス転移温度は120℃以下であることが好ましい。ハードセグメントに用いられる樹脂の融点が150℃以下、もしくは、ガラス転移温度が120℃以下であることにより、半芳香族ポリアミド(A)と熱可塑性エラストマー(B)とを含むポリマーを二軸延伸する際の延伸追随性を向上させて、効率よく延伸をおこなうことができる。なお、ハードセグメントに用いる樹脂の融点が150℃を超えるとき、もしくは、そのガラス転移温度が120℃を超えるときは、均一な延伸ができずに、熱可塑性エラストマー(B)の所定の分散状態が得られない場合や、延伸フィルムの平面性が悪化する場合がある。また、延伸フィルム中にボイドが発生したり、さらには延伸破断したりする場合がある。
 ソフトセグメントは、ゴム系樹脂である。その樹脂のガラス転移温度は、-30℃以下であることが好ましく、-40℃以下であることがさらに好ましい。ソフトセグメントに用いられる樹脂のガラス転移温度が-30℃以下であることにより、得られる延伸フィルムの耐屈曲性や打鍵耐久性が向上する。
 熱可塑性エラストマー(B)の種類としては、例えば、ポリオレフィン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、スチレン系熱可塑性エラストマーが挙げられる。これらの熱可塑性エラストマー(B)は、単独で用いられてもよいし、2種以上が併用されてもよい。
 ポリオレフィン系熱可塑性エラストマーとしては、例えば、ハードセグメントが熱可塑性高結晶性ポリオレフィンであるとともに、ソフトセグメントがエチレン-α-オレフィン系共重合体ゴムであるものが挙げられる。詳細には、ハードセグメントとしては、例えば、1~4個の炭素原子を有するα-オレフィンのホモポリマーまたはこれらの二種以上の共重合体が挙げられる。中でも、ポリエチレンまたはポリプロピレンが好ましい。ソフトセグメントとしては、例えば、ブチルゴム、ハロブチルゴム、EPDM(エチレン・プロピレン・ジエンゴム)、EPR(エチレン・プロピレンゴム)、アクリロニトリル/ブタジエンゴム、NBR(ニトリルゴム)、EBR(エチレン・1-ブテンゴム)、天然ゴムが挙げられる。
 ポリエステル系熱可塑性エラストマーとしては、例えば、ハードセグメントにポリブチレンテレフタレート(PBT)等の高融点で高結晶性の芳香族ポリエステルが使用され、ソフトセグメントにポリテトラメチレンエーテルグリコール(PTMG)等の非晶性ポリエーテルが使用されたマルチブロックポリマーが挙げられる。
 ポリアミド系熱可塑性エラストマーとしては、例えば、ハードセグメントがナイロン等のポリアミドであり、ソフトセグメントがポリエステルまたはポリオールであるブロックポリマーが挙げられる。
 スチレン系熱可塑性エラストマーとしては、例えば、ハードセグメントがポリスチレンであり、ソフトセグメントが共役ジエン化合物の共重合体およびその水素添加物であるポリマーが挙げられる。ソフトセグメントとしては、例えば、イソプレンゴム、ブタジエンゴム、ヘキサジエンゴム、2,3-ジメチル-1,3-ブタジエンが挙げられる。
 本発明に用いられる熱可塑性エラストマー(B)は、半芳香族ポリアミド(A)の末端基であるアミノ基やカルボキシル基、および主鎖のアミド基と反応しうる官能基を有する必要がある。官能基としては、カルボキシル基またはその無水物、アミノ基、水酸基、エポキシ基、アミド基およびイソシアネート基から選ばれる少なくとも一種の官能基であることが好ましく、ジカルボン酸および/またはその誘導体がより好ましい。半芳香族ポリアミド(A)の末端基と反応しうる官能基を有しない熱可塑性エラストマーを用いた場合は、二軸延伸時の延伸性が低下し均一な延伸フィルムが得られない場合がある。また、得られた延伸フィルムの変形耐性が不十分になる場合がある。
 本発明においては、ジカルボン酸および/またはその誘導体で変性された熱可塑性エラストマーの中でも、熱可塑性エラストマーがポリオレフィン系熱可塑性樹脂であることが好ましい。このような樹脂としては、三井化学社製タフマー等が挙げられる。
 本発明の二軸延伸半芳香族ポリアミドフィルムは、半芳香族ポリアミド(A)と熱可塑性エラストマー(B)の配合比率(A)/(B)が98/2~90/10(質量比)であることが必要であり、96/4~92/8(質量比)であることが好ましい。熱可塑性エラストマー(B)の配合比率が2質量%未満では、添加効果が小さく、延伸フィルムの変形耐性が不十分になる場合がある。一方、熱可塑性エラストマー(B)の配合比率が10質量%を超えると、過剰品位となるばかりか、押出製膜時の溶融粘度が高すぎて製膜性に劣り、また二軸延伸時の延伸性が低下して均一な延伸フィルムが得られない場合がある。
 半芳香族ポリアミド(A)と熱可塑性エラストマー(B)の混練に用いられる混練機は、特に限定されないが、例えば、単軸押出機、二軸押出機、バンバリーミキサー、ニーダー、ミキシングロール等、通常公知の溶融混練機が挙げられる。中でも、熱可塑性エラストマー(B)の分散性向上の観点から、二軸押出機が好ましい。溶融混練温度は、通常、半芳香族ポリアミド(A)の融点以上である。熱可塑性エラストマー(B)は、フィルム作製時に半芳香族ポリアミド(A)と混練してもよいし、熱可塑性エラストマー(B)が高濃度に配合されたマスターバッチを作製してから、そのマスターバッチを半芳香族ポリアミド(A)と混練してもよい。
 本発明の半芳香族ポリアミドフィルムには、製膜時の熱安定性を高め、フィルムの強度や伸度の劣化を防ぎ、使用時の酸化や分解等に起因するフィルムの劣化を防止するために、熱安定剤を含有させることが好ましい。熱安定剤としては、例えば、ヒンダードフェノール系熱安定剤、ヒンダードアミン系熱安定剤、リン系熱安定剤、イオウ系熱安定剤、二官能型熱安定剤が挙げられる。
 ヒンダードフェノール系熱安定剤としては、例えば、Irganox1010(登録商標)(BASFジャパン社製、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート])、Irganox1076(登録商標)(BASFジャパン社製、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)、Cyanox1790(登録商標)(サイアナミド社製、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌル酸)、Irganox1098(登録商標)(BASFジャパン社製、N,N’-(ヘキサン-1,6-ジイル)ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド])、SumilizerGA-80(登録商標)(住友化学社製、3,9-ビス[2-{3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン)が挙げられる。
 ヒンダードアミン系熱安定剤としては、例えば、Nylostab S-EED(登録商標)(クラリアントジャパン社製、2-エチル-2’-エトキシ-オキザルアニリド)が挙げられる。
 リン系熱安定剤としては、例えば、Irgafos168(登録商標)(BASFジャパン社製、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト)、Irgafos12(登録商標)(BASFジャパン社製、6,6’,6”-[ニトリロトリス(エチレンオキシ)]トリス(2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン))、Irgafos38(登録商標)(BASFジャパン社製、ビス(2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル)エチルエステル亜リン酸)、ADKSTAB329K(登録商標)(旭電化社製、トリス(モノ-ジノニルフェニル)ホスファイト)、ADKSTAB PEP36(登録商標)(旭電化社製、ビス(2,6-ジ―tert―ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト)、Hostanox P-EPQ(登録商標)(クラリアント社製、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト)、GSY-P101(登録商標)(堺化学工業社製、テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4’-ビフェニレンジホスホナイト)、スミライザーGP(登録商標)(住友化学社製、6-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンズ[d,f][1,3,2]-ジオキサホスフェピン)が挙げられる。
 イオウ系熱安定剤としては、例えば、DSTP(登録商標)(吉富社製、化学式名:ジステアリルチオジプロピオネート)、Seenox 412S(登録商標)(シプロ化成社製、ペンタエリスリトール テトラキス-(3-ドデシルチオプロピオネート))、Cyanox 1212(登録商標)(サイアナミド社製、ラウリルステアリルチオジプロピオネート)が挙げられる。
 二官能型熱安定剤としては、例えば、スミライザーGM(登録商標)、(住友化学社製、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート)、スミライザーGS(登録商標)(住友化学社製、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート)が挙げられる。
 フィルム強度の劣化を防止する観点からは、ヒンダードフェノール系熱安定剤が好ましい。ヒンダードフェノール系熱安定剤の熱分解温度は、320℃以上であることが好ましく、350℃以上であることがより好ましい。熱分解温度が320℃以上のヒンダードフェノール系熱安定剤としては、スミライザーGA-80が挙げられる。また、ヒンダードフェノール系熱安定剤は、アミド結合を有していれば、フィルム強度の劣化を防止することができる。アミド結合を有しているヒンダードフェノール系熱安定剤としては、例えば、イルガノックス1098が挙げられる。また、ヒンダードフェノール系熱安定剤に二官能型熱安定剤を併用すれば、フィルム強度の劣化をさらに低減することができる。
 これらの熱安定剤は、単独で用いてもよいし、2種以上を併用してもよい。例えば、ヒンダードフェノール系熱安定剤とリン系熱安定剤を併用すれば、フィルムの製膜時における原料濾過用フィルターの昇圧を防止することができるとともに、フィルム強度の劣化を防止することができる。また、ヒンダードフェノール系熱安定剤とリン系熱安定剤と二官能型熱安定剤を併用すれば、フィルムの製膜時における原料濾過用フィルターの昇圧を防止することができるとともに、フィルム強度の劣化をさらに低減することができる。
 ヒンダードフェノール系熱安定剤とリン系熱安定剤の組み合わせとしては、Hostanox P-EPQまたはGSY-P101と、スミライザーGA-80またはイルガノックス1098との組み合わせが好ましい。ヒンダードフェノール系熱安定剤とリン系熱安定剤と二官能型熱安定剤の組み合わせとしては、HostanoxP-EPQまたはGSY-P101と、スミライザーGA-80またはイルガノックス1098と、スミライザーGSの組み合わせが好ましく、GSY-P101と、スミライザーGA-80とスミライザーGSとの組み合わせがより好ましい。
 本発明の半芳香族ポリアミドフィルムにおける上記熱安定剤の含有量としては、半芳香族ポリアミド(A)100質量部に対して、0.01~2質量部であることが好ましく、0.05~1質量部であることがより好ましい。熱安定剤の含有量が0.01~2質量部であることにより、熱分解をより効率的に抑制することができる。なお、熱安定剤を2種以上併用する場合は、各々の熱安定剤の個別の含有量、および熱安定剤の合計の含有量のいずれもが、上記の範囲に入っていることが好ましい。
 本発明の半芳香族ポリアミドフィルムには、滑り性を良好にするため、滑剤粒子が含有されていてもよい。滑剤粒子としては、例えば、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、カオリン、硫酸バリウム等の無機粒子や、アクリル系樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、架橋ポリスチレン粒子等の有機系微粒子が挙げられる。
 本発明の半芳香族ポリアミドフィルムには、本発明の効果を損なわない範囲において、必要に応じて、各種の添加剤が含有されていてもよい。添加剤としては、例えば、顔料・染料等の着色剤、着色防止剤、上記熱安定剤とは異なる酸化防止剤、耐候性改良剤、難燃剤、可塑剤、離型剤、強化剤、改質剤、帯電防止剤、紫外線吸収剤、防曇剤、各種ポリマーが挙げられる。
 顔料としては、酸化チタン等が挙げられる。耐候性改良剤としては、ベンゾトリアゾール系化合物等が挙げられる。難燃剤としては、臭素系難燃剤やリン系難燃剤等が挙げられる。強化剤としては、タルク等が挙げられる。
 なお、上記のような添加剤を本発明の半芳香族ポリアミドフィルムに含有させるには、このフィルムを製造する際の任意の段階でこれを添加すればよい。
 本発明の半芳香族ポリアミドフィルムは、延伸すなわち一軸方向または二軸方向に延伸されている必要があり、二軸延伸されていることが好ましい。延伸によりポリアミド樹脂が配向結晶化していることが好ましい。延伸条件や倍率は特に限定されないが、二軸方向に延伸されている場合は、長手方向(以下、「MD」と略称することがある。)、幅方向(以下、「TD」と略称することがある。)ともに2倍以上延伸されていることが好ましく、2.5倍以上延伸されていることがより好ましい。延伸倍率を2倍以上とすることにより、後述する熱可塑性エラストマー(B)のドメインの状態を好ましい範囲とすることができ、それによってフィルムの変形耐性を向上させることができる。延伸倍率が2倍以下の場合は、延伸による配向結晶化の程度が低く、このためフィルムの強度や耐熱性が劣る場合がある。
 延伸された本発明の半芳香族ポリアミドフィルムの厚みムラは、10%以下であることが好ましく、8%以下であることがより好ましく、6%以下であることがさらに好ましい。厚みムラが10%以下であることにより、フィルムを加工する時のフィルムのたるみやシワを減らすことができる。厚みムラを10%以下とするためには、例えば、未延伸フィルムの形状を調節したり、延伸条件を調節したりする手法が挙げられる。なお、厚みムラの定義およびその測定方法は、以下の「実施例」の欄において詳述する。
 本発明の延伸された半芳香族ポリアミドフィルムは、その熱収縮率が小さい方が好ましい。例えば、200℃、15分の熱風加熱による熱収縮率は、3.0%以下であることが好ましく、1.0%以下であることがより好ましく、0.5%以下であることがさらに好ましい。熱収縮率を3.0%以下とするためには、例えば、熱処理や、リラックス処理(フィルムの熱収縮特性を調整するためフィルムの幅を連続的に縮める処理)の条件を調節する手法が採用される。
 本発明の延伸された半芳香族ポリアミドフィルムの引張強度は、MD、TDともに、130MPa以上であることが好ましく、引張伸度は、TD、MDともに、50%以上であることが好ましい。引張強度や引張伸度を前記範囲とするためには、例えば、延伸倍率を調節する手法が採用される。
 本発明においては、延伸された半芳香族ポリアミドフィルム中の熱可塑性エラストマー(B)のドメインは、通常、板状であって、フィルム面に対して実質的に平行である。フィルム中におけるドメインの分散状態は、後述するTEM写真観察により評価することができる。具体的には、フィルムにおける熱可塑性エラストマー(B)のドメインの平均短径、ドメインの平均異方指数、平均ドメイン間隔等を評価することができる。熱可塑性エラストマー(B)のドメインの平均短径が0.01~1.0μmであり、かつ平均ドメイン間隔が0.1~1.5μmであることにより、フィルムの面方向から加わる力による変形耐性を向上することができる。ドメインの平均短径および平均ドメイン間隔が上記の好ましい範囲から外れた場合、変形耐性の向上効果が不十分となる場合があったり、延伸フィルムの厚みムラ等のフィルム品位が低下したりする場合がある。平均異方指数が10~50であることにより、フィルムの面方向から加わる力による変形耐性をさらに向上することができる。
 熱可塑性エラストマー(B)のドメインの平均短径は、0.03~1.0μmであることがより好ましい。熱可塑性エラストマー(B)の平均ドメイン間隔は、0.1~1.0μmであることがより好ましい。熱可塑性エラストマー(B)のドメインの平均異方指数は、20~50であることがより好ましい。なお、ドメインの平均短径、ドメインの平均異方指数、平均ドメイン間隔が上記の好ましい範囲から外れた場合、変形耐性の向上効果が不十分となる場合があったり、延伸フィルムの厚みムラ等のフィルム品位が低下したりする場合がある。
 分散状態を制御するためには、主に(1)半芳香族ポリアミド(A)の選定、(2)熱可塑性エラストマー(B)の選定、(3)混練条件の調整、(4)延伸条件の調整を図る必要がある。これらの(1)~(3)によって未延伸フィルムでの分散状態が決定され、さらに(4)によって延伸後の分散状態が決定される。
 未延伸フィルムでの分散状態は、未延伸フィルム中の熱可塑性エラストマー(B)の平均粒子径が0.01~10μmであることが好ましく、0.05~5μmであることがさらに好ましい。未延伸フィルム中の熱可塑性エラストマー(B)の平均粒子径を0.01~10μmに制御するには、例えば、半芳香族ポリアミド(A)と熱可塑性エラストマー(B)の溶融粘度を近似させたり、半芳香族ポリアミド(A)と熱可塑性エラストマー(B)との混練時に熱可塑性エラストマー(B)の配合比を減らしたり、混練用のスクリューの構成や温度条件にもとづいて強混練を行ったりすればよい。
 延伸後のドメインの分散状態は、延伸条件、具体的には、延伸温度、延伸倍率、リラックス処理等の条件を制御することにより調整することができる。例えば、未延伸フィルムを延伸する際に、高配向、高倍率に延伸することにより、熱可塑性エラストマー(B)の異方性を高めてドメイン間隔を小さくすることができる。
 本発明の延伸された半芳香族ポリアミドフィルムには、必要に応じて、その表面の接着性を向上させるための処理を施すことができる。接着性を向上させる方法としては、例えば、コロナ処理、プラズマ処理、酸処理、火炎処理が挙げられる。
 本発明の延伸された半芳香族ポリアミドフィルムの表面には、易接着性、帯電防止性、離型性、ガスバリア性等の機能を付与するため、各種のコーティング剤が塗布されていてもよい。
 本発明の延伸された半芳香族ポリアミドフィルムには、金属またはその酸化物等の無機物、他種ポリマー、紙、織布、不織布、木材等が積層されていてもよい。
 次に、本発明の延伸された半芳香族ポリアミドフィルムの製造方法について、二軸延伸を行う場合を例にとって説明する。
 本発明の二軸延伸された半芳香族ポリアミドフィルムの製造方法の一例としては、半芳香族ポリアミド(A)と熱可塑性エラストマー(B)とを適正な比率に配合し、配合物を押出機内にて280~340℃の温度で3~15分間溶融混合した後、Tダイを通じてシート状に押出し、この押し出された物を、30~80℃に温度調節されたドラム上に密着させて冷却すること未延伸フィルムを製造し、そして、得られた未延伸フィルムをその後に同時二軸延伸機に導き、120~150℃の温度で、TD、MDともに2~4倍程度の延伸倍率となるよう同時二軸延伸し、さらにTDのリラックスを数%として、150~300℃で数秒間熱処理を施す方法を挙げることができる。同時二軸延伸機に導く前に、フィルムに1~1.2倍程度の予備縦延伸を施しておいてもよい。
 本発明の二軸延伸された半芳香族ポリアミドフィルムは、逐次延伸法によっても製造することができる。その一例としては、上記と同様の操作におこなって未延伸フィルムを得、それにロール加熱、赤外線加熱等の加熱処理を施したうえで、縦方向に延伸して縦延伸フィルムを得る方法が挙げられる。この縦延伸は、2個以上のロールの周速差を利用し、半芳香族ポリアミドのガラス転移点をTgとして、Tg~(Tg+40℃)の温度範囲で、2.0~3.6倍に延伸することが好ましい。縦延伸フィルムに対して続いて連続的に、横延伸、熱固定、リラックス処理を順次施して、二軸延伸フィルムとする。このとき横延伸は、縦延伸の場合と同じTg~(Tg+40℃)の温度範囲で開始し、最高温度は、半芳香族ポリアミドの融点(Tm)よりも100~150℃低い温度であることが好ましい。横延伸の倍率は、最終的なフィルムの要求物性により調整されるが、2.5倍以上であることが好ましく、3.0倍以上であることがより好ましい。横延伸に続く熱固定処理時に、フィルムの横方向すなわち幅方向に2~20%の伸張を加えてもよい。ただし、その伸張率はトータルの延伸倍率の中に含まれる。熱固定処理後、リラックス処理を施し、その後フィルムをそのTg以下に冷却して、二軸延伸フィルムを得る。
 フィルムの製造装置においては、シリンダー、バレルの溶融部、計量部、単管、フィルター、Tダイ等の表面に対して、樹脂の滞留を防ぐため、その表面の粗さを小さくする処理が施されていることが好ましい。表面の粗さを小さくする方法としては、例えば、極性の低い物質で改質する方法が挙げられる。あるいは、その表面に窒化珪素やダイヤモンドライクカーボンを蒸着させる方法が挙げられる。
 フィルムを延伸する方法としては、例えば、フラット式逐次二軸延伸法、フラット式同時二軸延伸法、チューブラ法を挙げることができる。中でも、フィルムの厚み精度を向上させ、フィルムのMDの物性を均一とすることができる観点から、フラット式同時二軸延伸法を採用することが好ましい。
 フラット式同時二軸延伸法を採用するための延伸装置としては、例えば、スクリュー式テンター、パンタグラフ式テンター、リニアモーター駆動クリップ式テンターが挙げられる。
 延伸後の熱処理は、フィルムの寸法安定性を付与するために必要な工程である。熱処理方法としては、例えば、熱風を吹き付ける方法、赤外線を照射する方法、マイクロ波を照射する方法等の公知の方法が挙げられる。中でも、均一に精度良く加熱できることから、熱風を吹き付ける方法が好ましい。
 得られた半芳香族ポリアミドフィルムは、枚葉とされてもよいし、巻き取りロールに巻き取られることによりフィルムロールの形態とされてもよい。各種用途への利用に際しての生産性の観点から、フィルムロールの形態とすることが好ましい。フィルムロールとされた場合は、所望の巾にスリットされてもよい。
 上述のようにして得られた本発明の延伸された半芳香族ポリアミドフィルムは、ナイロン9Tが本来有する機械特性、耐熱性、耐湿熱性、耐薬品性、低吸水性に加えて、フレキシブル性や耐屈曲性や打鍵耐久性等の変形耐性に優れている。このため、本発明の延伸された半芳香族ポリアミドフィルムは、医薬品の包装材料;レトルト食品等の食品の包装材料;半導体パッケージ等の電子部品の包装材料;モーター、トランス、ケーブル等のための電気絶縁材料;コンデンサ用途等のための誘電体材料;カセットテープ、デジタルデータストレージ向けデータ保存用磁気テープ、ビデオテープ等の磁気テープ用材料;太陽電池基板、液晶板、導電性フィルム、表示機器等のための保護板;LED実装基板、フレキシブルプリント配線板、フレキシブルフラットケーブル等の電子基板材料;フレキシブルプリント配線用カバーレイフィルム、耐熱マスキング用テープ、工業用工程テープ等の耐熱粘着テープ;耐熱バーコードラベル;耐熱リフレクター;各種離型フィルム;耐熱粘着ベースフィルム;写真フィルム;成形用材料;農業用材料;医療用材料;土木、建築用材料;濾過膜等、家庭用、産業資材用のフィルムとして、好適に使用することができる。
 1.分析
 半芳香族ポリアミド、熱可塑性エラストマーおよび半芳香族ポリアミドフィルムの物性測定は、以下の方法によりおこなった。
 (1)半芳香族ポリアミドの極限粘度
 濃度が96質量%である濃硫酸中に、30℃にて、半芳香族ポリアミドを、それぞれ、0.05g/dL、0.1g/dL、0.2g/dL、0.4g/dLの濃度となるように溶解させて、半芳香族ポリアミドの還元粘度を求めた。そして、各々の還元粘度の値を用い、濃度を0g/dLに外挿した値を極限粘度とした。
 (2)半芳香族ポリアミドまたは熱可塑性エラストマーの融点(Tm)、ガラス転移温度(Tg)
 半芳香族ポリアミドまたは熱可塑性エラストマー10mgを、示差走査型熱量計(パーキンエルマー社製、「DSC-7」)を用いて、窒素雰囲気下で20℃から350℃まで10℃/分で昇温し(1st Scan)、350℃にて5分間保持した。その後、100℃/分で20℃まで降温し、20℃にて5分間保持後、350℃まで20℃/分でさらに昇温した(2nd Scan)。そして、2nd Scanで観測される結晶融解ピークのピークトップ温度を融点とし、ガラス転移に由来する2つの折曲点の温度の中間点をガラス転移温度とした。
 (3)熱安定剤の熱分解温度
 示差熱熱重量同時測定装置(SIIナノテクノロジー社製、「TG/DTA 7000」)を用いて、200ml/分の窒素雰囲気下で、30℃から500℃まで20℃/分で昇温した。昇温前の質量に対して5質量%減少する温度を熱分解温度とした。
 (4)延伸性
 未延伸フィルムを各実施例ごとの所定の方法、倍率で延伸した際の状況を、以下の基準に従い評価した。
 良好:問題なく延伸することができる。
 不良:切断により延伸フィルムが得られない。
 (5)未延伸フィルムおよび延伸フィルムの平均厚み
 厚み計(HEIDENHAIN社製、「MT12B」)を用い、温度20℃、湿度65%の環境下、フィルムの厚みを、ロール状のフィルムのTDの中心の位置において、MD1m毎に10回測定した。そして得られた10点の測定値から、その平均厚みを求めた。
 (6)延伸フィルムの厚みムラ
 延伸フィルムの幅方向の中心部における20cm×20cmの範囲について、ランダムに30点の厚みを、温度20℃、湿度65%の環境下で測定した。計測値の最大値をLmax、最小値をLmin、平均値をLaとした。そして、以下の式で表される値を「厚みムラR」として、下記基準に従い評価した。
    R=[(Lmax-Lmin)/La]×100 (%)
  優秀:R≦10
  良好:10<R≦15
  普通:15<R≦20
  不良:20<R
 (7)延伸フィルム中の熱可塑性エラストマーの分散状態
 延伸フィルムの幅方向の中心部からランダムに採取した部分における長手方向断面と幅方向断面の6箇所について(長手方向断面、幅方向断面についてそれぞれ3箇所)、日本電子社製JEM-1230透過電子顕微鏡を用いて、TEM観察をおこなった(加速電圧100kV、直接倍率20000倍)。試料としては凍結ウルトラミクロトームで切り出した厚さ100nmの切片を用いた。
 (7-1)平均長径、平均短径
 得られたTEM写真を用いて、フィルムの長手方向または幅方向におけるドメインの最大径と、フィルムの厚み方向におけるドメインの最大径とを測定し、それぞれを「長径」、「短径」とした。図2にその模式図を示す。TEM写真1枚につきランダムに20個のドメインDの長径と短径を測定し、6枚のTEM写真を用いて合計120個のドメインの長径と短径を測定し、それらの平均値を、それぞれ、「平均長径」、「平均短径」とした。
 (7-2)平均異方指数
 平均長径/平均短径の値を「平均異方指数」とした。
 (7-3)延伸フィルム中の熱可塑性エラストマーの平均ドメイン間隔
 延伸フィルムの幅方向の中心部からランダムに採取した部分の長手方向断面の5箇所について、日本電子社製JEM-1230透過電子顕微鏡を用いて、TEM観察をおこなった(加速電圧100kV、直接倍率20000倍)。観察試料としては、凍結ウルトラミクロトームで切り出した厚さ100nmの切片を用いた。
 得られたTEM写真を用いて、フィルムの長手方向に5μm以上離した任意の2箇所で、フィルムの厚み方向5μmに存在するドメインの数Nを計測して、以下の式によりドメイン間隔を求めた。
    ドメイン間隔=5/N(μm)
 図1を参照して説明する。例えば、図1の位置Aにおいては、ドメインDが13個あるため、ドメイン間隔は約0.38μmとなる。TEM写真1枚につき2箇所のドメイン間隔を測定し、5枚のTEM写真を用いて合計10箇所のドメイン間隔を測定し、それらの平均値を、「平均ドメイン間隔」とした。
 (8)延伸フィルムの引張強度および引張伸度
 JIS K7127に従って、温度20℃、湿度65%の環境下で測定した。サンプルの大きさは10mm×150mm、チャック間の初期距離は100mm、引張速度は500mm/分とした。
 (9)延伸フィルムの耐屈曲性
 理学工業社製ゲルボテスターを用いて、熱処理前後の延伸フィルムについて、繰り返し屈曲後のピンホール数により耐屈曲性を評価した。試料としては、フィルムにおける幅方向の中心部からMD300mm×TD200mmに切り出した延伸フィルムを使用し、直径3.5インチ(89mm)の円筒状に把持し、円筒の長さ方向に沿った初期把持間隔を7インチ(178mm)とし、最大屈曲時の把持間隔を1インチ(25.4mm)として、20℃×65%RH環境下で、100回屈曲を与えた後、および500回屈曲を与えた後のピンホール数(n=3の平均値)を計測した。フィルムの熱処理は、250℃に調整した熱風乾燥機中にて、金枠に固定した状態で5分間加熱後、放冷した。
 以下の基準に従い評価した。実用上、「普通」以上であることが好ましい。
  優秀:100回屈曲後のピンホール数、500回屈曲後のピンホール数が共に1個未満
  良好:100回屈曲後のピンホール数が1個未満、かつ、500回屈曲後のピンホール数が共に1~2個
  普通:100回屈曲後のピンホール数が1個未満、かつ、500回屈曲後のピンホール数が共に2~5個
  不良:100回屈曲後のピンホール数が1個以上、もしくは、500回屈曲後のピンホール数が共に5個以上もしくはフィルム破断
 2.原料
 <原料モノマー>
 (1)直鎖状脂肪族ジアミン
 1,9-ノナンジアミン(以下、「NMDA」と略称することがある)
 (2)分岐鎖状脂肪族ジアミン
 2-メチル-1,8-オクタンジアミン(以下、「MODA」と略称することがある)
 (3)ジカルボン酸
 テレフタル酸(以下、「TPA」と略称することがある)
 (4)末端封止剤
 安息香酸(以下、「BA」と略称することがある)
 <触媒>
 亜リン酸(以下、「PA」と略称することがある)
 <熱安定剤>
 スミライザーGA-80:住友化学社製、熱分解温度:392℃
 [半芳香族ポリアミド(A)]
 (1)半芳香族ポリアミドA1
 1343gのNMDA、237gのMODA、1627gのTPA(平均粒径:80μm)(NMDA:MODA:TPA=85:15:99、モル比)、48.2gのBA(ジカルボン成分とジアミン成分の総モル数に対して4.0モル%)、3.2gのPA(ジカルボン成分とジアミン成分の合計量に対して0.1質量%)、1100gの水を反応装置に入れ、窒素置換した。さらに、80℃で0.5時間、毎分28回転で撹拌した後、230℃に昇温した。その後、230℃で3時間加熱した。その後冷却し、反応物を取り出した。該反応物を粉砕した後、乾燥機中において、窒素気流下、220℃で5時間加熱することで固相重合して、ポリマーを得た。
 続いて、このポリマー100質量部とスミライザーGA-80 0.4質量部とをドライブレンドし、スクリュー径が26mmである二軸押出機を用いて溶融混練した。二軸押出機のシリンダー温度は310℃であった。その後、ストランド状に押出し、冷却、切断して、ペレット状の「半芳香族ポリアミドA1」を製造した。
 (2)、(3)半芳香族ポリアミドA2、A3
 表1に示すように、半芳香族ポリアミドA1と比べて、原料モノマーの組成と配合量を変更した。それ以外は半芳香族ポリアミドA1の場合と同様の操作をおこなって、「半芳香族ポリアミドA2」、「半芳香族ポリアミドA3」を製造した。
 表1に、半芳香族ポリアミドA1~A3の共重合比率と特性値を示す。
Figure JPOXMLDOC01-appb-T000001
 [熱可塑性エラストマー(B)]
 (1)タフマーMH7020:三井化学社製、無水マレイン酸変性ポリオレフィン、溶融粘度1.5g/10分、Tg -65℃
 (2)タフマーMA8510:三井化学社製、無水マレイン酸変性ポリオレフィン、溶融粘度5.0g/10分、Tg -55℃
 (3)タフテックM1913:旭化成社製、無水マレイン酸変性ポリスチレン-水添ポリブタジエン共重合体、溶融粘度5g/10分、Tg -20℃および105℃
 (4)タフマーA1050S:三井化学社製、未酸変性ポリオレフィン、溶融粘度2.2g/10分、Tg -65℃
 [熱可塑性エラストマー含有マスターバッチ]
 (1)熱可塑性エラストマー含有マスターバッチM1
 半芳香族ポリアミドA1を75質量%、熱可塑性エラストマーであるタフマーMH7020を25質量%、さらに半芳香族ポリアミドと熱可塑性エラストマーの合計100質量部に対して熱安定剤であるスミライザーGA-80 0.4質量部をドライブレンドした。そして、これを、シリンダー温度を310℃に加熱したところの、スクリュー径が26mmである二軸押出機に投入し、溶融混練して、ストランド状に押出した。その後、冷却、切断して、ペレット状の熱可塑性エラストマー含有マスターバッチM1を製造した。
 (2)熱可塑性エラストマー含有マスターバッチM2~M6
 表2に示すように、熱可塑性エラストマー含有マスターバッチM1に比べ、半芳香族ポリアミドと熱可塑性エラストマーの種類と配合比率を変更した。それ以外は熱可塑性エラストマー含有マスターバッチM1を製造する際と同様の操作をおこなって、熱可塑性エラストマー含有マスターバッチM2~M6を製造した。
 熱可塑性エラストマー含有マスターバッチM1~M6における原料の配合比率を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 <未延伸フィルム>
 (1)未延伸フィルムN1
 84質量部の半芳香族ポリアミドA1、および16質量部の熱可塑性エラストマー含有マスターバッチM1を、シリンダー温度を320℃に加熱したところの、スクリュー径が50mmである単軸押出機に投入し溶融して、溶融ポリマーを得た。該溶融ポリマーを金属繊維焼結フィルター(日本精線社製、「NF-13」、絶対粒径:60μm)を用いて濾過した。その後、320℃にしたTダイより溶融ポリマーをフィルム状に押出し、フィルム状の溶融物とした。該溶融物を50℃に設定した冷却ロール上に静電印加法により密着させて冷却し、実質的に無配向の未延伸フィルム(平均厚み:230μm)を得た。
 未延伸フィルムN1に用いた半芳香族ポリアミドと熱可塑性エラストマー含有マスターバッチの配合比率および未延伸フィルムN1の樹脂組成を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 (2)未延伸フィルムN2~N11
 表3に示すように、未延伸フィルムN1に比べて、半芳香族ポリアミドと熱可塑性エラストマー含有マスターバッチとの種類と配合比率とを変更した。それ以外は未延伸フィルムN1を製造した際と同様の操作をおこなって、未延伸フィルムN2~N11を製造した。なお、未延伸フィルムN4については、冷却ロールの速度を調整して、平均厚みが110μmと180μmのフィルムも同時に採取した。未延伸フィルムN3、N6については、冷却ロールの速度を調整して、平均厚みが110μmのフィルムも同時に採取した。
 実施例1
 未延伸フィルムN1の両端をクリップで把持しながら、フラット式同時二軸延伸機にて、二軸延伸をおこなった。延伸条件は、予熱部の温度が125℃、延伸部の温度が130℃、MDの延伸歪み速度が2400%/分、TDの延伸歪み速度が2760%/分、MDの延伸倍率が3.0倍、TDの延伸倍率が3.3倍であった。延伸後連続して、二軸延伸機の同じテンター内で270℃にて熱固定をおこない、フィルムの幅方向に5%のリラックス処理を施し、平均厚み25μmの二軸延伸フィルムを得た。
 実施例2~12、比較例1~3
 表4に示したように、実施例1に比べて、延伸倍率、延伸温度、リラックスの倍率を変更した。それ以外は実施例1と同様にして、半芳香族ポリアミドフィルムを製造した。
 実施例13
 未延伸フィルムN1について、フラット式逐次軸延伸機によって、二軸延伸をおこなった。まず、未延伸フィルムをロール加熱や赤外線加熱等によって125℃に加熱し、縦方向に延伸歪み速度4000%/分で2.5倍延伸して、縦延伸フィルムを得た。続いて連続的に、フィルムの幅方向の両端を横延伸機のクリップに把持させ、横延伸をおこなった。横延伸の予熱部の温度は130℃、延伸部の温度は145℃、延伸歪み速度は2000%/分、TDの延伸倍率が3.0倍であった。そして、横延伸機の同じテンター内で、270℃で熱固定をおこない、フィルムの幅方向に5%のリラックス処理を施し、平均厚み25μmの二軸延伸フィルムを得た。
 実施例1~13、比較例1~3について、用いた未延伸フィルム、延伸条件、延伸フィルムの評価結果を、表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例1~13の半芳香族ポリアミドフィルムは、耐熱性が高く、耐屈曲性等の変形耐性や延伸性に優れ、厚みムラが小さいものであった。
 実施例2、実施例5、実施例7の半芳香族ポリアミドフィルムは、それぞれ、樹脂組成の等しい実施例3ならびに4、実施例6、実施例8の半芳香族ポリアミドフィルムよりも、延伸倍率が低かった。そのため、熱可塑性エラストマーのドメインの平均異方指数が小さく、平均ドメイン間隔がやや大きく、耐屈曲性がやや低下していた。
 実施例7、8の半芳香族ポリアミドフィルムは、熱可塑性エラストマーの含有量が本発明で規定する範囲の最小限界値であった。そのため、それぞれ、用いた熱可塑性エラストマーの含有量のみが実施例7、8と異なりその含有量が本発明で規定する範囲の最小限界値を上回った実施例2、4よりも、平均ドメイン間隔がやや大きく、耐屈曲性、特に熱処理後の耐屈曲性の改良効果がやや小さかった。
 実施例11の半芳香族ポリアミドフィルムは、熱可塑性エラストマーの含有量が本発明で規定する範囲の最大限界値であった。そのため、用いた熱可塑性エラストマーの含有量のみが実施例11と異なりその含有量が本発明で規定する範囲の最大限界値を下回った実施例4、10よりも、延伸性が低く、フィルムの厚みムラがやや大きく、また、引張強度伸度もやや低かった。
 実施例12の半芳香族ポリアミドフィルムは、用いた半芳香族ポリアミドの極限粘度が小さかった。そのため、用いた半芳香族ポリアミドの極限粘度のみが異なる実施例4よりも、延伸性が低く、フィルムの厚みムラがやや大きく、熱処理後の耐屈曲性の改良効果もやや小さかった。
 比較例1の半芳香族ポリアミドフィルムは、用いた熱可塑性エラストマーの含有量が本発明で規定する範囲よりも低かった。そのため、耐屈曲性、特に熱処理後の耐屈曲性に劣っていた。
 比較例2の半芳香族ポリアミドフィルムは、用いた熱可塑性エラストマーが官能基を有していなかった。そのため、延伸性が低く、フィルムの厚みムラが著しく大きかった。また、平均短径、平均ドメイン間隔も大きく、耐屈曲性に劣っていた。
 比較例3の半芳香族ポリアミドフィルムは、用いた熱可塑性エラストマーの含有量が本発明で規定する範囲よりも多かった。そのため、延伸性に劣り、面倍率10倍の延伸フィルムを得ることができなかった。

Claims (3)

  1.  テレフタル酸を主成分とするジカルボン酸を含むとともに、炭素数が9である脂肪族ジアミンを主成分とするジアミンを含む半芳香族ポリアミド(A)98~90質量%と、
     官能基を有する熱可塑性エラストマー(B)2~10質量%とを含有し、
     延伸されていることを特徴とする半芳香族ポリアミドフィルム。
  2.  官能基を有する熱可塑性エラストマー(B)が、ジカルボン酸および/またはその誘導体で変性されたオレフィン系の熱可塑性エラストマーであることを特徴とする請求項1記載の半芳香族ポリアミドフィルム。
  3.  熱可塑性エラストマー(B)のドメインの平均短径が0.01~1.0μmであり、かつフィルムの長手方向の断面における熱可塑性エラストマー(B)の平均ドメイン間隔が0.1~1.5μmである状態で、熱可塑性エラストマー(B)がフィルム中に分散していることを特徴とする請求項1または2記載の半芳香族ポリアミドフィルム。
PCT/JP2013/076473 2012-10-12 2013-09-30 半芳香族ポリアミドフィルム WO2014057828A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201380049231.5A CN104662094B (zh) 2012-10-12 2013-09-30 半芳香族聚酰胺膜
KR1020157004157A KR101867495B1 (ko) 2012-10-12 2013-09-30 반방향족 폴리아미드 필름
JP2014540803A JP5959662B2 (ja) 2012-10-12 2013-09-30 半芳香族ポリアミドフィルム
US14/433,398 US9580565B2 (en) 2012-10-12 2013-09-30 Semi-aromatic polyamide film
EP13846075.3A EP2907852B1 (en) 2012-10-12 2013-09-30 Semi-aromatic polyamide film
HK15110225.9A HK1209447A1 (en) 2012-10-12 2015-10-19 Semi-aromatic polyamide film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012227104 2012-10-12
JP2012-227104 2012-10-12

Publications (1)

Publication Number Publication Date
WO2014057828A1 true WO2014057828A1 (ja) 2014-04-17

Family

ID=50477297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076473 WO2014057828A1 (ja) 2012-10-12 2013-09-30 半芳香族ポリアミドフィルム

Country Status (8)

Country Link
US (1) US9580565B2 (ja)
EP (1) EP2907852B1 (ja)
JP (1) JP5959662B2 (ja)
KR (1) KR101867495B1 (ja)
CN (1) CN104662094B (ja)
HK (1) HK1209447A1 (ja)
TW (1) TWI595031B (ja)
WO (1) WO2014057828A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121349A (ja) * 2014-12-25 2016-07-07 ユニチカ株式会社 半芳香族ポリアミドフィルム
JP2017002114A (ja) * 2015-06-04 2017-01-05 グンゼ株式会社 ポリアミド系フィルム
JP2018104659A (ja) * 2016-12-28 2018-07-05 富士ゼロックス株式会社 樹脂組成物、及び樹脂成形体
JP2019099626A (ja) * 2017-11-30 2019-06-24 ユニチカ株式会社 熱可塑性樹脂フィルムおよび積層体

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9890247B2 (en) * 2010-04-29 2018-02-13 Dsm Ip Assets B.V. Semi-aromatic polyamide
WO2019054426A1 (ja) * 2017-09-15 2019-03-21 ユニチカ株式会社 積層体
CN107663372B (zh) * 2017-09-19 2019-11-19 江门市德众泰工程塑胶科技有限公司 一种用于环保电镀的聚酰胺复合物及其制备方法
WO2020085280A1 (ja) * 2018-10-22 2020-04-30 クラレファスニング株式会社 耐熱性に優れた雄型成形面ファスナー、該雄型成形面ファスナーの製造方法、及び該雄型成形面ファスナーを用いた自動車用内装材の固定方法
KR102507142B1 (ko) * 2020-09-29 2023-03-07 에스케이마이크로웍스 주식회사 폴리아마이드계 필름, 이의 제조방법, 및 이를 포함하는 커버 윈도우 및 디스플레이 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912714A (ja) 1995-06-26 1997-01-14 Kuraray Co Ltd ポリアミド、ポリアミド組成物およびその用途
JP2003321599A (ja) * 2002-05-01 2003-11-14 Matsushita Electric Works Ltd 熱可塑性樹脂成形品
JP2004217698A (ja) 2003-01-09 2004-08-05 Kuraray Co Ltd 熱可塑性重合体組成物
JP2006281507A (ja) * 2005-03-31 2006-10-19 Kuraray Co Ltd 積層構造体
WO2012098840A1 (ja) * 2011-01-17 2012-07-26 株式会社クラレ 樹脂組成物およびそれを含む成形品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171550A (ja) * 2001-09-25 2003-06-20 Kuraray Co Ltd ポリアミド組成物
JP5270106B2 (ja) 2006-12-26 2013-08-21 株式会社クラレ ポリアミド樹脂組成物およびそれからなる成形品
JP5546349B2 (ja) * 2009-05-25 2014-07-09 ユニチカ株式会社 半芳香族ポリアミド延伸フィルムの製造方法およびその方法で製造された半芳香族ポリアミド延伸フィルム
DE102010062708B4 (de) 2010-12-09 2019-08-08 Robert Bosch Gmbh Mobiles Energieversorgungsgerät
JP5860598B2 (ja) * 2011-02-25 2016-02-16 住友理工株式会社 冷媒輸送ホースおよびその製法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912714A (ja) 1995-06-26 1997-01-14 Kuraray Co Ltd ポリアミド、ポリアミド組成物およびその用途
JP2003321599A (ja) * 2002-05-01 2003-11-14 Matsushita Electric Works Ltd 熱可塑性樹脂成形品
JP2004217698A (ja) 2003-01-09 2004-08-05 Kuraray Co Ltd 熱可塑性重合体組成物
JP2006281507A (ja) * 2005-03-31 2006-10-19 Kuraray Co Ltd 積層構造体
WO2012098840A1 (ja) * 2011-01-17 2012-07-26 株式会社クラレ 樹脂組成物およびそれを含む成形品

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121349A (ja) * 2014-12-25 2016-07-07 ユニチカ株式会社 半芳香族ポリアミドフィルム
JP2020180297A (ja) * 2014-12-25 2020-11-05 ユニチカ株式会社 半芳香族ポリアミドフィルム
JP7026965B2 (ja) 2014-12-25 2022-03-01 ユニチカ株式会社 半芳香族ポリアミドフィルム
JP2017002114A (ja) * 2015-06-04 2017-01-05 グンゼ株式会社 ポリアミド系フィルム
JP2018104659A (ja) * 2016-12-28 2018-07-05 富士ゼロックス株式会社 樹脂組成物、及び樹脂成形体
JP2019099626A (ja) * 2017-11-30 2019-06-24 ユニチカ株式会社 熱可塑性樹脂フィルムおよび積層体

Also Published As

Publication number Publication date
EP2907852A4 (en) 2016-06-22
KR20150068352A (ko) 2015-06-19
US9580565B2 (en) 2017-02-28
TW201422691A (zh) 2014-06-16
TWI595031B (zh) 2017-08-11
US20150252158A1 (en) 2015-09-10
EP2907852B1 (en) 2017-07-12
JPWO2014057828A1 (ja) 2016-09-05
EP2907852A1 (en) 2015-08-19
HK1209447A1 (en) 2016-04-01
JP5959662B2 (ja) 2016-08-02
CN104662094A (zh) 2015-05-27
CN104662094B (zh) 2016-09-28
KR101867495B1 (ko) 2018-06-14

Similar Documents

Publication Publication Date Title
JP5959662B2 (ja) 半芳香族ポリアミドフィルム
JP7026965B2 (ja) 半芳香族ポリアミドフィルム
JP5881614B2 (ja) 半芳香族ポリアミドフィルム、およびその製造方法
JP6889966B1 (ja) 柔軟性ポリアミドフィルム
JP6358837B2 (ja) 半芳香族ポリアミドフィルム
KR102423342B1 (ko) 반방향족 폴리아미드 필름 및 그 제조 방법
JP2017039847A (ja) 半芳香族ポリアミドフィルム
WO2019031428A1 (ja) 半芳香族ポリアミドフィルムおよびその製造方法
JP6000084B2 (ja) 半芳香族ポリアミド樹脂組成物
JP7051181B1 (ja) ポリアミドおよびそれからなる成形体およびフィルムならびに該ポリアミドの製造方法
JP7252602B2 (ja) 半芳香族ポリアミドフィルム
TWI856210B (zh) 柔軟性聚醯胺膜
JP2024009620A (ja) 延伸ポリアミドフィルム
JP2023051816A (ja) 振動板用フィルムおよびその製造方法
TW202346417A (zh) 聚醯胺薄膜及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540803

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157004157

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14433398

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013846075

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013846075

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE