WO2014056244A1 - 一种阵列基板、psva型液晶显示面板及其制作方法 - Google Patents

一种阵列基板、psva型液晶显示面板及其制作方法 Download PDF

Info

Publication number
WO2014056244A1
WO2014056244A1 PCT/CN2012/083143 CN2012083143W WO2014056244A1 WO 2014056244 A1 WO2014056244 A1 WO 2014056244A1 CN 2012083143 W CN2012083143 W CN 2012083143W WO 2014056244 A1 WO2014056244 A1 WO 2014056244A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
electrically connected
data
control
switching element
Prior art date
Application number
PCT/CN2012/083143
Other languages
English (en)
French (fr)
Inventor
张鑫
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/695,299 priority Critical patent/US9299299B2/en
Priority to DE112012006910.2T priority patent/DE112012006910B4/de
Publication of WO2014056244A1 publication Critical patent/WO2014056244A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • G02F1/136263Line defects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13775Polymer-stabilized liquid crystal layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/08Fault-tolerant or redundant circuits, or circuits in which repair of defects is prepared
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular, to an array substrate, a PSVA type liquid crystal display panel, and a method of fabricating the same.
  • the data line As an input channel of the data signal of the liquid crystal display panel, the data line is one of the important components of the liquid crystal display panel, and has a great influence on the display effect of the liquid crystal display panel.
  • the data line When the data line is disconnected, the data signal cannot pass through the entire data line, and the pixel electrode on the broken line cannot obtain a normal data signal, so that a dark line is formed, which affects the quality of the liquid crystal display panel. Therefore, it is usually necessary to repair the data line.
  • the data line of the LCD panel before the module process (Data) Line) Schematic diagram of the drive and repair line design.
  • the shorting bar 1 includes an odd (ODD) channel 1a and an even (EVEN) channel 1b, a portion of the data line 3 is connected to the odd channel 1a, and another portion of the data line 3 is connected to the even channel 1b, and the data signals pass through the odd channel 1a and the even channel 1b, respectively.
  • the binding area 2 is an area for binding the data line driver in the subsequent module process, and the repair line 4 of the data line 3 is connected to the binding area 2.
  • FIG. 2 is a schematic diagram showing disconnection of the data line in FIG. 1.
  • laser repair is performed after the liquid crystal display panel is completed, and the data signal passes through the binding area 2
  • the data line driver is input to the repair line 4, and the data signal is transmitted to the disconnection portion 5 through the repair line 4, so that the dark line becomes a dark point, so that the quality level of the liquid crystal display panel can be improved.
  • the data signal of repair line 4 is provided by the data line driver, and the data line driver is installed in the bonding area 2 in the module process of the liquid crystal display panel, and there is no data line driver in the array process and the assembly process. Therefore, in the array process and the assembly process, the repair line 4 cannot input a data signal.
  • PSVA Polymer-Stabilized Vertical Alignment, polymer stabilized vertical technology
  • the PSVA process in the assembly process requires a process of applying voltage and then ultraviolet light, that is, first applying a voltage between the upper and lower substrates so that the liquid crystal molecules between the substrates have a certain The pretilt angle is then irradiated or heated by the liquid crystal molecules to cause the monomer molecules in the liquid crystal molecules to condense toward the surface of the PI (Polyimide) film, so that the liquid crystal molecules have a fixed pretilt angle.
  • PI Polyimide
  • the data line driver has not been installed in the bonding area 2 and cannot input a data signal in the repair line 4, resulting in a voltage pre-tilt angle for the liquid crystal molecules.
  • the voltage is not applied to the portion after the disconnection, the liquid crystal molecules in this portion cannot form a pretilt angle, so that there is still a weak line after the liquid crystal display panel is completed.
  • the usual solution is to electrically connect one end of the repair line 7 to the shorting bar 6 and the other end directly to the lower end of the data line 8.
  • the required voltage can be input to the repair line 7 through the shorting bar 6 to apply a voltage through the repair line 7 to the portion 8a after the disconnection, thereby This portion of the liquid crystal molecules can be made to form a pretilt angle.
  • this repair line design allows the repair line 7 to be directly connected to the data line 8, and when the voltage signal is input to the shorting bar 6, the voltage signals across the data line 8 are made uniform and cannot be broken (Open Short) test.
  • the technical problem to be solved by the present invention is to provide an array substrate, a PSVA type liquid crystal display panel and a manufacturing method thereof, which can improve the production yield of the PSVA process.
  • a technical solution adopted by the present invention is to provide an array substrate applied to a PSVA type liquid crystal display panel, comprising a plurality of data lines and data line repair structures; and the data line repair structure includes at least one repair line, At least one control line and a plurality of switching elements, each of which comprises a control end, an input end and an output end, wherein the control end is electrically connected to the control line, the input end is electrically connected to one end of the repair line, and the output end is electrically connected to a data line, the repair line
  • the other end electrically connects the shorting bar for inputting the data signal in the shorting bar test phase; one end of each data line is electrically connected with the shorting bar during the shorting bar test phase, to input the data signal through the shorting bar, and the other data line is another One end is respectively connected to the repairing line through a switching element; the number of the data line and the switching element are the same, the shorting bar includes a first shorting line and a second shorting line
  • the number of repair lines and control lines is one, one end of the repair line is electrically connected to the first short circuit or the second short circuit in the shorting bar test phase, the other end is electrically connected to all switching elements, and the control line is electrically connected with all switching elements. To control the conduction and disconnection of the switching elements.
  • the number of repair lines and control lines are two, one end of one repair line is electrically connected to the first short line or the second short line in the shorting bar test stage, and the other end is electrically connected to the switching element corresponding to the first data line, and the other end
  • One end of one repairing line is electrically connected to the first shorting line or the second shorting line in the shorting bar test stage, and the other end is electrically connected to the switching element corresponding to the second data line
  • one control line is electrically connected with the switching element corresponding to the first data line
  • the respective switching elements are controlled to be turned on and off, and the other control line is electrically connected to the switching elements corresponding to the second data lines to control the turning on and off of the respective switching elements.
  • a PSVA type liquid crystal display panel including an array substrate and a source driving chip for inputting a data signal;
  • the array substrate includes a plurality of data lines and data lines Repairing the structure;
  • the data line repairing structure comprises at least one repairing line, at least one control line and a plurality of switching elements, each switching element comprises a control end, an input end and an output end, the control end is electrically connected to the control line, and the input end is electrically connected to the repair line At one end, the output terminal is electrically connected to a data line.
  • the source driver chip is mounted such that the other end of the repair line is electrically connected to the source driver chip; one end of each data line is electrically connected to the source driver.
  • the chip, the other end of each data line is respectively connected to the repair line through a switching element; wherein, before the module process of the liquid crystal display panel, one end of the repair line is electrically connected to the switching element, and the other end is electrically connected in the short-circuit bar test stage.
  • a shorting bar for inputting a data signal; one end of each data line is electrically connected during a shorting bar test phase
  • the short-circuit bar is connected to the repair line through a switching element respectively; when the data line is tested for disconnection, the control switch element is disconnected to input a disconnection test signal at both ends of the data line, and when the data line is disconnected, in the PSVA
  • the control switch element is turned on during the process so that the data signal input by the shorting bar is transmitted to the disconnection of the data line through the repair line.
  • the shorting bar comprises a first shorting line and a second shorting line
  • the plurality of data lines comprise a plurality of first data lines and a plurality of second data lines
  • each of the first data lines One end is electrically connected to the first short-circuit line in the short-circuit bar test phase, and the other end is connected to the repair line through a switching element
  • one end of each second data line is electrically connected to the second short-circuit line in the short-circuit bar test phase, and One end is connected to the repair line through one switching element.
  • the number of repair lines and control lines is one, one end of the repair line is electrically connected to the first short circuit or the second short circuit in the shorting bar test phase, the other end is electrically connected to all switching elements, and the control line is electrically connected with all switching elements. To control the conduction and disconnection of the switching elements.
  • the number of repair lines and control lines are two, one end of one repair line is electrically connected to the first short line or the second short line in the shorting bar test stage, and the other end is electrically connected to the switching element corresponding to the first data line, and the other end
  • One end of one repairing line is electrically connected to the first shorting line or the second shorting line in the shorting bar test stage, and the other end is electrically connected to the switching element corresponding to the second data line
  • one control line is electrically connected with the switching element corresponding to the first data line
  • the respective switching elements are controlled to be turned on and off, and the other control line is electrically connected to the switching elements corresponding to the second data lines to control the turning on and off of the respective switching elements.
  • the switching element is a thin film transistor, and the thin film transistor includes a gate as a control terminal, a source as an input terminal, and a drain as an output terminal.
  • the gate is electrically connected to the control line, and the source and the repair line are electrically connected, and the drain and the data line are connected. Electrical connection.
  • another technical solution adopted by the present invention is to provide a method for fabricating a PSVA type liquid crystal display panel, comprising: separately fabricating an array substrate and a color filter substrate, wherein the array substrate includes a plurality of data lines and The data line repairing structure, the data line repairing structure comprises at least one repairing line, at least one control line and a plurality of switching elements, each switching element comprises a control end, an input end and an output end, the control end is electrically connected to the control line, and the input end is electrically connected One end of the repairing line is electrically connected to one data line, and the other end of the repairing line is electrically connected to the shorting bar for inputting the data signal in the shorting bar test phase, and one end of each data line is electrically connected with the shorting bar during the shorting bar test phase Connecting to input a data signal through a shorting bar, the other end of each data line is respectively connected to the repairing wire through a switching element; assembling the array substrate and the color filter substrate
  • the shorting bar comprises a first shorting line and a second shorting line
  • the plurality of data lines comprise a plurality of first data lines and a plurality of second data lines
  • each of the first data lines One end is electrically connected to the first short-circuit line in the short-circuit bar test phase, and the other end is connected to the repair line through a switching element
  • one end of each second data line is electrically connected to the second short-circuit line in the short-circuit bar test phase, and One end is connected to the repair line through one switching element.
  • the number of repair lines and control lines is one, one end of the repair line is electrically connected to the first short circuit or the second short circuit in the shorting bar test phase, the other end is electrically connected to all switching elements, and the control line is electrically connected with all switching elements. To control the conduction and disconnection of the switching elements.
  • the number of repair lines and control lines are two, one end of one repair line is electrically connected to the first short line or the second short line in the shorting bar test stage, and the other end is electrically connected to the switching element corresponding to the first data line, and the other end
  • One end of one repairing line is electrically connected to the first shorting line or the second shorting line in the shorting bar test stage, and the other end is electrically connected to the switching element corresponding to the second data line
  • one control line is electrically connected with the switching element corresponding to the first data line
  • the respective switching elements are controlled to be turned on and off, and the other control line is electrically connected to the switching elements corresponding to the second data lines to control the turning on and off of the respective switching elements.
  • the switching element is a thin film transistor, and the thin film transistor includes a gate as a control terminal, a source as an input terminal, and a drain as an output terminal.
  • the gate is electrically connected to the control line, and the source and the repair line are electrically connected, and the drain and the data line are connected. Electrical connection.
  • each data line is electrically connected with a shorting bar for inputting a data signal in a shorting bar test phase to input a desired data signal through a shorting bar
  • each The other end of the data line is respectively connected to the repairing line through a switching element
  • the control line is electrically connected to the control end of the switching element to control the switching element to be turned on or off
  • the input end of the switching element is electrically connected to one end of the repairing line
  • the output end Electrically connecting a data line, the repair line and the data line are electrically connected when the switching element is turned on, and the other end of the repair line is electrically connected to the shorting bar during the shorting bar test phase, and the data line is disconnected before the PSVA process
  • the control line is input with a control signal to turn on the switching element, whereby the data signal can be transmitted to the data line after the disconnection through the repair line, and the data signal is effectively applied
  • the liquid crystal molecules at the time of the break can form a fixed pretilt angle, which ensures the smooth progress of the PSVA and improves the production yield.
  • the control switching element is disconnected so that the data line is not connected to the repair line. When the data line is disconnected, the data line and the repair line are not connected, so that the signals at both ends of the broken data line are inconsistent, so the data is passed.
  • a disconnection test signal is input to both ends of the line to detect a data line in which a disconnection occurs.
  • FIG. 1 is a schematic structural diagram of a data line driving and repairing line design of a liquid crystal display panel prior to a module manufacturing process in the prior art
  • FIG. 2 is a schematic structural view showing a disconnection of a data line in FIG. 1;
  • FIG. 3 is a schematic structural view of a repair line of a data line in the prior art
  • FIG. 4 is a schematic structural view of an embodiment of an array substrate applied to a PSVA type liquid crystal display panel according to the present invention
  • FIG. 5 is a schematic structural view of an embodiment of the array substrate of FIG. 4 when it is a part of a large glass substrate, and shows a data line in which an disconnection occurs in the array substrate;
  • FIG. 6 is a schematic structural view of another embodiment of the array substrate of FIG. 4 when it is a part of a large glass substrate, and shows a data line in which an disconnection occurs in the array substrate;
  • FIG. 7 is a schematic structural view of another embodiment of an array substrate applied to a PSVA type liquid crystal display panel according to the present invention.
  • FIG. 8 is a schematic structural view of an embodiment of the array substrate of FIG. 7 when it is a part of a large glass substrate, and shows a data line in which an disconnection occurs in the array substrate;
  • FIG. 9 is a schematic structural view of still another embodiment of an array substrate applied to a PSVA type liquid crystal display panel according to the present invention.
  • FIG. 10 is a schematic structural view of an embodiment of a PSVA liquid crystal display panel of the present invention.
  • Fig. 11 is a flow chart showing an embodiment of a method of manufacturing a PSVA liquid crystal display panel of the present invention.
  • the array substrate 100 includes a plurality of data lines 10 and a data line repair structure 11.
  • the data line 10 is used to apply a data signal to the array substrate 100
  • the data line repair structure 11 is used to repair the broken data line during the PSVA process.
  • the data line repair structure 11 includes a repair line 111, a control line 112, and a set of switching elements 113.
  • the switching element set 113 includes a plurality of switching elements 1131, and each of the switching elements 1131 includes a control end 11311, an input end 11312, and an output end 11313.
  • the control terminal 11311 of each switching element 1131 is electrically connected to the control line 112, the input terminal 11312 is electrically connected to one end of the repair line 111, and the output terminal 11313 is electrically connected to a data line 10.
  • the other end of the repair line 111 electrically connects a shorting bar for inputting a data signal during the shorting bar test phase to transmit a test data signal to the repairing line 111 through the shorting bar.
  • the short-circuit bar test stage refers to a process stage before the short-circuit bar for inputting a data signal in the process of manufacturing the liquid crystal display panel is not cut, that is, a stage before the panel cutting process is not performed.
  • One end of each data line 10 is electrically connected to the shorting bar at the shorting bar test stage to input a data signal through the shorting bar, and the other end of each data line 10 is connected to the repairing line 111 through a switching element 1131, respectively.
  • the data line 10 and the number of switching elements 1131 are identical, and one data line 10 corresponds to one switching element 1131 to be connected to the repair line 111 through the switching element 1131.
  • the switching element 1131 is a thin film transistor including a gate as a control terminal, a source as an input terminal, and a drain as an output terminal.
  • the gate of the thin film transistor is electrically connected to the control line 112
  • the source is electrically connected to the repair line 111
  • the drain is electrically connected to the data line 10.
  • the switching element 1131 can also be other types of three-terminal control switches, and is not specifically limited herein.
  • FIG. 5 is a schematic structural view of an embodiment of the array substrate of FIG. 4 as a part of a large glass substrate, and shows that occurs in the array substrate. Broken data line.
  • the manufacturing process of the liquid crystal display panel is mainly divided into an array process, a group process, and a module process, and the short-circuit bar test stage involves an array process and a group process.
  • the array process is a process of fabricating the array substrate 200.
  • the large glass substrate 300 is the main material for fabricating the array substrate 200.
  • the main components of the array substrate 200, such as the data lines 20, are formed on the large glass substrate 300.
  • the source driving chip (COF) is not mounted on the array substrate 200, but only the bonding region 22 for binding the source driving chip is disposed on the array substrate 200 for subsequent
  • the source driver chip is mounted in the bonding region 22 in the module process to drive the data line 20 through the source driver chip.
  • the shorting bar 23 for testing is usually disposed on the large glass substrate 300 instead of the source driving.
  • the chip inputs a data signal to the data line 20, and drives the data line 20 to operate.
  • the shorting bar 23 is cut off after the subsequent entry into the module process. After the shorting bar 23 is cut, the shorting bar test phase ends, and the shorting bar 23 is used to input the data signal during the shorting bar test phase.
  • the data line 20 includes a plurality of first data lines 201 and a plurality of second data lines 202 to respectively divide the data signals into odd-numbered signals and even-numbered signals into the array substrate 200.
  • the data signals are The odd signal and the even signal are divided into the first data line 201 and the second data line 202, respectively.
  • the shorting bar 23 on the large glass substrate 300 also includes two shorting lines, which are a first shorting line 231 and a second shorting line 232, respectively.
  • the first short circuit 231 is an odd channel to input an odd signal
  • the second short circuit is an even channel to input an even signal.
  • the odd signal and the even signal are the same data signal.
  • One end of each of the first data lines 201 is electrically connected to the first short-circuit line 231 in the short-circuit bar test stage to input an odd signal through the first short-circuit line 231, and the other end is connected to the repair line 211 through one switching element 2131;
  • One end of a second data line 202 is electrically connected to the second short-circuit line 232 during the short-circuit bar test phase to input an even-numbered signal through the second short-circuit line 232, and the other end is connected to the repair line 211 through a switching element 2131.
  • the number of repair lines 211 and control lines 212 is one, and one end of the repair line 211 is electrically connected to the second short-circuit line 232 in the short-circuit bar test stage to input signals through the second short-circuit line 232, and the other end and all
  • the input end 21312 of the switching element 2131 is electrically connected, and the control end 21311 of all the switching elements 2131 is electrically connected to the control line 212 to control the conduction and disconnection of the switching element 2131 through the control line 212, and the output end 21313 of the partial switching element 2131 is electrically
  • a first data line 201 is connected, and an output end 21313 of the partial switching element 2131 is electrically connected to a second data line 202.
  • the large glass substrate 300 has not been subjected to Cutting, the large glass substrate 300 is bonded to the substrate on which the color filter substrate is formed, so that the array substrate 200 is bonded to the color filter substrate to form an assembly panel, and has a liquid crystal layer in the assembly panel.
  • the PSVA process in the assembly process is entered to align the liquid crystal molecules of the liquid crystal layer.
  • a voltage signal is applied through the array substrate 200 and the color filter substrate, and the liquid crystal molecules are irradiated with ultraviolet light so that the liquid crystal molecules have a fixed pretilt angle.
  • the voltage signal of the array substrate 200 is input to the data line 20 through the shorting bar 23, and the voltage signal is input to the array substrate 200 through the data line 20.
  • one of the data lines 2021 of the data line 20 has been disconnected before the PSVA process, and the data line 2021 that has been disconnected can be performed by the repair structure 21 of the present embodiment during the PSVA process. repair.
  • the PSVA process when a voltage signal needs to be applied to the array substrate 200, an odd signal and an even signal are respectively input through the first short circuit 231 and the second short wire 232 in the shorting bar 23, and the odd signal and the even signal are The voltage signals required by the array substrate 200 are the same signals.
  • the odd signal and the even signal are input to the array substrate 200 through the first data line 201 and the second data line 203, respectively.
  • a control signal is input to the control line 212 to turn on all of the switching elements 2131 in the switch set 213, at which time the repair line 211 transmits the even signal through a switching element 2131 to a data line 20 (which may be the first data line 201 or the second
  • the data line 202 has a voltage signal input at each end of the data line 20 away from the shorting bar 23. Therefore, a part of the data line 20211 after the disconnection position 24 also has a voltage signal input, so that the liquid crystal corresponding to the part of the data line 20211 The molecules can form a pretilt angle, which ensures the smooth progress of the PSVA process.
  • the data line repair structure 21 of the present embodiment can also perform a disconnection test on the data line 20. Specifically, when the disconnection test is required, the control signal is not input to the control line 212 to turn off all the switching elements 2131, so that the voltage signal of the shorting bar 23 cannot be transmitted to the data line 20 through the repair line 211, if there is a data line such as The data line 2021 is disconnected, and the voltage signals at both ends of the data line 2021 may be inconsistent, that is, the partial data line 20211 after the disconnection position 24 has no voltage signal input.
  • test signal When the test signal is input at both ends of the data line 2021, since the signals at both ends of the data line 2021 are inconsistent, the test signal generates different feedback signals due to different voltage signals across the data line 2021, and the break signal can be judged according to the feedback signal.
  • the data line of the line is the data line 2021.
  • the data line repairing structure 21 can repair the broken data line 2021 during the PSVA process, thereby ensuring the PSVA. Smooth progress and improved production yield.
  • the data line 20 can be tested for disconnection by the data line repair structure 21, which further improves the yield of production.
  • the repair line 311 can also be in the shorting bar test stage. It is electrically connected to the first short-circuit line 321 to input a corresponding signal through the first short-circuit line 321 for the purpose of repair.
  • the specific circuit connection and repair principle can be referred to the foregoing implementation manner, and details are not described herein.
  • the repair line and the control line of the array substrate are both one.
  • both the repair line and the control line of the array substrate of the present embodiment are two.
  • a first repair line 411, a second repair line 412, a first control line 413, a second control line 414, and a switch set 415 are included, wherein the switch set 415 includes multiple Switching elements 4151.
  • the plurality of data lines 42 includes a plurality of first data lines 421 and a plurality of second data lines 422, and each of the first data lines 421 and each of the second data lines 422 respectively correspond to one switching element 4151.
  • the input end 41512 of the switching element 4151 corresponding to all the first data lines 421 is electrically connected to one end of the first repairing line 411, and the control end 41511 is electrically connected to the first control line 413 to control the conduction of the corresponding switching element 4151. And disconnected, and the output end 41513 of the switching element 4151 is electrically connected to a first data line 421, and the other end of the first repair line 411 is electrically connected to the shorting bar for inputting the data signal in the shorting bar test phase (not shown) ).
  • the input end 41512 of the switching element 4151 corresponding to all the second data lines 422 is electrically connected to one end of the second repairing line 412, and the control end 41511 is electrically connected to the second control line 414 to control the turning on and off of the corresponding switching element 4151.
  • the output terminal 41513 of the switching element 4151 is electrically connected to a second data line 422, and the other end of the second repairing line 412 is electrically connected to the shorting bar during the shorting bar test phase.
  • FIG. 8 is a schematic structural view of an embodiment in which the array substrate of FIG. 7 is formed on a large glass substrate, and shows a data line in which an disconnection occurs in the array substrate.
  • the first repair line 511 is electrically connected to the first short-circuit line 531 in the short-circuit bar 53 during the short-circuit bar test phase
  • the second repair line 512 is in the short-circuit bar test stage and the second short-circuit line 532 in the short-circuit bar 53. Electrical connection.
  • a control signal may be input to the first control line 513 and the second control line 514 to control the conduction of the corresponding switching element 5151, and if it can be determined that the first data line 521 or the second data line 522 is disconnected, only It is necessary to input a control signal to the corresponding control line.
  • the switching element 5151 After the switching element 5151 is turned on, the voltage signal required for the PSVA process is transmitted to the first repair line 511 and the second repair line 512 through the first short line 531 and the second short line 532, respectively, and the voltage signal passes through the corresponding switching element. 5151 is respectively input to one end of the first data line 521 and the second data line 522 away from the shorting bar 53, so that the disconnected data line 5221 can also input a voltage signal in the portion 52211 after the disconnection position, thereby ensuring the PSVA process. Smooth progress and improved production yield. Moreover, the disconnection test of the data line 52 can also be performed by controlling the disconnection of the switching element 5151, which will not be described herein.
  • first repairing line 511 of the present embodiment may also be electrically connected to the second short-circuiting line 532, and the second repairing line 512 may also be electrically connected to the first short-circuiting line 531, and is not specifically limited herein.
  • the number of repair lines 711 is one, but includes two branches, which are a first branch 7111 and a second branch 7112, respectively, and the number of control lines is two. , are a first control line 712 and a second control line 713, respectively.
  • Each of the first data lines 721 is connected to the first branch 7111 of the repair line 711 through a first switching element 714, and each of the second data lines 722 passes through a second switching element 715 and a second branch of the repair line 711.
  • 7112 connection The first control line 712 controls the conduction and disconnection of the first switching element 714 corresponding to the first data line 721, and the second control line 713 controls the conduction and disconnection of the second switching element 715 corresponding to the second data line 722. open.
  • the repair line 711 can perform wire break repair on the first data line 721 and the second data line 722, respectively.
  • the specific repairing principle can be referred to the foregoing embodiment, and details are not described herein.
  • the number of repair lines and control lines of the array substrate of the present invention is not specifically limited, and only needs to ensure that each data line is connected to the repair line through one switching element to pass and disconnect the switching elements. Correspondingly, the data line is repaired and disconnected.
  • the present invention also provides an embodiment of a PSVA type liquid crystal display panel.
  • the liquid crystal display panel 800 includes an array substrate 801 and a source driving chip 802 for inputting a data signal, wherein the array substrate 801 is the array substrate described in each of the above embodiments.
  • the liquid crystal display panel of the present embodiment will be described by taking an array substrate shown in FIG. 4 as an example.
  • the array substrate 801 includes a plurality of data lines 80 and a data line repair structure 81.
  • the data line repair structure 11 includes a repair line 811, a control line 812, and a switch set 813.
  • the switch set 813 includes a plurality of switching elements 8131, and each of the switching elements 8131 includes a control end 81381, an input end 81312, and an output end 81313.
  • the control terminal 81381 of the switching element 8131 is electrically connected to the control line 812 to control the on and off of the switching element 8131 by inputting a control signal through the control line 812.
  • the input terminal 81312 is electrically connected to one end of the repair line 811, and the output terminal is electrically connected to a data line 10.
  • the source driving chip 802 is mounted in the bonding region 82 of the array substrate 801 such that the other end of the repairing line 811 is electrically connected to the source driving chip 802, each of the data lines 80.
  • One end is electrically connected to the source driving chip 802 to input a data signal through the source driving chip 802, and the other end of each data line 80 is connected to the repairing line 811 through one switching element 8131, respectively.
  • the data line 80 needs to be tested.
  • a short-circuit bar can be used to input a data signal to the data line for related testing. Therefore, before the source driving chip 82 is not mounted, one end of the repairing wire is electrically connected to the switching element 8131, and the other end is electrically connected to the shorting bar for inputting a data signal in the shorting bar test phase, and one end of each data line 80 is short-circuited.
  • the bar test phase is also electrically connected to the shorting bar, and the other end is connected to the repair wire 811 through a switching element 8131, respectively.
  • the control line 812 does not input a control signal to cause the switching element 8131 to be turned off, and the data signal required for the data line 80 is input through the shorting bar, after the data line
  • the test signals of the open circuit test are input at both ends of the 80. Since the repair line 811 and the data line 80 are not connected, when the data line 80 is disconnected, the data signals at both ends of the broken data line are inconsistent, that is, the data after the disconnection. There is no data signal input in the line part, so that the test signal will generate different feedback signals, and the data line where the disconnection occurs can be judged according to the feedback signal.
  • the shorting bar inputs a data signal to one end of the repair line 811 and the data line 80, and the control switching element 8131 is turned on, so that the repair line 811 is The data signal is input to the other end of the data line 80 through the switching element 8131, so that data signal input is performed at both ends of the data line where the disconnection occurs, thereby completing the repair of the broken data line.
  • the liquid crystal display panel 800 of the present embodiment is provided with the data line repair structure 81 in the array substrate 801, so that the data line of the disconnection can be repaired during the PSVA process, thereby ensuring the smooth progress of the PSVA and also enabling The data line 80 is tested for breaking, which improves the production yield.
  • an embodiment of a method for fabricating a PSVA liquid crystal display panel includes the following steps:
  • Step S101 fabricating an array substrate and a color filter substrate, respectively.
  • the array substrate may be one of the embodiments of the array substrate described above, and includes a plurality of data lines and data line repair structures, and the data line repair structure includes at least one repair line, at least one control line, and a plurality of switching elements, each switch
  • the component includes a control end, an input end and an output end, so that the control end is electrically connected to the control line, the input end is electrically connected to one end of the repair line, the output end is electrically connected to one data line, and the other end of the repair line is electrically connected in the short-circuit bar test stage.
  • each data line is electrically connected to the shorting bar during the shorting bar test phase to input a data signal through the shorting bar, and the other end of each data line is connected to the repairing wire through a switching element .
  • Step S102 assembling the array substrate and the color filter substrate to form an assembly panel, wherein after assembling the array substrate and the color filter substrate, a liquid crystal layer is provided between the array substrate and the color filter substrate.
  • Step S103 input a voltage signal to the array substrate and the color filter substrate of the assembled panel to form a pretilt angle of the liquid crystal molecules of the liquid crystal layer between the array substrate and the color filter substrate, and before inputting the voltage signal to the array substrate, A control signal is input to the control line of the array substrate to turn on the switching element.
  • a voltage signal is input to the array substrate and the color filter substrate so that the liquid crystal molecules in the assembled panel form a certain arrangement under the action of the voltage signal, and have a pretilt angle.
  • the voltage signal required by the array substrate is input to the data line through the shorting bar, and is input into the array substrate through the data line.
  • first turning on the switching element of the data line repair structure in the array substrate so that the voltage signal can be transmitted to the corresponding data line through the repair line and the switching element, thereby being able to apply the voltage signal to the PSVA.
  • the switching elements in the data line repair structure can be controlled to be closed, so that the repair lines and the data lines are not connected, thereby enabling data lines.
  • the open circuit test when it is required to perform a disconnection test on the data lines in the array substrate, the switching elements in the data line repair structure can be controlled to be closed, so that the repair lines and the data lines are not connected, thereby enabling data lines.
  • the open circuit test when it is required to perform a disconnection test on the data lines in the array substrate, the switching elements in the data line repair structure can be controlled to be closed, so that the repair lines and the data lines are not connected, thereby enabling data lines.
  • Step S104 ultraviolet light irradiation or heating is performed on the assembly panel to fix the arrangement of the liquid crystal molecules so that the liquid crystal molecules have a fixed pretilt angle.
  • Step S105 cutting the assembly panel and assembling the module to form a liquid crystal display panel.
  • the short-circuit bar is cut off to install components such as a circuit board and a source driver chip in the subsequent module process to complete the fabrication of the liquid crystal display panel.
  • the repair line of the array substrate is connected to the data line through the switching element, and each data line corresponds to one switching element, so as to control the connection and disconnection of the repair line and the data line through the switching element, thereby realizing the pair of data lines.
  • the open circuit test and disconnection repair ensure the smooth progress of the PSVA process and improve the production yield.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种应用于PSVA型液晶显示面板的阵列基板(100),包括多条数据线(10)和数据线修复结构(11),该数据线修复结构(11)包括修复线(111)、控制线(112)以及多个开关元件(1131),每条数据线(10)的一端在短路棒测试阶段与短路棒电连接,另一端通过一个开关元件(1131)与修复线(111)连接,开关元件(1131)的控制端(11311)电连接控制线(112),输入端(11312)电连接修复线(111)的一端,输出端(11313)电连接一条数据线(10),修复线(111)的另一端在短路棒测试阶段电连接短路棒。该阵列基板(100)能够提高PSVA制程的生产良率。还公开了一种PSVA型液晶显示面板及其制作方法。

Description

一种阵列基板、PSVA型液晶显示面板及其制作方法
【技术领域】
本发明涉及液晶显示技术领域,特别是涉及一种阵列基板、PSVA型液晶显示面板及其制作方法。
【背景技术】
数据线作为液晶显示面板数据信号的输入通道,是液晶显示面板的重要元件之一,对液晶显示面板的显示效果也具有较大的影响。当数据线发生断线时,使得数据信号无法通过整条数据线,断线上的像素电极无法得到正常的数据信号,以至于形成暗线,影响了液晶显示面板的质量。因此,通常需对数据线进行修复设计。
如图1所示为现有技术中一般LCD(Liquid Crystal Display)液晶显示面板在模组制程之前的数据线(Data line)驱动和修复线设计的示意图。在液晶显示面板的模组制程之前,在进行各阶段(如阵列制程和组立制程)的生产时,所需的数据信号由短路棒(Shorting bar)1输入至数据线3。短路棒1包括奇数(ODD)通道1a和偶数(EVEN)通道1b,一部分数据线3连接至奇数通道1a,另一部分数据线3连接至偶数通道1b,数据信号分别通过奇数通道1a和偶数通道1b输入至相应的数据线3中,以驱动数据线3工作。绑定区域2为后续模组制程中用于绑定数据线驱动器的区域,数据线3的修复线4连接至绑定区域2。
如图2所示为图1中的数据线发生断线的示意图,当其中一条数据线31发生断线时,在液晶显示面板制作完成之后会进行激光修复,数据信号通过绑定区域2中的数据线驱动器输入至修复线4,通过修复线4将数据信号传输至断线处5,使得暗线变成暗点,从而能提高液晶显示面板的质量等级。
修复线4的数据信号是由数据线驱动器提供,而数据线驱动器在液晶显示面板的模组制程中才得以安装在绑定区域2中,在阵列制程和组立制程时还没有数据线驱动器。因此,在阵列制程和组立制程中,修复线4无法输入数据信号。在PSVA(Polymer-Stabilized Vertical Alignment,聚合物稳定垂直技术)模式的液晶显示面板中,组立制程中的PSVA制程需要进行一道加电压然后紫外光照射的制程,即首先在上下基板间施加电压使得基板间的液晶分子具有一定的预倾角,然后对液晶分子进行紫外光照射或加热使得液晶分子中的单体分子向PI(Polyimide,配向膜)表面凝结,从而使液晶分子具有固定的预倾角。但是,当在PSVA制程之前,数据线3a已经发生了断线,而数据线驱动器还未安装在绑定区域2中而无法在修复线4输入数据信号,导致在加电压使液晶分子具有预倾角时,无法将电压施加到断线之后的部分,造成这部分的液晶分子无法形成预倾角,从而使得液晶显示面板制作完成后仍存在弱线。
如图3所示,通常的解决方法是将修复线7的一端电连接至短路棒6,另一端直接连接至数据线8的下端。当在PSVA制程之前发生数据线断线时,在PSVA制程中,所需的电压可通过短路棒6输入至修复线7,以通过修复线7将电压施加至断线之后的部分8a,由此能使得这部分的液晶分子形成预倾角。但是,此种修复线设计使修复线7直接与数据线8连接,在短路棒6输入电压信号时,使得数据线8两端的电压信号一致而无法进行断路(Open short)测试。
【发明内容】
本发明主要解决的技术问题是提供一种阵列基板、PSVA型液晶显示面板及其制作方法,能够提高PSVA制程的生产良率。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种应用于PSVA型液晶显示面板的阵列基板,包括多条数据线和数据线修复结构;数据线修复结构包括至少一条修复线、至少一条控制线以及多个开关元件,每个开关元件包括控制端、输入端和输出端,控制端电连接控制线,输入端电连接修复线的一端,输出端电连接一条数据线,修复线另一端在短路棒测试阶段电连接用于输入数据信号的短路棒;每条数据线的一端在短路棒测试阶段均与短路棒电连接,以通过短路棒输入数据信号,每条数据线的另一端分别通过一个开关元件与修复线连接;数据线和开关元件的数量一致,短路棒包括第一短路线和第二短路线,多条数据线包括多条第一数据线和多条第二数据线,每条第一数据线的一端在短路棒测试阶段均与第一短路线电连接,另一端分别通过一个开关元件与修复线连接,每条第二数据线的一端在短路棒测试阶段均与第二短路线电连接,另一端分别通过一个的开关元件与修复线连接;开关元件为薄膜晶体管,薄膜晶体管包括作为控制端的栅极、作为输入端的源极以及作为输出端的漏极,栅极与控制线电连接,源极与修复线电连接,漏极与数据线电连接;其中,对数据线进行断路测试时,控制开关元件断开,以在数据线两端输入断路测试信号,当数据线发生断线时,在PSVA制程中控制开关元件导通,以使得数据信号通过修复线传送至数据线的断线处。
其中,修复线和控制线的数量均为一条,修复线的一端在短路棒测试阶段电连接第一短路线或第二短路线,另一端电连接所有开关元件,控制线与所有开关元件电连接以控制开关元件的导通和断开。
其中,修复线和控制线的数量均为两条,一条修复线的一端在短路棒测试阶段电连接第一短路线或第二短路线,另一端电连接第一数据线对应的开关元件,另一条修复线的一端在短路棒测试阶段电连接第一短路线或第二短路线,另一端电连接第二数据线对应的开关元件,一条控制线与第一数据线对应的开关元件电连接以控制相应开关元件的导通和断开,另一条控制线与第二数据线对应的开关元件电连接以控制相应开关元件的导通和断开。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种PSVA型液晶显示面板,包括阵列基板和用于输入数据信号的源极驱动芯片;阵列基板包括多条数据线以及数据线修复结构;数据线修复结构包括至少一条修复线、至少一条控制线以及多个开关元件,每个开关元件包括控制端、输入端和输出端,控制端电连接控制线,输入端电连接修复线的一端,输出端电连接一条数据线,在液晶显示面板的模组制程中,安装源极驱动芯片以使得修复线另一端电连接源极驱动芯片;每条数据线的一端电连接源极驱动芯片,每条数据线的另一端分别通过一个开关元件与修复线连接;其中,在液晶显示面板的模组制程之前,修复线的一端电连接开关元件,另一端在短路棒测试阶段电连接用于输入数据信号的短路棒;每条数据线的一端在短路棒测试阶段电连接短路棒,另一端分别通过一个开关元件与修复线连接;对数据线进行断路测试时,控制开关元件断开,以在数据线两端输入断路测试信号,当数据线发生断线时,在PSVA制程中控制开关元件导通,以使得短路棒输入的数据信号通过修复线传送至数据线的断线处。
其中,数据线和开关元件的数量一致,短路棒包括第一短路线和第二短路线,多条数据线包括多条第一数据线和多条第二数据线,每条第一数据线的一端在短路棒测试阶段均与第一短路线电连接,另一端分别通过一个开关元件与修复线连接,每条第二数据线的一端在短路棒测试阶段均与第二短路线电连接,另一端分别通过一个的开关元件与修复线连接。
其中,修复线和控制线的数量均为一条,修复线的一端在短路棒测试阶段电连接第一短路线或第二短路线,另一端电连接所有开关元件,控制线与所有开关元件电连接以控制开关元件的导通和断开。
其中,修复线和控制线的数量均为两条,一条修复线的一端在短路棒测试阶段电连接第一短路线或第二短路线,另一端电连接第一数据线对应的开关元件,另一条修复线的一端在短路棒测试阶段电连接第一短路线或第二短路线,另一端电连接第二数据线对应的开关元件,一条控制线与第一数据线对应的开关元件电连接以控制相应开关元件的导通和断开,另一条控制线与第二数据线对应的开关元件电连接以控制相应开关元件的导通和断开。
其中,开关元件为薄膜晶体管,薄膜晶体管包括作为控制端的栅极、作为输入端的源极以及作为输出端的漏极,栅极与控制线电连接,源极与修复线电连接,漏极与数据线电连接。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种PSVA型液晶显示面板的制作方法,包括:分别制作阵列基板和彩色滤光基板,其中,阵列基板包括多条数据线和数据线修复结构,数据线修复结构包括至少一条修复线、至少一条控制线以及多个开关元件,每个开关元件包括控制端、输入端以及输出端,控制端电连接控制线,输入端电连接修复线的一端,输出端电连接一条数据线,修复线的另一端在短路棒测试阶段电连接用于输入数据信号的短路棒,每条数据线的一端在短路棒测试阶段均与短路棒电连接,以通过短路棒输入数据信号,每条数据线的另一端分别通过一个开关元件与修复线连接;组装阵列基板和彩色滤光基板以形成组立面板,其中,在阵列基板和彩色滤光基板之间具有液晶层;对组立面板的阵列基板和彩色滤光基板分别输入电压信号以使阵列基板和彩色滤光基板之间液晶层的液晶分子形成预倾角;对组立面板进行紫外光照射或加热以固定液晶分子的排列,使液晶分子具有固定的预倾角;对组立面板进行切割并进行模组组装以形成液晶显示面板;其中,对组立面板的阵列基板和彩色滤光基板分别输入电压信号之前,包括步骤:对阵列基板的控制线输入控制信号以导通开关元件,以使得电压信号通过开关元件传输至数据线。
其中,数据线和开关元件的数量一致,短路棒包括第一短路线和第二短路线,多条数据线包括多条第一数据线和多条第二数据线,每条第一数据线的一端在短路棒测试阶段均与第一短路线电连接,另一端分别通过一个开关元件与修复线连接,每条第二数据线的一端在短路棒测试阶段均与第二短路线电连接,另一端分别通过一个的开关元件与修复线连接。
其中,修复线和控制线的数量均为一条,修复线的一端在短路棒测试阶段电连接第一短路线或第二短路线,另一端电连接所有开关元件,控制线与所有开关元件电连接以控制开关元件的导通和断开。
其中,修复线和控制线的数量均为两条,一条修复线的一端在短路棒测试阶段电连接第一短路线或第二短路线,另一端电连接第一数据线对应的开关元件,另一条修复线的一端在短路棒测试阶段电连接第一短路线或第二短路线,另一端电连接第二数据线对应的开关元件,一条控制线与第一数据线对应的开关元件电连接以控制相应开关元件的导通和断开,另一条控制线与第二数据线对应的开关元件电连接以控制相应开关元件的导通和断开。
其中,开关元件为薄膜晶体管,薄膜晶体管包括作为控制端的栅极、作为输入端的源极以及作为输出端的漏极,栅极与控制线电连接,源极与修复线电连接,漏极与数据线电连接。
本发明的有益效果是:本发明的阵列基板中,每条数据线的一端在短路棒测试阶段均与用于输入数据信号的短路棒电连接,以通过短路棒输入所需的数据信号,每条数据线的另一端则分别通过一个开关元件与修复线连接,控制线电连接开关元件的控制端以控制开关元件导通或断开,开关元件的输入端电连接修复线的一端,输出端电连接一条数据线,在开关元件导通时使得修复线和数据线电性连接,而修复线的另一端在短路棒测试阶段电连接短路棒,当数据线在PSVA制程之前发生断线,在进行PSVA制程时使控制线输入控制信号以导通开关元件,由此数据信号能够通过修复线传送至断线处之后的数据线,有效地对断线处施加数据信号,使得在进行紫外光照射时断线处的液晶分子能够形成固定的预倾角,保证了PSVA的顺利进行,提高了生产良率。此外,控制开关元件断开以使得数据线与修复线不连接,在数据线发生断线时由于数据线和修复线并未连接而使得断线的数据线两端的信号并不一致,因此通过在数据线两端输入断路测试信号,能够检测出发生断线的数据线。
【附图说明】
图1是现有技术一种液晶显示面板在模组制程之前的数据线驱动和修复线设计的结构示意图;
图2是图1中的数据线发生断线的结构示意图;
图3是现有技术中一种数据线的修复线的结构示意图;
图4是本发明应用于PSVA型液晶显示面板的阵列基板一实施方式的结构示意图;
图5是图4中的阵列基板在作为大玻璃底板一部分时的一实施方式的结构示意图,并示出了阵列基板中发生断线的数据线;
图6是图4中的阵列基板在作为大玻璃底板一部分时的另一实施方式的结构示意图,并示出了阵列基板中发生断线的数据线;
图7是本发明应用于PSVA型液晶显示面板的阵列基板另一实施方式的结构示意图;
图8是图7中的阵列基板在作为大玻璃底板一部分时的一实施方式的结构示意图,并示出了阵列基板中发生断线的数据线;
图9是本发明应用于PSVA型液晶显示面板的阵列基板又一实施方式的结构示意图;
图10是本发明PSVA型液晶显示面板的一实施方式的结构示意图;
图11是本发明PSVA型液晶显示面板的制造方法的一实施方式的流程图。
【具体实施方式】
下面将结合附图和实施方式对本发明进行详细描述。
参阅图4,本发明应用于PSVA型液晶显示面板的阵列基板的一实施方式中,阵列基板100包括多条数据线10以及数据线修复结构11。数据线10用于对阵列基板100施加数据信号,数据线修复结构11用于在PSVA制程时对发生断线的数据线进行修复。
数据线修复结构11包括一条修复线111、一条控制线112以及开关元件集合113。其中,开关元件集合113包括多个开关元件1131,每个开关元件1131包括控制端11311、输入端11312以及输出端11313。每个开关元件1131的控制端11311电连接控制线112,输入端11312电连接修复线111的一端,输出端11313电连接一条数据线10。修复线111的另一端在短路棒测试阶段电连接用于输入数据信号的短路棒,以通过短路棒将测试用的数据信号传输至修复线111。其中,短路棒测试阶段是指液晶显示面板制作过程中用于输入数据信号的短路棒未被切割之前的制程阶段,即未进行面板切割制程前的阶段。每条数据线10的一端在短路棒测试阶段均与短路棒电连接,以通过短路棒输入数据信号,每条数据线10的另一端分别通过一个开关元件1131与修复线111连接。数据线10和开关元件1131的数量一致,一条数据线10对应一个开关元件1131,以通过开关元件1131与修复线111连接。
本实施方式中,开关元件1131为薄膜晶体管,薄膜晶体管包括作为控制端的栅极、作为输入端的源极以及作为输出端的漏极。其中,薄膜晶体管的栅极与控制线112电连接,源极与修复线111电连接,漏极与数据线10电连接。当然,开关元件1131也可以是其他类型的三端式控制开关,在此不进行具体限制。
为了方便对数据线修复结构11的修复原理进行说明,参阅图5,图5是图4中的阵列基板在作为大玻璃底板一部分时的一实施方式的结构示意图,并示出了阵列基板中发生断线的数据线。液晶显示面板的制作过程主要分为阵列制程、组立制程以及模组制程,短路棒测试阶段涉及阵列制程和组立制程。阵列制程即制作阵列基板200的过程,大玻璃底板300为制作阵列基板200的主要原材料,阵列基板200的主要元件如数据线20等均在大玻璃底板300上形成。在制作阵列基板200的过程中,源极驱动芯片(COF)还未安装在阵列基板200上,而只是在阵列基板200上设置有用于绑定源极驱动芯片的绑定区域22,以在后续模组制程中将源极驱动芯片安装在绑定区域22中以通过源极驱动芯片驱动数据线20。但是,在阵列基板200的制作过程中需要对数据线20输入数据信号进行测试以保证数据线20能正常工作,因此通常会在大玻璃底板300上设置测试用的短路棒23来代替源极驱动芯片对数据线20输入数据信号,驱动数据线20工作。在后续进入模组制程时会将短路棒23切除,短路棒23被切除后,短路棒测试阶段结束,而在短路棒测试阶段都需用到短路棒23输入数据信号。
数据线20包括多条第一数据线201和多条第二数据线202,以分别将数据信号分成奇数信号和偶数信号两组输入至阵列基板200中。随着液晶显示器的分辨率越来越高,数据传输的速率也就越高,为了减轻因分辨率的提高而对相关驱动芯片以及传输宽带提出的更高要求,降低电磁干扰,因此将数据信号分为奇数信号和和偶数信号以分别通过第一数据线201和第二数据线202传输。相应于奇数信号和偶数信号两组信号,大玻璃底板300上的短路棒23也包括两条短路线,分别是第一短路线231和第二短路线232。其中,第一短路线231为奇数通道以输入奇数信号,第二短路线为偶数通道以输入偶数信号,本实施方式中,奇数信号和偶数信号为相同的数据信号。每一条第一数据线201的一端在短路棒测试阶段均与第一短路线231电连接,以通过第一短路线231输入奇数信号,另一端分别通过一个开关元件2131与修复线211连接;每一条第二数据线202的一端在短路棒测试阶段均与第二短路线232电连接,以通过第二短路线232输入偶数信号,另一端通过一个开关元件2131与修复线211连接。
本实施方式中,修复线211和控制线212的数量均为一条,修复线211的一端在短路棒测试阶段电连接第二短路线232以通过第二短路线232输入信号,另一端与所有的开关元件2131的输入端21312电连接,而所有开关元件2131的控制端21311与控制线212电连接以通过控制线212控制开关元件2131的导通和断开,部分开关元件2131的输出端21313电连接一条第一数据线201,部分开关元件2131的输出端21313电连接一条第二数据线202。
在将本实施方式的阵列基板200用于形成PSVA型液晶显示面板时,在组立制程中将阵列基板200和彩色滤光基板进行贴合以形成组立面板时,大玻璃底板300还未进行切割,而是将大玻璃底板300与形成彩色滤光基板的底板进行粘合,使得阵列基板200对应与彩色滤光基板贴合以形成组立面板,且在组立面板中具有液晶层。组立面板形成后,进入组立制程中的PSVA制程以对液晶层的液晶分子进行配向。在PSVA制程中,通过阵列基板200和彩色滤光基板施加电压信号并对液晶分子进行紫外光照射,以使得液晶分子具有固定的预倾角。阵列基板200的电压信号则是通过短路棒23输入至数据线20,电压信号通过数据线20输入至阵列基板200中。
在短路棒测试阶段,当在PSVA制程之前,数据线20中的一条数据线2021已经发生了断线,在进行PSVA制程时通过本实施方式的修复结构21可以对发生断线的数据线2021进行修复。具体地,在PSVA制程中,当需要对阵列基板200施加电压信号时,通过短路棒23中的第一短路线231和第二短路线232分别输入奇数信号和偶数信号,奇数信号和偶数信号为阵列基板200所需的电压信号,并且为相同的信号。奇数信号和偶数信号分别通过第一数据线201和第二数据线203输入至阵列基板200中。对控制线212输入控制信号以导通开关集合213中的所有开关元件2131,此时修复线211将偶数信号通过一个开关元件2131传输至一条数据线20(可以是第一数据线201或第二数据线202),使得每条数据线20在远离短路棒23的一端均有电压信号输入,因此在断线位置24之后的部分数据线20211也有电压信号输入,使得对应这部分数据线20211的液晶分子能形成预倾角,保证了PSVA制程的顺利进行。
此外,通过本实施方式的数据线修复结构21还可以对数据线20进行断路测试。具体地,在需要进行断路测试时,不对控制线212输入控制信号,以断开所有开关元件2131,使得短路棒23的电压信号无法通过修复线211传输至数据线20,假如有一条数据线例如数据线2021发生断线,这条数据线2021的两端电压信号会不一致,即在断线位置24之后的部分数据线20211没有电压信号输入。当在这条数据线2021两端输入测试信号时,由于数据线2021两端信号不一致,使得测试信号因为数据线2021两端的电压信号不同而产生不同的反馈信号,根据反馈信号可判断出发生断线的数据线为数据线2021。
通过上述方式,本实施方式中,当有一条数据线2021在PSVA制程之前发生断线,在进行PSVA制程时通过数据线修复结构21可以将发生断线的数据线2021进行修复,保证了PSVA的顺利进行,提高了生产良率。此外,通过数据线修复结构21,也能够实现对数据线20进行断路测试,进一步提高了生产的良率。
值得注意的是,参阅图6,由于短路棒32中的第一短路线321和第二短路线322分别输入的奇数信号和偶数信号是相同的信号,因此修复线311在短路棒测试阶段也可以与第一短路线321电连接,以通过第一短路线321输入相应的信号以达到修复的目的。具体的电路连接以及修复原理可参考上述实施方式进行,此处不进行一一赘述。
在上述实施方式中,阵列基板的修复线和控制线均为一条,参阅图7,与上述实施方式不同的是,本实施方式阵列基板的修复线和控制线均为两条。具体地,在阵列基板400的数据线修复结构41中,包括第一修复线411、第二修复线412、第一控制线413、第二控制线414以及开关集合415,其中开关集合415包括多个开关元件4151。多条数据线42包括多条第一数据线421和多条第二数据线422,每条第一数据线421和每条第二数据线422分别对应一个开关元件4151。其中,所有第一数据线421所对应的开关元件4151的输入端41512均与第一修复线411的一端电连接,控制端41511均电连接第一控制线413以控制相应开关元件4151的导通和断开,而开关元件4151的输出端41513则分别电连接一条第一数据线421,第一修复线411的另一端在短路棒测试阶段电连接用于输入数据信号的短路棒(图未示)。所有第二数据线422所对应的开关元件4151的输入端41512均与第二修复线412的一端电连接,控制端41511均电连接第二控制线414以控制相应开关元件4151的导通和断开,而开关元件4151的输出端41513则分别电连接一条第二数据线422,第二修复线412的另一端在短路棒测试阶段电连接短路棒。
本实施方式的数据线修复结构41,当数据线42在PSVA制程之前发生断线,也能在进行PSVA制程时对发生断线的数据线进行修复。具体地,参阅图8,图8是图7中的阵列基板形成于大玻璃底板上的一实施方式的结构示意图,并示出了阵列基板中发生断线的数据线。本实施方式中,第一修复线511在短路棒测试阶段与短路棒53中的第一短路线531电连接,第二修复线512在短路棒测试阶段与短路棒53中的第二短路线532电连接。在短路棒测试阶段,当在PSVA制程之前数据线52中的一条数据线例如数据线5221发生断线,在进行PSVA制程时,假如无法确定是第一数据线521还是第二数据线522发生断线,可对第一控制线513和第二控制线514输入控制信号,以控制相应开关元件5151的导通,而如果能确定是第一数据线521或者第二数据线522发生断线,只需对相应的控制线输入控制信号即可。在开关元件5151导通后,进行PSVA制程所需的电压信号通过第一短路线531和第二短路线532分别传输至第一修复线511和第二修复线512后,电压信号通过相应开关元件5151分别输入至第一数据线521和第二数据线522远离短路棒53的一端,以使得发生断线的数据线5221在断线位置之后的部分52211也能输入电压信号,保证了PSVA制程的顺利进行,提高了生产良率。并且,通过控制开关元件5151的断开,也可对数据线52进行断路测试,在此不进行一一赘述。
值得注意的是,本实施方式的第一修复线511也可与第二短路线532电连接,第二修复线512也可与第一短路线531电连接,在此不进行具体限制。
此外,参阅图9,本发明阵列基板的另一实施方式中,修复线711的数量为一条,但包括两个分支,分别是第一分支7111和第二分支7112,控制线的数量为两条,分别是第一控制线712和第二控制线713。其中每条第一数据线721分别通过一个第一开关元件714与修复线711的第一分支7111连接,每条第二数据线722分别通过一个第二开关元件715与修复线711的第二分支7112连接。第一控制线712控制第一数据线721所对应的第一开关元件714的导通与断开,第二控制线713控制第二数据线722所对应的第二开关元件715的导通与断开。
通过第一控制线712和第二控制线713的控制作用,修复线711可分别对第一数据线721和第二数据线722进行断线修复。具体的修复原理可参考上述实施方式进行,在此不进行一一赘述。
显而易见地,本发明阵列基板的修复线和控制线的数量并没有做具体限制,而只需保证每条数据线通过一个开关元件与修复线连接即可,以通过开关元件的导通和断开对应地实现数据线的断线修复和断线测试。
本发明还提供PSVA型液晶显示面板的一实施方式,液晶显示面板800包括阵列基板801和用于输入数据信号的源极驱动芯片802,其中阵列基板801为上述各实施方式所述的阵列基板,以图4所示的阵列基板为例对本实施方式的液晶显示面板进行说明。参阅图10,阵列基板801包括多条数据线80和数据线修复结构81。其中,数据线修复结构11包括一条修复线811、一条控制线812以及开关集合813。
具体地,开关集合813包括多个开关元件8131,每个开关元件8131包括控制端81381、输入端81312以及输出端81313。开关元件8131的控制端81381电连接控制线812以通过控制线812输入控制信号控制开关元件8131的导通和关闭,输入端81312电连接修复线811的一端,输出端电连接一条数据线10。在液晶显示面板的模组制程中,将源极驱动芯片802安装在阵列基板801的绑定区域82中,以使得修复线811的另一端电连接源极驱动芯片802,每条数据线80的一端电连接源极驱动芯片802,以通过源极驱动芯片802输入数据信号,每条数据线80的另一端则分别通过一个开关元件8131与修复线811连接。
其中,在液晶显示面板的模组制程之前,需对数据线80进行测试,在这阶段(即短路棒测试阶段)中可使用短路棒对数据线输入数据信号以进行相关测试。因此,在源极驱动芯片82未安装之前,修复线的一端电连接开关元件8131,另一端则在短路棒测试阶段电连接用于输入数据信号的短路棒,每条数据线80的一端在短路棒测试阶段也电连接短路棒,另一端则分别通过一个开关元件8131与修复线811连接。
在短路棒测试阶段,当需要对数据线80进行断路测试时,控制线812不输入控制信号,以使得开关元件8131断开,通过短路棒输入数据线80所需的数据信号后,在数据线80的两端输入断路测试的测试信号,由于修复线811和数据线80并未连接,因此当数据线80发生断线时,断线的数据线两端的数据信号不一致,即断线之后的数据线部分没有数据信号输入,使得测试信号会产生不同的反馈信号,根据反馈信号即可判断出发生断线的数据线。而当在PSVA制程之前假设数据线80已经发生断线,在进行PSVA制程时,短路棒输入数据信号至修复线811和数据线80的一端,控制开关元件8131导通,以使得修复线811的数据信号通过开关元件8131输入至数据线80的另一端,使得发生断线的数据线两端均有数据信号输入,以此完成了断线的数据线的修复。
本实施方式的液晶显示面板800,通过在阵列基板801中设置该数据线修复结构81,使得在进行PSVA制程时能够对断线的数据线进行修复,保证了PSVA的顺利进行,同时也能够对数据线80进行断路测试,提高了生产良率。
参阅图11,本发明还提供一种PSVA型液晶显示面板的制作方法的一实施方式,包括步骤:
步骤S101:分别制作阵列基板和彩色滤光基板。其中,阵列基板可以是上述阵列基板各实施方式之一,其包括多条数据线和数据线修复结构,数据线修复结构包括至少一条修复线、至少一条控制线以及多个开关元件,每个开关元件包括控制端、输入端以及输出端,使其控制端电连接控制线,输入端电连接修复线的一端,输出端电连接一条数据线,修复线的另一端在短路棒测试阶段电连接用于输入数据信号的短路棒;每条数据线的一端在短路棒测试阶段均与短路棒电连接,以通过短路棒输入数据信号,每条数据线的另一端分别通过一个开关元件与修复线连接。
步骤S102:组装阵列基板和彩色滤光基板以形成组立面板,其中在组装阵列基板和彩色滤光基板后,在阵列基板和彩色滤光基板之间具有液晶层。
步骤S103:对组立面板的阵列基板和彩色滤光基板分别输入电压信号以使阵列基板和彩色滤光基板之间液晶层的液晶分子形成预倾角,在对阵列基板输入电压信号前,还需对阵列基板的控制线输入控制信号,以导通开关元件。
在形成组立面板后,进入PSVA制程时,对阵列基板和彩色滤光基板输入电压信号以使得组立面板中的液晶分子在电压信号的作用下形成一定的排列,具有预倾角。其中,阵列基板所需的电压信号通过短路棒输入至数据线,通过数据线输入阵列基板中。对阵列基板输入电压信号前,首先导通阵列基板中数据线修复结构的开关元件,使得电压信号能够通过修复线和开关元件传输至相应的数据线中,由此能够将电压信号施加至在PSVA制程前发生断线的数据线的断线处,有效地在PSVA制程时对断线的数据线进行修复,保证了PSVA的顺利进行。
此外,在上述各步骤中,当需要对阵列基板中的数据线进行断路测试时,可控制数据线修复结构中的开关元件关闭,以使修复线和数据线不连接,由此可进行数据线的断路测试。
步骤S104:对组立面板进行紫外光照射或加热以固定液晶分子的排列,使液晶分子具有固定的预倾角。
步骤S105:对组立面板进行切割并进行模组组装以形成液晶显示面板。
在组立制程完成之后,切除短路棒,以在后续模组制程中安装电路板、源极驱动芯片等元件,完成液晶显示面板的制作。
本实施方式中,使阵列基板的修复线通过开关元件与数据线连接,每条数据线对应一个开关元件,以通过开关元件控制修复线和数据线的连接和断开,从而相应实现对数据线的断路测试和断线修复,保证了PSVA制程的顺利进行,提高生产良率。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

  1. 一种应用于PSVA型液晶显示面板的阵列基板,其中,包括多条数据线和数据线修复结构;
    所述数据线修复结构包括至少一条修复线、至少一条控制线以及多个开关元件,每个所述开关元件包括控制端、输入端和输出端,所述控制端电连接控制线,所述输入端电连接修复线的一端,所述输出端电连接一条数据线,所述修复线另一端在短路棒测试阶段电连接用于输入数据信号的短路棒;
    每条所述数据线的一端在所述短路棒测试阶段均与短路棒电连接,以通过所述短路棒输入数据信号,每条所述数据线的另一端分别通过一个开关元件与修复线连接;
    所述数据线和开关元件的数量一致,所述短路棒包括第一短路线和第二短路线,所述多条数据线包括多条第一数据线和多条第二数据线,每条所述第一数据线的一端在所述短路棒测试阶段均与第一短路线电连接,另一端分别通过一个开关元件与修复线连接,每条所述第二数据线的一端在所述短路棒测试阶段均与第二短路线电连接,另一端分别通过一个的开关元件与修复线连接;
    所述开关元件为薄膜晶体管,所述薄膜晶体管包括作为控制端的栅极、作为输入端的源极以及作为输出端的漏极,所述栅极与控制线电连接,所述源极与修复线电连接,所述漏极与数据线电连接;
    其中,对所述数据线进行断路测试时,控制所述开关元件断开,以在数据线两端输入断路测试信号,当所述数据线发生断线时,在PSVA制程中控制所述开关元件导通,以使得所述数据信号通过修复线传送至所述数据线的断线处。
  2. 根据权利要求2所述的阵列基板,其中,
    所述修复线和控制线的数量均为一条,所述修复线的一端在所述短路棒测试阶段电连接第一短路线或第二短路线,另一端电连接所有所述开关元件,所述控制线与所有所述开关元件电连接以控制开关元件的导通和断开。
  3. 根据权利要求2所述的阵列基板,其中,
    所述修复线和控制线的数量均为两条,一条所述修复线的一端在所述短路棒测试阶段电连接第一短路线或第二短路线,另一端电连接所述第一数据线对应的开关元件,另一条所述修复线的一端在所述短路棒测试阶段电连接第一短路线或第二短路线,另一端电连接所述第二数据线对应的开关元件,一条所述控制线与第一数据线对应的开关元件电连接以控制相应开关元件的导通和断开,另一条所述控制线与第二数据线对应的开关元件电连接以控制相应开关元件的导通和断开。
  4. 一种PSVA型液晶显示面板,其中,包括阵列基板和用于输入数据信号的源极驱动芯片;
    所述阵列基板包括多条数据线以及数据线修复结构;
    所述数据线修复结构包括至少一条修复线、至少一条控制线以及多个开关元件,每个所述开关元件包括控制端、输入端和输出端,所述控制端电连接控制线,所述输入端电连接修复线的一端,所述输出端电连接一条数据线,在液晶显示面板的模组制程中,安装所述源极驱动芯片以使得所述修复线另一端电连接源极驱动芯片;每条所述数据线的一端电连接所述源极驱动芯片,每条所述数据线的另一端分别通过一个开关元件与修复线连接;
    其中,在所述液晶显示面板的模组制程之前,所述修复线的一端电连接开关元件,另一端在短路棒测试阶段电连接用于输入数据信号的短路棒;每条所述数据线的一端在短路棒测试阶段电连接所述短路棒,另一端分别通过一个开关元件与修复线连接;
    对所述数据线进行断路测试时,控制所述开关元件断开,以在数据线两端输入断路测试信号,当所述数据线发生断线时,在PSVA制程中控制所述开关元件导通,以使得短路棒输入的数据信号通过修复线传送至所述数据线的断线处。
  5. 根据权利要求4所述的液晶显示面板,其中,
    所述数据线和开关元件的数量一致,所述短路棒包括第一短路线和第二短路线,所述多条数据线包括多条第一数据线和多条第二数据线,每条所述第一数据线的一端在所述短路棒测试阶段均与第一短路线电连接,另一端分别通过一个开关元件与修复线连接,每条所述第二数据线的一端在所述短路棒测试阶段均与第二短路线电连接,另一端分别通过一个的开关元件与修复线连接。
  6. 根据权利要求5所述的液晶显示面板,其中,
    所述修复线和控制线的数量均为一条,所述修复线的一端在所述短路棒测试阶段电连接第一短路线或第二短路线,另一端电连接所有所述开关元件,所述控制线与所有所述开关元件电连接以控制开关元件的导通和断开。
  7. 根据权利要求5所述的液晶显示面板,其中,
    所述修复线和控制线的数量均为两条,一条所述修复线的一端在所述短路棒测试阶段电连接第一短路线或第二短路线,另一端电连接所述第一数据线对应的开关元件,另一条所述修复线的一端在所述短路棒测试阶段电连接第一短路线或第二短路线,另一端电连接所述第二数据线对应的开关元件,一条所述控制线与第一数据线对应的开关元件电连接以控制相应开关元件的导通和断开,另一条所述控制线与第二数据线对应的开关元件电连接以控制相应开关元件的导通和断开。
  8. 根据权利要求4所述的液晶显示面板,其中,
    所述开关元件为薄膜晶体管,所述薄膜晶体管包括作为控制端的栅极、作为输入端的源极以及作为输出端的漏极,所述栅极与控制线电连接,所述源极与修复线电连接,所述漏极与数据线电连接。
  9. 一种PSVA型液晶显示面板的制作方法,其中,包括:
    分别制作阵列基板和彩色滤光基板,其中,所述阵列基板包括多条数据线和数据线修复结构,所述数据线修复结构包括至少一条修复线、至少一条控制线以及多个开关元件,每个所述开关元件包括控制端、输入端以及输出端,所述控制端电连接控制线,输入端电连接修复线的一端,输出端电连接一条数据线,所述修复线的另一端在短路棒测试阶段电连接用于输入数据信号的短路棒,每条所述数据线的一端在短路棒测试阶段均与短路棒电连接,以通过短路棒输入数据信号,每条所述数据线的另一端分别通过一个开关元件与修复线连接;
    组装所述阵列基板和彩色滤光基板以形成组立面板,其中,在所述阵列基板和彩色滤光基板之间具有液晶层;
    对所述组立面板的阵列基板和彩色滤光基板分别输入电压信号以使阵列基板和彩色滤光基板之间液晶层的液晶分子形成预倾角;
    对所述组立面板进行紫外光照射或加热以固定液晶分子的排列,使所述液晶分子具有固定的预倾角;
    对所述组立面板进行切割并进行模组组装以形成液晶显示面板;
    其中,所述对所述组立面板的阵列基板和彩色滤光基板分别输入电压信号之前,包括步骤:
    对所述阵列基板的控制线输入控制信号以导通开关元件,以使得所述电压信号通过开关元件传输至数据线。
  10. 根据权利要求9所述的方法,其中,
    所述数据线和开关元件的数量一致,所述短路棒包括第一短路线和第二短路线,所述多条数据线包括多条第一数据线和多条第二数据线,每条所述第一数据线的一端在所述短路棒测试阶段均与第一短路线电连接,另一端分别通过一个开关元件与修复线连接,每条所述第二数据线的一端在所述短路棒测试阶段均与第二短路线电连接,另一端分别通过一个的开关元件与修复线连接。
  11. 根据权利要求10所述的方法,其中,
    所述修复线和控制线的数量均为一条,所述修复线的一端在所述短路棒测试阶段电连接第一短路线或第二短路线,另一端电连接所有所述开关元件,所述控制线与所有所述开关元件电连接以控制开关元件的导通和断开。
  12. 根据权利要求10所述的方法,其中,
    所述修复线和控制线的数量均为两条,一条所述修复线的一端在所述短路棒测试阶段电连接第一短路线或第二短路线,另一端电连接所述第一数据线对应的开关元件,另一条所述修复线的一端在所述短路棒测试阶段电连接第一短路线或第二短路线,另一端电连接所述第二数据线对应的开关元件,一条所述控制线与第一数据线对应的开关元件电连接以控制相应开关元件的导通和断开,另一条所述控制线与第二数据线对应的开关元件电连接以控制相应开关元件的导通和断开。
  13. 根据权利要求9所述的方法,其中,
    所述开关元件为薄膜晶体管,所述薄膜晶体管包括作为控制端的栅极、作为输入端的源极以及作为输出端的漏极,所述栅极与控制线电连接,所述源极与修复线电连接,所述漏极与数据线电连接。
PCT/CN2012/083143 2012-10-11 2012-10-18 一种阵列基板、psva型液晶显示面板及其制作方法 WO2014056244A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/695,299 US9299299B2 (en) 2012-10-11 2012-10-18 Array substrate, PSAV liquid crystal display panel and manufacturing method thereof
DE112012006910.2T DE112012006910B4 (de) 2012-10-11 2012-10-18 Verfahren zur Herstellung eines PSVA-Flüssigkristallanzeigepaneels und PSVA-Flüssigkristallanzeigepaneel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210384689.3 2012-10-11
CN201210384689.3A CN102879964B (zh) 2012-10-11 2012-10-11 一种阵列基板及psva型液晶显示面板

Publications (1)

Publication Number Publication Date
WO2014056244A1 true WO2014056244A1 (zh) 2014-04-17

Family

ID=47481347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083143 WO2014056244A1 (zh) 2012-10-11 2012-10-18 一种阵列基板、psva型液晶显示面板及其制作方法

Country Status (3)

Country Link
CN (1) CN102879964B (zh)
DE (1) DE112012006910B4 (zh)
WO (1) WO2014056244A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105974624A (zh) * 2016-07-20 2016-09-28 深圳市华星光电技术有限公司 显示装置及其修复方法
CN106154664A (zh) * 2016-08-15 2016-11-23 武汉华星光电技术有限公司 具有检测功能的液晶显示面板
CN108426659B (zh) * 2018-01-03 2020-08-25 厦门天马微电子有限公司 压力传感器检测电路及显示面板
CN109256099A (zh) * 2018-09-30 2019-01-22 惠科股份有限公司 一种显示面板的驱动电路和驱动方法
CN109166506A (zh) * 2018-10-31 2019-01-08 苏州旷视智能科技有限公司 基于高精度机器视觉的显示面板的检测方法
CN110824799B (zh) * 2019-11-19 2022-04-15 合肥维信诺科技有限公司 阵列基板线路检测结构及其检测方法、阵列基板
CN114360439B (zh) * 2020-09-30 2022-12-20 荣耀终端有限公司 一种显示装置、驱动芯片及电子设备
CN113823216B (zh) * 2020-09-30 2022-09-23 荣耀终端有限公司 一种显示装置、驱动芯片及电子设备
CN114360438B (zh) * 2020-09-30 2022-12-16 荣耀终端有限公司 一种显示装置、驱动芯片及电子设备
CN113777836B (zh) * 2021-09-10 2023-10-31 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05333370A (ja) * 1992-05-28 1993-12-17 Toshiba Corp アクティブマトリクス型液晶表示素子
US20030122975A1 (en) * 2001-12-29 2003-07-03 Jeong-Rok Kim Liquid crystal display device formed on glass substrate having improved efficiency
CN101216643A (zh) * 2007-12-26 2008-07-09 昆山龙腾光电有限公司 液晶显示装置阵列基板、其修补方法及液晶显示装置
CN101303462A (zh) * 2008-07-04 2008-11-12 友达光电股份有限公司 液晶显示面板的检测电路与方法
CN101364022A (zh) * 2008-09-12 2009-02-11 昆山龙腾光电有限公司 阵列基板及其缺陷检测方法
US20100127258A1 (en) * 2008-11-26 2010-05-27 Kang liang-hao Lcd panel having shared shorting bars for array inspection and panel inspection
CN102109688A (zh) * 2009-12-29 2011-06-29 上海天马微电子有限公司 液晶显示面板、阵列基板及驱动线线缺陷检测方法
CN102257547A (zh) * 2010-01-06 2011-11-23 松下电器产业株式会社 有源矩阵基板、显示面板以及它们的检查方法
US8083561B1 (en) * 2010-07-30 2011-12-27 Chunghwa Picture Tubes, Ltd. Liquid crystal display panel and method for repairing signal line thereof
CN102707501A (zh) * 2012-06-13 2012-10-03 深圳市华星光电技术有限公司 液晶显示装置、液晶显示面板的制造方法及制造设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101487963B (zh) * 2009-02-25 2010-08-04 福建华映显示科技有限公司 主动组件数组基板及其方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05333370A (ja) * 1992-05-28 1993-12-17 Toshiba Corp アクティブマトリクス型液晶表示素子
US20030122975A1 (en) * 2001-12-29 2003-07-03 Jeong-Rok Kim Liquid crystal display device formed on glass substrate having improved efficiency
CN101216643A (zh) * 2007-12-26 2008-07-09 昆山龙腾光电有限公司 液晶显示装置阵列基板、其修补方法及液晶显示装置
CN101303462A (zh) * 2008-07-04 2008-11-12 友达光电股份有限公司 液晶显示面板的检测电路与方法
CN101364022A (zh) * 2008-09-12 2009-02-11 昆山龙腾光电有限公司 阵列基板及其缺陷检测方法
US20100127258A1 (en) * 2008-11-26 2010-05-27 Kang liang-hao Lcd panel having shared shorting bars for array inspection and panel inspection
CN102109688A (zh) * 2009-12-29 2011-06-29 上海天马微电子有限公司 液晶显示面板、阵列基板及驱动线线缺陷检测方法
CN102257547A (zh) * 2010-01-06 2011-11-23 松下电器产业株式会社 有源矩阵基板、显示面板以及它们的检查方法
US8083561B1 (en) * 2010-07-30 2011-12-27 Chunghwa Picture Tubes, Ltd. Liquid crystal display panel and method for repairing signal line thereof
CN102707501A (zh) * 2012-06-13 2012-10-03 深圳市华星光电技术有限公司 液晶显示装置、液晶显示面板的制造方法及制造设备

Also Published As

Publication number Publication date
DE112012006910T5 (de) 2015-06-11
DE112012006910B4 (de) 2022-03-24
CN102879964B (zh) 2015-04-29
CN102879964A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
WO2014056244A1 (zh) 一种阵列基板、psva型液晶显示面板及其制作方法
WO2013152514A1 (zh) 液晶面板、液晶模组和检查方法
WO2014019248A1 (zh) 一种检测线路及液晶显示面板的制作方法
US9299299B2 (en) Array substrate, PSAV liquid crystal display panel and manufacturing method thereof
WO2013177790A1 (zh) 阵列基板及其制备方法和液晶显示面板
WO2014056239A1 (zh) 液晶显示装置及其驱动电路
WO2017059606A1 (zh) 一种液晶显示器及其制备方法
WO2013155683A1 (zh) 液晶显示装置及其驱动电路
WO2013177789A1 (zh) 显示面板的制造方法及其修复线结构
CN101965606A (zh) 有源矩阵基板、显示装置、有源矩阵基板的检查方法和显示装置的检查方法
WO2015043033A1 (zh) 一种阵列基板及液晶显示面板
KR20160102518A (ko) 어레이 기판의 배선구조
WO2018086297A1 (zh) 显示面板和显示器
WO2016183935A1 (zh) 液晶面板的亮点修补方法、装置及亮点修补后的液晶面板
WO2014000239A1 (zh) 液晶显示装置、液晶显示面板的制造方法及设备
CN108873487B (zh) 液晶显示面板及液晶显示面板的制作方法
WO2022237009A1 (zh) 显示面板及显示装置
WO2020098023A1 (zh) 显示面板的制作方法及显示面板的检测方法
KR102362557B1 (ko) Psva 액정 디스플레이 패널
WO2000014600A1 (fr) Dispositif a cristaux liquides et matrice active et procede de production associe
WO2015074302A1 (zh) 走线结构及该走线结构的断路修复方法、液晶面板
WO2017063204A1 (zh) 一种显示面板、液晶显示器及显示面板的制备方法
KR102092070B1 (ko) 디스플레이 장치의 검사 방법
CN107316596B (zh) 阵列基板测试电路
WO2016023238A1 (zh) 阵列基板以及液晶显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13695299

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886442

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112012006910

Country of ref document: DE

Ref document number: 1120120069102

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12886442

Country of ref document: EP

Kind code of ref document: A1