WO2014057530A1 - 自動車用エンジンの位相可変装置 - Google Patents

自動車用エンジンの位相可変装置 Download PDF

Info

Publication number
WO2014057530A1
WO2014057530A1 PCT/JP2012/076099 JP2012076099W WO2014057530A1 WO 2014057530 A1 WO2014057530 A1 WO 2014057530A1 JP 2012076099 W JP2012076099 W JP 2012076099W WO 2014057530 A1 WO2014057530 A1 WO 2014057530A1
Authority
WO
WIPO (PCT)
Prior art keywords
camshaft
lock
plate
pressing
lock plate
Prior art date
Application number
PCT/JP2012/076099
Other languages
English (en)
French (fr)
Inventor
真康 永洞
貴史 渡部
本間 弘一
Original Assignee
日鍛バルブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鍛バルブ株式会社 filed Critical 日鍛バルブ株式会社
Priority to KR1020157006728A priority Critical patent/KR20150063378A/ko
Priority to PCT/JP2012/076099 priority patent/WO2014057530A1/ja
Priority to EP12886214.1A priority patent/EP2910744A1/en
Priority to JP2014540648A priority patent/JPWO2014057530A1/ja
Priority to US14/427,243 priority patent/US20150247428A1/en
Publication of WO2014057530A1 publication Critical patent/WO2014057530A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/34409Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear by torque-responsive means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/46Component parts, details, or accessories, not provided for in preceding subgroups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • F01L2001/3522Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear with electromagnetic brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L2013/10Auxiliary actuators for variable valve timing
    • F01L2013/101Electromagnets

Definitions

  • the present invention provides a phase variable mechanism that changes the opening / closing timing of the engine valve by changing the relative phase angle of the camshaft with respect to the crankshaft, and a self-locking mechanism that prevents deviation of the relative phase angle due to cam torque generated on the camshaft.
  • This is a technology related to a phase varying device for an automobile engine provided.
  • a self-locking mechanism that prevents displacement of the relative phase angle due to cam torque input from the engine valve side to the camshaft in a phase variable mechanism that changes the opening / closing timing of the engine valve by changing the relative phase angle of the camshaft with respect to the crankshaft.
  • a camshaft is arranged coaxially and rotatably with respect to a driving rotating body driven by a crankshaft, and the driving force of the crankshaft. And rotates in the same direction together with the drive rotator. Further, when changing the opening / closing timing of the engine valve, the first control rotating body, which is coaxially integrated with the camshaft via the center shaft and cannot be relatively rotated, is connected via the first electromagnetic clutch or the reverse rotation mechanism.
  • the advance angle direction (the same rotation direction as the drive rotator; hereinafter the same) or the retard angle direction (with respect to the advance angle direction).
  • Relative rotation in one of the reverse rotation directions (the same applies hereinafter).
  • the opening / closing timing of the engine valve is changed by changing the relative phase angle of the camshaft connected to the first control rotator as described above with respect to the drive rotator on the crankshaft side.
  • the camshaft receives cam torque generated alternately in the advance angle direction (and in the retard angle direction) from the engine valve in response to an impact when the engine valve is opened and closed.
  • the cam torque is the relative phase angle of the camshaft with respect to the drive rotor. Therefore, in the engine phase variable device of Patent Document 1, the camshaft is locked so as not to rotate relative to the drive rotor when the cam torque is generated.
  • a self-locking mechanism is provided to prevent misalignment.
  • the self-locking mechanism is mainly eccentric via an eccentric circular cam integrated with the center shaft, a lock plate bush attached to the eccentric circular cam, and a lock plate bush.
  • the pair of lock plates are held by the circular cams, and the pair of lock plates are eccentric circular cams. More, rotationally fixed manner is held against the circular eccentric cam, and is inscribed in the inner circumferential surface of the cylindrical portion of the drive rotor (see Figure 5 of Patent Document 1).
  • the pair of lock plates connected to the first control rotator is connected to the drive rotator together with a center shaft (camshaft) integrally formed with an eccentric circular cam. Rotate relative to it.
  • the self-locking mechanism functions as follows. The cam torque generated in the camshaft generates an eccentric rotation torque around the rotation center axis of the camshaft in the knitted circular cam.
  • the eccentric circular cam that has received the cam torque in the advance direction presses one lock plate against the inner peripheral surface of the cylindrical portion of the drive rotor via the lock plate bush, and the eccentric circular cam that has received the cam torque in the retard direction
  • a self-locking force is generated by pressing the other lock plate against the inner peripheral surface of the cylindrical portion of the drive rotating body.
  • the self-locking force due to the cam torque is transmitted to only one of the pair of lock plates based on the direction of the cam torque (advance angle or retard angle direction). It cannot be pressed against the cylindrical part of the drive rotor.
  • the pressed lock plate is likely to bite into the inner peripheral surface of the cylinder portion of the drive rotator like a wedge. The lock plate that bites into the inner peripheral surface inhibits the release of the self-lock function.
  • the drive rotating body that is rotatably supported by the center shaft (camshaft) is inclined with respect to the rotation center axis of the camshaft.
  • the tilted drive rotator generates friction at a support portion of the drive rotator provided on the center shaft.
  • the present invention provides a phase varying device for an automobile engine having a self-locking mechanism that does not hinder the operation of changing the relative phase angle of the camshaft with respect to the drive rotating body on the crankshaft side.
  • the phase varying device for an automobile engine has a cylindrical portion, and is driven by a crankshaft, a camshaft that supports the drive rotator coaxially and relatively rotatably, and a drive rotator.
  • a relative phase angle changing mechanism for changing the valve opening / closing timing by changing the relative phase angle of the camshaft a holding portion integrally formed in a flange shape on the outer periphery of the camshaft, and the holding portion to the camshaft.
  • a lock plate that is held so as not to rotate relative to each other and that is inscribed in the inner peripheral surface of the cylindrical portion. The lock plate receives a cam torque generated in the advance angle direction or the retard angle direction, and receives the lock torque.
  • plate pressing surfaces for pressing the lock plate are provided at a plurality of substantially equal portions in the circumferential direction, and the same number of the locking plates as the plate pressing surfaces and a plurality of substantially equal portions in the circumferential direction.
  • a second pressing surface that receives the cam torque generated in the retard direction and presses the lock plate.
  • claim 2 is the phase varying device for an automobile engine according to claim 1, wherein the plate pressing portion and the lock plate are each provided in three or more locations at approximately equal parts in the circumferential direction.
  • each lock plate is driven at a plurality of positions at approximately equal intervals in the circumferential direction. It is pressed toward the outer side in the radial direction of the rotating body, and is more easily pressed evenly over the entire circumference of the inner peripheral surface.
  • a third aspect of the present invention is the automotive engine phase varying device according to the first or second aspect, wherein the two surfaces are separated by a virtual plane that passes through the camshaft central axis and is orthogonal to the plate pressing surface.
  • the first pressing surface and the second pressing surface are respectively defined on the plate pressing surface, and the pressure receiving portion is applied with a first acting portion on which the pressing force by the first pressing surface acts, and the second pressing surface A second action part on which a pressing force by the surface acts, and the first distance from the virtual surface to the first action part is different from the distance from the virtual surface to the second action part,
  • the first action part and the second action part are formed on the pressure receiving part.
  • the self-locking force is transmitted from the first pressing surface on the camshaft side to the drive rotating body via the first action portion on the lock plate side, and in the retarding direction.
  • the self-locking force is transmitted from the second pressing surface to the drive rotating body via the second action portion. (Operation)
  • the self-locking force acting between the lock plate and the drive rotating body is the distance from the virtual surface passing through the camshaft central axis and orthogonal to the plate pressing surface to the operation portion of the lock plate. Acts in proportion and strongly.
  • the cam torque in the retarded direction generated in the camshaft is generated by the elastic force received from the valve spring when the cam pushes down the engine valve, and the cam torque in the advanced direction is generated by the valve spring. It is generated by the elastic force received when pushing up.
  • the cam torque in the retarding direction is often larger than the cam torque in the advancing direction.
  • the self-locking force based on the cam torque generated in the retarding direction is advanced. It becomes stronger than the self-locking force based on the cam torque generated in the angular direction.
  • the cam torque in the advance angle direction may be larger than the cam torque in the retard angle direction.
  • the first distance from the virtual surface to the first action portion is shorter than the second distance from the virtual surface to the second action portion, the self-locking force based on the cam torque generated in the advance angle direction is delayed. It becomes stronger than the self-locking force based on the cam torque generated in the angular direction.
  • phase varying device for an automobile engine according to the third aspect of the present invention (from the virtual plane passing through the camshaft central axis and orthogonal to the plate pressing surface to the second action portion).
  • the first action part and the second action part are formed in the pressure receiving part so that the second distance is shorter than the first distance (from the virtual surface to the first action part).
  • a fifth aspect of the present invention is the automobile engine phase varying device according to the third or fourth aspect, wherein the pressure receiving portion is formed detachably from the lock plate.
  • a plurality of variations of the pressure receiving portion having different combinations of the first distance from the virtual surface to the first operation portion and the second distance from the virtual surface to the second operation portion are prepared, and the advance direction and the retard angle
  • the pressure receiving part can be exchanged according to the strength of the cam torque generated in the direction.
  • the phase varying device for an automobile engine of claim 1 since the self-locking function acts equally on the inner peripheral surface of the cylindrical portion of the drive rotating body, the lock plate does not bite into the inner peripheral surface of the cylindrical portion. . Further, the drive rotator when the self-locking function occurs does not tilt with respect to the central axis of the camshaft. As a result, according to the phase varying device for an automobile engine of claim 1, the operation of changing the relative phase angle of the camshaft with respect to the drive rotating body on the crankshaft side is not hindered.
  • the self-locking function acts more evenly on the inner peripheral surface of the cylindrical portion of the drive rotating body. It becomes more difficult to bite into the peripheral surface, and the drive rotor is further less inclined with respect to the central axis of the camshaft. As a result, the operation of changing the relative phase angle of the camshaft with respect to the drive rotating body on the crankshaft side is further inhibited.
  • phase varying device for an automobile engine of claim 3 since a sufficient self-locking force corresponding to the cam torque having different strengths depending on the direction can be obtained, the deviation of the relative phase angle of the camshaft with respect to the drive rotating body is ensured. Is prevented.
  • phase varying device for an automobile engine of claim 4 even when the cam torque in the advance angle direction is stronger than the cam torque in the retard angle direction, a sufficient self-locking force corresponding to the strength of the cam torque can be obtained. Deviation of the relative phase angle of the camshaft with respect to the drive rotor is reliably prevented.
  • the strength of the self-locking force can be adjusted corresponding to the strength of the cam torque by exchanging the pressure receiving portion based on the strength of the cam torque.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3.
  • A It is BB sectional drawing of FIG.
  • B It is CC sectional drawing of FIG.
  • C It is DD sectional drawing of FIG.
  • A It is EE sectional drawing of FIG. (B)
  • FIG. 6B is an enlarged partial cross-sectional view of the second lock plate and the holding portion of FIG.
  • FIG. 7C is an enlarged partial cross-sectional view of the third lock plate and the holding portion of FIG.
  • D1 direction advance angle direction
  • D2 direction retard angle direction
  • FIG. 9 is a cross-sectional view of a phase varying device for an automobile engine, showing the shape of a lock plate according to a second embodiment, cut at a position corresponding to the position EE in FIG. 4.
  • (A) is an expanded partial sectional view of the 1st lock plate and holding part of Drawing 10.
  • FIG. 11B is an enlarged partial cross-sectional view of the second lock plate and the holding portion of FIG. (A)
  • D1 direction advance angle direction
  • FIG. 10 is a cross-sectional view of a phase varying device for an automobile engine, showing the shape of a lock plate according to a third embodiment, cut at a position corresponding to the position EE in FIG. 4.
  • FIG. 16A is an enlarged partial cross-sectional view of the first lock plate and the holding portion in FIG. 15.
  • FIG. 16B is an enlarged partial cross-sectional view of the second lock plate and the holding portion in FIG.
  • FIG. 16C is an enlarged partial cross-sectional view of the third lock plate and the holding portion in FIG. 15.
  • the phase varying device for an automobile engine shown in each embodiment is assembled to the engine and transmits the rotation of the crankshaft to the camshaft so that the intake / exhaust valve opens and closes in synchronization with the rotation of the crankshaft.
  • This is a device for changing the opening / closing timing of the intake / exhaust valve of the engine according to the operating state such as the load and the rotational speed.
  • the phase varying device 1 for an automobile engine includes a drive rotating body 2 that is driven and rotated by a crankshaft, a first control rotating body 3, a camshaft 6, and a relative phase angle change.
  • the mechanism 10 and the self-locking mechanism 11 are configured.
  • the second electromagnetic clutch side will be described as the front of the device (reference Fr direction), and the drive rotor side will be described as the rear of the device (reference Re direction). Further, description will be made assuming that (upper: lower: left: right: Up, Dw, Le, Ri). Further, regarding the rotation direction of the drive rotor 2 rotating around the central axis L0 of the camshaft, the clockwise direction when viewed from the front of the apparatus is the advance direction (reference direction D1), and the counterclockwise direction is retarded. The description will be made assuming that the direction is the angular direction (direction D2).
  • the drive rotator 2 is composed of a sprocket 4 and a drive cylinder 5 that receive a drive force from the crankshaft.
  • the sprocket 4 has a central circular hole 4a and a plurality of stepped insertion holes 4b.
  • the drive cylinder 5 has a bottomed cylindrical shape including a bottom part 5 c and a cylindrical part 20.
  • the bottom 5c is provided with a central circular hole 5a, a plurality of female screw holes 5b, a fixing hole 5d, and a circumferential groove 5e with a bottom.
  • a thick round shaft 32a of a shaft-like member 32 composed of a thick round shaft 32a and a thin round shaft 32b is fitted and fixed in the fixing hole 5d.
  • the sprocket 4 and the drive cylinder 5 are integrated by inserting a plurality of bolts 2a into the stepped insertion holes 4b and screwing into the female screw holes 5b.
  • the first control rotator 3 is formed by a cylindrical portion 3 b having a flange portion 3 a at the front edge portion and a bottom portion 3 c that continues to the rear thereof.
  • the bottom 3c has a center through-hole 3d, a pair of first pin holes 28, a circumferential groove 30 provided on a circumference having a predetermined radius from the center axis L0, and a distance from the center axis L0 to the guide groove.
  • a first reduced-diameter guide groove 31 having a curvilinear shape that decreases toward the advance side D1 is provided.
  • the center shaft 7 includes a first cylindrical portion 7a, a flange portion 7b, a second cylindrical portion 7c, and a third cylindrical portion 7d that are continuous back and forth along the central axis L0.
  • a lock plate holding portion 12 is formed in a flange shape around the base end portion of the third cylindrical portion 3 d, and a circular hole 7 e is formed in the center of the center shaft 7.
  • the camshaft 6 having the cam 6 b is coaxial with the rear end side of the center shaft 7 by inserting a bolt 37 into the central circular hole 7 e and the female screw hole 6 a that opens in front of the camshaft 6. It is integrated so that relative rotation is impossible.
  • the outer peripheral surface of the holding portion 12 is formed of six surfaces centered on the central axis L0 and having a regular hexagonal cross section.
  • the six outer peripheral surfaces of the holding portion 12 function as plate pressing surfaces (12a to 12c) every other one, and the plate pressing surfaces (12a to 12c) are arranged at approximately equal positions in the outer peripheral direction of the camshaft.
  • the drive rotator 2 includes a sprocket 4 in which the first cylindrical portion 7 a is inserted into the circular hole 4 a and a drive cylinder in which the second cylindrical portion 7 c is inserted into the circular hole 5 a. 5 is formed by being integrated with the bolt 2a.
  • the drive rotator 2 is rotatably supported by the center shaft 7.
  • the third cylindrical portion 7 d is inserted into the central circular hole 3 d of the first control rotator 3.
  • the drive rotator 2, the first control rotator 3, the camshaft 6, and the center shaft 7 are coaxially disposed on the central axis L0.
  • the relative phase angle changing mechanism 10 shown in FIGS. 1, 2, and 4 moves the camshaft 6 in either the advance direction D1 or the retard direction D2 with respect to the drive rotating body 2 interlocked with the rotation of the crankshaft.
  • This is a mechanism for relative rotation.
  • the relative phase angle changing mechanism 10 is driven to rotate by braking the first control rotator 3, the center shaft 7 integrated with the camshaft 6, the self-lock mechanism 11, the coupling mechanism 16, and the first control rotator 3.
  • the first electromagnetic clutch 21 that rotates relative to the body 2 and the reverse rotation mechanism that rotates the first control rotating body 3 relative to the drive rotating body 2 in the opposite direction to the operation of the first electromagnetic clutch 21. 22.
  • the self-locking mechanism 11 is interposed between the drive rotator 2 and the center shaft 7, and the camshaft 6 is attached to the drive rotator 2 due to cam torque received from a valve spring (not shown).
  • This mechanism prevents the occurrence of misalignment, and is constituted by the holding portion 12 of the center shaft 7, the lock plate 14, and the cylindrical portion 20 of the drive rotating body 2.
  • the number of lock plates 14 is the same as the number of plate pressing surfaces (12a to 12c) of the holding unit 12. Accordingly, as shown in FIGS. 1, 2, and 6A, the lock plate 14 is formed by replacing a disk having a substantially triangular insertion hole 14d at the center with the number of plate pressing surfaces (12a to 12c).
  • the first lock plate 14a, the second lock plate 14b, and the third lock plate 14c are divided into three equal parts.
  • pressure receiving portions (15a to 15c) that are parallel to the plate pressing surfaces (12a to 12c) correspond to the plate pressing surfaces (12a to 12c). It is provided at each position.
  • the first lock plate 14 a has a circumference penetrating back and forth at a position corresponding to the circumferential groove 30 of the first control rotator 3.
  • a direction groove 14h is provided, and a pair of pin holes 14i are provided at positions corresponding to the pair of pin holes 28 of the first control rotator 3 in the second and third lock plates (14b, 14c).
  • the plate pressing surface 12a of the holding portion 12 is constituted by the first and second pressing surfaces (13a, 13b), and the plate pressing surface 12b is formed by the first and second pressing surfaces 12a and 13b.
  • the plate pressing surface 12c is constituted by the first and second pressing surfaces (13e, 13f).
  • the first and second pressing surfaces (13a, 13b), (13c, 13d), (13e, 13f) are virtual surfaces orthogonal to the plate pressing surfaces (12a to 12c) at intersection lines (C1 to C3), respectively. In the case of assuming S1 to S3), it is defined in two regions on each plate pressing surface (12a to 12c) divided by virtual surfaces (S1 to S3).
  • the pressure receiving portions (15a to 15c) have first and second acting portions (17a, 17b) (17c, 17d) ( 17e, 17f) are provided at each end processed into a micro arc shape.
  • the first action parts (17a, 17c, 17e) are provided at positions corresponding to the first pressing surfaces (13a, 13b, 13e), and contact the first pressing surface 13a as shown in FIG. 8 (a). Then, it receives a self-locking force F due to cam torque in the advance direction (D1 direction) (see FIG. 8A).
  • the second action part (17b, 17d, 17f) is provided at a position corresponding to the second pressing surface (13b, 13d, 13f) and contacts the second pressing surface 13b as shown in FIG. 8 (b).
  • the self-locking force F by the cam torque in the retarding direction (D2 direction) is received.
  • the first and second action portions (17a, 17b) have a second distance d2 from the virtual surface S1 to the second action portion 17b, and the second distance d2 from the virtual surface S1.
  • the pressure receiving portions (12a to 12c) are formed so as to be shorter than the first distance d1 to the first action portion 17a.
  • the lock plates (14a to 14c) are held by the holding portion 12 by bringing the pressure receiving portions (15a to 15c) into contact with the plate holding surfaces (12a to 12c).
  • the outer peripheral surfaces (14e to 14g) of the lock plates (14a to 14c) are inscribed in the inner peripheral surface 20a of the cylindrical portion 20 of the drive cylinder 5.
  • connection mechanism 16 includes a pair of connection pins (27, 27), a pair of first pin holes (28, 28) provided in the bottom 3b of the control rotator 3, and second and third lock plates (14b, 14c) is formed by a pair of second pin holes (14i, 14i) formed respectively.
  • the pair of connecting pins (27, 27) are fixed to the second and third lock plates (14b, 14c) by being inserted into the second pin holes (14i, 14i) from the rear. As shown in FIG.
  • the rear end portion of the connecting pin 27 is inserted into the circumferential groove 5 e of the drive cylinder 5.
  • the front ends of the pair of connecting pins 27 fixed to the second and third lock plates (14b, 14c) are inserted into the first pin holes 28 shown in FIG. 5 (c).
  • the second and third lock plates (14b, 14c) are connected.
  • a cylindrical pin 33 is disposed between the first lock plate 14a and the second lock plate 14b, and the first lock plate 14a and the third lock plate 14c. Between the two, a cylindrical pin 34 is disposed. Further, a compression coil spring 35 is provided between the second lock plate 14b and the third lock plate 14c to urge the second lock plate 14b in a direction to separate it from the third lock plate 14c. The first lock plate receives an urging force of the compression coil spring 35 via pins (33, 34) that contact the second and third lock plates (14b, 14c). As a result, the first to third lock plates (14a to 14c) are in close contact with the inner peripheral surface 20a of the cylindrical portion 20 without a gap.
  • the first electromagnetic clutch 21 is disposed in front of the first control rotor 3 in a state of being fixed to a cover member 36 that is fixed inside the engine (not shown). Is done.
  • the first electromagnetic clutch 21 in operation attracts the front surface 3e of the flange portion 3a of the first control rotating body 3 to contact the friction material 21a.
  • the reverse rotation mechanism 22 includes the first reduced diameter guide groove 31 of the first control rotator 3, the shaft-shaped member 32, the second electromagnetic clutch 38, the second control rotator 39, and the second control rotator 39.
  • the reduced diameter guide groove 40, the crank member 41, and the first and second pin mechanisms (42, 43) are configured.
  • the second control rotating body 39 has a disk shape, and has a central through-hole 39 a and a second reduced diameter guide groove 40.
  • the second control rotator 39 is rotatably supported by the third cylindrical portion 7d of the center shaft 7 through the through-hole 39a.
  • the second reduced diameter guide groove 40 is a bottomed groove that opens rearward, and is a curved groove in which the distance from the central axis L0 to the second reduced diameter guide groove 40 decreases toward the retard side D2.
  • the front surfaces (3e, 39b) of the first and second control rotators (3, 39) are arranged so as to be flush with each other, and the first and second control rotators (3, 39).
  • a second electromagnetic clutch 38 is disposed in front of the second control rotor 39 inside the first electromagnetic clutch 21. During operation, the second electromagnetic clutch 38 attracts the front surface 39b of the second control rotor 39 to contact the friction material 38a.
  • the crank member 41 disposed in front of the first control rotator 3 includes a ring part body 45 that is thick in the radial direction, and a radial direction from the ring part body 45. It has the protrusion part 46 which protrudes outside, and the notch part 47 which notched a part of outer periphery of the ring part main body 45, and was formed as a thin part.
  • the notch 47 is substantially formed in a region in the advance direction (D1 direction) from the protrusion 46.
  • a pin hole 48 penetrating in the front-rear direction is formed in the protruding portion 46.
  • the ring body 45 is provided with first and second pin holes (49, 50) penetrating in the front-rear direction.
  • the first and second pin holes (49, 50) are formed in a region in the retarding direction (D2 direction) from the protrusion in FIG.
  • the thin round shaft 32b of the shaft-like member 32 fixed to the fixing hole 5d of the drive cylinder 5 is a circumferential groove of the first lock plate 14a. 14h and projecting forward of the circumferential groove 30 of the first control rotor 3 and engaging the pin hole 48 of the crank member 41.
  • the crank member 41 is rotatably supported by the narrow round shaft 32b fixed to the drive cylinder 5.
  • the first pin mechanism 42 includes a shaft-like member 42a and a first hollow oblong shaft 42b.
  • the shaft-like member 42a is fixed from the rear to the first pin hole 49 of the crank member 41 through the small diameter portion 42c, and the first hollow oblong shaft 42b is rotated by the shaft-like member 42a behind the crank member 41. It is supported movably.
  • the 2nd pin mechanism 43 is comprised by the shaft-shaped member 43a and the 2nd hollow oblong shaft 43b.
  • the shaft-like member 43a is fixed from the front to the second pin hole 50 of the crank member 41 through the small diameter portion 43c, and the second hollow oblong shaft 43b is rotated by the shaft-like member 43a in front of the crank member 41.
  • the first hollow elliptical shaft 42 b is engaged with the first reduced diameter guide groove 31 and is held so as to be displaceable along the first reduced diameter guide groove 31.
  • the second hollow ellipse shaft 43 b is engaged with the second reduced diameter guide groove 40 and is held so as to be displaceable along the second reduced diameter guide groove 40.
  • the first electromagnetic clutch 21 When changing the relative phase angle of the center shaft 7 (camshaft) with respect to the drive rotator 2 in the direction D2, which is the retarded direction, the first electromagnetic clutch 21 is operated.
  • the first control rotator 3 attracted by the first electromagnetic clutch 21 is braked by contact with the friction material 21a, and delays in the direction D2 with respect to the drive rotator 2 together with the center shaft 7 (camshaft 6). Arise.
  • the relative phase angle of the center shaft 7 (camshaft 6) with respect to the drive rotor 2 (crankshaft) is changed in the direction of the retard side D2, and the opening / closing timing of an engine valve (not shown) is changed.
  • the first hollow elongated circular shaft 42b supported by the shaft-like member 42a is guided by the first reduced-diameter guide groove 31, and the first reduced-diameter guide groove 14 moves in the direction D3, which is substantially clockwise.
  • the crank member 41 has a shaft-like member 42a connected to the first pin hole 49 and moved inward in the radial direction of the first control rotor 3 along the first reduced diameter guide groove 31. Rotate around the member 32 in the counterclockwise direction D2.
  • the second electromagnetic clutch 38 is operated.
  • the second control rotor 39 adsorbed by the second electromagnetic clutch 38 is braked by contacting the friction material 38a.
  • the second control rotor 39 braked by the second electromagnetic clutch 38 causes a rotation delay in the direction D2 that is the retarding direction with respect to the center shaft 7.
  • the second hollow oblong shaft 43b moves in the direction D5 that is substantially clockwise in the second reduced diameter guide groove 40 by receiving a force from the inner peripheral surface of the second reduced diameter guide groove 40, and the crank member 41
  • the shaft-like member 42a connected to the first moving member 3 moves outward in the radial direction of the first control rotator 3.
  • the first hollow oblong shaft 39 shown in FIG. 5C moves in the direction D6 that is substantially counterclockwise in the first reduced diameter guide groove 31, and the inner circumference of the first reduced diameter guide groove 31.
  • Cam torque by a valve spring (not shown) is alternately input to the camshaft 6 that rotates together with the drive rotator 2 in the D1 direction that is the advance direction and the D2 direction that is the retard direction.
  • the cam torque may cause a deviation in the relative phase angle of the camshaft 6 with respect to the drive rotating body 2, thereby degrading the valve opening / closing timing.
  • the self-locking mechanism 11 presses the outer peripheral surfaces (14e to 14g) of the first to third lock plates (14a to 14c) against the inner peripheral surface 20a of the cylindrical portion 20 of the drive cylinder 5 when the cam torque is generated.
  • a shift of the relative phase angle is prevented by a self-locking effect that holds the center shaft 7 having a non-rotatable position with respect to the drive rotating body 2.
  • FIG. 8 (a) shows the self-locking effect when cam torque is generated in the direction D1 which is the advance direction of the camshaft 6 (center shaft 7).
  • the center shaft 7 connected to the camshaft receives cam torque in the direction D1 that is the advance angle direction
  • the holding section 12 having a regular hexagonal cross section tends to rotate in the direction D1.
  • the first action portions (17a, 17c, 17e) of the first to third lock plates (14a-14c) are moved from the first pressing surfaces (13a, 13c, 13e) of the plate pressing surfaces (12a-1c).
  • a self-locking force F in a direction perpendicular to the rotation center axis L0 of the camshaft is received.
  • virtual surfaces that pass through the first action portions (17a, 17c, 17e) and are parallel to the virtual surfaces (S1 to S3) are defined as (S4 to S6), respectively, and the virtual surfaces (S4 to S6) and If the lines of intersection with the outer peripheral surfaces (14e to 14g) of the first to third lock plates (14a to 14c) are (P1 to P3), the inner peripheral surface 20a of the cylindrical portion 20 is the line of intersection (P1 to P3).
  • the friction force is expressed as follows. First, in FIG. 8A, straight lines extending in the tangential direction of the outer peripheral surfaces (14e to 14g) of the first to third lock plates (14a to 14c) through the intersecting lines (P1 to P3) are denoted by L1, respectively.
  • a straight line orthogonal to the virtual plane (S4 to S6) is L2
  • a straight line orthogonal to the straight line L1 is L3
  • an inclination between L3 and the virtual plane (S4 to S6) is ⁇ 1 (hereinafter, ⁇ 1 is a friction angle).
  • ⁇ 1 is a friction angle).
  • the friction coefficient of the friction surface is ⁇ .
  • the force that causes a deviation in the relative phase angle of the center shaft 7 (camshaft 6) with respect to the drive rotating body 2 due to the cam torque is a force F in the tangential direction of the outer peripheral surface (14e to 14g) at the intersection line (P1 to P3). • Represented as sin ⁇ 1 respectively.
  • the frictional force generated between the inner peripheral surface 20a of the cylindrical portion 20 and the outer peripheral surfaces (14e to 14g) of the first to third lock plates (14a to 14c) is expressed by ⁇ ⁇ F ⁇ cos ⁇ 1, respectively. Is done.
  • the first to third lock plates (14a to 14c) Due to the frictional force based on the locking force F, it cannot rotate relative to the inner peripheral surface 20 a of the cylindrical portion 20. Therefore, when the friction angle ⁇ 1 is set so as to satisfy ⁇ 1 ⁇ tan ⁇ 1 ⁇ , the center shaft 7 (camshaft 6) that holds the first to third lock plates (14a to 14c) via the holding portion 12 is Further, it is held so that it cannot rotate relative to the drive rotating body 2 having the cylindrical portion 20.
  • FIG. 8B shows the self-locking effect when the cam torque in the direction D2 which is the retarding direction is generated on the camshaft 6 (center shaft 7).
  • the center shaft 7 receives cam torque in the D2 direction
  • the holding section 12 having a regular hexagonal cross section tends to rotate in the D2 direction.
  • the second action portions (17b, 17d, 17f) of the first to third lock plates (14a-14c) are moved from the second pressing surfaces (13b, 13d, 13f) of the plate pressing surfaces (12a-12c).
  • a self-locking force F in a direction perpendicular to the rotation center axis L0 of the camshaft is received.
  • virtual surfaces (S7 to S9) that pass through the second action portion (17b, 17d, 17f) and are parallel to the virtual surfaces (S1 to S3) are respectively defined as virtual surfaces (S7 to S7).
  • the intersection line between S9) and the first to third lock plates (14a to 14c) is (P4 to P6)
  • the inner peripheral surface 20a of the cylindrical portion 20 is the first line along the intersection line (P4 to P6).
  • the force F is received from the outer peripheral surfaces (14e-14g) of the third lock plates (14a-14c).
  • the force F generates the following frictional force between the inner peripheral surface 20a of the cylindrical portion 20 and the outer peripheral surfaces (14e to 14g) of the first to third lock plates (14a to 14c).
  • straight lines extending in the tangential direction from the intersecting lines (P4 to P6) to the outer peripheral surfaces (14e to 14g) are L4, and straight lines orthogonal to the virtual surfaces (S7 to S9) are L5.
  • a straight line orthogonal to the straight line L4 is L6, and the inclination between L6 and the virtual plane (S7 to S9) is ⁇ 2 (hereinafter, ⁇ 2 is referred to as a friction angle).
  • the forces that cause a deviation in the relative phase angle of the center shaft 7 (camshaft 6) with respect to the drive rotor 2 due to the cam torque are the forces in the tangential direction of the outer peripheral surfaces (14e to 14g) at the intersecting lines (P4 to P6), respectively.
  • the cam torque generated in the D2 direction which is the retard angle direction, is generated by the elastic force received from the valve spring when the cam pushes down the engine valve. It becomes larger than the cam torque. Therefore, the relative phase angle of the camshaft 6 with respect to the drive rotor 2 is more likely to be shifted when the cam torque in the D2 direction is received compared to the cam torque in the D1 direction. It is desirable that the self-locking effect due to is more intense than the self-locking effect due to cam torque in the D1 direction.
  • the second distance d2 from the second action portions (17b, 17d, 17f) of the pressure receiving portions (15a to 15c) to the virtual plane (S1 to S3) is It is shorter than the first distance d1 from the one action part (17a, 17c, 17e) to the virtual plane (S1 to S3). Therefore, in the self-locking mechanism 11 shown in FIGS. 8A and 8B, ⁇ 1> ⁇ 2.
  • the frictional force ( ⁇ ⁇ F ⁇ cos ⁇ 2) due to the cam torque in the D2 direction that is the retard direction is larger than the frictional force ( ⁇ ⁇ F ⁇ cos ⁇ 1) due to the cam torque in the direction D1 that is the advance direction.
  • phase varying device 55 for an automobile engine of the second embodiment is different from the holding portion 12 and the lock plate 14 of the first embodiment in that the holding portion 57 and the lock plate 58 are different, and is not provided with pins (33, 34).
  • it has the same configuration as the phase varying apparatus 1 for an automobile engine of the first embodiment.
  • the center shaft 56 shown in FIG. 9 has a shape common to the center shaft 7 of the first embodiment, in addition to the shape of the holding portion 57 being different.
  • a first cylindrical portion 56a, a flange portion 56b, a second cylindrical portion 56c, a holding portion 57 of a lock plate 58, and a third cylindrical portion 57d are formed continuously along the central axis L0.
  • the holding portion 57 is formed in a flange shape around the base end portion of the third cylindrical portion 57d.
  • the outer peripheral surface of the holding portion 57 has a cross-sectional shape in which two cylindrical outer circumferences centered on the central axis L0 of the camshaft are cut out in parallel to the central axis L0 of the camshaft.
  • Two plate pressing surfaces (57a, 57b) that are symmetrical with respect to the central axis L0 and that are parallel to each other are formed in the cutout portion of the holding portion 57.
  • the drive rotor 2 includes a sprocket 4 in which the first cylindrical portion 56a is inserted into the circular hole 4a, and a drive cylinder 5 in which the second cylindrical portion 56c is inserted into the circular hole 5a. It is formed by being integrated.
  • the drive rotator 2 is rotatably supported by the center shaft 56.
  • the lock plate 58 is formed by a first lock plate 58a and a second lock plate 58b, which are formed by equally dividing a disk having a diametrical through groove 59 in the center.
  • pressure receiving portions 59a, 59b
  • 59a, 59b composed of surfaces parallel to the plate pressing surfaces (57a, 57b) correspond to the plate pressing surfaces (57a, 57b). It is provided at each position.
  • the plate pressing surface 57a of the holding portion 57 is constituted by first and second pressing surfaces (60a, 60b), and the plate pressing surface 57b is formed by the first and second pressing surfaces. It is comprised by the surface (60c, 60d), respectively.
  • first and second pressing surfaces (60a, 60b) and (60c, 60d) are assumed to be virtual surfaces S10 orthogonal to the plate pressing surfaces (57a, 57b) at the intersection line (C4, C5), respectively. It is defined in two regions on the plate pressing surface (57a, 57b) divided by the virtual surface S10.
  • the pressure receiving portion 59a has minute first and second action portions (61a, 61b) that are in contact with the first and second pressing surfaces (60a, 60b).
  • the first and second action portions (61c, 61d) that contact the first and second pressing surfaces (60c, 60d) are provided on the end portion processed into the arc shape, and have a micro arc shape. It is provided in the edge processed.
  • the first and second action parts (61a, 61b) and (61c, 61d) have a second distance d4 from the virtual surface S10 to the second action part (61b, 61d).
  • the first action portions (61a, 61c) are formed in the pressure receiving portions (59a, 59b) so as to be shorter than the first distance d3.
  • the first action portions (61a, 61c) receive a self-locking force F1 due to cam torque in the advance angle direction (D1 direction) from the first pressing surfaces (60a, 60c) (see FIG. 11A).
  • the second action portions (61b, 61d) receive a self-locking force F1 due to cam torque in the retarding direction (D2 direction) from the second pressing surfaces (60b, 60d) (see FIG. 11 (a)).
  • the first and second lock plates (58a, 58b) are located at positions corresponding to the pair of first pin holes 28 of the first control rotating body 3 shown in FIG. A pair of second pin holes 58c are provided.
  • the first and second lock plates (58a, 58b) are held by the holding portion 57.
  • the outer peripheral surfaces (58d, 58e) of the first and second lock plates (58a, 58b) are inscribed in the inner peripheral surface 20a of the cylindrical portion 20 of the drive cylinder 5.
  • a compression coil spring 62 is provided in the gap between the first lock plate 58 a and the second lock plate 58 b, and the first lock plate 58 a is 2 The urging force is received in a direction away from the lock plate 58b.
  • the first and second lock plates (58a, 58b) are in close contact with the inner peripheral surface 20a of the cylindrical portion 20 without a gap.
  • the first and second lock plates (58a, 58b) correspond to the first end portions of the pair of connecting pins 27 fixed to the pair of second pin holes 58c, respectively.
  • the pin hole 28 By being inserted into the pin hole 28, it is connected to the first control rotator 3 and rotates together with the first control rotator 3.
  • the rear end portion of the connecting pin 27 is inserted into the circumferential groove 5 e of the drive cylinder 5.
  • the self-locking mechanism 65 in the phase varying device 55 of the engine of the second embodiment will be described with reference to FIGS.
  • the self-locking mechanism 65 includes a holding portion 57 of the center shaft 56, a lock plate 58, and the cylindrical portion 20 of the driving cylinder 5 of the driving rotating body 2.
  • the virtual planes that pass through the first action section (61a, 61c) and are parallel to the virtual plane S10 are (S11, S12), respectively, the virtual plane (S11, S12), the first and second
  • the intersecting line with the outer peripheral surface (58d, 58e) of the lock plate (58a, 58b) is (P7, P8)
  • the inner peripheral surface 20a of the cylindrical portion 20 is the first and the second in the intersecting line (P7, P8).
  • the force F1 is received from the outer peripheral surface (58d, 58e) of the second lock plate (58a, 58b).
  • the force F1 generates a frictional force between the inner peripheral surface 20a of the cylindrical portion 20 and the outer peripheral surface (58d, 58e).
  • the friction force is expressed as follows. First, in FIG. 12A, the straight lines extending in the tangential direction of the outer peripheral surfaces (58d, 58e) of the first and second lock plates (58a, 58b) from the intersecting line (P7, P8) are denoted by L7, respectively.
  • the straight lines orthogonal to (S11, S12) are each L8, the straight line orthogonal to the straight line L7 is L9, the inclination of L9 and the virtual plane (S11, S12) is ⁇ 3 (hereinafter, ⁇ 3 is referred to as a friction angle), Let the friction coefficient of the friction surface be ⁇ .
  • the forces that cause a shift in the relative phase angle of the center shaft 56 with respect to the drive rotating body 2 due to the cam torque are expressed as tangential forces F1 ⁇ sin ⁇ 3 of the outer peripheral surfaces (58d, 58e) at the intersecting lines (P7, P8), respectively. Is done.
  • the frictional force generated between the inner peripheral surface 20a of the cylindrical portion 20 and the outer peripheral surfaces (58d, 58e) of the first and second lock plates (58a, 58b) is expressed by ⁇ ⁇ F1 ⁇ cos ⁇ 3, respectively. Is done.
  • the first and second lock plates (58a, 58b) are in contact with the inner peripheral surface 20a of the cylindrical portion 20 due to the self-lock effect based on the frictional force. Relative rotation is not possible. Accordingly, when the friction angle ⁇ 3 is set so as to satisfy ⁇ 3 ⁇ tan ⁇ 1 ⁇ , a center shaft 56 (a camshaft (not shown)) that holds the first and second lock plates (58a, 58b) via the holding portion 57. Is held so as not to rotate relative to the drive rotator 2 having the cylindrical portion 20, and the relative phase angle of the center shaft (not shown) is relative to the drive rotator 2 (crankshaft not shown). Is held without deviation.
  • FIG. 12 (b) when a camshaft (not shown) receives cam torque from the engine valve in the D2 direction, which is the retarding direction, the holding portion 57 tries to rotate in the D2 direction.
  • the second action portions (61b, 61d) of the first and second lock plates (58a, 58b) shown in FIGS. 11 (a) and 11 (b) are the second pressing surfaces of the plate pressing surfaces (57a, 57b). From (60b, 60d), a self-locking force F1 in a direction perpendicular to the rotation center axis L0 of the camshaft is received.
  • the virtual surfaces that pass through the second action part (61b, 61d) and are parallel to the virtual surface S10 are (S13, S14), the virtual surface (S13, S14), the first and second If the intersecting lines with the outer peripheral surfaces (58d, 58e) of the lock plates (58a, 58b) are (P9, P10), respectively, the inner peripheral surface 20a of the cylindrical portion 20 is the first in the intersecting lines (P9, P10).
  • the force F1 is received from the outer peripheral surface (58d, 58e) of the 2nd lock plate (58a, 58b).
  • the force F1 generates a frictional force between the inner peripheral surface 20a of the cylindrical portion 20 and the outer peripheral surface (58d, 58e).
  • the friction force is expressed as follows. First, in FIG. 12B, straight lines extending in the tangential direction of the outer peripheral surfaces (58d, 58e) of the first and second lock plates (58a, 58b) from the intersecting lines (P9, P10) (P7, P8), respectively.
  • L10 is a straight line orthogonal to the virtual plane S10
  • L11 is a straight line orthogonal to the straight line L10
  • L12 is a slope between L12 and the virtual plane S10 (hereinafter, ⁇ 4 is referred to as a friction angle).
  • the forces that cause a shift in the relative phase angle of the center shaft 56 with respect to the drive rotating body 2 due to the cam torque are represented as tangential forces F1 ⁇ sin ⁇ 4 of the outer peripheral surfaces (58d, 58e) at the intersection lines (P9, P10), respectively. Is done.
  • the frictional force generated between the inner peripheral surface 20a of the cylindrical portion 20 and the outer peripheral surfaces (58d, 58e) of the first and second lock plates (58a, 58b) is expressed by ⁇ ⁇ F1 ⁇ cos ⁇ 4, respectively. Is done.
  • the first and second lock plates (58a, 58b) are in contact with the inner peripheral surface 20a of the cylindrical portion 20 due to the self-lock effect based on the frictional force. Relative rotation is not possible. Therefore, when the friction angle ⁇ 4 is set so as to satisfy ⁇ 4 ⁇ tan ⁇ 1 ⁇ , the relative phase angle of the center shaft (not shown) with respect to the drive rotor 2 (not shown) is not shifted by the cam torque. Retained.
  • the self-lock mechanism 65 even if it receives any cam torque in the D1 direction which is the advance angle direction or the D2 direction which is the retard angle direction, the self-lock mechanism 65 is arranged at a plurality of positions equally divided in the circumferential direction in the inner circumferential surface 20a of the cylindrical portion 20.
  • the self-lock function is generated in both the first and second lock plates (58a, 58b). Therefore, an equal self-locking effect due to the force F ⁇ b> 1 occurs on the inner peripheral surface of the cylindrical portion 20 of the drive rotator 5.
  • the lock plate 58 does not bite into the inner peripheral surface 20a of the cylindrical portion 20 when the self-lock effect occurs, and the drive rotor 2 does not tilt with respect to the central axis L0 of the camshaft. Therefore, when changing the relative phase angle of the camshaft 6 with respect to the drive rotator 2, no extra frictional force is generated between the lock plate 58 and the cylindrical portion 20, and the drive rotator 5 and the drive rotator No excessive frictional force is generated between the center shaft 56 and the center shaft 56 that holds 5.
  • the first or second electromagnetic clutch (21, 38) is operated, the relative phase angle of the center shaft 56 (camshaft not shown) relative to the drive rotating body 2 (crankshaft not shown) is the self-lock mechanism 65. Changes smoothly without being affected.
  • the second distance d4 from the second action part (61b, 61d) of the pressure receiving part (59a, 59b) to the virtual surface S10 is the first action part (61a , 61c) is shorter than the first distance d3 from the virtual surface S10, and in FIGS. 11A and 11B, ⁇ 3> ⁇ 4.
  • the frictional force ( ⁇ ⁇ F1 ⁇ cos ⁇ 4) due to the cam torque in the D2 direction, which is the retarding direction is larger than the frictional force ( ⁇ ⁇ F1 ⁇ cos ⁇ 3) due to the cam torque in the D1 direction, which is the advance direction.
  • the self-locking effect by the cam torque in the D2 direction is stronger than the self-locking effect by the cam torque in the D1 direction.
  • the cam torque in the D2 direction is larger than the cam torque in the D1 direction, the relative phase angle of the camshaft with respect to the drive rotating body 2 is maintained without deviation.
  • phase varying device 70 for an automobile engine of the third embodiment the shapes of the first control rotator 71, the drive cylinder 72 and the lock plate 73 are the same as those of the first control rotator 3, the drive cylinder 5 and the lock of the first embodiment. Different from the plate 14. Further, in the phase varying device 70 for an automobile engine, the connecting pin 27 of the first embodiment and the connecting pins (74 to 76) are provided instead of the pins (33, 34).
  • the configuration of the third embodiment other than the above is common to the phase varying device 1 for an automobile engine of the first embodiment.
  • the first control rotator 71 has the same configuration as the first control rotator 3 of the first embodiment, except that the shape of the bottom 71c is different from the bottom 3c shown in FIGS. 1 and 5C. That is, the bottom 71a is provided with a central through-hole 71d, a circumferential groove 77, and a first reduced diameter guide groove 78, which are shown in FIG. 5 (c). 3d, the shape is the same as the circumferential direction groove
  • three pin fixing holes 79 are provided instead of the pair of pin holes 27 provided in the bottom 3c.
  • Thin pin shafts (74b to 76b) of connecting pins (74 to 76) are attached to the three pin fixing holes 79.
  • the connecting pins (74 to 76) are formed by a thick round shaft (74a to 76a) on the rear end side and a narrow round shaft (74b to 76b) on the front end side.
  • the drive cylinder 72 shown in FIGS. 13 and 14 is the first embodiment except that the bottom 72c does not have the bottomed circumferential groove 5d provided in the bottom 5c shown in FIG. 6B.
  • the drive cylinder 5 has a common configuration.
  • the driving cylinder 72 has a bottomed cylindrical shape including a bottom portion 72c and a cylindrical portion 80.
  • the bottom portion 72c includes a central circular hole 72a held by the second cylindrical portion 7c of the center shaft 7, a plurality of female screw holes 72b, A fixing hole 72d is provided.
  • the round shaft 32a of the shaft-like member 32 shown in FIGS. 1 and 6B is fitted and fixed to the fixing hole 72d.
  • the sprocket 4 and the drive cylinder 72 are integrated by inserting a plurality of bolts 2a into the stepped insertion holes 4b and screwing into the female screw holes 72b to form a drive rotating body 2 '.
  • the lock plate 73 includes a first lock plate 73a, a second lock plate 73b, and a third lock plate 73c, which are obtained by equally dividing a disk having a substantially triangular insertion hole 73d at the center. Formed by.
  • the first to third lock plates (73a to 73c) inside the first to third lock plates (73a to 73c), three pressure receiving plates (81a to 81c) having the same shape are detachably attached. 73e to 73g) are provided.
  • the pressure receiving plates (81a to 81c) are pressed against the mounting portions (73e to 73g) by the plate pressing surfaces (12a to 12c) while being engaged with the mounting portions (73e to 73g).
  • the first lock plate 73a is provided with a circumferential groove 73h penetrating in the front-rear direction at a position corresponding to the circumferential groove 77 of the first control rotating body 71.
  • the plate pressing surfaces (12a to 12c) of the holding portion 12 are formed by the first and second pressing surfaces (13a, 13b), (13c, 13d), (13e, 13f), respectively. Is done.
  • the first and second pressing surfaces (13a, 13b), (13c, 13d), (13e, 13f) are virtual surfaces orthogonal to the plate pressing surfaces (12a to 12c) at intersection lines (C1 to C3), respectively. It is defined as two regions of each plate pressing surface (12a to 12c) divided by S1 to S3).
  • the pressure receiving plate 81a has first and second action portions (82a and 82b) that contact the first and second pressing surfaces (13a and 13b), respectively.
  • the first and second action portions (82c, 82d) that are provided at the ends processed into a minute arc shape and are in contact with the first and second pressing surfaces (13c, 13d), respectively, are minutely formed on the pressure receiving plate 81b.
  • the first and second action portions (82e, 82f) that are provided at the ends processed into an arc shape and contact the first and second pressing surfaces (13e, 13f), respectively, are provided on the pressure receiving plate 81c. It is provided at the end processed into a shape.
  • the first and second action parts (82a, 82b), (82c, 82d), and (82e, 82f) are respectively connected to the second action parts (82b, 82d, 82f) from the virtual surface (S1 to S3).
  • the second distance d2 is formed in each of the pressure receiving portions (81a to 81c) such that the second distance d2 is shorter than the first distance d1 from the virtual plane (S1 to S3) to the first action portion (82a, 82c, 82e). .
  • the round shafts (74a to 76a) of the connecting pins (74 to 76) are arranged in the adjacent gaps (73i to 73k) of the first to third lock plates (73a to 73c). Is done.
  • a compression coil spring 83 is provided in the gap 73j between the second lock plate 73b and the third lock plate 73c.
  • the second lock plate 73b receives a biasing force in a direction away from the third lock plate 73c by the compression coil spring 83, and the round shafts (74a to 76a) of the connecting pins (74 to 76) are compressed coil spring 83.
  • the first to third lock plates (73a to 73c) are respectively held by receiving the urging force.
  • the lock plates (73a to 73c) are held by the holding portion 12 by bringing the pressure receiving plates (81a to 81c) into contact with the plate holding surfaces (12a to 12c), and the lock plates (73a to 73c) ) Is inscribed in the inner peripheral surface 80 a of the cylindrical portion 80 of the drive cylinder 72.
  • the lock plates (73a to 73c) are connected to the first control rotator 71 and rotate integrally with the first control rotator 71.
  • the first action portion (82a, 82c, 82e) is advanced from the first pressing surface (13a, 13c, 13e) to the center shaft 7 in the advance direction (D1 direction). Is generated, a force F perpendicular to the direction in which the central axis L0 extends is received from the first pressing surface (13a, 13c, 13e), and the second action portion (82b, 82d, 82f)
  • a cam torque in the retarding direction (D2 direction) is generated on the center shaft 7 from the pressing surfaces (13b, 13d, 13f), so that the central axis L0 extends from the second pressing surfaces (13b, 13d, 13f). Receives an orthogonal force F.
  • the friction angles ( ⁇ 1, ⁇ 2) are set to ⁇ 1 ⁇ tan ⁇ 1 ⁇ , ⁇ 2 ⁇ tan ⁇ 1 ⁇ , as in the self-locking mechanism 11 of the first embodiment.
  • a self-locking effect based on the force F occurs.
  • the second distance d2 in the pressure receiving plates (81a to 81c) of the third embodiment is shorter than the first distance d1 as in the first embodiment.
  • the self-locking effect due to the cam torque in the advance angle direction (D1 direction) is larger than the self-locking force due to the cam torque in the retard angle direction (D2 direction).
  • the shape of the holding portion integrally formed with the center shaft is not limited to the shape having a regular hexagonal cross section like the holding portion 12 of the first embodiment or the third embodiment, but a flange having a regular polygonal cross section. What is necessary is just to be formed as a part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

駆動回転体に対するカムシャフトの相対位相角の変更動作を阻害しないセルフロック機構を有する自動車用エンジンの位相可変装置を提供する。円筒部を有し、クランクシャフトによって駆動する駆動回転体と、駆動回転体を同軸かつ相対回動可能に支持するカムシャフトと、前記相対位相角の変更機構と、カムシャフトと一体の保持部に保持されたロックプレートを円筒部の内周面に押しつけて、カムトルクによる相対位相角のズレを防ぐセルフロック機構と、を有する自動車用エンジンの位相可変装置において、保持部外周の周方向略等分複数箇所にプレート押圧面と、プレート押圧面に対応する等分複数のロックプレートを設け、各プレート押圧面が、進角及び遅角方向のカムトルクをそれぞれロックプレートに伝達する第1及び第2押圧面によって形成されるようにした。

Description

自動車用エンジンの位相可変装置
 本発明は、クランクシャフトに対するカムシャフトの相対位相角を変更してエンジンバルブの開閉タイミングを変更する位相可変機構に、カムシャフトに発生するカムトルクによる前記相対位相角のズレを防止するセルフロック機構を設けた自動車用エンジンの位相可変装置に関する技術である。
 クランクシャフトに対するカムシャフトの相対位相角を変更してエンジンバルブの開閉タイミングを変更する位相可変機構において、エンジンバルブ側からカムシャフトに入力されるカムトルクによる相対位相角のズレを防止するセルフロック機構を設けた自動車用エンジンの位相可変装置には、下記特許文献1に示すものがある。
 図1に示す特許文献1の自動車用エンジンの位相可変装置においては、クランクシャフトによって駆動する駆動回転体に対し、カムシャフトが、同軸かつ相対回動可能に配置されると共に、クランクシャフトの駆動力を受けて駆動回転体と共に同じ方向に回転する。また、エンジンバルブの開閉タイミングを変更する際において、センターシャフトを介してカムシャフトに同軸かつ相対回動不能に一体化された第1制御回転体が、第1電磁クラッチまたは逆回転機構を介した第2電磁クラッチの作動に伴い、クランクシャフト(図示せず)によって駆動する駆動回転体2に対して進角方向(駆動回転体と同じ回転方向。以下同じ)または遅角方向(進角方向に対する逆回転方向。以下同じ)のいずれかに相対回動する。エンジンバルブの開閉タイミングは、クランクシャフト側の駆動回転体に対し、第1制御回転体に連結されたカムシャフトの相対位相角が上記のようにして変更することによって変更される。
 一方、カムシャフトは、エンジンバルブの開閉時の衝撃に伴い、進角方向(及び遅角方向に交互に発生するカムトルクをエンジンバルブから受ける。カムトルクは、駆動回転体に対するカムシャフトの相対位相角にズレを生じさせる原因となる。従って、特許文献1のエンジンの位相可変装置には、カムトルクの発生時にカムシャフトを駆動回転体に対して相対回動不能にロックすることにより、前記相対位相角のズレを防止されるセルフロック機構が設けられている。セルフロック機構は、主にセンターシャフトに一体化された偏心円カム、偏心円カムに取付けられたロックプレートブッシュ及びロックプレートブッシュを介して偏心円カムに保持される一対のロックプレートによって構成される。一対のロックプレートは、偏心円カムにより、偏心円カムに対して相対回動不能に保持され、かつ駆動回転体の円筒部の内周面に内接する(特許文献1の図5を参照)。
 第1制御回転体に連結された一対のロックプレートは、駆動回転体に対するカムシャフトの相対位相角を変更する場合、偏心円カムを一体に形成したセンターシャフト(カムシャフト)と共に、駆動回転体に対して相対回動する。一方、セルフロック機構は、以下のように機能する。カムシャフトに発生するカムトルクは、カムシャフトの回転中心軸線周りの偏心回動トルクを編心円カムに発生させる。進角方向のカムトルクを受けた偏心円カムは、ロックプレートブッシュを介し、一方のロックプレートを駆動回転体の円筒部の内周面に押しつけ、遅角方向のカムトルクを受けた偏心円カムは、もう一方のロックプレートを駆動回転体の円筒部の内周面に押しつける、セルフロック力を生じさせる。
 特許文献1のセルフロック機構は、カムトルクによるセルフロック力が、偏心円カムから一対のロックプレートに交互に伝達され、一対のロックプレートが、駆動回転体の円筒部に交互に押し付けられることにより、カムシャフトが駆動回転体に対して相対回動不能にロックされる、セルフロック機能を発生させるものである。
WO2011/145175
 特許文献1のセルフロック機構において、カムトルクによるセルフロック力は、カムトルクの方向(進角または遅角方向)に基づいて、一対のロックプレートの一方にしか伝達されないため、ロックプレートは、片方ずつしか駆動回転体の円筒部に押し付けられない。片方のロックプレートのみが駆動回転体の円筒部に押し付けられる場合、押し付けられるロックプレートは、駆動回転体の円筒部の内周面にくさびのように食い込みやすくなる。前記内周面に食い込んだロックプレートは、セルフロック機能の解除を阻害する。また、片方のロックプレートのみにセルフロック機能が発生する場合、センターシャフト(カムシャフト)によって回動可能に支持された駆動回転体は、カムシャフトの回動中心軸線に対して、傾きを生じる。傾いた駆動回転体は、センターシャフトに設けられた駆動回転体の支持部にフリクションを発生させる。
 セルフロック機能の解除が阻害されることと、駆動回転体とセンターシャフトとの間にフリクションが発生することは、カムシャフトに対する駆動回転体の相対位相角の変更動作を阻害するおそれがある点で問題がある。
 本願発明は、クランクシャフト側の駆動回転体に対するカムシャフトの相対位相角の変更動作を阻害するおそれのないセルフロック機構を有する自動車用エンジンの位相可変装置を提供するものである。
 請求項1の自動車用エンジンの位相可変装置は、円筒部を有し、クランクシャフトによって駆動する駆動回転体と、駆動回転体を同軸かつ相対回動可能に支持するカムシャフトと、駆動回転体に対するカムシャフトの相対位相角を変更することでバルブの開閉タイミングを変更する相対位相角変更機構と、カムシャフトの外周にフランジ形状に一体形成された保持部と、前記保持部により、カムシャフトに対して相対回動不能に保持されると共に前記円筒部の内周面に内接するロックプレートと、を有し、前記保持部が、進角方向または遅角方向に発生するカムトルクを受けて、ロックプレートを前記円筒部の内周面に押しつけることにより、前記相対位相角のズレを防ぐセルフロック機構と、を有する自動車用エンジンの位相可変装置において、前記保持部の外周には、ロックプレートを押圧するプレート押圧面が、周方向略等分複数箇所に設けられ、前記ロックプレートは、前記プレート押圧面と同数、かつ周方向略等分複数箇所に設けられ、かつ前記プレート押圧部に対向する位置に受圧部を有し、前記複数のプレート押圧面は、それぞれ、前記進角方向に発生するカムトルクを受けてロックプレートを押圧する第1押圧面と、前記遅角方向に発生するカムトルクを受けてロックプレートを押圧する第2押圧面によって形成されるようにした。
 (作用)進角方向(駆動回転体と同じ回転方向)のカムトルクがエンジンバルブからカムシャフトに入力されると、複数のロックプレート全てが、各保持部に形成された第1押圧面からカムシャフトの略半径方向のセルフロック力を受けて駆動回転体の円筒部の内周面に押しつけられる。また、遅角方向(進角方向に対する逆回転方向)のカムトルクがエンジンバルブからカムシャフトに入力された場合であっても、複数のロックプレート全てが、各保持部に形成された第2押圧面から略径方向のセルフロック力を受けて駆動回転体の円筒部の内周面に押しつけられる。
 つまり、カムトルクが発生すると、カムトルクの方向に関わらず、複数のロックプレート全てが、駆動回転体の円筒部の内周面に押しつけられるため、セルフロック機能が、駆動回転体の円筒部の内周面に均等に作用する。
 また、請求項2は、請求項1の自動車用エンジンの位相可変装置であって、前記プレート押圧部及び前記ロックプレートが、周方向略等分複数箇所にそれぞれ3以上設けられるようにした。
 (作用)駆動回転体の円筒部の内周面に対して、3以上のロックプレートを周方向略等分複数箇所に設けたことにより、各ロックプレートが、周方向略等分複数箇所において駆動回転体の半径方向外側に向けて押圧されて、前記内周面の全周に更に均等に押し付けられやすくなる。
 また、請求項3は、請求項1または2に記載の自動車用エンジンの位相可変装置であって、カムシャフト中心軸線を通り、かつ前記プレート押圧面に直交する仮想面によって分断される二つの面として前記第1押圧面及び第2押圧面が、前記プレート押圧面にそれぞれ画成され、前記受圧部には、前記第1押圧面による押圧力が作用する第1作用部と、前記第2押圧面による押圧力が作用する第2作用部と、が設けられ、前記仮想面から第1作用部までの第1距離が、前記仮想面から第2作用部までの代に距離と異なるように、前記第1作用部及び第2作用部が前記受圧部に形成されるようにした。
 カムシャフトに進角方向のカムトルクが発生した場合におけるセルフロック力は、カムシャフト側の第1押圧面からロックプレート側の第1作用部を経由して駆動回転体に伝達され、遅角方向のカムトルクが発生した場合におけるセルフロック力は、第2押圧面から第2作用部を経由して駆動回転体に伝達される。
(作用)また、ロックプレートと駆動回転体との間に作用するセルフロック力は、カムシャフト中心軸線を通り、かつ前記プレート押圧面に直交する仮想面から、ロックプレートの作用部までの距離に比例して強く作用する。
 一般にカムシャフトに発生する遅角方向のカムトルクは、カムが、エンジンバルブを押し下げる際にバルブスプリングから受ける弾性力等によって発生し、進角方向のカムトルクは、バルブスプリングがエンジンバルブを介してカムを押し上げる際に受ける弾性力等によって発生する。また、カムとバルブ間の摺動面には、回転を妨げるフリクション(遅角方向のトルク)が加算されるため、遅角方向のカムトルクは、進角方向のカムトルクよりも大きくなることが多い。その場合、前記仮想面から第2作用部までの第2距離を前記仮想面から第1作用部までの第1距離よりも短くすると、遅角方向に発生したカムトルクに基づくセルフロック力は、進角方向に発生したカムトルクに基づくセルフロック力よりも強くなる。
 一方、エンジンの種類によっては、進角方向のカムトルクの方が遅角方向のカムトルクよりも大きくなる場合がある。その場合、前記仮想面から第1作用部までの第1距離を前記仮想面から第2作用部までの第2距離よりも短くすると、進角方向に発生したカムトルクに基づくセルフロック力は、遅角方向に発生したカムトルクに基づくセルフロック力よりも強くなる。
 また、請求項4は、請求項3に記載の自動車用エンジンの位相可変装置であって、前記(カムシャフト中心軸線を通り、かつ前記プレート押圧面に直交する仮想面から第2作用部までの)第2距離が、前記(仮想面から第1作用部までの)第1距離よりも短くなるように、前記第1作用部及び第2作用部が前記受圧部に形成されるようにした。
 (作用)前記第2距離は、前記第1距離に比べて短いため、第2作用部にセルフロック力が作用する場合には、遅角方向のカムトルクに応じた強いセルフロック力が発生し、第1作用部にセルフロック力が作用する場合には、進角方向のカムトルクに応じたセルフロック力が発生する。言い換えると、カムトルクの大きさに対応して、適切なセルフロック力が、ロックプレートと駆動回転体との間に発生する。
 また、請求項5は、請求項3または4に記載の自動車用エンジンの位相可変装置であって、前記受圧部が、前記ロックプレートから着脱自在に形成されるようにした。
 (作用) 前記仮想面から第1作用部までの第1距離と、前記仮想面から第2作用部までの第2距離の組み合わせが異なる受圧部のバリエーションを複数用意し、進角方向と遅角方向に発生するカムトルクの強さに応じて、受圧部を交換することが出来る。
 請求項1の自動車用エンジンの位相可変装置によれば、セルフロック機能が駆動回転体の円筒部の内周面に均等に作用するため、ロックプレートは、前記円筒部の内周面に食い込まなくなる。また、セルフロック機能の発生時における駆動回転体は、カムシャフトの中心軸線に対して傾かなくなる。その結果、請求項1の自動車用エンジンの位相可変装置によれば、クランクシャフト側の駆動回転体に対するカムシャフトの相対位相角の変更動作が、阻害されない。
 請求項2の自動車用エンジンの位相可変装置によれば、駆動回転体の円筒部の内周面において、セルフロック機能が更に均等に作用するため、カムトルクの発生時にロックプレートが前記円筒部の内周面に更に食い込みにくくなり、駆動回転体が、カムシャフトの中心軸線に対して更に傾きにくくなる。その結果、クランクシャフト側の駆動回転体に対するカムシャフトの相対位相角の変更動作が、更に阻害されにくくなる。
 請求項3の自動車用エンジンの位相可変装置によれば、方向によって強さの異なるカムトルクに対応した十分なセルフロック力を得られるため、駆動回転体に対するカムシャフトの相対位相角のズレが確実に防止される。
 請求項4の自動車用エンジンの位相可変装置によれば、進角方向のカムトルクが遅角方向のカムトルクより強い場合であっても、カムトルクの強弱に対応した十分なセルフロック力を得られるため、駆動回転体に対するカムシャフトの相対位相角のズレが確実に防止される。
 請求項5の自動車用エンジンの位相可変装置によれば、受圧部をカムトルクの強さに基づいて交換することにより、セルフロック力の強さをカムトルクの強さに対応して調整することが出来る。
自動車用エンジンの位相可変装置の第1実施例を装置前方から見た分解斜視図である。 自動車用エンジンの位相可変装置の第1実施例を装置後方から見た分解斜視図である。 第1実施例の自動車用エンジンの位相可変装置の正面図である。 図3のA-A断面図である。 (a)図4のB-B断面図である。(b)図4のC-C断面図である。(c)図4のD-D断面図である。 (a)図4のE-E断面図である。(b)図4のF-F断面図である。 (a)は、図6(a)の第1ロックプレート及び保持部の拡大部分断面図である。(b)は、図6(a)の第2ロックプレート及び保持部の拡大部分断面図である。(c)は、図6(a)の第3ロックプレート及び保持部の拡大部分断面図である。 (a)第1実施例において、進角方向(D1方向)のカムトルクがカムシャフトに発生した際のセルフロック機構の説明図である。(b)遅角方向(D2方向)のカムトルクがカムシャフトに発生した際のセルフロック機構の説明図である。 自動車用エンジンの位相可変装置の第2実施例を装置前方から見た分解斜視図である。 第2実施例のロックプレートの形状を示す、自動車用エンジンの位相可変装置を図4のE-E箇所に相当する位置で切断した断面図である。 (a)は、図10の第1ロックプレート及び保持部の拡大部分断面図である。(b)は、図10の第2ロックプレート及び保持部の拡大部分断面図である。 (a)第2実施例において、進角方向(D1方向)のカムトルクがカムシャフトに発生した際のセルフロック機構の説明図である。(b)遅角方向(D2方向)のカムトルクがカムシャフトに発生した際のセルフロック機構の説明図である。 自動車用エンジンの位相可変装置の第3実施例を装置前方から見た分解斜視図である。 自動車用エンジンの位相可変装置の第3実施例を装置後方から見た分解斜視図である。 第3実施例のロックプレートの形状を示す、自動車用エンジンの位相可変装置を図4のE-E箇所に相当する位置で切断した断面図である。 (a)は、図15における第1ロックプレート及び保持部の拡大部分断面図である。(b)は、図15における第2ロックプレート及び保持部の拡大部分断面図である。(c)は、図15における第3ロックプレート及び保持部の拡大部分断面図である。
 各実施例に示す自動車用エンジンの位相可変装置は、エンジンに組付けられ、クランクシャフトの回転に同期して吸排気弁が開閉するようにクランクシャフトの回転をカムシャフトに伝達するとともに、エンジンの負荷や回転数などの運転状態によってエンジンの吸排気弁の開閉タイミングを変更するための装置である。
 第1実施例の自動車用エンジンの位相可変装置1は、図1から図6に示す通り、クランクシャフトによって駆動回転する駆動回転体2、第1制御回転体3、カムシャフト6、相対位相角変更機構10、セルフロック機構11によって構成される。
 尚、各図においては、第2電磁クラッチ側を装置前方(符号Fr方向)、駆動回転体側を装置後方(符号Re方向)として説明する。また、(上方:下方:左方:右方=Up、Dw、Le、Ri)として説明する。また、カムシャフトの中心軸線L0周りに回転する駆動回転体2の回転方向については、装置前方から見て時計回りとなる方向を進角方向(符号D1方向)、反時計回りとなる方向を遅角方向(符号D2方向)として説明する。
 図1,図2に示すとおり、駆動回転体2は、クランクシャフトから駆動力を受けるスプロケット4と駆動円筒5によって構成されている。スプロケット4は、中心の円孔4aと、複数の段差付挿通孔4bを有する。駆動円筒5は、底部5c及び円筒部20からなる有底円筒形状を有する。底部5cには、図1と図6(b)に示すとおり、中心の円孔5a、複数の雌ねじ孔5b、固定孔5d及び有底の円周方向溝5eが設けられる。固定孔5dには、太丸軸32aと細丸軸32bからなる軸状部材32の太丸軸32aが嵌合固定される。スプロケット4と駆動円筒5は、複数のボルト2aを段差付挿通孔4bに挿通し、かつ雌ねじ孔5bにネジ止めすることで、一体化される。
 図1,図2、図4、図5(c)に示すとおり、第1制御回転体3は、前縁部にフランジ部3aを有する円筒部3bとその後方に連続する底部3cによって形成される。底部3cには、中心の貫通円孔3d、一対の第1ピン孔28,中心軸線L0から所定半径を有する円周上に設けられた円周方向溝30、中心軸線L0からガイド溝への距離が進角側D1方向に向けて減少する曲線状の第1縮径ガイド溝31が設けられる。
 図1,図2、図4に示すとおり、センターシャフト7は、中心軸線L0に沿って前後に連続する第1円筒部7a、フランジ部7b、第2円筒部7c、及び第3円筒部7dを有する。第3円筒部3dの基端部の周囲には、ロックプレートの保持部12がフランジ状に形成され、センターシャフト7の中央には、円孔7eが形成される。図4に示すとおり、カム6bを有するカムシャフト6は、中央円孔7eとカムシャフト6の前方に開口する雌ねじ孔6aにボルト37を挿入することによって、センターシャフト7の後端側に同軸かつ相対回動不能に一体化されている。
 保持部12の外周面は、図1,図6(a)に示すように、中心軸線L0を中心とし、断面が正6角形状である6つの面から形成される。保持部12の6つの外周面は、一つおきにプレート押圧面(12a~12c)として機能し、プレート押圧面(12a~12c)は、カムシャフトの外周方向において略等分複数箇所に配置される。
 図1、図2,図4に示すとおり、駆動回転体2は、円孔4aに第1円筒部7aを挿入されたスプロケット4と、円孔5aに第2円筒部7cを挿入された駆動円筒5が、ボルト2aで一体化されることによって形成される。その結果、駆動回転体2は、センターシャフト7に回動可能に支持される。また、第3円筒部7dは、第1制御回転体3の中央円孔3dに挿入される。尚、駆動回転体2,第1制御回転体3,カムシャフト6,センターシャフト7は、中心軸線L0上に同軸に配置される。
 図1,図2、図4に示す、相対位相角変更機構10は、クランクシャフトの回転に連動する駆動回転体2に対し、カムシャフト6を進角方向D1または遅角方向D2のいずれかに相対回動させる機構である。相対位相角変更機構10は、第1制御回転体3、カムシャフト6に一体化されたセンターシャフト7,セルフロック機構11、及び連結機構16、第1制御回転体3を制動することによって駆動回転体2に対して相対回動させる第1電磁クラッチ21、及び駆動回転体2に対して、第1電磁クラッチ21の作動時と逆向きに第1制御回転体3を相対回動させる逆回転機構22によって構成される。
 セルフロック機構11は、駆動回転体2とセンターシャフト7との間に介装され、カムシャフト6が図示しないバルブスプリングから受けるカムトルクを原因とした、駆動回転体2に対するカムシャフト6の組付角のズレの発生を防止する機構であり、センターシャフト7の保持部12,ロックプレート14,駆動回転体2の円筒部20によって構成される。
 ロックプレート14は、保持部12のプレート押圧面(12a~12c)の数と同数設けられる。従って、ロックプレート14は、図1,図2、図6(a)に示すように、中央にほぼ三角形状となる挿通孔14dを設けた円板を、プレート押圧面(12a~12c)の数に合わせて3等分してなる、第1ロックプレート14a、第2ロックプレート14b、第3ロックプレート14cによって形成される。第1から第3ロックプレート(14a~14c)の内側には、プレート押圧面(12a~12c)と平行な面からなる受圧部(15a~15c)が、プレート押圧面(12a~12c)と対応する位置に、それぞれ設けられる。
 また、図1,図2、図6(a)に示すように、第1ロックプレート14aには、第1制御回転体3の円周方向溝30に対応する位置に、前後に貫通する円周方向溝14hが設けられ、第2及び第3ロックプレート(14b、14c)には、第1制御回転体3の一対のピン孔28に対応する位置に一対のピン孔14iが設けられる。
 また、図7(a)~(c)に示すように保持部12のプレート押圧面12aは、第1及び第2押圧面(13a、13b)によって構成され、プレート押圧面12bは、第1及び第2押圧面(13c、13d)によって構成され、プレート押圧面12cは、第1及び第2押圧面(13e、13f)によって構成される。第1及び第2押圧面(13a、13b)、(13c、13d)、(13e、13f)は、それぞれ交線(C1~C3)において各プレート押圧面(12a~12c)に直交する仮想面(S1~S3)を想定した場合において、仮想面(S1~S3)で分断された、各プレート押圧面(12a~12c)上の2つの領域に画成される。
 また、図6(a)と図7(a)~(c)に示すように受圧部(15a~15c)には、それぞれ第1及び第2作用部(17a、17b)(17c、17d)(17e、17f)が、微小円弧形状に加工されたそれぞれの端部に設けられる。第1作用部(17a、17c、17e)は、第1押圧面(13a,13b,13e)と対応する位置に設けられ、かつ図8(a)に示すように第1押圧面13aに接触して進角方向(D1方向)のカムトルクによるセルフロック力Fを受ける(図8(a)を参照)。また第2作用部(17b,17d,17f)は、第2押圧面(13b、13d、13f)と対応する位置に設けられ、かつ図8(b)に示すように第2押圧面13bに接触して遅角方向(D2方向)のカムトルクによるセルフロック力Fを受ける。図7(a)~(c)に示すように、第1及び第2作用部(17a,17b)は、仮想面S1から第2作用部17bまでの第2距離d2が、仮想面S1から第1作用部17aまでの第1距離d1よりも短くなるように、受圧部(12a~12c)に形成される。
 ロックプレート(14a~14c)は、図6(a)に示すとおり、受圧部(15a~15c)をプレート保持面(12a~12c)に接触させることによって、保持部12に保持される。また、ロックプレート(14a~14c)の外周面(14e~14g)は、駆動円筒5の円筒部20の内周面20aに内接する。
 図6(a)に示すとおり、第1ロックプレート14aの円周方向溝14hには、駆動円筒5に固定された軸状部材32の太丸軸32aが挿通される。連結機構16は、一対の連結ピン(27,27)と、制御回転体3の底部3bに設けられた一対の第1ピン孔(28、28)と、第2及び第3ロックプレート(14b,14c)にそれぞれ形成された一対の第2ピン孔(14i,14i)によって構成される。一対の連結ピン(27,27)は、後方から第2ピン孔(14i,14i)に挿入されることによって、第2及び第3ロックプレート(14b,14c)に固定される。図6(b)に示されるように、連結ピン27の後端部は、駆動円筒5の円周方向溝5eに挿入される。第1制御回転体3は、第2及び第3ロックプレート(14b,14c)に固定された一対の連結ピン27の前端部を、図5(c)に示す第1ピン孔28に挿入されることにより、第2及び第3ロックプレート(14b,14c)に連結される。
 また、図6(a)に示すとおり、第1ロックプレート14aと、第2ロックプレート14bとの間には、円柱形状のピン33が配置され、第1ロックプレート14aと、第3ロックプレート14cとの間には、円柱形状のピン34が配置される。また、第2ロックプレート14bと、第3ロックプレート14cとの間には、第2ロックプレート14bを第3ロックプレート14cから引き離す方向に付勢する圧縮コイルばね35が設けられる。第1ロックプレートは、第2及び第3ロックプレート(14b,14c)に接触するピン(33,34)を介して圧縮コイルばね35の付勢力を受ける。その結果、第1から第3ロックプレート(14a~14c)は、円筒部20の内周面20aに隙間無く密着する。
 また、図1,図2、図4に示す通り、第1電磁クラッチ21は、図示しないエンジンの内部に固定されたカバー部材36に固定された状態で、第1制御回転体3の前方に配置される。作動時の第1電磁クラッチ21は、第1制御回転体3のフランジ部3aの前面3eを吸着して摩擦材21aに接触させる。また、逆回転機構22は、第1制御回転体3の第1縮径ガイド溝31、軸状部材32、第2電磁クラッチ38,第2制御回転体39,第2制御回転体39の第2縮径ガイド溝40,クランク部材41、第1及び第2のピン機構(42,43)によって構成される。
 図1,図2、図5(a)に示すとおり、第2制御回転体39は、円盤形状を有し、かつ中心の貫通円孔39aと第2縮径ガイド溝40を有する。第2制御回転体39は、貫通円孔39aを介し、センターシャフト7の第3円筒部7dによって回動可能に支持される。第2縮径ガイド溝40は、後方に開口する有底溝であり、かつ中心軸L0から第2縮径ガイド溝40への距離が遅角側D2方向に向けて減少する曲線溝で有る。第1及び第2制御回転体(3,39)の前面(3e、39b)は、図4に示すように互いに面一となるように配置され、第1及び第2制御回転体(3、39)はボルト37に取付けられるホルダー44によって前方に抜け止めされる。また、第1電磁クラッチ21の内側において、第2制御回転体39の前方には、第2電磁クラッチ38が配置される。作動時の第2電磁クラッチ38は、第2制御回転体39の前面39bを吸着して摩擦材38aに接触させる。
 図1,図5(b)に示すように、第1制御回転体3の前方に配置されるクランク部材41は、半径方向に厚肉となるリング部本体45と、リング部本体45から半径方向外側に突出する突出部46と、リング部本体45の外周の一部を切り欠いて薄肉部として形成された切欠部47と、を有する。切欠部47は、突出部46から進角方向(D1方向)の領域にほぼ形成されている。突出部46には、前後に貫通するピン孔48が形成される。リング部本体45には、前後に貫通する第1及び第2のピン孔(49,50)が設けられる。第1及び第2のピン孔(49,50)は、図5(b)において、突出部から遅角方向(D2方向)の領域に形成されている。
 図1、図5(c)、図6(a)に示すとおり、駆動円筒5の固定孔5dに固定された軸状部材32の細丸軸32bは、第1ロックプレート14aの円周方向溝14h及び第1制御回転体3の円周方向溝30の前方に突出して、クランク部材41のピン孔48に係合する。その結果、クランク部材41は、駆動円筒5に固定された細丸軸32bによって回動可能に支持される。
 また、図1,図2に示すとおり、第1のピン機構42は、軸状部材42aと、第1中空長円軸42bによって構成される。軸状部材42aは、小径部42cを介してクランク部材41の第1のピン孔49に後方から固定され、第1中空長円軸42bは、クランク部材41の後方で、軸状部材42aによって回動自在に支持される。第2のピン機構43は、軸状部材43aと、第2中空長円軸43bによって構成される。軸状部材43aは、小径部43cを介してクランク部材41の第2のピン孔50に前方から固定され、第2中空長円軸43bは、クランク部材41の前方で、軸状部材43aによって回動自在に支持される。第1中空長円軸42bは、第1縮径ガイド溝31に係合し、かつ第1縮径ガイド溝31に沿って変位可能に保持される。第2中空長円軸43bは、第2縮径ガイド溝40に係合し、かつ第2縮径ガイド溝40に沿って変位可能に保持される。
 ここで、駆動回転体2に対するセンターシャフト7(カムシャフト6)の相対位相角の変更動作を説明する。第1及び第2電磁クラッチ(21、38)が作動していない場合、第1及び第2制御回転体(3、39)は、クランクシャフト(図示せず)によって駆動する駆動回転体2と共にD1方向に回転する(図1及び図5(a)(c)を参照)。カムシャフト6は、センターシャフト7の保持部12に保持されたロックプレート14を介して第1制御回転体3に連結されている。従って、第1制御回転体3に連結されたカムシャフト6(図4参照)もまた、駆動回転体と共にD1方向に回転する。
 駆動回転体2に対するセンターシャフト7(カムシャフト)の相対位相角を遅角方向であるD2方向に変更する場合には、第1電磁クラッチ21を作動させる。第1電磁クラッチ21によって吸着された第1制御回転体3は、摩擦材21aと接触することによって制動され、センターシャフト7(カムシャフト6)と共に駆動回転体2に対してD2方向に回転遅れを生じる。その結果、駆動回転体2(クランクシャフト)に対するセンターシャフト7(カムシャフト6)の相対位相角が、遅角側D2方向に変更され、図示しないエンジンバルブの開閉タイミングが変更される。
 その際、図5(b)(c)に示す通り、軸状部材42aに支持された第1中空長円軸42bは、第1縮径ガイド溝31によってガイドされながら、第1縮径ガイド溝14内を略時計回りとなるD3方向に移動する。その際、クランク部材41は、第1のピン孔49に連結された軸状部材42aが第1縮径ガイド溝31に沿って第1制御回転体3の半径方向内側に移動することにより、軸状部材32の周りを反時計回りD2方向に回動する。一方、第2ピン孔50に連結された軸状部材43aがクランク部材41によって移動すると、第2中空長円軸43bは、第2縮径ガイド溝40内を略反時計回りとなるD4方向に移動することにより、第2縮径ガイド溝40の内周面に半径方向内向きの力を付与する。その結果、第2制御回転体39は、センターシャフト7に対して進角方向であるD1方向に相対回動する。
 一方、駆動回転体2に対するセンターシャフト7(カムシャフト6)の相対位相角を進角方向であるD1方向に変更する場合には、第2電磁クラッチ38を作動させる。第2電磁クラッチ38によって吸着された第2制御回転体39は、摩擦材38aと接触することによって制動される。
 図5(a)に示す通り、第2電磁クラッチ38によって制動された第2制御回転体39は、センターシャフト7に対して遅角方向であるD2方向に回転遅れを生じる。第2中空長円軸43bは、第2縮径ガイド溝40の内周面から力を受けることにより、第2縮径ガイド溝40内を略時計回りとなるD5方向に移動し、クランク部材41に連結された軸状部材42aは、第1制御回転体3の半径方向外側に移動する。その際、図5(c)に示す第1中空長円軸39は、第1縮径ガイド溝31内を略反時計回りとなるD6方向に移動し、第1縮径ガイド溝31の内周面に半径方向外向きの力を付与する。その結果、第1制御回転体3及びセンターシャフト7は、駆動回転体2に対して進角側D1方向に相対回動する。その結果、駆動回転体2(クランクシャフト)に対するセンターシャフト7(カムシャフト6)の相対位相角は、進角側D1方向に戻されて図示しないバルブの開閉タイミングが再び変更される。
 尚、第1制御回転体3とセンターシャフト7が駆動回転体2に対して相対回動する際に、軸状部材32は、円周方向溝30内を変位し、連結ピン27は、円周方向溝5e内を変位する。円周方向溝5eの両端(5e1、5e2)は、連結ピン27を当接させることにより、第1制御回転体3とセンターシャフト7が駆動回転体2に対して、それ以上相対回動出来ないようにするストッパーとして機能する。
 次にセルフロック機構11について説明する。駆動回転体2と共に回転するカムシャフト6には、バルブスプリング(図示せず)によるカムトルクが、進角方向であるD1方向と遅角方向であるD2方向に交互に入力されている。カムトルクは、第1及び第2電磁クラッチ(21,39)の停止時において、駆動回転体2に対するカムシャフト6の相対位相角にズレを生じさせることにより、バルブの開閉タイミングを狂わせるおそれがある。セルフロック機構11は、カムトルクの発生時に第1から第3ロックプレート(14a~14c)の外周面(14e~14g)を駆動円筒5の円筒部20の内周面20aに押し付けて、保持部12を有するセンターシャフト7を駆動回転体2に対して回動不能に保持するセルフロック効果により、前記相対位相角のズレを防止するものである。
 図8(a)は、カムシャフト6(センターシャフト7)に進角方向であるD1方向にカムトルクが発生した場合におけるセルフロック効果を示すものである。カムシャフトに連結されたセンターシャフト7が、進角方向であるD1方向のカムトルクを受けると、断面正六角形の保持部12は、D1方向に回動しようとする。その際、第1から第3ロックプレート(14a~14c)の第1作用部(17a,17c,17e)は、プレート押圧面(12a~1c)の第1押圧面(13a,13c,13e)からカムシャフトの回転中心軸線L0に直交する方向のセルフロック力Fを受ける。
 図8(a)において、第1作用部(17a,17c,17e)を通り、仮想面(S1~S3)に平行な仮想面をそれぞれ(S4~S6)とし、仮想面(S4~S6)と、第1から第3ロックプレート(14a~14c)の外周面(14e~14g)との交線を(P1~P3)とすると、円筒部20の内周面20aは、交線(P1~P3)において第1から第3ロックプレート(14a~14c)の外周面(14e~14g)から力Fを受ける。力Fは、円筒部20の内周面20aと、第1から第3ロックプレート(14a~14c)の外周面(14e~14g)との間に摩擦力を発生させる。
 前記摩擦力は、以下のように表される。まず、図8(a)において、交線(P1~P3)を通り、第1から第3ロックプレート(14a~14c)の外周面(14e~14g)の接線方向に延びる直線をそれぞれL1とし、仮想面(S4~S6)にそれぞれ直交する直線をL2とし、直線L1に直交する直線をL3とし、L3と仮想面(S4~S6)との傾きをそれぞれθ1(以降は、θ1を摩擦角という)とし、摩擦面の摩擦係数をμとする。カムトルクにより、駆動回転体2に対するセンターシャフト7(カムシャフト6)の相対位相角にズレを発生させる力は、交線(P1~P3)において、外周面(14e~14g)の接線方向の力F・sinθ1としてそれぞれ表される。一方、円筒部20の内周面20aと、第1から第3ロックプレート(14a~14c)の外周面(14e~14g)との間に発生する摩擦力は、μ・F・cosθ1によってそれぞれ表される。
 前記摩擦力が相対位相角にズレを発生させる力よりも大きい場合、即ち、F・sinθ1<μ・F・cosθ1の条件を満たす場合、第1から第3ロックプレート(14a~14c)は、セルフロック力Fに基づく摩擦力により、円筒部20の内周面20aに対して相対回動出来ない。従って、θ1<tan-1μを満たすように摩擦角θ1を設定した場合、保持部12を介して第1から第3ロックプレート(14a~14c)を保持するセンターシャフト7(カムシャフト6)は、円筒部20を有する駆動回転体2に対して相対回動出来ないように保持される。
 一方、図8(b)は、カムシャフト6(センターシャフト7)に遅角方向であるD2方向のカムトルクが発生した場合におけるセルフロック効果を示すものである。センターシャフト7が、D2方向のカムトルクを受けると断面正六角形の保持部12は、D2方向に回動しようとする。その際、第1から第3ロックプレート(14a~14c)の第2作用部(17b,17d,17f)は、プレート押圧面(12a~12c)の第2押圧面(13b,13d,13f)からカムシャフトの回転中心軸線L0に直交する方向のセルフロック力Fを受ける。
 図8(b)に示すように、第2作用部(17b,17d,17f)を通り、仮想面(S1~S3)に平行な仮想面をそれぞれ(S7~S9)とし、仮想面(S7~S9)と、第1から第3ロックプレート(14a~14c)との交線を(P4~P6)とすると、円筒部20の内周面20aは、交線(P4~P6)において、第1から第3ロックプレート(14a~14c)の外周面(14e~14g)から力Fを受ける。力Fは、円筒部20の内周面20aと、第1から第3ロックプレート(14a~14c)の外周面(14e~14g)との間に以下に示す摩擦力を発生させる。
 まず、図8(b)において、交線(P4~P6)から外周面(14e~14g)の接線方向に延びる直線をそれぞれL4とし、仮想面(S7~S9)にそれぞれ直交する直線をL5とし、直線L4に直交する直線をL6とし、L6と仮想面(S7~S9)との傾きをそれぞれθ2(以降は、θ2を摩擦角という)とする。カムトルクにより、駆動回転体2に対するセンターシャフト7(カムシャフト6)の相対位相角にズレを発生させる力は、交線(P4~P6)において、それぞれ外周面(14e~14g)の接線方向の力F・sinθ2として表される。一方、円筒部20の内周面20aと、第1から第3ロックプレート(14a~14c)の外周面(14e~14g)との間に発生する摩擦力は、μ・F・cosθ2によってそれぞれ表される。
 即ち、F・sinθ2<μ・F・cosθ2の条件を満たす場合、第1から第3ロックプレート(14a~14c)は、円筒部20の内周面20aに対して相対回動出来ない。従って、θ2<tan-1μを満たすように摩擦角θ2を設定した場合、センターシャフト7(カムシャフト6)は、駆動回転体2(図示しないクランクシャフト)に対して相対回動出来ないように保持される。
 図8(a)(b)に示す通り、セルフロック機構11においては、進角方向であるD1方向または遅角方向であるD2方向のいずれのカムトルクがカムシャフト6に発生しても、駆動回転体2(図示しないクランクシャフト)に対するカムシャフト6の相対位相角がズレることなく保持される、セルフロック効果が発生する。
 図8(a)(b)に示す通り、このセルフロック機構11によれば、D1方向またはD2方向のいずれのカムトルクを受けても、第1から第3ロックプレート(14a~14c)の全てにセルフロック機能が発生する。第1から第3ロックプレート(14a~14c)は、円筒部20の内周面20a内の周方向等分複数箇所に配置されている。従って、駆動回転体5の円筒部20の内周面には、均等な力Fにより、全周にわたって均等なセルフロック効果が発生する。全周にわたって均等なセルフロック効果が発生した場合、ロックプレート14は、セルフロック効果の発生時に円筒部20の内周面20aに食い込まなくなり、駆動回転体2は、カムシャフトの中心軸線L0に対して傾かなくなる。従って、駆動回転体2に対するカムシャフト6の相対位相角を変更する際に、ロックプレート14と円筒部20との間には、余分な摩擦力が発生せず、駆動回転体5と駆動回転体5を保持するセンターシャフト7との間にも、余分な摩擦力が発生しない。その結果、第1または第2電磁クラッチ(21,39)の作動時において、駆動回転体2(図示しないクランクシャフト)に対するカムシャフト6の相対位相角は、セルフロック機構11の影響を受けることなくスムーズに変更される。
 尚、カムシャフト6において、遅角方向であるD2方向に発生するカムトルクは、カムが、エンジンバルブを押し下げる際にバルブスプリングから受ける弾性力等によって発生するため、進角方向であるD1方向に発生するカムトルクよりも大きくなる。従って、駆動回転体2に対するカムシャフト6の相対位相角は、D1方向のカムトルクに比べてD2方向のカムトルクを受けた場合の方がズレやすくなるため、セルフロック機構11においては、D2方向のカムトルクによるセルフロック効果が、D1方向のカムトルクによるセルフロック効果よりも強く発生するようにすることが望ましい。
 図7(a)~(c)に示すように、受圧部(15a~15c)の第2作用部(17b,17d,17f)から仮想面(S1~S3)までの第2距離d2は、第1作用部(17a,17c,17e)から仮想面(S1~S3)までの第1距離d1より短い。従って、図8(a)、(b)に示すセルフロック機構11においては、θ1>θ2となる。その場合、遅角方向であるD2方向のカムトルクによる摩擦力(μ・F・cosθ2)は、進角方向であるD1方向のカムトルクによる摩擦力(μ・F・cosθ1)よりも大きくなる。従って、D2方向のカムトルクによるセルフロック効果は、D1方向のカムトルクによるセルフロック効果よりも強くなるため、駆動回転体2に対するカムシャフト6の相対位相角は、カムトルクを受けてもズレること無く保持される。
 次に、図9~図12により、自動車用エンジンの位相可変装置の第2実施例を説明する。第2実施例の自動車用エンジンの位相可変装置55は、保持部57及びロックプレート58が第1実施例の保持部12及びロックプレート14と異なることと、ピン(33,34)を設けていないことの他、第1実施例の自動車用エンジンの位相可変装置1と共通の構成を有する。
 図9に示すセンターシャフト56は、保持部57の形状が異なるほか、第1実施例のセンターシャフト7と共通の形状を有する。センターシャフト56は、第1円筒部56a、フランジ部56b、第2円筒部56c、ロックプレート58の保持部57、及び第3円筒部57dが、中心軸線L0に沿って前後に連続形成されている。保持部57は、第3円筒部57dの基端部の周囲にフランジ状に形成される。
 保持部57の外周面は、図10に示すように、カムシャフトの中心軸線L0を中心とする円筒の外周2箇所をカムシャフトの中心軸線L0に平行に切り欠いてなる断面形状を有する。保持部57の切欠部分には、中心軸線L0を挟んで対称となる形状を有し、かつ互いに平行な二つのプレート押圧面(57a、57b)が形成される。
 図9に示すとおり、駆動回転体2は、円孔4aに第1円筒部56aを挿入されたスプロケット4と、円孔5aに第2円筒部56cを挿入された駆動円筒5が、ボルト2aで一体化されることによって形成される。そして、駆動回転体2は、センターシャフト56に回動可能に支持される。
 図10に示すとおり、ロックプレート58は、保持部57のプレート押圧面(57a,57b)と同数設けられる。ロックプレート58は、中央に直径方向の貫通溝59を設けた円板を2等分してなる、第1ロックプレート58a、第2ロックプレート58bによって形成される。第1及び第2ロックプレート(58a,58b)の内側には、プレート押圧面(57a,57b)と平行な面からなる受圧部(59a,59b)が、プレート押圧面(57a,57b)と対応する位置に、それぞれ設けられる。
 図11(a)(b)に示すように保持部57のプレート押圧面57aは、第1及び第2押圧面(60a、60b)によって構成され、プレート押圧面57bは、第1及び第2押圧面(60c、60d)によってそれぞれ構成される。第1及び第2押圧面(60a、60b)と(60c、60d)は、交線(C4,C5)において、プレート押圧面(57a,57b)にそれぞれ直交する仮想面S10を想定した場合において、仮想面S10で分断された、プレート押圧面(57a,57b)上の2つの領域に画成される。
 また、図11(a)(b)に示すように受圧部59aには、第1及び第2押圧面(60a、60b)に接触する第1及び第2作用部(61a、61b)が、微小円弧形状に加工された端部に設けられ、受圧部59bには、第1及び第2押圧面(60c、60d)に接触する第1及び第2作用部(61c、61d)が、微小円弧形状に加工された端部に設けられる。第1及び及び第2作用部(61a,61b)と(61c、61d)は、仮想面S10から第2作用部(61b、61d)までの第2距離d4が仮想面S10から第1作用部(61a、61c)までの第1距離d3よりも短くなるように、受圧部(59a,59b)にそれぞれ形成される。第1作用部(61a、61c)は、第1押圧面(60a,60c)から進角方向(D1方向)のカムトルクによるセルフロック力F1を受ける(図11(a)を参照)。第2作用部(61b、61d)は、第2押圧面(60b、60d)から遅角方向(D2方向)のカムトルクによるセルフロック力F1を受ける(図11(a)を参照)。また、図9と図10に示すとおり、第1及び第2ロックプレート(58a,58b)には、図1に示す第1制御回転体3の一対の第1ピン孔28に対応する位置に、一対の第2ピン孔58cが設けられる。
 図10に示すとおり、第1及び第2ロックプレート(58a,58b)は、保持部57に保持される。第1及び第2ロックプレート(58a,58b)の外周面(58d,58e)は、駆動円筒5の円筒部20の内周面20aに内接する。
 更に、図10に示すとおり、第1ロックプレート58aと、第2ロックプレート58bとの間の隙間には、圧縮コイルばね62が設けられ、第1ロックプレート58aは、圧縮コイルばね62により、第2ロックプレート58bから引き離される方向に付勢力を受ける。その結果、第1及び第2ロックプレート(58a,58b)は、円筒部20の内周面20aに隙間無く密着する。
 一方、図9と図10に示すとおり、第1及び第2ロックプレート(58a,58b)は、一対の第2ピン孔58cにそれぞれ固定された一対の連結ピン27の前端部を対応する第1ピン孔28に挿入することによって、第1制御回転体3に連結されて、第1制御回転体3と共に回動する。連結ピン27の後端部は、駆動円筒5の円周方向溝5eに挿入される。
 次に、図11と図12により第2実施例のエンジンの位相可変装置55におけるセルフロック機構65を説明する。セルフロック機構65は、センターシャフト56の保持部57,ロックプレート58,駆動回転体2の駆動円筒5の円筒部20によって構成される。
 センターシャフト56に同軸に一体化されたカムシャフト(図1のカムシャフト6と同様のもの)が、図12(a)に示すとおり、エンジンバルブから進角方向であるD1方向にカムトルクを受けると、保持部57は、D1方向に回動しようとする。その際、図11(a)(b)に示す第1及び第2ロックプレート(58a,58b)の第1作用部(61a,61c)は、プレート押圧面(57a,57b)の第1押圧面(60a,60c)からカムシャフトの回転中心軸線L0に直交する方向のセルフロック力F1を受ける。
 図12(a)において、第1作用部(61a,61c)を通り、仮想面S10に平行な仮想面をそれぞれ(S11,S12)とし、仮想面(S11,S12)と、第1及び第2ロックプレート(58a,58b)の外周面(58d,58e)との交線を(P7,P8)とすると、円筒部20の内周面20aは、交線(P7,P8)において、第1及び第2ロックプレート(58a,58b)の外周面(58d,58e)から力F1を受ける。力F1は、円筒部20の内周面20aと、外周面(58d,58e)との間に摩擦力を発生させる。
 前記摩擦力は、以下のように表される。まず、図12(a)において、交線(P7,P8)から第1及び第2ロックプレート(58a,58b)の外周面(58d,58e)の接線方向に延びる直線をそれぞれL7とし、仮想面(S11,S12)に直交する直線をそれぞれL8とし、直線L7に直交する直線をL9とし、L9と仮想面(S11,S12)の傾きをそれぞれθ3(以降は、θ3を摩擦角という)とし、摩擦面の摩擦係数をμとする。カムトルクにより、駆動回転体2に対するセンターシャフト56の相対位相角にズレを発生させる力は、交線(P7,P8)において、外周面(58d,58e)の接線方向の力F1・sinθ3としてそれぞれ表される。一方、円筒部20の内周面20aと、第1及び第2ロックプレート(58a,58b)の外周面(58d,58e)との間に発生する摩擦力は、μ・F1・cosθ3によってそれぞれ表される。
 F1・sinθ3<μ・F1・cosθ3の条件を満たす場合、第1及び第2ロックプレート(58a,58b)は、前記摩擦力に基づくセルフロック効果により、円筒部20の内周面20aに対して相対回動出来ない。従って、θ3<tan-1μを満たすように摩擦角θ3を設定した場合、保持部57を介して第1及び第2ロックプレート(58a,58b)を保持するセンターシャフト56(図示しないカムシャフト)は、円筒部20を有する駆動回転体2に対して相対回動出来ないように保持され、駆動回転体2(図示しないクランクシャフト)に対するセンターシャフト(図示しないカムシャフト)の相対位相角は、カムトルクによってズレることなく保持される。
 一方、図12(b)に示すとおり、図示しないカムシャフトが、エンジンバルブから遅角方向であるD2方向にカムトルクを受けると、保持部57は、D2方向に回動しようとする。その際、図11(a)(b)に示す第1及び第2ロックプレート(58a,58b)の第2作用部(61b,61d)は、プレート押圧面(57a,57b)の第2押圧面(60b,60d)からカムシャフトの回転中心軸線L0に直交する方向のセルフロック力F1を受ける。
 図12(b)において、第2作用部(61b,61d)を通り、仮想面S10に平行な仮想面をそれぞれ(S13,S14)とし、仮想面(S13,S14)と、第1及び第2ロックプレート(58a,58b)の外周面(58d,58e)との交線をそれぞれ(P9,P10)とすると、円筒部20の内周面20aは、交線(P9,P10)において、第1及び第2ロックプレート(58a,58b)の外周面(58d,58e)から力F1を受ける。力F1は、円筒部20の内周面20aと、外周面(58d,58e)との間に摩擦力を発生させる。
 前記摩擦力は、以下のように表される。まず、図12(b)において、交線(P9,P10)(P7,P8)から第1及び第2ロックプレート(58a,58b)の外周面(58d,58e)の接線方向に延びる直線をそれぞれL10とし、仮想面S10に直交する直線をそれぞれL11とし、直線L10に直交する直線をL12とし、L12と仮想面S10との傾きをそれぞれθ4(以降は、θ4を摩擦角という)とする。カムトルクにより、駆動回転体2に対するセンターシャフト56の相対位相角にズレを発生させる力は、交線(P9,P10)において、外周面(58d,58e)の接線方向の力F1・sinθ4としてそれぞれ表される。一方、円筒部20の内周面20aと、第1及び第2ロックプレート(58a,58b)の外周面(58d,58e)との間に発生する摩擦力は、μ・F1・cosθ4によってそれぞれ表される。
 F1・sinθ4<μ・F1・cosθ4の条件を満たす場合、第1及び第2ロックプレート(58a,58b)は、前記摩擦力に基づくセルフロック効果により、円筒部20の内周面20aに対して相対回動出来ない。従って、θ4<tan-1μを満たすように摩擦角θ4を設定した場合、駆動回転体2(図示しないクランクシャフト)に対するセンターシャフト(図示しないカムシャフト)の相対位相角は、カムトルクによってズレることなく保持される。
 セルフロック機構65によれば、進角方向であるD1方向または遅角方向であるD2方向のいずれのカムトルクを受けても、円筒部20の内周面20a内の周方向等分複数箇所に配置された第1及び第2ロックプレート(58a,58b)の双方にセルフロック機能が発生する。従って、駆動回転体5の円筒部20の内周面には、力F1による均等なセルフロック効果が発生する。従って、ロックプレート58は、セルフロック効果の発生時に円筒部20の内周面20aに食い込まなくなり、駆動回転体2は、カムシャフトの中心軸線L0に対して傾かなくなる。従って、駆動回転体2に対するカムシャフト6の相対位相角を変更する際に、ロックプレート58と円筒部20との間には、余分な摩擦力が発生せず、駆動回転体5と駆動回転体5を保持するセンターシャフト56との間にも、余分な摩擦力が発生しない。その結果、第1または第2電磁クラッチ(21,38)の作動時において、駆動回転体2(図示しないクランクシャフト)に対するセンターシャフト56(図示しないカムシャフト)相対位相角は、セルフロック機構65の影響を受けることなくスムーズに変更される。
 尚、図11(a)(b)に示すように、受圧部(59a,59b)の第2作用部(61b,61d)から仮想面S10までの第2距離d4は、第1作用部(61a,61c)から仮想面S10までの第1距離d3より短いため、図11(a)(b)においては、θ3>θ4となる。その場合、遅角方向であるD2方向のカムトルクによる摩擦力(μ・F1・cosθ4)は、進角方向であるD1方向のカムトルクによる摩擦力(μ・F1・cosθ3)よりも大きくなる。従って、D2方向のカムトルクによるセルフロック効果は、D1方向のカムトルクによるセルフロック効果よりも強くなる。その結果、D2方向のカムトルクがD1方向のカムトルクよりも大きくても、駆動回転体2に対するカムシャフトの相対位相角は、ズレること無く保持される。
 次に、図13~図16により、自動車用エンジンの位相可変装置の第3実施例を説明する。第3実施例の自動車用エンジンの位相可変装置70においては、第1制御回転体71、駆動円筒72及びロックプレート73の形状が第1実施例の第1制御回転体3,駆動円筒5及びロックプレート14と異なる。また、自動車用エンジンの位相可変装置70においては、第1実施例の連結ピン27と、ピン(33,34)の代わりに連結ピン(74~76)が設けられる。また、上記以外の第3実施例の構成は、第1実施例の自動車用エンジンの位相可変装置1と共通する。
 図13、14に示す第1制御回転体71は、前縁部にフランジ部71aを有する円筒部71bとその後方に連続する底部71cによって形成される。第1制御回転体71は、底部71cの形状が図1及び図5(c)に示される底部3cと異なる他、第1実施例の第1制御回転体3と共通の構成を有する。即ち、底部71aには、中心の貫通円孔71d、円周方向溝77及び第1縮径ガイド溝78が設けられているが、これらは、図5(c)に示す、中心の貫通円孔3d、円周方向溝30及び第1縮径ガイド溝31と形状が同一である。一方、底部71aには、底部3cに設けられた一対のピン孔27の代わりに、3つのピン固定孔79が設けられている。3つのピン固定孔79には、連結ピン(74~76)の細丸軸(74b~76b)が取付けられる。連結ピン(74~76)は、後端側の太丸軸(74a~76a)と前端側の細丸軸(74b~76b)によって形成される。
 また、図13、14に示す駆動円筒72は、図6(b)に示される底部5cに設けられた有底の円周方向溝5dを底部72cに有さない点を除き、第1実施例の駆動円筒5と共通の構成を有する。駆動円筒72は、底部72c及び円筒部80からなる有底円筒形状を有し、底部72cには、センターシャフト7の第2円筒部7cに保持させる中心の円孔72a、複数の雌ねじ孔72b、固定孔72dが設けられる。固定孔72dには、第1実施例と同様に、図1及び図6(b)に示す、軸状部材32の太丸軸32aが嵌合固定される。スプロケット4と駆動円筒72は、複数のボルト2aを段差付挿通孔4bに挿通し、かつ雌ねじ孔72bにネジ止めすることで一体化され、駆動回転体2’を形成する。
 図15に示すように、ロックプレート73は、中央にほぼ三角形状となる挿通孔73dを設けた円板を3等分した、第1ロックプレート73a、第2ロックプレート73b、第3ロックプレート73cによって形成される。図16(a)~(c)に示すように第1から第3ロックプレート(73a~73c)の内側には、形状の等しい3つの受圧プレート(81a~81c)を着脱自在に取り付ける取付部(73e~73g)が設けられる。受圧プレート(81a~81c)は、取付部(73e~73g)に係合した状態で、プレート押圧面(12a~12c)によって取付部(73e~73g)に押圧されることにより、取付部(73e~73g)に固定される。また、図15に示すように、第1ロックプレート73aには、第1制御回転体71の円周方向溝77に対応する位置に、前後に貫通する円周方向溝73hが設けられる。
 また、図15に示すように保持部12のプレート押圧面(12a~12c)は、第1及び第2押圧面(13a、13b)、(13c、13d)、(13e、13f)によって、それぞれ形成される。第1及び第2押圧面(13a、13b)、(13c、13d)、(13e、13f)は、それぞれ交線(C1~C3)において各プレート押圧面(12a~12c)に直交する仮想面(S1~S3)で分断された、各プレート押圧面(12a~12c)の2つの領域として画成される。
 また、図16(a)(b)に示すように受圧プレート81aには、第1及び第2押圧面(13a、13b)にそれぞれ接触する第1及び第2作用部(82a、82b)が、微小円弧形状に加工された端部に設けられ、受圧プレート81bには、第1及び第2押圧面(13c、13d)にそれぞれ接触する第1及び第2作用部(82c、82d)が、微小円弧形状に加工された端部に設けられ、受圧プレート81cには、第1及び第2押圧面(13e、13f)にそれぞれ接触する第1及び第2作用部(82e、82f)が、微小円弧形状に加工された端部に設けられる。
 第1及び及び第2作用部(82a、82b)と(82c、82d)と(82e、82f)は、仮想面(S1~S3)から第2作用部(82b、82d、82f)までのそれぞれの第2距離d2が、仮想面(S1~S3)から第1作用部(82a、82c、82e)までの第1距離d1よりも短くなるように、受圧部(81a~81c)にそれぞれ形成される。
 また、図15に示すとおり、第1から第3ロックプレート(73a~73c)の隣接する隙間(73i~73k)には、連結ピン(74~76)の太丸軸(74a~76a)が配置される。また、第2ロックプレート73bと第3ロックプレート73cの隙間73jには、圧縮コイルばね83が設けられる。第2ロックプレート73bは、圧縮コイルばね83により、第3ロックプレート73cから引き離される方向に付勢力を受け、連結ピン(74~76)の太丸軸(74a~76a)は、圧縮コイルばね83の付勢力を受けることにより、第1から第3ロックプレート(73a~73c)にそれぞれ挟持される。
 ロックプレート(73a~73c)は、図15に示すとおり、受圧プレート(81a~81c)をプレート保持面(12a~12c)に接触させることによって、保持部12に保持され、ロックプレート(73a~73c)の外周面(14i~14k)は、駆動円筒72の円筒部80の内周面80aに内接する。また、ロックプレート(73a~73c)は、第1制御回転体71に連結されて、第1制御回転体71と一体になって回動する。
 尚、図16(a)~(c)に示す第1作用部(82a,82c,82e)は、第1押圧面(13a,13c,13e)から、センターシャフト7に進角方向(D1方向)のカムトルクが発生することにより、第1押圧面(13a,13c,13e)から、中心軸線L0の延びる方向に直交する力Fを受け、第2作用部(82b,82d,82f)は、第2押圧面(13b,13d,13f)から、センターシャフト7に遅角方向(D2方向)のカムトルクが発生することにより、第2押圧面(13b,13d,13f)から、中心軸線L0の延びる方向に直交する力Fを受ける。
 第3実施例の自動車用エンジンの位相可変装置70においては、第1実施例のセルフロック機構11と同様に摩擦角(θ1,θ2)をθ1<tan-1μ、θ2<tan-1μ、とすることにより、力Fに基づくセルフロック効果が発生する。また、図16(a)~(c)に示すとおり、第3実施例の受圧プレート(81a~81c)における第2距離d2は、第1実施例と同様に、第1距離d1より短いため、進角方向(D1方向)のカムトルクによるセルフロック効果は、遅角方向(D2方向)のカムトルクによるセルフロック力よりも大きくなる。
 尚、センターシャフトに一体形成される保持部の形状については、第1実施例や第3実施例の保持部12のように正6角形断面を有する形状に限られず、正多角形断面を有するフランジ部として形成されていればよい。
1            自動車用エンジンの位相可変装置
2、2’          駆動回転体
6            カムシャフト
10           相対位相角変更機構
11           セルフロック機構
12           保持部
13a,13c,13e  第1押圧面
13b,13d,13f  第2押圧面
14           ロックプレート
14a~14c      第1から第3ロックプレート
15a~15c      受圧部
17a,17c,17e  第1作用部
17b,17d,17f  第2作用部
20           円筒部
20a          円筒部の内周面
55           エンジンの位相可変装置
57           保持部
58           ロックプレート
58a、58b      第1及び第2ロックプレート
59a、59b      受圧部
60a,60c      第1押圧面
60b,60d      第2押圧面
61a,61c      第1作用部
61b,61d      第2作用部
65           セルフロック機構
70           自動車用エンジンの位相可変装置
73           ロックプレート
73a~73c      第1から第3ロックプレート
80           円筒部
80a          円筒部の内周面
81a~81c    受圧プレート(請求項5の着脱自在な受圧部)
82a,82c,82e  第1作用部
82b,82d,82f  第2作用部
d1         第1距離
d2         第2距離
L0         カムシャフトの回動中心軸線
D1         進角方向
D2         遅角方向
S1~S3      仮想面

Claims (5)

  1.  円筒部を有し、クランクシャフトによって駆動する駆動回転体と、
     駆動回転体を同軸かつ相対回動可能に支持するカムシャフトと、
     駆動回転体に対するカムシャフトの相対位相角を変更することでバルブの開閉タイミングを変更する相対位相角変更機構と、
     カムシャフトの外周にフランジ形状に一体形成された保持部と、前記保持部により、カムシャフトに対して相対回動不能に保持されると共に前記円筒部の内周面に内接するロックプレートと、を有し、前記保持部が、進角方向または遅角方向に発生するカムトルクを受けて、ロックプレートを前記円筒部の内周面に押しつけることにより、前記相対位相角のズレを防ぐセルフロック機構と、を有する自動車用エンジンの位相可変装置において、
     前記保持部の外周には、ロックプレートを押圧するプレート押圧面が、周方向略等分複数箇所に設けられ、
     前記ロックプレートは、前記プレート押圧面と同数、かつ周方向略等分複数箇所に設けられ、かつ前記プレート押圧部に対向する位置に受圧部を有し、
     前記複数のプレート押圧面は、それぞれ、前記進角方向に発生するカムトルクを受けてロックプレートを押圧する第1押圧面と、前記遅角方向に発生するカムトルクを受けてロックプレートを押圧する第2押圧面によって形成されることを特徴とする、自動車用エンジンの位相可変装置。
  2.  前記プレート押圧部及び前記ロックプレートが、周方向略等分複数箇所にそれぞれ3以上設けられた事を特徴とする、請求項1に記載の自動車用エンジンの位相可変装置。
  3.  カムシャフト中心軸線を通り、かつ前記プレート押圧面に直交する仮想面によって分断される二つの面として前記第1押圧面及び第2押圧面が、前記プレート押圧面にそれぞれ画成され、
     前記受圧部には、前記第1押圧面による押圧力が作用する第1作用部と、前記第2押圧面による押圧力が作用する第2作用部と、が設けられ、
     前記仮想面から第1作用部までの第1距離が、前記仮想面から第2作用部までの第2距離と異なるように、前記第1作用部及び第2作用部が前記受圧部に形成されたことを特徴とする、請求項1または2に記載の自動車用エンジンの位相可変装置。
  4.  前記第2距離が、前記第1距離よりも短くなるように、前記第1作用部及び第2作用部が前記受圧部に形成されたことを特徴とする、請求項3に記載の自動車用エンジンの位相可変装置。
  5.  前記受圧部が、前記ロックプレートから着脱自在に形成されたことを特徴とする、請求項3または4に記載の自動車用エンジンの位相可変装置。
PCT/JP2012/076099 2012-10-09 2012-10-09 自動車用エンジンの位相可変装置 WO2014057530A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157006728A KR20150063378A (ko) 2012-10-09 2012-10-09 자동차용 엔진의 위상 가변 장치
PCT/JP2012/076099 WO2014057530A1 (ja) 2012-10-09 2012-10-09 自動車用エンジンの位相可変装置
EP12886214.1A EP2910744A1 (en) 2012-10-09 2012-10-09 Automotive engine phase-adjusting device
JP2014540648A JPWO2014057530A1 (ja) 2012-10-09 2012-10-09 自動車用エンジンの位相可変装置
US14/427,243 US20150247428A1 (en) 2012-10-09 2012-10-09 Variable phaser for automobile engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/076099 WO2014057530A1 (ja) 2012-10-09 2012-10-09 自動車用エンジンの位相可変装置

Publications (1)

Publication Number Publication Date
WO2014057530A1 true WO2014057530A1 (ja) 2014-04-17

Family

ID=50477019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076099 WO2014057530A1 (ja) 2012-10-09 2012-10-09 自動車用エンジンの位相可変装置

Country Status (5)

Country Link
US (1) US20150247428A1 (ja)
EP (1) EP2910744A1 (ja)
JP (1) JPWO2014057530A1 (ja)
KR (1) KR20150063378A (ja)
WO (1) WO2014057530A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010046974A1 (ja) * 2008-10-22 2010-04-29 日鍛バルブ株式会社 自動車用エンジンにおけるカムシャフト位相可変装置
WO2010113279A1 (ja) * 2009-03-31 2010-10-07 日鍛バルブ株式会社 エンジンの位相可変装置
WO2011145175A1 (ja) 2010-05-18 2011-11-24 日鍛バルブ株式会社 エンジンの位相可変装置
WO2012001812A1 (ja) * 2010-07-02 2012-01-05 日鍛バルブ株式会社 エンジンの位相可変装置及びその制御装置
WO2012049727A1 (ja) * 2010-10-12 2012-04-19 日鍛バルブ株式会社 エンジンの位相可変装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609127A (en) * 1995-06-06 1997-03-11 Noplis; Edward J. Centrifugal control assembly for camshaft advance and retardation and suppression of cyclical vibration
WO2009098752A1 (ja) * 2008-02-04 2009-08-13 Nittan, Valve, Co., Ltd. 自動車用エンジンにおける位相可変装置
KR101433153B1 (ko) * 2008-04-23 2014-08-22 니탄 밸브 가부시키가이샤 자동차용 엔진에 있어서의 위상 가변 장치
JP5307145B2 (ja) * 2008-09-05 2013-10-02 日鍛バルブ株式会社 自動車用エンジンにおけるカムシャフト位相可変装置
JP6178784B2 (ja) * 2011-03-30 2017-08-09 ボーグワーナー インコーポレーテッド 同心カムシャフト位相器ねじり駆動機構

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010046974A1 (ja) * 2008-10-22 2010-04-29 日鍛バルブ株式会社 自動車用エンジンにおけるカムシャフト位相可変装置
WO2010113279A1 (ja) * 2009-03-31 2010-10-07 日鍛バルブ株式会社 エンジンの位相可変装置
WO2011145175A1 (ja) 2010-05-18 2011-11-24 日鍛バルブ株式会社 エンジンの位相可変装置
WO2012001812A1 (ja) * 2010-07-02 2012-01-05 日鍛バルブ株式会社 エンジンの位相可変装置及びその制御装置
WO2012049727A1 (ja) * 2010-10-12 2012-04-19 日鍛バルブ株式会社 エンジンの位相可変装置

Also Published As

Publication number Publication date
JPWO2014057530A1 (ja) 2016-08-25
EP2910744A1 (en) 2015-08-26
KR20150063378A (ko) 2015-06-09
US20150247428A1 (en) 2015-09-03

Similar Documents

Publication Publication Date Title
JP5102071B2 (ja) 自動車用エンジンにおける位相可変装置
JP5154657B2 (ja) 自動車用エンジンにおけるカムシャフト位相可変装置
JP5600748B2 (ja) エンジンの位相可変装置
JP5616440B2 (ja) エンジンの位相可変装置
JP5255114B2 (ja) エンジンの位相可変装置
WO2014057530A1 (ja) 自動車用エンジンの位相可変装置
JP5289584B2 (ja) エンジンの位相可変装置における電磁クラッチの回り止め構造
JP5260741B2 (ja) エンジンの位相可変装置
JP6029691B2 (ja) 自動車用エンジンの位相可変装置
JP5802273B2 (ja) 自動車用エンジンの位相可変装置
JP5840768B2 (ja) エンジンの位相可変装置
JP5840769B2 (ja) エンジンの位相可変装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540648

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14427243

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157006728

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012886214

Country of ref document: EP