WO2014057622A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2014057622A1
WO2014057622A1 PCT/JP2013/005735 JP2013005735W WO2014057622A1 WO 2014057622 A1 WO2014057622 A1 WO 2014057622A1 JP 2013005735 W JP2013005735 W JP 2013005735W WO 2014057622 A1 WO2014057622 A1 WO 2014057622A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
mounting
board
transfer support
conversion device
Prior art date
Application number
PCT/JP2013/005735
Other languages
English (en)
French (fr)
Inventor
泰仁 田中
真也 秋葉
樹 芦田
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201380029621.6A priority Critical patent/CN104380461A/zh
Priority to JP2014540726A priority patent/JPWO2014057622A1/ja
Publication of WO2014057622A1 publication Critical patent/WO2014057622A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14322Housings specially adapted for power drive units or power converters wherein the control and power circuits of a power converter are arranged within the same casing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • the present invention relates to a power conversion apparatus that supports a mounting board on which a circuit component for driving the semiconductor switching element is mounted at an interval on a module incorporating a semiconductor switching element for power conversion.
  • Patent Document 1 As this type of power conversion device, the present applicant has proposed the power conversion device described in Patent Document 1.
  • a water cooling jacket is disposed in a casing, and a semiconductor power module including an IGBT as a semiconductor switching element for power conversion is disposed on the water cooling jacket.
  • a plurality of mounting boards opposed to each other hereinafter also referred to as “lamination”) are arranged on the side opposite to the water cooling jacket of the semiconductor power module.
  • laminate a plurality of mounting boards opposed to each other
  • a plurality of connectors which are parts that perform transmission required for motor control, are mounted on a plurality of mounting boards.
  • the connector arrangement example in FIG. 7 there are a plurality of external connectors 150 on the semiconductor power module 111 (this example) connected to the harness 170 to be retrofitted for transmission to the outside of the power converter 100.
  • the three mounting boards 121, 122, 123 are arranged on the mounting board 121, 122 located in the middle or the lowermost stage in the stacking direction, and the connector 150 is arranged as compared with the case where it is arranged on the uppermost mounting board 123.
  • the inter-board connector 160 connected to the harness 172 that connects the stacked mounting boards 121, 122.
  • the board 123 and the component parts 132 and 133 are obstructive, the visibility is lowered, and the harness 172 is difficult to connect because the hand does not reach the position of the inter-board connector 160.
  • the stacked mounting boards 121, 122, 123 are connected between the boards connected via the harness 172.
  • the wire rod of the harness 172 to be connected becomes longer than the arrangement on the same end face side. Therefore, there exists a problem of becoming a factor of the cost increase of a wire. Therefore, the present invention has been made paying attention to such problems, and reduces inconveniences such as poor connection, suppresses cost increase, and provides a highly reliable and inexpensive power conversion device. It is intended to provide.
  • a power converter includes a semiconductor power module and circuit components for driving the semiconductor power module mounted thereon and in an upward direction with respect to the semiconductor power module.
  • a power conversion device including a plurality of stacked mounting boards, wherein, among the plurality of connectors mounted on the plurality of mounting boards, the plurality of external connectors that transmit to the outside of the power conversion device.
  • the mounting board is installed on the first mounting board located farthest from the semiconductor power module.
  • the first mounting board is provided. Is not obstructed by the components of the power converter. Therefore, the visibility of the connector is improved compared to the case where the external connector is arranged at the middle or lowest position in the stacking direction of the plurality of mounting boards arranged opposite to each other with a space therebetween, and further, Easy connection to the harness because the hand can easily reach the position. For this reason, it is possible to provide a highly reliable and inexpensive power conversion device by reducing problems such as poor connection and suppressing the increase in cost by eliminating the need for a dedicated connection tool for mounting.
  • the first mounting board has its lower side shielded by a component of the power conversion device, and the power is disposed on a side shielded by the component. If an external connector for transmission to the outside of the converter is installed, it is preferable to shield electromagnetic noise between both the outside and the inside of the power converter by the component parts. Further, in the power conversion device according to one aspect of the present invention, among the connectors mounted on the plurality of mounting boards, a pair of board-to-board connectors that transmit between the plurality of mounting boards are the same as the plurality of mounting boards. It is preferable to install each at the side end.
  • the external connector installation portion and the inter-board connector installation portion are installed on different sides. Therefore, it is preferable to prevent the electromagnetic noise caused by the external harness and the internal harness from affecting each other.
  • a connector mounted on a mounting board other than the first mounting board can be installed at an end portion having a wiring work space.
  • the wiring work space is an opening provided in the component that shields a side of the other mounting substrate.
  • the mounting substrate other than the first mounting substrate is shielded on its side by the components of the power conversion device. It is preferable that the connector mounted on the other mounting substrate is installed at the end portion on the side not shielded by the component parts. With such a configuration, the connector mounted on the other mounting board is installed at the end of the other mounting board that is not shielded by the component parts, so that the connector can be visually recognized. Moreover, since the hand is put in the position of the connector, the harness can be connected without using a dedicated connection tool for mounting. Therefore, it is suitable for providing a highly reliable and inexpensive power conversion device that reduces defects such as poor connection and suppresses cost increase.
  • the component supports the plurality of mounting boards with a space between the semiconductor power module and cools the heat of the plurality of mounting boards. It is preferable that it is a heat transfer support member that transfers heat to the surface. With such a configuration, while adopting the connector arrangement of the power conversion device, the heat of the mounting board can be radiated to the cooling body by the heat transfer support member without going through the housing, and this heat transfer Since the support member is a component that forms the shielding portion, it is suitable as a structure of a power conversion device in which a plurality of mounting boards that generate heat are stacked and mounted on a module.
  • FIG. 5 is a perspective view of FIG. 4.
  • FIGS. 5A and 5B are views for explaining the arrangement of connectors on each board shown in FIG. 4, in which FIG. 4A is a view taken along an arrow A in FIG. 4, FIG. 4B is a view taken along an arrow B in FIG.
  • C arrow views are respectively shown schematically. It is a typical perspective view explaining the example of arrangement of a connector, and its problem. It is a typical perspective view explaining the example of arrangement of a connector, and its problem. It is a typical perspective view explaining the example of arrangement of a connector, and its problem. It is a typical perspective view explaining the example of arrangement of a connector, and its problem.
  • the power conversion device is an example applied to a motor drive circuit that drives a vehicle driving motor.
  • the power conversion device 1 is housed in a housing 2.
  • the casing 2 includes a lower casing 2A and an upper casing 2B which are formed from a synthetic resin material and divided into upper and lower portions with a cooling body 3 having a configuration of a water cooling jacket interposed therebetween.
  • a cooling water supply port 3a and a drain port 3b are opened to the outside of the housing 2, and the water supply port 3a and the drain port 3b are connected to a cooling water supply source (not shown) via a flexible hose, for example. ing.
  • the cooling body 3 is formed, for example, by injection molding aluminum or aluminum alloy having high thermal conductivity.
  • the cooling body 3 has a flat bottom surface. Further, the cooling body 3 is formed with an insertion hole 3e through which the positive and negative electrodes 4a covered with insulation of the film capacitor 4 held by the lower housing 2A are inserted vertically.
  • the lower housing 2A is composed of a bottomed rectangular cylinder, the open upper portion is covered with a cooling body 3, and a smoothing film capacitor 4 is housed inside.
  • the upper housing 2B includes a rectangular tube 2a that is open to the upper end and the lower end, and a lid 2b that closes the upper end of the rectangular tube 2a.
  • the lower end of the rectangular tube 2a is closed by the cooling body 3.
  • a sealing material such as application of a liquid sealing agent or sandwiching rubber packing is interposed between the lower end of the rectangular cylinder 2a and the cooling body 3.
  • the power conversion apparatus 1 includes a semiconductor power module 11 including, for example, an insulated gate bipolar transistor (IGBT) as a semiconductor switching element that forms, for example, an inverter circuit for power conversion.
  • the semiconductor power module 11 incorporates an IGBT in a flat rectangular parallelepiped insulating case body 12, and a metal heat dissipating member 13 is formed on the lower surface of the case body 12 as shown in FIG. .
  • the case body 12 and the heat radiating member 13 are formed with insertion holes 15 through which fixing screws 14 as fixing members are inserted in the four corners in plan view.
  • board fixing portions 16 having a predetermined height are formed to protrude at four locations closer to the inside than the insertion hole 15.
  • a driving circuit board 21 as a third mounting board on which a driving circuit for driving an IGBT built in the semiconductor power module 11 is mounted is fixed to the upper end of the board fixing portion 16. Yes.
  • a power circuit board 22 as a second mounting board is fixed above the drive circuit board 21 at a predetermined interval in a direction facing the drive circuit board 21.
  • the power supply circuit board 22 is mounted with a power supply circuit including a heat generating circuit component for supplying power to the IGBT built in the semiconductor power module 11.
  • a control circuit board 23 as a first mounting board is fixed above the power supply circuit board 22 at a predetermined interval in a direction facing the power supply circuit board 22.
  • the control circuit board 23 is mounted with a control circuit including a heat generating circuit component having a relatively large heat generation amount or a large heat generation density for controlling the IGBT built in the semiconductor power module 11.
  • a control circuit including a heat generating circuit component having a relatively large heat generation amount or a large heat generation density for controlling the IGBT built in the semiconductor power module 11.
  • Each substrate 21, 22, 23 has a rectangular shape arranged so as to cover the semiconductor power module 11 from above in plan view. That is, the long side of the semiconductor power module 11 and the long side of each substrate 21, 22, 23 are the same side.
  • the drive circuit board 21 is inserted into the insertion hole 21 a formed at a position facing the board fixing part 16, and the male screw part 24 a of the joint screw 24 is inserted, and the male screw part 24 a is formed on the upper surface of the board fixing part 16. It is fixed by screwing into the part 16a. Further, the power supply circuit board 22 inserts the male screw portion 25a of the joint screw 25 into an insertion hole 22a formed at a position facing the female screw portion 24b formed at the upper end of the joint screw 24, and this male screw portion 25a is inserted into the joint screw 24. It is fixed by being screwed into the female screw portion 24b.
  • control circuit board 23 inserts a fixing screw 26 into an insertion hole 23 a formed at a position opposite to the female screw portion 25 b formed at the upper end of the joint screw 25, and this fixing screw 26 is inserted into the female screw portion 25 b of the joint screw 25. It is fixed by being screwed onto.
  • the power supply circuit board 22 and the control circuit board 23 are supported by the heat transfer support members 32 and 33 so as to uniquely form a heat radiation path to the cooling body 3 without going through the housing 2.
  • These heat transfer support members 32 and 33 are made of a metal having a high thermal conductivity such as aluminum or an aluminum alloy.
  • the heat transfer support member 32 includes a flat plate-shaped heat transfer support plate portion 32a and a heat transfer support side plate portion 32c having bent portions at the top and bottom.
  • the power supply circuit board 22 is fixed to the heat transfer support plate portion 32 a by a fixing screw 36 via a heat transfer member 35.
  • the heat transfer member 35 is an elastic body having elasticity, and has the same outer dimensions as the power circuit board 22. As this heat transfer member 35, a member having improved heat transfer performance while exhibiting insulating performance by interposing a metal filler inside silicon rubber is applied.
  • the heat transfer support side plate portion 32 c is integrally formed with a bottom plate portion 34 that is a lower bent portion disposed on the upper surface of the cooling body 3, and an outer peripheral edge on the long side of the bottom plate portion 34.
  • a connecting plate portion 32d that is connected and extends upward, and an upper plate portion 32e that is an upper bent portion formed so as to extend leftward from the upper end of the connecting plate portion 32d.
  • the connecting plate portion 32d extends upward through the right side surface of the semiconductor power module 11 on the long side.
  • the upper plate portion 32e is fixed to the right end side along the long side of the semiconductor power module 11 with respect to the heat transfer support plate portion 32a with reference to FIG.
  • the bottom plate portion 34 on the lower side of the heat transfer support side plate portion 32c is bent toward the side opposite to the semiconductor power module 11 side (outside), thereby contacting the upper surface of the cooling body 3.
  • the bottom plate portion 34 is fixed to the upper surface of the cooling body 3 by a fixing screw 40.
  • An insulating sheet 42 is attached to the lower surface of the heat transfer support plate portion 32a of the heat transfer support member 32 in order to shorten the insulation distance.
  • the heat transfer support member 33 includes a flat plate-shaped heat transfer support plate portion 33a and a heat transfer support side plate portion 33c having bent portions at the top and bottom.
  • the control circuit board 23 is fixed to the heat transfer support plate portion 33 a via a heat transfer member 37 by a fixing screw 38.
  • the heat transfer member 37 is an elastic body having elasticity, and has the same outer dimensions as the control circuit board 23. As the heat transfer member 37, a member having improved heat transfer performance while exhibiting insulating performance by interposing a metal filler inside silicon rubber is applied.
  • the heat transfer support side plate portion 33 c is integrally formed with a bottom plate portion 34 that is a lower bent portion disposed on the upper surface of the cooling body 3, and an outer peripheral edge on the long side of the bottom plate portion 34. It has a connecting plate portion 33d that is connected and extends upward, and an upper plate portion 33e that is an upper bent portion formed so as to extend rightward from the upper end of the connecting plate portion 33d.
  • the connecting plate portion 33d extends upward through the left side surface of the semiconductor power module 11 on the long side.
  • the upper plate portion 33e is fixed to the left end side along the long side of the semiconductor power module 11 with respect to the heat transfer support plate portion 33a with a fixing screw 33b as seen in FIG.
  • the bottom plate portion 34 on the lower side of the heat transfer support side plate portion 33c is bent toward the opposite side (outside) to the semiconductor power module 11 side, thereby contacting the upper surface of the cooling body 3.
  • the bottom plate portion 34 is fixed to the upper surface of the cooling body 3 by a fixing screw 40.
  • An insulating sheet 43 is attached to the lower surface of the heat transfer support plate portion 33a of the heat transfer support member 33 in order to shorten the insulation distance.
  • the connecting plate portion 33d of the heat transfer support side plate portion 33c of the heat transfer support member 33 is shown at a position corresponding to the three-phase AC output terminal 11b shown in FIG. 1 of the semiconductor power module 11, as shown in FIG.
  • three circular insertion holes 33i are formed through which the bus bar 55 shown in FIG.
  • a relatively wide heat transfer path Lh can be formed between the adjacent insertion holes 33i, and the cross-sectional area of the entire heat transfer path It is possible to increase the heat transfer efficiency. Also, rigidity against vibration can be ensured.
  • the connection portion of the heat transfer support side plate portion 32c of the heat transfer support member 32 as shown in FIG. 1, the insertion formed similarly at the positions facing the positive electrode and the negative electrode terminal 11a of the semiconductor power module 11, respectively.
  • a hole 32i is provided.
  • the boards 21, 22, and 23 described above are connected to each other between the board-to-board connector 60 and the external device of the power converter 1.
  • the connector 50 is mounted on the upper surface of the substrate so as to have a predetermined arrangement for performing transmission required for controlling the motor.
  • the mounting boards 21 and 22 other than the control circuit board 23 that is the first mounting board are lateral to each other depending on the components of the power conversion device 1.
  • the heat transfer support members 32 and 33 are arranged as components that form the shielding portion.
  • the heat transfer support members 32 and 33 that form the shielding portion support the plurality of mounting boards 22 and 23 with a space from the semiconductor power module 11.
  • the plurality of mounting boards 22 and 23 are in contact with the cooling body 3 so as to dissipate the heat generated by the mounting boards 22 and 23 to the cooling body 3 without going through the housing 2.
  • the shielding portion is formed by the heat transfer support members 32 and 33, which is difficult to see or put into the hands.
  • the range of the substrate surface is indicated by a shaded portion (reference numeral N), and the range of the substrate surface where the shielding portion is not formed and can be visually recognized is indicated by a white portion (reference numeral Y).
  • a plurality of heat transfer support members 32 and 33 forming a set with a plurality of mounting boards 22 and 23 forming a rectangular plane are provided, and the plurality of mounting boards 22 and 23 are farthest from the semiconductor power module 11.
  • the power supply circuit board 22 is supported by the heat transfer support member 33 in a state having a shielding part on its side.
  • an external device that performs transmission with the outside of the power converter 1.
  • the connector 50 is provided on the control circuit board 23 that is located farthest from the semiconductor power module 11 among the plurality of mounting boards 21, 22, and 23.
  • the external connector 50 can be mounted at an arbitrary position as long as it is mounted on the control circuit board 23 that is positioned farthest from the semiconductor power module 11.
  • the heat transfer support member 33 corresponds to a component that shields the lower side surface of the control circuit board 23.
  • the external connectors 50 arranged in places correspond to the external connectors 50 arranged on the side shielded by the control circuit board 23.
  • the inter-board connector 60 is connected to the other mounting boards 21, 22 as shown in FIGS. 6 (b) and (c). It is arranged on the end portion on the side having no shielding portion and on the control circuit board 23 having no shielding portion. Thereby, it is possible to visually recognize each connector 50, 60 on the plurality of mounting boards 21, 22, 23, and since a hand enters the position of each connector 50, 60, a dedicated connection tool for mounting is provided. Connection to a harness is possible without using a cable.
  • the installation portion of the external connector 50 and the installation portion of the inter-board connector 60 are installed on different sides. is doing.
  • the installation part of the external connector 50 is provided at the end part of one side
  • the installation part of the inter-board connector 60 is provided at the end part of the opposite side. Is provided.
  • an installation portion of the external connector 50 is provided at the end of one side (in this example, the heat transfer support member 33 side), and the substrate is provided at the end of the other side facing each other.
  • An installation part for the inter-connector 60 is provided.
  • the pair of board-to-board connectors 60 that transmit between the plurality of mounting boards 21, 22, and 23 are The plurality of mounting boards 21, 22, and 23 are disposed on the same end portion.
  • the pair of inter-board connectors 60 connected to the harness 72 that connects the stacked mounting boards 21, 22, and 23 are arranged at the end portions on the same side.
  • the wire rod of the harness 72 to be connected can be shortened.
  • the inter-board connector 60 that connects the power circuit board 22 and the control circuit board 23 to each other is preferably arranged on the side where the wiring work space is secured.
  • the board-to-board connector 60 is provided at the end portion on the short side that does not have the shielding portion formed by the plurality of heat transfer support members 32 and 33.
  • the control circuit board 23 has an external connector 50 disposed in the vicinity of the first side 23 f that is one side of the control circuit board 23, and the first The board-to-board connector 60 is disposed in the vicinity of the second side 23s opposite to the side 23f, and the power supply circuit board 22 is the same side as the second side 23s of the control circuit board 23 and is a shielding portion.
  • a board-to-board connector 60 connected to the board-to-board connector 60 of the control circuit board 23 is disposed in the vicinity of the third side 22t, which is a side that does not have the.
  • a wiring work space is ensured and workability is good.
  • the heat transfer support member 33 for the control circuit board 23 is the fourth side 22f that is the side of the power circuit board 22 where neither the external connector 50 nor the inter-board connector 60 is disposed.
  • the heat transfer support member 32 for the power supply circuit board 22 passes through the side surface facing the third side 22t located on the side opposite to the fourth side 22f. In contact with the cooling body 3.
  • the heat transfer support members 32 and 33 are in contact with the cooling body 3 through one side surface of the mounting substrate, respectively, which is preferable for shortening the heat transfer path.
  • the case body 12 of the semiconductor power module 11 has a rectangular parallelepiped shape having a rectangular plane, and the heat transfer support members 32 and 33 pass through the side surface on the long side of the case body 12. Each is arranged.
  • the heat transfer cross-sectional areas of the heat transfer support members 32 and 33 can be widened, and the heat dissipation effect can be improved.
  • the inter-board connector 60 that connects the power circuit board 22 and the control circuit board 23 to each other is preferably arranged on the side where the wiring work space is secured. However, if a wiring work space is secured, for example, as shown in the perspective view of FIG.
  • an opening 32j may be provided at an appropriate position of the heat transfer support member 32, and the opening 32j may be used as the wiring work space. it can.
  • the side on which the heat transfer support member 32 is disposed can also be an end portion having a wiring work space, so that the side on which the heat transfer support member 32 is disposed as shown in FIG.
  • the inter-board connector 60 can also be provided.
  • the control circuit board 23 is superposed on the heat transfer support plate 33 a of the heat transfer support member 33 via the heat transfer member 37, and the heat transfer member 37 is compressed by the fixing screw 38.
  • the control circuit board 23, the heat transfer member 37, and the heat transfer support plate 33a are fixed to form the control circuit unit U1.
  • the power supply circuit board 22 is superposed on the heat transfer support plate portion 32a of the heat transfer support member 32 via the heat transfer member 35, and the heat transfer member 35 is compressed by the fixing screw 36.
  • the power supply circuit unit U2 is formed by fixing the heat member 35 and the heat transfer support plate portion 32a.
  • the lower surface of the heat radiating member 13 formed on the semiconductor power module 11 is fixed to the upper surface of the cooling body 3 with the fixing screw 14 in a state of being in close contact with the upper surface of the cooling body 3. Further, the bottom plate portions 34 of the heat transfer support members 32 and 33 are fixed with fixing screws 40.
  • the drive circuit board 21 is placed on the board fixing part 16 formed on the upper surface of the semiconductor power module 11 before or after being fixed to the cooling body 3. Then, the drive circuit board 21 is fixed to the board fixing portion 16 by four joint screws 24 from above. And the heat-transfer support plate part 32a is connected with the heat-transfer support side plate part 32c with the fixing screw 32b.
  • the power supply circuit board 22 of the power supply circuit unit U ⁇ b> 2 is placed on the upper surface of the joint screw 24 and is fixed by the four joint screws 25. Further, the control circuit board 23 of the control circuit unit U 1 is placed on the upper surface of the joint screw 25 and fixed by the four fixing screws 26. And the heat-transfer support plate part 33a is connected with the heat-transfer support side plate part 33c by the fixing screw 33b.
  • a bus bar 55 is connected to the positive and negative DC input terminals of the semiconductor power module 11 to 11a, and the positive and negative electrodes 4a of the film capacitor 4 penetrating the cooling body 3 at the other end of the bus bar 55. Are connected by a fixing screw 51. Further, a crimp terminal 53 fixed to the tip of a connection cord 52 connected to an external converter (not shown) is fixed to the DC input terminal 11 a of the semiconductor power module 11.
  • bus bars 55 are connected to the three-phase AC output terminals 11 b of the semiconductor power module 11 with fixing screws 56, and current sensors 57 are arranged in the middle of the bus bars 55.
  • a crimp terminal 59 fixed to the tip of a motor connection cable 58 connected to an external three-phase electric motor (not shown) is fixed and connected to the other end of the bus bar 55 with a fixing screw 60.
  • the lower housing 2A and the upper housing 2B are fixed to the lower surface and the upper surface of the cooling body 3 via a sealing material.
  • the inter-board connector 60 that connects the boards 21, 22, and 23 described above and the external connector 50 that transmits to the outside of the power converter 1 are respectively connected via harnesses 70 and 72.
  • DC power is supplied from an external converter (not shown), and the power supply circuit mounted on the power supply circuit board 22 and the control circuit mounted on the control circuit board 23 are set in an operating state.
  • a gate signal that is a width modulation signal is supplied to the semiconductor power module 11 via a drive circuit mounted on the drive circuit board 21.
  • the IGBT built in the semiconductor power module 11 is controlled to convert DC power into AC power.
  • the converted AC power is supplied from the three-phase AC output terminal 11b to the motor connection cable 58 via the bus bar 55, and can drive and control the three-phase electric motor.
  • the semiconductor power module 11 generates heat from the built-in IGBT.
  • This heat generation is supplied to the cooling body 3 because the heat dissipation member 13 formed in the semiconductor power module 11 is in direct contact with the cooling body 3. Cooled by cooling water.
  • the power supply circuit and the control circuit mounted on the power supply circuit board 22 and the control circuit board 23 include heat generating circuit components. These heat generating circuit components generate heat, but are transmitted to the heat transfer members 35 and 37. The heated heat is efficiently transmitted to the heat transfer support plate portions 32a and 33a of the heat transfer support members 32 and 33.
  • the heat transfer support side plate portions 32c and 33c are connected to the heat transfer support plate portions 32a and 33a, the heat transferred to the heat transfer support plate portions 32a and 33a is transferred to the heat transfer support side plate portions 32c and 33a. It is transmitted to the bottom plate part 34 through 33c. Since the bottom plate portion 34 is in direct contact with the upper surface of the cooling body 3, the transmitted heat is efficiently radiated to the cooling body 3.
  • the metal heat transfer support plate portions 32a and 33a are fixed to the power supply circuit board 22 and the control circuit board 23, the rigidity of the power supply circuit board 22 and the control circuit board 23 can be increased. That is, the heat transfer support plate portions 32a and 33a can exhibit a heat transfer function and a rigidity enhancement function. Therefore, even when vertical vibration or roll is applied to the power conversion device 1 as in the case where the power conversion device 1 is applied as a motor drive circuit that drives a vehicle driving motor, the heat transfer support members 32 and 33 Stiffness can be increased. Therefore, it is possible to provide the power conversion device 1 that is less affected by vertical vibration and roll.
  • the heat transfer support members 32 and 33 that contact the cooling body 3 are disposed through the side surfaces of the substrates 21 and 22 in the power conversion device 1, the heat transfer support members 32 and 33 serve as shielding portions. It is a component to be formed.
  • the external connector 50 is provided on the control circuit board 23 that is located farthest from the semiconductor power module 11 among the plurality of mounting boards 21, 22, and 23. The periphery of the control circuit board 23 is not blocked by the components of the power conversion device 1.
  • the external connector 50 is disposed on the mounting substrates 21 and 22 positioned in the middle or the lowest level in the stacking direction of the plurality of mounting substrates 21, 22 and 23 that are arranged to face each other with a space therebetween. Further, the visibility of the external connector 50 is improved, and further, the hand can easily be put into the position of the external connector 50, so that the connection with the harness 70 is simplified. For this reason, it is possible to provide a highly reliable and inexpensive power conversion device by reducing problems such as poor connection and suppressing the increase in cost by eliminating the need for a dedicated connection tool for mounting.
  • the other mounting substrates 21 and 22 other than the control circuit substrate 23 are shielded from the sides by the components of the power conversion device 1.
  • the plurality of inter-board connectors 60 mounted on the other mounting boards 21 and 22 have the shielding parts of the other mounting boards 21 and 22.
  • the inter-board connector 60 can be visually recognized, and a hand can be put in the position of the inter-board connector 60 without using a dedicated connection tool for mounting. Connection with the harness 72 becomes possible. For this reason, it is possible to provide a highly reliable and inexpensive power conversion device by reducing problems such as poor connection and suppressing an increase in cost.
  • the inter-board connectors 60 connected to the harnesses 72 that connect the stacked mounting boards 21, 22, and 23 are disposed at the end portions on the same side. Compared with the case where it is arranged on the end side, the wire rod of the harness 72 to be connected can be shortened. Therefore, it is more suitable for suppressing an increase in cost.
  • the component forming the shielding portion supports the plurality of mounting boards 22 and 23 with a space between the semiconductor power module 11 and the plurality of mounting boards 22 and 23.
  • the heat transfer support members 32 and 33 that come into contact with the cooling body 3 so as to dissipate the heat generated in the cooling body 3 without passing through the housing have been described.
  • the heat support members 32 and 33 are not limited.
  • the component that forms the shielding portion is a heat transfer support member that contacts the cooling body so as to dissipate the heat generated by the mounting substrate to the cooling body without going through the housing
  • the heat of the mounting board can be radiated to the cooling body by the heat transfer support member without going through the housing, and the heat transfer support member has a shielding portion. Since it is a component to be formed, it is suitable as a structure of a power conversion device having a configuration in which a plurality of mounting boards that generate heat are stacked and mounted on a module.
  • the case where the heat-transfer support plate part 32a and 33a of the heat-transfer support members 32 and 33 and the heat-transfer support side plate part 32c and 33c were comprised separately was demonstrated.
  • the present invention is not limited to this, and the heat transfer support plate portions 32a and 33a and the heat transfer support side plate portions 32c and 33c may be configured integrally. In this case, since there is no joint between the heat transfer support plate portions 32a and 33a and the heat transfer support side plate portions 32c and 32c, it is possible to reduce heat resistance and perform more efficient heat dissipation.
  • condenser 4 was applied as a smoothing capacitor was demonstrated in the said embodiment, it is not limited to this, You may make it apply a cylindrical electrolytic capacitor.
  • the power converter device by this invention was applied to an electric vehicle was demonstrated, it is not limited to this, This invention can be applied also to the rail vehicle which drive
  • the power conversion device is not limited to an electrically driven vehicle, and the power conversion device of the present invention can be applied when driving an actuator such as an electric motor in other industrial equipment.

Abstract

 接続不良などの不具合を低減し、また、専用の接続工具を不要とするとともに、線材も短くすることができる、信頼性の高い安価な電力変換装置を提供する。この電力変換装置(1)は、複数の実装基板(21、22、23)が相互に間隔を保って対向配置され、制御回路基板(23)は、自身側方周囲に遮蔽部となる伝熱支持部材(32,33)を有しない状態で支持される一方、電源回路基板(22)は、伝熱支持部材(32、33)による遮蔽部を自身側方に有し、制御回路基板(23)は、外部コネクタ(50)が第一の辺(23f)近傍に配置されるとともに、第一の辺(23f)とは反対側の第二の辺(23s)近傍に基板間コネクタ(60)が配置され、電源回路基板(22)は、制御回路基板(23)の第二の辺(23s)と同じ側の辺であって且つ遮蔽部のない第三の辺(22t)近傍に基板間コネクタ(60)が配置されている。

Description

電力変換装置
 本発明は、電力変換用の半導体スイッチング素子を内蔵したモジュール上に、間隔を隔てて上記半導体スイッチング素子を駆動する回路部品を実装した実装基板を支持するようにした電力変換装置に関する。
 この種の電力変換装置として、本出願人は、特許文献1に記載された電力変換装置を提案した。この電力変換装置は、筐体内に水冷ジャケットを配置し、この水冷ジャケット上に電力変換用の半導体スイッチング素子としてのIGBTを内蔵した半導体パワーモジュールを配置している。また、筐体内には、相互に間隔を保って対向配置(以下、「積層」ともいう)された複数の実装基板が、半導体パワーモジュールの水冷ジャケットとは反対側に配置されている。なお、同文献記載の例では、複数の実装基板として3枚の実装基板が積層された例が示されている。
特願2011-237862(未公開)
 ところで、この種の電力変換装置においては、複数の実装基板には、モータの制御に要する伝送を行う部品である複数のコネクタが実装される。しかし、図7にコネクタの配置例を示すように、電力変換装置100の外部との伝送を行うために後付けするハーネス170と接続される外部コネクタ150が、半導体パワーモジュール111上の複数(この例では三枚)の実装基板121,122,123の積層方向の中間又は最下段に位置する実装基板121,122に配置された場合、最上段の実装基板123に配置した場合に比べてコネクタ150の視認性が低下し、更には筐体102の壁面が邪魔になる等により、コネクタ150の位置まで手が入らないことでハーネス170との接続が困難となる。そのため、コネクタ150の接続不良による品質低下や、ハーネス170との装着用に専用の接続工具を要することでコストアップの要因となるという問題がある。
 また、複数の実装基板121,122,123に実装する複数のコネクタのうち、図8に例示するように、積層された実装基板121,122間を接続するハーネス172と接続される基板間コネクタ160が、中間又は最下段に位置する実装基板121,122上の中央の位置や、自身周囲に構成部品132,133によって自身側方が遮蔽された遮蔽部に対して配置された場合、最上段の基板123や構成部品132,133が邪魔となり、視認性が低下、更には基板間コネクタ160の位置まで手が入らないことでハーネス172の接続が困難となるという問題がある。
 さらに、複数の実装基板121,122,123に実装する複数のコネクタのうち、図9に例示するように、積層された実装基板121,122,123間をハーネス172を介して接続される基板間コネクタ160が、複数の実装基板121,122,123の各々異なる端面に配置された場合、同じ端面側の配置と比べて接続されるハーネス172の線材が長くなる。そのため、線材のコストアップの要因となるという問題がある。
 そこで、本発明は、このような問題点に着目してなされたものであって、接続不良などの不具合を低減し、また、コストアップを抑制して、信頼性の高い安価な電力変換装置を提供することを目的としている。
 上記課題を解決するために、本発明の一態様に係る電力変換装置は、半導体パワーモジュールと、該半導体パワーモジュールを駆動するための回路部品が実装され且つ該半導体パワーモジュールに対して上部方向に積層された複数の実装基板とを備えた電力変換装置であって、前記複数の実装基板に実装される複数のコネクタのうち、当該電力変換装置の外部との伝送をする外部コネクタを、前記複数の実装基板のうち前記半導体パワーモジュールから最も離れて位置する第1の実装基板に設置したことを特徴とする。
 本発明の一態様に係る電力変換装置によれば、外部コネクタが、複数の実装基板のうち半導体パワーモジュールから最も離れて位置する第一の実装基板に設けられているので、第一の実装基板の周囲が当該電力変換装置の構成部品によって遮られない。そのため、外部コネクタが、相互に間隔を保って対向配置された複数の実装基板の積層方向の中間又は最下段位置に配置された場合に比べて、コネクタの視認性が向上し、更にはコネクタの位置に容易に手が入るためハーネスとの接続が簡単となる。そのため、接続不良などの不具合を低減し、また、装着用に専用の接続工具を不要とすることによりコストアップを抑制して、信頼性の高い安価な電力変換装置を提供することができる。
 ここで、本発明の一態様に係る電力変換装置において、前記第1の実装基板は、前記電力変換装置の構成部品によって自身下方側面が遮蔽され、当該構成部品によって遮蔽される側に、前記電力変換装置の外部との伝送をする外部コネクタが設置されていれば、電力変換装置の外部と内部双方間の電磁ノイズを構成部品によって遮蔽する上で好適である。
 また、本発明の一態様に係る電力変換装置において、前記複数の実装基板に実装されるコネクタのうち、前記複数の実装基板間を伝送する対の基板間コネクタを、前記複数の実装基板の同じ側の端部にそれぞれ設置することが好ましい。このような構成であれば、積層された実装基板間を接続するハーネスと接続される基板間コネクタが、各々同じ側の端部に配置されるので、異なる端部側に配置された場合に比べて接続されるハーネスの線材を短くすることができる。そのため、コストアップを抑制する上でより好適である。
 また、本発明の一態様に係る電力変換装置において、前記第1の実装基板において、前記外部コネクタの設置部と、前記基板間コネクタの設置部とを、互いに異なる側に設置すれば、外部コネクタの設置部と基板間コネクタの設置部相互を可及的に離隔できるので、外部ハーネスと内部ハーネスによる電磁ノイズを、互いに影響させないようにする上で好適である。
 なお、本発明の一態様に係る電力変換装置において、前記第1の実装基板以外の他の実装基板に実装されるコネクタを、配線作業スペースを有する端部に設置することができる。ここで、前記配線作業スペースは、前記他の実装基板の側方を遮蔽する前記構成部品に設けた開口部であることは好ましい。
 また、本発明の一態様に係る電力変換装置において、前記複数の実装基板のうち、前記第1の実装基板以外の他の実装基板は、前記電力変換装置の構成部品によって自身側方が遮蔽され、当該他の実装基板に実装されるコネクタを、前記構成部品によって遮蔽されない側の端部に設置することが好ましい。
 このような構成であれば、他の実装基板について、これに実装されるコネクタが、当該他の実装基板における、構成部品によって遮蔽されない側の端部に設置されるので、コネクタを視認することが可能であり、また、コネクタの位置に手が入るため、装着用に専用の接続工具を用いなくともハーネスとの接続が可能となる。そのため、接続不良などの不具合を低減し、また、コストアップを抑制して、信頼性の高い安価な電力変換装置を提供する上で好適である。
 また、本発明の一態様に係る電力変換装置において、前記構成部品は、前記複数の実装基板を前記半導体パワーモジュールとの間に間隔を保って支持するとともに前記複数の実装基板の熱を冷却体に伝熱する伝熱支持部材であることは好ましい。このような構成であれば、電力変換装置の上記コネクタ配置を採用しつつも、実装基板の熱を伝熱支持部材によって筐体を介することなく冷却体に放熱することができる上、この伝熱支持部材が、遮蔽部を形成する構成部品とされることから、発熱する複数の実装基板をモジュール上に積層して搭載する電力変換装置の構造として好適である。
 上述のように、本発明によれば、接続不良などの不具合を低減し、また、コストアップを抑制して、信頼性の高い安価な電力変換装置を提供することができる。
本発明に係る電力変換装置を車両の走行用モータを駆動するモータ駆動回路に適用した一実施形態の全体構成を示す断面図である。 図1に示す本発明に係る電力変換装置の一実施形態を示す拡大断面図である。 伝熱支持部材を示す側面図である。 図1に示す電力変換装置におけるコネクタの配置を説明する模式図である。 図4の斜視図である。 図4に示す各基板におけるコネクタの配置を説明する図であり、同図(a)は図4のA矢視図、(b)は図4のB矢視図、(c)は図4のC矢視図をそれぞれ模式的に示している。 コネクタの配置例とその問題点を説明する模式的斜視図である。 コネクタの配置例とその問題点を説明する模式的斜視図である。 コネクタの配置例とその問題点を説明する模式的斜視図である。
 以下、本発明の一実施形態について図面を適宜参照しつつ説明する。
 この電力変換装置は、車両の走行用モータを駆動するモータ駆動回路に適用した例であり、図1に示すように、筐体2内に電力変換装置1が収納されている。筐体2は、合成樹脂材から成形され、水冷ジャケットの構成を有する冷却体3を挟んで上下に分割された下部筐体2A及び上部筐体2Bを有する。冷却体3は、冷却水の給水口3a及び排水口3bが筐体2の外方に開口され、これら給水口3a及び排水口3bは例えばフレキシブルホースを介して図示しない冷却水供給源に接続されている。冷却体3は、例えば熱伝導率の高いアルミニウム、アルミニウム合金を射出成形して形成されている。冷却体3は、下面が平坦面とされている。また、冷却体3には、下部筐体2Aに保持されたフィルムコンデンサ4の絶縁被覆された正負の電極4aを上下に挿通する挿通孔3eが形成されている。
 下部筐体2Aは、有底角筒体で構成され、開放上部が冷却体3で覆われており、内部に平滑用のフィルムコンデンサ4が収納されている。一方、上部筐体2Bは、上端及び下端に開放された角筒体2aと、この角筒体2aの上端を閉塞する蓋体2bとを備えている。角筒体2aの下端は冷却体3で閉塞されている。角筒体2aの下端と冷却体3との間には、図示しないが、液状シール剤の塗布やゴム製パッキンの挟み込みなどのシール材が介在されている。
 電力変換装置1は、図2にも示すように、電力変換用の例えばインバータ回路を構成する半導体スイッチング素子として、例えば絶縁ゲートバイポーラトランジスタ(IGBT)を内蔵した半導体パワーモジュール11を備えている。半導体パワーモジュール11は、扁平な直方体状の絶縁性のケース体12内にIGBTを内蔵しており、図2に示すように、ケース体12の下面に金属製の放熱部材13が形成されている。ケース体12及び放熱部材13には、平面視で四隅に固定部材としての固定ねじ14を挿通する挿通孔15が形成されている。また、ケース体12の上面には、挿通孔15よりも内方寄りの4箇所に、所定高さの基板固定部16が突出形成されている。
 基板固定部16の上端には、図2に示すように、半導体パワーモジュール11に内蔵されたIGBTを駆動する駆動回路等が実装された第三の実装基板としての駆動回路基板21が固定されている。また、駆動回路基板21の上方には、駆動回路基板21との対向方向に所定間隔を保って第二の実装基板としての電源回路基板22が固定されている。電源回路基板22は、半導体パワーモジュール11に内蔵されたIGBTに電源を供給する発熱回路部品を含む電源回路等が実装されている。さらに、電源回路基板22の上方には、電源回路基板22との対向方向に所定間隔を保って第一の実装基板としての制御回路基板23が固定されている。制御回路基板23は、半導体パワーモジュール11に内蔵されたIGBTを制御する相対的に発熱量の大きい、又は発熱密度の大きい発熱回路部品を含む制御回路等が実装されている。各基板21,22,23は、平面視で、上記半導体パワーモジュール11を上方から覆うように配置される長方形状をなしている。つまり、半導体パワーモジュール11の長辺の側と各基板21,22,23の長辺の側とが同じ側とされている。
 そして、駆動回路基板21は、基板固定部16に対向する位置に形成した挿通孔21a内に継ぎねじ24の雄ねじ部24aを挿通し、この雄ねじ部24aを基板固定部16の上面に形成した雌ねじ部16aに螺合することにより固定されている。
 また、電源回路基板22は、継ぎねじ24の上端に形成した雌ねじ部24bに対向する位置に形成した挿通孔22a内に継ぎねじ25の雄ねじ部25aを挿通し、この雄ねじ部25aを継ぎねじ24の雌ねじ部24bに螺合することにより固定されている。
 さらに、制御回路基板23は、継ぎねじ25の上端に形成した雌ねじ部25bに対向する位置に形成した挿通孔23a内に固定ねじ26を挿通し、この固定ねじ26を継ぎねじ25の雌ねじ部25bに螺合することにより固定されている。
 また、電源回路基板22及び制御回路基板23は、伝熱支持部材32及び33によって筐体2を介することなく冷却体3への放熱経路を独自に形成するように支持されている。これら伝熱支持部材32及び33は、熱伝導率が高い金属例えばアルミニウム又はアルミニウム合金で形成されている。
 詳しくは、伝熱支持部材32は、平板状の伝熱支持板部32aと、上下に折り曲げ部を有する伝熱支持側板部32cとを備える。伝熱支持板部32aには、伝熱部材35を介して電源回路基板22が固定ねじ36によって固定される。伝熱部材35は、伸縮性を有する弾性体であり電源回路基板22と同じ外形寸法に構成されている。この伝熱部材35としては、シリコンゴムの内部に金属フィラーを介在させることにより絶縁性能を発揮しながら伝熱性を高めたものが適用されている。
 伝熱支持側板部32cは、図2に示すように、冷却体3の上面に配置される下側の折り曲げ部である底板部34と、この底板部34の長辺側の外周縁に一体に連結されて上方に延長する連結板部32dと、この連結板部32dの上端から同図左方に延長するように形成された上側の折り曲げ部である上板部32eとを有する。連結板部32dは、半導体パワーモジュール11の長辺側の同図右側面を通って上方に延長している。伝熱支持側板部32cは、伝熱支持板部32aに対して図2で見て半導体パワーモジュール11の長辺に沿う右端側に固定ねじ32bで上板部32eが固定されている。そして、伝熱支持側板部32cの下側の底板部34が、半導体パワーモジュール11側とは反対側(外側)に向けて折り曲げられることで冷却体3上面に接触している。底板部34は、固定ねじ40によって冷却体3上面に固定されている。なお、伝熱支持部材32の伝熱支持板部32aの下面には、絶縁距離を短くするために絶縁シート42が貼着されている。
 伝熱支持部材33は、平板状の伝熱支持板部33aと、上下に折り曲げ部を有する伝熱支持側板部33cとを備える。伝熱支持板部33aには、伝熱部材37を介して制御回路基板23が固定ねじ38によって固定される。伝熱部材37は、伸縮性を有する弾性体であり制御回路基板23と同じ外形寸法に構成されている。この伝熱部材37としては、シリコンゴムの内部に金属フィラーを介在させることにより絶縁性能を発揮しながら伝熱性を高めたものが適用されている。
 伝熱支持側板部33cは、図2に示すように、冷却体3の上面に配置される下側の折り曲げ部である底板部34と、この底板部34の長辺側の外周縁に一体に連結されて上方に延長する連結板部33dと、この連結板部33dの上端から同図右方に延長するように形成された上側の折り曲げ部である上板部33eとを有する。連結板部33dは、半導体パワーモジュール11の長辺側の同図左側面を通って上方に延長している。伝熱支持側板部33cは、伝熱支持板部33aに対して図2で見て半導体パワーモジュール11の長辺に沿う左端側に固定ねじ33bで上板部33eが固定されている。そして、伝熱支持側板部33cの下側の底板部34が、半導体パワーモジュール11側とは反対側(外側)に向けて折り曲げられることで冷却体3上面に接触している。底板部34は、固定ねじ40によって冷却体3上面に固定されている。なお、伝熱支持部材33の伝熱支持板部33aの下面には、絶縁距離を短くするために絶縁シート43が貼着されている。
 また、伝熱支持部材33の伝熱支持側板部33cにおける連結板部33dには、図3に示すように、半導体パワーモジュール11の図1に示す3相交流出力端子11bに対応する位置に図1に示すブスバー55を挿通する例えば円形の3つの挿通孔33iが形成されている。このように、3つの挿通孔33iを連結板部33dに形成することにより、隣接する挿通孔33i間に比較的幅広の伝熱路Lhを形成することができ、全体の伝熱路の断面積を増加させて効率よく伝熱することができる。また、振動に対する剛性も確保することができる。同様に、伝熱支持部材32の伝熱支持側板部32cの連結部にも、図1に示すように、半導体パワーモジュール11の正極及び負極端子11aに対向する位置にそれぞれ同様に形成された挿通孔32iが設けられている。
 ここで、上述した各基板21,22,23には、図4および図5に模式図を示すように、相互を繋ぐ基板間コネクタ60および当該電力変換装置1の外部機器との伝送をする外部コネクタ50が、モータの制御に要する伝送を行うために所定の配置とされるように、基板の上面に実装されている。
 詳しくは、上記複数の実装基板21,22,23のうち、第一の実装基板である制御回路基板23以外の他の実装基板21,22は、当該電力変換装置1の構成部品によって自身側方が遮蔽された遮蔽部を有している。本実施形態の例では、遮蔽部を形成する構成部品として、伝熱支持部材32及び33が配置されている。なお、本実施形態の例では、上述のように、遮蔽部を形成する伝熱支持部材32及び33は、複数の実装基板22,23を半導体パワーモジュール11との間に間隔を保って支持するとともに複数の実装基板22,23の発熱を、筐体2を介することなく冷却体3に放熱するように冷却体3に接触している。
 図6(a)~(c)に遮蔽部の有無を示すように、各実装基板21,22,23において、伝熱支持部材32及び33によって遮蔽部を形成する、視認困難ないし手が入らない基板表面の範囲を網掛け部分(符号N)によって示し、遮蔽部が形成されていない、視認可能且つ手が入る基板表面の範囲を白抜き部分(符号Y)によって示している。
 本実施形態では、矩形平面をなす複数の実装基板22,23との組をなす複数の伝熱支持部材32及び33を備え、複数の実装基板22,23は、半導体パワーモジュール11から最も離れた側に配置された制御回路基板23と、この制御回路基板23よりも半導体パワーモジュール11寄りの側に配置された電源回路基板22とを有し、制御回路基板23は、自身側方周囲に遮蔽部を有しない状態で支持され、電源回路基板22は、伝熱支持部材33により自身側方に遮蔽部を有する状態で支持されている。
 そして、図4、図5および図6(a)に示すように、複数の実装基板21,22,23に実装される複数のコネクタのうち、当該電力変換装置1の外部との伝送をする外部コネクタ50は、複数の実装基板21,22,23のうち半導体パワーモジュール11から最も離れて位置する制御回路基板23に設けられている。ここで、外部コネクタ50は、半導体パワーモジュール11から最も離れて位置する制御回路基板23に実装されていれば、任意の位置に実装することができる。しかし、当該電力変換装置1の外部と内部双方間の電磁ノイズを構成部品によって好適に遮蔽する上では、当該構成部品によって遮蔽される側に、外部コネクタ50が設置されることが好ましい。本実施形態の例では、伝熱支持部材33が、制御回路基板23の下方側面を遮蔽する構成部品に相当し、図5において、制御回路基板23の同図奥側の長辺端部に二か所配置された外部コネクタ50が、制御回路基板23によって遮蔽される側に配置された外部コネクタ50に相当する。
 また、当該他の実装基板21,22に実装される複数のコネクタ50,60において、基板間コネクタ60は、図6(b)および(c)に示すように、他の実装基板21,22の遮蔽部を有しない側の端部、および遮蔽部のない制御回路基板23に配置されている。これにより、複数の実装基板21,22,23において、各コネクタ50,60を視認することが可能であり、また、各コネクタ50,60の位置に手が入るため、装着用に専用の接続工具を用いなくともハーネスとの接続が可能とされている。
 また、本実施形態では、図6(a)に示すように、制御回路基板23において、外部コネクタ50の設置部と基板間コネクタ60の設置部とを、同一でない側、つまり互いに異なる側に設置している。本実施形態の例では、4つの辺の2つの短辺のうち、一方の辺の端部に外部コネクタ50の設置部を設け、対向する他方の辺の端部に基板間コネクタ60の設置部を設けている。さらに、4つの辺の2つの長辺のうち、一方の辺(この例では伝熱支持部材33側)の端部に外部コネクタ50の設置部を設け、対向する他方の辺の端部に基板間コネクタ60の設置部を設けている。これにより、外部コネクタ50の設置部と基板間コネクタ60の設置部相互を可及的に離隔できるので、外部ハーネスと内部ハーネスによる電磁ノイズを、互いに影響させないようにする上で好適である。
 また、本実施形態では、複数の実装基板21,22,23に実装される複数のコネクタ50,60のうち、複数の実装基板21,22,23相互間を伝送する対の基板間コネクタ60は、複数の実装基板21,22,23の同じ側の端部にそれぞれ配置されている。これにより、積層された実装基板21,22,23間を接続するハーネス72に接続される対の基板間コネクタ60が、各々同じ側の端部に配置されるので、異なる端部側に配置された場合に比べて接続されるハーネス72の線材を短くすることができる。
 ここで、電源回路基板22及び制御回路基板23の相互を繋ぐ基板間コネクタ60は、配線作業スペースが確保された側に配置されることが好ましい。本実施形態の例では、複数の伝熱支持部材32及び33による遮蔽部を有しない短辺側の端部に基板間コネクタ60を設けている。
 より詳しく説明すれば、図6に示すように、本実施形態では、制御回路基板23は、自身の一辺である第一の辺23fの近傍に外部コネクタ50が配置されるとともに、この第一の辺23fとは反対側の第二の辺23sの近傍に基板間コネクタ60が配置され、電源回路基板22は、制御回路基板23の第二の辺23sと同じ側の辺であって且つ遮蔽部を有しない辺である第三の辺22tの近傍に制御回路基板23の基板間コネクタ60に接続される基板間コネクタ60が配置されている。これにより、配線作業スペースが確保されるので作業性が良い。そして、電力変換装置1に上記コネクタ配置を採用しつつも、複数の実装基板22,23それぞれの放熱経路を好適に形成可能としている。
 また、本実施形態では、制御回路基板23用の伝熱支持部材33は、外部コネクタ50および基板間コネクタ60のいずれもが配置されていない上記電源回路基板22の辺である第四の辺22fに対向する側面を通って冷却体に接触され、電源回路基板22用の伝熱支持部材32は、第四の辺22fとは反対側に位置する上記第三の辺22tに対向する側面を通って冷却体3に接触されている。これにより、本実施形態のように、実装基板と伝熱支持板部との組が複数存在する場合に、電力変換装置1の上記コネクタ配置を採用しつつも、実装基板毎に異なる放熱経路を形成する上で好適であり、また、各伝熱支持部材32,33が実装基板の一側面をそれぞれ通って冷却体3に接触するので、伝熱経路を短くする上で好適である。
 また、本実施形態では、半導体パワーモジュール11のケース体12は、長方形の平面を有する直方体形状を有し、伝熱支持部材32,33は、ケース体12の長辺側の側面を通るようにそれぞれ配置される。これにより、電力変換装置1の上記コネクタ配置を採用しつつも、伝熱支持部材32,33の伝熱断面積を広くすることができ、放熱効果を向上させることを可能としている。
 ここで、上述のように、電源回路基板22及び制御回路基板23の相互を繋ぐ基板間コネクタ60は、配線作業スペースが確保された側に配置されることが好ましい。しかし、配線作業スペースが確保されていれば、例えば図5の斜視図に示されるように、伝熱支持部材32の適所に開口部32jを設け、この開口部32jを配線作業スペースとすることもできる。このような構成とすれば、伝熱支持部材32が配置された側をも配線作業スペースを有する端部とすることができるため、同図のように、伝熱支持部材32の配置された側についても基板間コネクタ60を設けることができる。
 次に、上記電力変換装置1の組立方法を説明する。
 先ず、図2に示すように、制御回路基板23を伝熱支持部材33の伝熱支持板部33aに伝熱部材37を介して重ね合わせ、固定ねじ38によって伝熱部材37を圧縮した状態で制御回路基板23、伝熱部材37及び伝熱支持板部33aを固定して、制御回路ユニットU1を形成しておく。同様に、電源回路基板22を伝熱支持部材32の伝熱支持板部32aに伝熱部材35を介して重ね合わせ、固定ねじ36によって伝熱部材35を圧縮した状態で電源回路基板22、伝熱部材35及び伝熱支持板部32aを固定して電源回路ユニットU2を形成しておく。
 一方、冷却体3の上面に、半導体パワーモジュール11に形成した放熱部材13の下面を冷却体3の上面に密着させた状態で固定ねじ14で固定する。また、伝熱支持部材32及び33の底板部34を固定ねじ40で固定する。半導体パワーモジュール11には、冷却体3に固定する前又は固定した後に、その上面に形成された基板固定部16に駆動回路基板21を載置する。そして、この駆動回路基板21をその上方から4本の継ぎねじ24によって基板固定部16に固定する。そして、伝熱支持板部32aを伝熱支持側板部32cに固定ねじ32bで連結する。
 そして、継ぎねじ24の上面に電源回路ユニットU2の電源回路基板22を載置し、4本の継ぎねじ25によって固定する。さらに、継ぎねじ25の上面に制御回路ユニットU1の制御回路基板23を載置し、4本の固定ねじ26によって固定する。そして、伝熱支持板部33aを伝熱支持側板部33cに固定ねじ33bによって連結する。
 その後、図1に示すように、半導体パワーモジュール11の正負の直流入力端子に11aに、ブスバー55を接続し、このブスバー55の他端に冷却体3を貫通するフィルムコンデンサ4の正負の電極4aを固定ねじ51で連結する。さらに、半導体パワーモジュール11の直流入力端子11aに外部のコンバータ(不図示)に接続する接続コード52の先端に固定された圧着端子53を固定する。
 さらに、半導体パワーモジュール11の3相交流出力端子11bにブスバー55を固定ねじ56でそれぞれ接続し、このブスバー55の途中に電流センサ57を配置する。そして、外部の3相電動モータ(不図示)に接続したモータ接続ケーブル58の先端に固定した圧着端子59をブスバー55の他端に固定ねじ60で固定して接続する。その後、冷却体3の下面及び上面に、下部筐体2A及び上部筐体2Bを、シール材を介して固定する。そして、図4に示すように、上述した各基板21,22,23相互を繋ぐ基板間コネクタ60および当該電力変換装置1の外部との伝送をする外部コネクタ50を各々にハーネス70,72を介して接続して、電力変換装置1の組立を完了する。
 この状態で、外部のコンバータ(不図示)から直流電力を供給するとともに、電源回路基板22に実装された電源回路、制御回路基板23に実装された制御回路を動作状態とし、制御回路から例えばパルス幅変調信号でなるゲート信号を駆動回路基板21に実装された駆動回路を介して半導体パワーモジュール11に供給する。これによって、半導体パワーモジュール11に内蔵されたIGBTが制御されて、直流電力を交流電力に変換する。変換した交流電力は3相交流出力端子11bからブスバー55を介してモータ接続ケーブル58に供給され、上記3相電動モータを駆動制御することができる。
 このとき、半導体パワーモジュール11は、内蔵されたIGBTから発熱するが、この発熱は半導体パワーモジュール11に形成された放熱部材13が冷却体3に直接接触されているので、冷却体3に供給されている冷却水によって冷却される。一方、電源回路基板22及び制御回路基板23に実装されている電源回路及び制御回路には発熱回路部品が含まれており、これら発熱回路部品で発熱を生じるが、伝熱部材35及び37に伝熱された熱は、効率良く伝熱支持部材32及び33の伝熱支持板部32a及び33aに伝達される。そして、伝熱支持板部32a及び33aには、伝熱支持側板部32c及び33cが連結されているので、伝熱支持板部32a及び33aに伝達された熱は、伝熱支持側板部32c及び33cを通って底板部34に伝達される。底板部34は、冷却体3の上面に直接接触されているので、伝達された熱は冷却体3に効率良く放熱される。
 また、電源回路基板22及び制御回路基板23には金属製の伝熱支持板部32a及び33aが固定されているので、電源回路基板22及び制御回路基板23の剛性を高めることができる。すなわち、伝熱支持板部32a及び33aで伝熱機能と剛性強化機能を発揮することができる。そのため、電力変換装置1を車両の走行用モータを駆動するモータ駆動回路として適用する場合のように、電力変換装置1に上下振動や横揺れが作用する場合でも、伝熱支持部材32及び33で剛性を高めることができる。したがって、上下振動や横揺れ等の影響が少ない電力変換装置1を提供することができる。
 ここで、上記電力変換装置1は、冷却体3に接触する伝熱支持部材32,33が、基板21,22の側面を通って配置されるため、伝熱支持部材32,33が遮蔽部を形成する構成部品となっている。
 しかし、本実施形態の電力変換装置1によれば、外部コネクタ50が、複数の実装基板21,22,23のうち半導体パワーモジュール11から最も離れて位置する制御回路基板23に設けられているので、制御回路基板23の周囲が当該電力変換装置1の構成部品によって遮られない。そのため、外部コネクタ50が、相互に間隔を保って対向配置された複数の実装基板21,22,23の積層方向の中間又は最下段に位置する実装基板21,22に配置された場合に比べて、外部コネクタ50の視認性が向上し、更には外部コネクタ50の位置に容易に手が入るためハーネス70との接続が簡単となる。そのため、接続不良などの不具合を低減し、また、装着用に専用の接続工具を不要とすることによりコストアップを抑制して、信頼性の高い安価な電力変換装置を提供することができる。
 また、上記電力変換装置1は、複数の実装基板21,22,23のうち制御回路基板23以外の他の実装基板21,22は、当該電力変換装置1の構成部品によって自身側方が遮蔽された遮蔽部を有するところ、上記電力変換装置1によれば、当該他の実装基板21,22に実装される複数の基板間コネクタ60が、当該他の実装基板21,22の前記遮蔽部を有しない側の端部に配置されているので、基板間コネクタ60を視認することが可能であり、また、基板間コネクタ60の位置に手が入るため、装着用に専用の接続工具を用いなくともハーネス72との接続が可能となる。そのため、接続不良などの不具合を低減し、また、コストアップを抑制して、信頼性の高い安価な電力変換装置を提供することができる。
 さらに、上記電力変換装置1によれば、積層された実装基板21,22,23間を接続するハーネス72に接続される基板間コネクタ60が、各々同じ側の端部に配置されるので、異なる端部側に配置された場合に比べて、接続されるハーネス72の線材を短くすることができる。そのため、コストアップを抑制する上でより好適である。
 なお、上記電力変換装置1の例では、遮蔽部を形成する構成部品は、複数の実装基板22,23を半導体パワーモジュール11との間に間隔を保って支持するとともに複数の実装基板22,23の発熱を、筐体を介することなく冷却体3に放熱するように冷却体3に接触する伝熱支持部材32,33とされた例で説明したが、遮蔽部を形成する構成部品は、伝熱支持部材32,33に限定されるものではない。
 しかし、電力変換装置において、遮蔽部を形成する構成部品が、実装基板の発熱を、筐体を介することなく冷却体に放熱するように冷却体に接触する伝熱支持部材とされていれば、上述したような本発明に係るコネクタ配置を採用しつつも、実装基板の熱を伝熱支持部材によって筐体を介することなく冷却体に放熱できる上に、この伝熱支持部材が、遮蔽部を形成する構成部品とされることから、発熱する複数の実装基板をモジュール上に積層して搭載する構成をもつ電力変換装置の構造として好適である。
 また、上記実施形態においては、伝熱支持部材32及び33の伝熱支持板部32a及び33aと伝熱支持側板部32c及び33cとを別体で構成する場合について説明した。しかし、本発明はこれに限定されず、伝熱支持板部32a及び33aと伝熱支持側板部32c及び33cとを一体に構成するようにしてもよい。この場合には、伝熱支持板部32a及び33aと伝熱支持側板部32c及び32cとの間に継ぎ目がなくなるので、熱抵抗を小さくしてより効率の良い放熱を行うことができる。
 また、上記実施形態では、平滑用のコンデンサとしてフィルムコンデンサ4を適用した場合について説明したが、これに限定されず、円柱状の電解コンデンサを適用するようにしてもよい。
 また、上記実施形態においては、本発明による電力変換装置を電気自動車に適用する場合について説明したが、これに限定されず、軌条を走行する鉄道車両にも本発明を適用することができ、任意の電気駆動車両に適用することができる。さらに電力変換装置としては電気駆動車両に限らず、他の産業機器における電動モータ等のアクチュエータを駆動する場合に本発明の電力変換装置を適用することができる。
 1…電力変換装置
 2…筐体
 3…冷却体
 4…フィルムコンデンサ
 5…蓄電池収納部
 11…半導体パワーモジュール
 12…ケース体
 13…放熱部材
 21…駆動回路基板
 22…電源回路基板(第二の実装基板)
 23…制御回路基板(第一の実装基板)
 24,25…継ぎねじ
 32…伝熱支持部材
 32a…伝熱支持板部
 32b…固定ねじ
 32c…伝熱支持側板部
 33…伝熱支持部材
 33a…伝熱支持板部
 33b…固定ねじ
 33c…伝熱支持側板部
 34…底板部
 35,37…伝熱部材
 50…外部コネクタ
 60…基板間コネクタ
 70,72…ハーネス

Claims (8)

  1.  半導体パワーモジュールと、該半導体パワーモジュールを駆動するための回路部品が実装され且つ該半導体パワーモジュールに対して上部方向に積層された複数の実装基板とを備えた電力変換装置であって、
     前記複数の実装基板に実装される複数のコネクタのうち、当該電力変換装置の外部との伝送をする外部コネクタを、前記複数の実装基板のうち前記半導体パワーモジュールから最も離れて位置する第1の実装基板に設置したことを特徴とする電力変換装置。
  2.  前記第1の実装基板は、前記電力変換装置の構成部品によって自身下方側面が遮蔽され、当該構成部品によって遮蔽される側に、前記電力変換装置の外部との伝送をする外部コネクタを設置したことを特徴とする請求項1に記載の電力変換装置。
  3.  前記複数の実装基板に実装されるコネクタのうち、前記複数の実装基板間を伝送する対の基板間コネクタを、前記複数の実装基板の同じ側の端部にそれぞれ設置したことを特徴とする請求項1または2に記載の電力変換装置。
  4.  前記第1の実装基板において、前記外部コネクタの設置部と、前記基板間コネクタの設置部とを、互いに異なる側に設置したことを特徴とする請求項3に記載の電力変換装置。
  5.  前記第1の実装基板以外の他の実装基板に実装されるコネクタを、配線作業スペースを有する端部に設置したことを特徴とする請求項3または4に記載の電力変換装置。
  6.  前記配線作業スペースは、前記他の実装基板の側方を遮蔽する前記構成部品に設けた開口部であることを特徴とする請求項5に記載の電力変換装置。
  7.  前記複数の実装基板のうち、前記第1の実装基板以外の他の実装基板は、前記電力変換装置の構成部品によって自身側方が遮蔽され、当該他の実装基板に実装されるコネクタを、前記構成部品によって遮蔽されない側の端部に設置したことを特徴とする請求項1乃至4のいずれか一項に記載の電力変換装置。
  8.  前記構成部品は、前記複数の実装基板を前記半導体パワーモジュールとの間に間隔を保って支持するとともに前記複数の実装基板の熱を冷却体に伝熱する伝熱支持部材であることを特徴とする請求項2乃至7のいずれか一項に記載の電力変換装置。
PCT/JP2013/005735 2012-10-09 2013-09-26 電力変換装置 WO2014057622A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380029621.6A CN104380461A (zh) 2012-10-09 2013-09-26 功率转换装置
JP2014540726A JPWO2014057622A1 (ja) 2012-10-09 2013-09-26 電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-224501 2012-10-09
JP2012224501 2012-10-09

Publications (1)

Publication Number Publication Date
WO2014057622A1 true WO2014057622A1 (ja) 2014-04-17

Family

ID=50477106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005735 WO2014057622A1 (ja) 2012-10-09 2013-09-26 電力変換装置

Country Status (3)

Country Link
JP (1) JPWO2014057622A1 (ja)
CN (1) CN104380461A (ja)
WO (1) WO2014057622A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6075701B1 (ja) * 2015-09-11 2017-02-08 株式会社安川電機 電気機器及び電力変換装置
JP6143980B1 (ja) * 2016-03-02 2017-06-07 三菱電機株式会社 電力変換装置
EP3522691A1 (en) 2018-02-02 2019-08-07 Kabushiki Kaisha Toyota Jidoshokki Semiconductor apparatus
JP2019213455A (ja) * 2019-09-19 2019-12-12 株式会社デンソー 電力変換装置
EP3589099A1 (fr) * 2018-06-28 2020-01-01 Valeo Siemens eAutomotive France SAS Equipement electrique comprenant un dispositif de plaque support de dissipation
CN112673172A (zh) * 2018-09-21 2021-04-16 三电汽车部件株式会社 电动压缩机
WO2021090520A1 (ja) 2019-11-07 2021-05-14 三菱電機株式会社 電力変換装置
EP3734829A4 (en) * 2017-12-27 2021-08-04 Kabushiki Kaisha Yaskawa Denki INVERTER DEVICE
JP7046146B1 (ja) 2020-11-20 2022-04-01 三菱電機株式会社 電力変換装置
US11545770B2 (en) 2020-01-08 2023-01-03 Mitsubishi Electric Corporation Electric-power conversion apparatus
WO2023170893A1 (ja) * 2022-03-10 2023-09-14 日本電気株式会社 基板冷却構造の製造方法、及び基板冷却構造

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6455050B2 (ja) * 2014-09-30 2019-01-23 セイコーエプソン株式会社 ロボット
JP6922680B2 (ja) * 2017-11-17 2021-08-18 株式会社ジェイテクト 電子制御ユニット
JP7079625B2 (ja) * 2018-03-09 2022-06-02 本田技研工業株式会社 電力変換装置
CN113890309A (zh) * 2021-08-26 2022-01-04 华为数字能源技术有限公司 功率模块和电源系统
CN115312480B (zh) * 2022-10-11 2023-01-24 合肥中恒微半导体有限公司 一种用于igbt功率模块的dbc基板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424895U (ja) * 1987-07-31 1989-02-10
JP2001211663A (ja) * 2000-01-28 2001-08-03 Sanden Corp モータ駆動用インバータ装置
JP2010035347A (ja) * 2008-07-29 2010-02-12 Hitachi Ltd 電力変換装置および電動車両
JP2010165914A (ja) * 2009-01-16 2010-07-29 Toshiba Carrier Corp インバータ装置及びインバータ装置の製造方法
JP2010183749A (ja) * 2009-02-06 2010-08-19 Hitachi Automotive Systems Ltd 電力変換装置
WO2012105353A1 (ja) * 2011-01-31 2012-08-09 トヨタ自動車株式会社 電力制御装置の搭載構造

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2751034C (en) * 2009-02-24 2015-02-17 Toshiki Tatsuta Semiconductor stack and power converter using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424895U (ja) * 1987-07-31 1989-02-10
JP2001211663A (ja) * 2000-01-28 2001-08-03 Sanden Corp モータ駆動用インバータ装置
JP2010035347A (ja) * 2008-07-29 2010-02-12 Hitachi Ltd 電力変換装置および電動車両
JP2010165914A (ja) * 2009-01-16 2010-07-29 Toshiba Carrier Corp インバータ装置及びインバータ装置の製造方法
JP2010183749A (ja) * 2009-02-06 2010-08-19 Hitachi Automotive Systems Ltd 電力変換装置
WO2012105353A1 (ja) * 2011-01-31 2012-08-09 トヨタ自動車株式会社 電力制御装置の搭載構造

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6075701B1 (ja) * 2015-09-11 2017-02-08 株式会社安川電機 電気機器及び電力変換装置
JP2017055077A (ja) * 2015-09-11 2017-03-16 株式会社安川電機 電気機器及び電力変換装置
US10491134B2 (en) 2015-09-11 2019-11-26 Kabushiki Kaisha Yaskawa Denki Electrical machine and power converter
JP6143980B1 (ja) * 2016-03-02 2017-06-07 三菱電機株式会社 電力変換装置
US11522443B2 (en) 2017-12-27 2022-12-06 Kabushiki Kaisha Yaskawa Denki Inverter apparatus
EP3734829A4 (en) * 2017-12-27 2021-08-04 Kabushiki Kaisha Yaskawa Denki INVERTER DEVICE
EP3522691A1 (en) 2018-02-02 2019-08-07 Kabushiki Kaisha Toyota Jidoshokki Semiconductor apparatus
JP2019134647A (ja) * 2018-02-02 2019-08-08 株式会社豊田自動織機 半導体装置
FR3083421A1 (fr) * 2018-06-28 2020-01-03 Valeo Siemens Eautomotive France Sas Equipement electrique comprenant un dispositif de plaque support de dissipation
EP3589099A1 (fr) * 2018-06-28 2020-01-01 Valeo Siemens eAutomotive France SAS Equipement electrique comprenant un dispositif de plaque support de dissipation
CN112673172A (zh) * 2018-09-21 2021-04-16 三电汽车部件株式会社 电动压缩机
JP2019213455A (ja) * 2019-09-19 2019-12-12 株式会社デンソー 電力変換装置
WO2021090520A1 (ja) 2019-11-07 2021-05-14 三菱電機株式会社 電力変換装置
US11545770B2 (en) 2020-01-08 2023-01-03 Mitsubishi Electric Corporation Electric-power conversion apparatus
JP7046146B1 (ja) 2020-11-20 2022-04-01 三菱電機株式会社 電力変換装置
JP2022081768A (ja) * 2020-11-20 2022-06-01 三菱電機株式会社 電力変換装置
WO2023170893A1 (ja) * 2022-03-10 2023-09-14 日本電気株式会社 基板冷却構造の製造方法、及び基板冷却構造

Also Published As

Publication number Publication date
CN104380461A (zh) 2015-02-25
JPWO2014057622A1 (ja) 2016-08-25

Similar Documents

Publication Publication Date Title
WO2014057622A1 (ja) 電力変換装置
JP5510432B2 (ja) 半導体装置
JP5794306B2 (ja) 電力変換装置
WO2014061178A1 (ja) 冷却構造体及び発熱体
WO2014020806A1 (ja) 冷却構造体及び電力変換装置
US20150245535A1 (en) Power Conversion Device
WO2013088642A1 (ja) 電力変換装置
JP2015012639A (ja) 電力変換装置
JP4538474B2 (ja) インバータ装置
WO2013105166A1 (ja) 電力変換装置
WO2013145508A1 (ja) 電力変換装置
JP5896233B2 (ja) 電力変換装置
WO2013084416A1 (ja) 電力変換装置
WO2013111234A1 (ja) 電力変換装置
WO2014024361A1 (ja) 冷却構造体及び電力変換装置
WO2013084417A1 (ja) 電力変換装置
WO2013080440A1 (ja) 電力変換装置
WO2014020808A1 (ja) 冷却構造体及び電力変換装置
JP6187582B2 (ja) 電力変換装置
JP5768902B2 (ja) 電力変換装置
WO2013080441A1 (ja) 電力変換装置
WO2013140703A1 (ja) 電力変換装置
WO2014020807A1 (ja) 冷却構造体及び電力変換装置
JP5682713B2 (ja) 電力変換装置
WO2013080442A1 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540726

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844834

Country of ref document: EP

Kind code of ref document: A1