WO2014054609A1 - 半導体回路基板およびそれを用いた半導体装置並びに半導体回路基板の製造方法 - Google Patents

半導体回路基板およびそれを用いた半導体装置並びに半導体回路基板の製造方法 Download PDF

Info

Publication number
WO2014054609A1
WO2014054609A1 PCT/JP2013/076645 JP2013076645W WO2014054609A1 WO 2014054609 A1 WO2014054609 A1 WO 2014054609A1 JP 2013076645 W JP2013076645 W JP 2013076645W WO 2014054609 A1 WO2014054609 A1 WO 2014054609A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
conductor portion
circuit board
semiconductor element
less
Prior art date
Application number
PCT/JP2013/076645
Other languages
English (en)
French (fr)
Inventor
寛正 加藤
星野 政則
Original Assignee
株式会社東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝マテリアル株式会社 filed Critical 株式会社東芝
Priority to US14/433,342 priority Critical patent/US9277639B2/en
Priority to CN201380051959.1A priority patent/CN104718615B/zh
Priority to JP2014539744A priority patent/JP6359455B2/ja
Publication of WO2014054609A1 publication Critical patent/WO2014054609A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0207Cooling of mounted components using internal conductor planes parallel to the surface for thermal conduction, e.g. power planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/26Cleaning or polishing of the conductive pattern
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • H01L21/4807Ceramic parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09745Recess in conductor, e.g. in pad or in metallic substrate

Definitions

  • the present invention relates to a semiconductor circuit board, a semiconductor device using the same, and a method for manufacturing the semiconductor circuit board.
  • ⁇ Semiconductor chips used for electronic control are becoming smaller and the amount of heat generated from the chips is steadily increasing. For this reason, it is important to improve heat dissipation in a semiconductor circuit board (including a module) on which a semiconductor chip is mounted. This is because, even if only one point on the chip exceeds the intrinsic temperature of the semiconductor chip, the resistance changes to a negative negative temperature coefficient, causing a thermal runaway where power is concentrated and instantaneously. It is because it destroys. In other words, it is required to perform a heat dissipation design considering a margin commensurate with the power loss of the chip.
  • Rth is a thermal resistance
  • L is a heat transfer path
  • k is a thermal conductivity
  • A is a heat dissipation area.
  • the thermal resistance (Rth) decreases as the heat transfer path (L) is shorter and as the thermal conductivity (k) and the heat radiation area (A) are larger.
  • the heat transfer path (L) generally corresponds to the thickness of the circuit board.
  • a general semiconductor device using a semiconductor chip has contact between different materials, and a heat transfer path is chip ⁇ solder ⁇ electrode circuit material ⁇ insulating substrate ⁇ back metal plate ⁇ solder ⁇ heat dissipation member (heat sink).
  • the parts other than the heat radiating member are insulated circuit boards. In other words, unless the heat dissipation performance of the insulating circuit board that occupies most of the heat transfer path is excellent, the performance of the semiconductor device cannot be improved.
  • SiC chips are said to be usable up to 600 ° C, while the operating temperature is 125 to 150 ° C, which is the mainstream of Si chips. It is one.
  • Patent Document 1 proposes to use an Ag—Cu brazing material instead of the high melting point soldering material.
  • a method of directly bonding a semiconductor chip to an electrode circuit material without using a bonding material such as a brazing material leads to shortening of the heat transfer path (L).
  • a method of increasing the heat radiation area (A) by increasing the thickness of the electrode circuit material and performing heat radiation not only in the vertical direction but also in the lateral direction leads to shortening of the heat transfer path (L).
  • the double-sided cooling method in which cooling is performed from both sides of the semiconductor chip also increases the heat radiation area (A).
  • the present invention is to cope with such a problem and to provide a semiconductor circuit board having good heat dissipation.
  • the semiconductor circuit board of the present invention is a semiconductor circuit board in which a conductor portion is provided on an insulating substrate, and the surface roughness of the semiconductor element mounting portion of the conductor portion is 0.3 ⁇ m or less in terms of arithmetic average roughness Ra.
  • the point average roughness Rzjis is 2.5 ⁇ m or less
  • the maximum height Rz is 2.0 ⁇ m or less
  • the arithmetic average waviness Wa is 0.5 ⁇ m or less.
  • the thickness of the insulating substrate is t1
  • the thickness of the conductor portion is t2
  • the cross-sectional angle of the side surface end portion of the conductor portion is 45 ° or less.
  • the conductor portion is made of a metal plate
  • the insulating substrate is made of a ceramic substrate
  • the bonding layer that joins the metal plate and the ceramic substrate has a protruding area (width) from the metal plate of 0.2 mm or less. preferable.
  • the insulating substrate is preferably composed of any one of an alumina substrate, an aluminum nitride substrate, a silicon nitride substrate, and an insulating resin substrate. Moreover, it is preferable that a conductor part consists of any 1 type of copper, a copper alloy, aluminum, and an aluminum alloy.
  • the semiconductor device according to the present invention is characterized in that a semiconductor element is mounted on a conductor portion of a semiconductor circuit board according to the present invention. Moreover, it is preferable that a semiconductor element is 1 or more types selected from a Si element, a GaN element, and a SiC element. Moreover, it is preferable that the semiconductor element is bonded to the conductive portion via a bonding material. Moreover, it is preferable that the semiconductor element is directly bonded to the conductor portion without using a bonding material.
  • the method for manufacturing a semiconductor circuit board according to the present invention includes a conductor part forming step of forming a conductor part on an insulating substrate, and a surface roughness of the semiconductor element mounting part of the conductor part in an arithmetic average roughness Ra of 0.3 ⁇ m. And a surface processing step in which the ten-point average roughness Rzjis is 2.5 ⁇ m or less, the maximum height Rz is 2.0 ⁇ m or less, and the arithmetic average waviness Wa is 0.5 ⁇ m or less. It is what.
  • the surface processing step is preferably a polishing step.
  • polishing process is an etching process.
  • polishing process is press work.
  • the semiconductor circuit board of the present invention has excellent heat dissipation because the flatness of the semiconductor element mounting portion of the conductor portion is greatly improved.
  • heat dissipation can be improved in a semiconductor device including a semiconductor element.
  • when mounting a semiconductor element it can respond to both the case where a bonding material is used and the case where a bonding material is not used.
  • the semiconductor circuit board according to the present invention is a semiconductor circuit board in which a conductor portion is provided on an insulating substrate, and the surface roughness of the semiconductor element mounting portion of the conductor portion is an arithmetic average roughness of Ra 0.3 ⁇ m or less.
  • the point average roughness Rzjis is 2.5 ⁇ m or less, the maximum height is Rz 2.0 ⁇ m or less, and the arithmetic average waviness Wa is 0.5 ⁇ m or less.
  • FIG. 1 shows an embodiment of a semiconductor circuit board according to the present invention.
  • reference numeral 1 is a semiconductor circuit board
  • 2 is an insulating substrate
  • 3 is a conductor portion
  • 4 is a conductor portion (back conductor portion)
  • 5 is an insulating substrate and a conductor portion. It is a bonding layer.
  • the insulating substrate is not particularly limited as long as the insulating property between the conductor portion 3 and the conductor portion 4 provided on both surfaces can be secured, but the insulating substrate is an alumina substrate, an aluminum nitride substrate, It is preferably composed of any one of a silicon nitride substrate and an insulating resin substrate. Since the alumina substrate, the aluminum nitride substrate, the silicon nitride substrate, and the insulating resin substrate all have excellent insulating properties, they can be used even if the substrate thickness is reduced to 1.5 mm or less. Of these, a silicon nitride substrate is preferable. For example, as shown in Japanese Patent No.
  • the silicon nitride substrate has a three-point bending strength of 500 MPa or more and a thermal conductivity of 50 W / m ⁇ K or more. Excellent ones have been developed.
  • a silicon nitride substrate exhibits excellent durability even when the operating temperature is as high as 200 ° C. or higher, as in the SiC element described later. Further, if the substrate is used at a high temperature of 200 ° C. or higher, it is preferable to use a ceramic substrate such as an alumina substrate or an aluminum nitride substrate, not limited to a silicon nitride substrate, because it has excellent heat resistance.
  • the conductor portion is made of any one of copper, copper alloy, aluminum, and aluminum alloy. These metals are preferable because of their excellent conductivity. Moreover, since heat conductivity is also high, it is excellent also in heat dissipation. Moreover, it is preferable that a conductor part is a metal plate which consists of either 1 type of copper, a copper alloy, aluminum, and an aluminum alloy. Moreover, it is preferable that the conductor part 3 and the conductor part 4 are joined to the insulating substrate 2 via the joining layer 5. The conductor portion may be bonded to the insulating substrate without using a bonding layer. If a ceramic substrate is used as the insulating substrate as described above, a joining method such as an active metal joining method using a brazing material or a direct joining method not using a brazing material can be applied.
  • the surface roughness of the semiconductor element mounting portion of the conductor portion is 0.3 ⁇ m or less in terms of arithmetic average roughness Ra, 2.5 ⁇ m or less in terms of ten-point average roughness Rzjis, and the maximum height Rz is 2.0 ⁇ m or less, and arithmetic mean waviness Wa is 0.5 ⁇ m or less.
  • the arithmetic average roughness Ra, the ten-point average roughness Rzjis, the maximum height Rz of 2.0 ⁇ m or less, and the arithmetic average waviness Wa are based on the provisions of JIS-B-0601 (2001).
  • the maximum height Rz in JIS-B-0601 (2001) corresponds to Ry in JIS-B-0601 (1994).
  • the ten-point average roughness Rzjis in JIS-B-0601 (2001) corresponds to Rz in JIS-B-0601 (1994).
  • the surface roughness of the semiconductor element mounting portion of the conductor portion is 0.3 ⁇ m or less in arithmetic average roughness Ra, 2.5 ⁇ m or less in ten-point average roughness Rzjis, and 2.0 ⁇ m or less in maximum height Rz.
  • the arithmetic average waviness Wa being 0.5 ⁇ m or less means that the flatness of the semiconductor element mounting portion of the conductor portion is very excellent.
  • the amount of heat generation is expected to increase as the performance of semiconductor elements increases.
  • the junction temperature of Si elements is being increased to 150 to 170 ° C.
  • the GaN device or SiC device is expected to have a junction temperature of 300 to 400 ° C.
  • the actual use temperature is lower than the junction temperature, but tends to be higher than that of a general Si device.
  • the flatness of the semiconductor element mounting portion of the conductor portion is very excellent, even if the distortion of the conductor portion due to thermal expansion occurs, the distortion can be made uniform, so that the semiconductor element is displaced or peeled off, etc. Can be suppressed.
  • the adhesion between the conductor portion and the semiconductor element is improved, and generation of unreacted portions and gaps (unjoined portions) that appear as defects in the bond between the conductor portion and the semiconductor element can be suppressed.
  • generation of unreacted portions and gaps can be suppressed.
  • the surface roughness of the semiconductor element mounting portion of the conductor portion is an arithmetic average roughness Ra of 0.1 ⁇ m or less, a ten-point average roughness Rzjis of 2.0 ⁇ m or less, and a maximum height Rz of 1.2 ⁇ m or less,
  • the arithmetic average waviness Wa is preferably 0.1 ⁇ m or less.
  • the thickness of the insulating substrate is t1
  • the thickness of the conductor portion is t2
  • semiconductor elements such as Si elements, GaN elements, and SiC elements. In either case, the amount of heat generation tends to increase with higher output.
  • the conductor portion having high thermal conductivity has a certain thickness. It is preferable that t1 ⁇ 1.5 mm, more preferably 0.1 mm ⁇ t1 ⁇ 0.8 mm.
  • the thickness t1 of the insulating substrate is less than 0.1 mm, the insulation between the conductor portion 3 and the conductor portion 4 may not be ensured.
  • the thickness t1 of the insulating substrate exceeds 1.5 mm, the insulating substrate itself becomes a thermal resistor, and heat dissipation as a semiconductor circuit substrate is reduced.
  • the thickness t2 of the conductor part is preferably 1 ⁇ t2 / t1 ⁇ 10.
  • the conductor part (conductor part 4) on the back side also has the same thickness relationship as that of the insulating substrate.
  • FIG. 2 shows an example of a semiconductor circuit board in which the side end portion of the conductor portion is angled.
  • reference numeral 1 is a semiconductor circuit board
  • 2 is an insulating substrate
  • 3 is a conductor portion
  • 4 is a conductor portion (back conductor portion)
  • 5 is an insulating substrate and a conductor portion.
  • Reference numeral 6 denotes a bonding layer
  • 6 denotes a protruding region (width) of the bonding layer
  • denotes an angle of a side surface end portion of the conductor portion.
  • the conductor portion is distorted by thermal expansion.
  • the cross-sectional angle ⁇ of the side end portion of the conductor portion is reduced to 45 ° or less, distortion due to thermal expansion of the side end portion of the conductor portion can be reduced.
  • the distortion at the side end portion of the conductor portion can be reduced, peeling between the insulating substrate and the conductor portion can be suppressed.
  • the conductor portion is made of a metal plate
  • the insulating substrate is made of a ceramic substrate
  • the bonding layer that joins the metal plate and the ceramic substrate has a protruding area (width) from the metal plate of 0.2 mm or less.
  • the protruding region 6 of the bonding layer is a bonding layer that protrudes from the side edge of the metal plate at the bonding surface between the ceramic substrate and the metal plate.
  • FIG. 3 and 4 show another embodiment of the semiconductor circuit board of the present invention.
  • the reference numerals in the figure are the same as those in FIG.
  • FIG. 3 shows the conductor portion 3 formed in a convex shape
  • FIG. 4 shows the conductor portion 3 formed in a concave shape.
  • the semiconductor element mounting portion of the conductor portion may be a portion having the highest convex surface or a step portion.
  • the semiconductor element mounting portion of the conductor portion may be the lowest or the highest portion of the recess.
  • the surface roughness of the semiconductor element conductor portion is 0.3 ⁇ m or less in arithmetic average roughness Ra, 2.5 ⁇ m or less in ten-point average roughness Rzjis, 2.0 ⁇ m or less in maximum height Rz,
  • an arithmetic average waviness Wa is set to be a flat surface of 0.5 ⁇ m or less.
  • the convex conductive part as shown in FIG. 3 by mounting the semiconductor element on the highest part of the convex surface of the conductive part, the thermal expansion of the end part of the conductive part can be mitigated. Peeling can be suppressed. Further, in the case of the concave conductive portion as shown in FIG. 4, the heat of the semiconductor element can be efficiently radiated through the conductor portion by mounting the semiconductor element at the lowest portion of the concave portion of the conductive portion.
  • the thickness t2 of the conductor portion is t2 at the thickest portion of the conductor portion. Also in the case of a concave conductor portion as shown in FIG. 4, the thickness t2 of the conductor portion is t2 at the thickest portion of the conductor portion.
  • the semiconductor element mounting portion of the conductor portion has excellent flatness, even if the heat generation amount of the semiconductor element increases, the distortion of the conductor portion can be suppressed, so that the semiconductor element is peeled off. Etc. can be suppressed. Therefore, the reliability of the semiconductor device using the semiconductor circuit board of the present invention can be improved.
  • a semiconductor element used for a semiconductor device it can be applied to various semiconductor elements such as a Si element, a GaN element, a SiC element, and a thermoelectric element.
  • a Si element, a GaN element, and a SiC element is preferable.
  • the junction temperature of Si elements is being increased to 150 to 170 ° C.
  • the GaN device or SiC device is expected to have a junction temperature of 300 to 400 ° C.
  • the semiconductor element is in a direction in which the use temperature is as high as 130 ° C. or higher, or 200 ° C. or higher.
  • FIG. 5 shows an embodiment of a semiconductor device in which the semiconductor element 7 is mounted via the bonding layer 8.
  • FIG. 6 shows an example of a semiconductor device in which the semiconductor element 7 is mounted without using a bonding layer.
  • reference numeral 1 is a semiconductor circuit substrate (semiconductor device), 2 is an insulating substrate, 3 is a conductor portion, 4 is a conductor portion (back conductor portion), and 5 is insulated. 1 is a bonding layer between the conductive substrate and the conductor, 7 is a semiconductor element, and 8 is a bonding layer for bonding the semiconductor element.
  • Examples of the bonding material used when the semiconductor element has a structure in which the semiconductor element is bonded to the conductive portion via the bonding material include solder, active metal brazing material, and heat conductive resin.
  • the solder is preferably lead-free solder, and preferably has a melting point 100 ° C. higher than the operating temperature of the semiconductor element.
  • the active metal brazing material is an Ag—Cu alloy brazing material containing at least one active metal selected from Ti, Zr, and Hf.
  • the active metal brazing material is preferably 1 to 6% by mass of active metal, 10 to 35% by mass of Cu, and the balance Ag, and if necessary, 10 to 20% by mass of In or Sn may be added. . Since the active metal brazing material has a high melting point of 700 ° C. or higher, it is possible to maintain a strong bond even when the operating temperature of the semiconductor element is 200 ° C. or higher.
  • a pressure bonding method a friction stir welding method (FSW: Friction Stir Welding), or a room temperature bonding method can be used.
  • FSW Friction Stir Welding
  • the above-described pressure bonding method is a method in which a semiconductor element is brought into contact with a semiconductor element mounting portion of a conductor portion, and the semiconductor element is pressed and joined at a constant pressure. Further, if necessary, the bonding may be performed by pressing at a constant pressure while applying heat, or by irradiating the bonding surface with an Ar beam or the like in a vacuum to activate the surface.
  • the friction stir welding method is a method in which either one of the semiconductor element and the semiconductor circuit board is pressed against a mating member while rotating, and the frictional heat and the stirring force are used to join. Since frictional heat and stirring force are used, solid phase bonding using plastic flow can be performed without melting the base material.
  • the semiconductor element and the conductor part are directly bonded without using a bonding material as in the above-described pressure bonding method, friction stir welding method, or room temperature bonding method, a bonding failure due to peeling of the bonding material does not occur. Further, since the semiconductor element is directly joined to the conductor portion, the heat dissipation is good even if the heat generation amount of the semiconductor element is increased.
  • FIG. 7 shows a semiconductor device (semiconductor circuit board) to which a heat sink is bonded.
  • reference numeral 1 is a semiconductor circuit board
  • 2 is an insulating substrate
  • 3 is a conductor portion
  • 4 is a conductor portion (back conductor portion)
  • 5 is an insulating substrate and a conductor portion.
  • a bonding layer 7 is a semiconductor element
  • 8 is a bonding layer for bonding the semiconductor elements
  • 9 is a heat sink.
  • the semiconductor device of the present invention can maintain the reliability of bonding between the semiconductor element and the conductor portion while maintaining excellent heat dissipation even if the heat generation amount of the semiconductor element increases.
  • the TCT characteristics of the conductive part and the insulating substrate are improved and the occurrence of peeling problems is suppressed. it can. Therefore, TCT characteristics as a semiconductor device can be greatly improved and reliability can be improved.
  • the present invention can be applied to various fields such as PCU (output adjustment device), IGBT (insulated gate bipolar transistor), IPM (intelligent power module) used for inverters such as automobiles, electric vehicles, electric railway vehicles, industrial machines and air conditioners.
  • PCU output adjustment device
  • IGBT insulated gate bipolar transistor
  • IPM intelligent power module
  • the method for producing a semiconductor circuit board of the present invention is not particularly limited, but there are the following methods for efficiently obtaining a circuit board.
  • the insulating substrate examples include a ceramic substrate and an insulating resin substrate.
  • a ceramic substrate an alumina substrate, an aluminum nitride substrate, or a silicon nitride substrate is preferable.
  • the alumina substrate has a thermal conductivity of 10 to 30 W / m ⁇ K, but has a high three-point bending strength of 400 MPa or more.
  • an alumina substrate is less expensive than an aluminum nitride substrate or a silicon nitride substrate, it is effective for cost reduction.
  • the aluminum nitride substrate preferably has a high thermal conductivity of 170 W / m ⁇ K or higher.
  • the aluminum nitride substrate has a three-point bending strength of 250 MPa or more, which is lower than that of the alumina substrate, but can be increased to 350 to 550 MPa by improving the sintering aid component.
  • the silicon nitride substrate preferably has a high thermal conductivity and high strength with a thermal conductivity of 50 W / m ⁇ K or more and a three-point bending strength of 500 MPa or more.
  • the insulating resin substrate is not particularly limited as long as the insulating property can be ensured. Insulating resin substrates are less expensive than ceramic substrates.
  • the insulating substrate is selected according to the heat generation amount of the semiconductor element to be mounted and the usage environment for each application. For example, a ceramic substrate is preferable when the heat generation of the element becomes high, such as a SiC element.
  • the silicon nitride substrate can be made as thin as 0.4 mm or less by increasing its thermal conductivity and strength. By reducing the thickness of the substrate, it is possible to prevent the silicon nitride substrate from becoming a thermal resistor, so that heat dissipation can be further improved.
  • the insulating substrate preferably has a thickness of 1.5 mm or less, more preferably 0.1 to 1.0 mm.
  • the conductor part examples include a metal plate, a fired metal powder paste, a metal vapor deposition film such as a sputtered film, and a metal plating film.
  • a metal plate is preferable. If it is a metal plate, it is easy to adjust the thickness ratio between the thickness t2 of the metal plate and the thickness t1 of the insulating substrate.
  • the insulating substrate is a ceramic substrate
  • the direct bonding method (DBC method) or the active metal brazing material method is suitable for the bonding between the metal plate and the insulating substrate.
  • the insulating substrate is an insulating resin substrate
  • a method of bonding with an adhesive or the like can be used.
  • a convex metal plate or a concave metal plate is formed in advance. May be used, and the shape may be adjusted by etching or pressing as described later.
  • a circuit shape is given to the conductive part by etching or pressing.
  • the shape of the side end of the conductor and the protruding region (width) of the bonding layer are adjusted by etching.
  • a polishing process for improving the flatness of the semiconductor element mounting portion is performed.
  • the polishing process for improving the flatness is an etching process or a press process.
  • the arithmetic average roughness Ra is 0.3 ⁇ m or less
  • the ten-point average roughness Rzjis is 2.5 ⁇ m or less
  • the maximum height Rz is 2.0 ⁇ m or less
  • the arithmetic average waviness Wa is 0.5 ⁇ m or less.
  • the polishing process for obtaining a certain flat surface has different conditions from the etching process and press process for providing the circuit shape described above.
  • the polishing process for improving the flatness does not completely remove the conductor part, but processes it so that only the semiconductor element mounting part has a flat surface.
  • a flat surface is formed by removing ⁇ 50 ⁇ m.
  • the semiconductor element mounting portion of the conductor portion has an arithmetic average roughness Ra of 0.1 ⁇ m or less and a ten-point average roughness Rzjis of 2. Since it is preferably 0 ⁇ m or less, the maximum height Rz is 1.2 ⁇ m or less, and the arithmetic average waviness Wa is 0.1 ⁇ m or less, it is desirable to remove the conductor portion by 10 ⁇ m or more.
  • the processing conditions such as etching solution, immersion or flow time are selected according to the material of the conductor and the required flatness.
  • press working is performed by applying pressure to the conductor portion while heating at 700 to 860 ° C. in a vacuum with the surface of the press die as the intended flat surface. Further, by making only the semiconductor element mounting portion of the conductor portion a flat surface, it is possible to obtain a marking effect that makes it easy to identify the location where the semiconductor element is mounted.
  • the flat surface may be only the semiconductor element mounting portion of the conductor portion, but it goes without saying that the entire surface of the conductor portion may be a flat surface.
  • a step of mounting a semiconductor element on the obtained semiconductor circuit substrate is performed.
  • the bonding between the semiconductor element and the semiconductor element mounting portion of the conductive portion may be either a method using a bonding material or a method not using a bonding material as described above.
  • Examples of the bonding material used when the semiconductor element has a structure in which the semiconductor element is bonded to the conductive portion via the bonding material include solder, active metal brazing material, and heat conductive resin.
  • the thickness of this bonding material is preferably 30 ⁇ m or less, and more preferably 10 ⁇ m or less. By thinning the bonding material, the effect of making the semiconductor element mounting portion flat can be obtained.
  • the active metal brazing material for joining the semiconductor elements is composed of 1 to 6 wt% Ti, 10 to 35 wt% Cu, one of Sn or In, or a total of 100 wt (mass) metal components. It is preferable that the two types be 10 to 20 wt% and the balance be Ag.
  • the eutectic temperature of the active metal brazing material can be lowered.
  • the joining temperature can be made 650 to 800 ° C.
  • the bonding temperature of the active metal brazing material made of Ag—Cu—Ti is 820 to 900 ° C.
  • the bonding temperature of the active metal brazing material for bonding the semiconductor elements is set to 800 ° C. or less.
  • the bonding temperature between the ceramic substrate and the copper plate can be further lowered.
  • an active metal brazing material having the same composition.
  • the crimping method is a method in which a semiconductor element is brought into contact with a semiconductor element mounting portion of a conductor portion and pressed and joined with a certain pressure. Further, if necessary, bonding may be performed by pressing at a constant pressure while applying heat, or by irradiating an Ar beam or the like in a vacuum to activate the surfaces.
  • the friction stir welding method is a method in which either one of the semiconductor element and the semiconductor circuit substrate is pressed against a mating member while rotating, and the frictional heat and the stirring force are used to join. Since frictional heat and stirring force are used, solid phase bonding using plastic flow can be performed without melting the base material.
  • Various semiconductor elements such as Si elements, GaN elements, and SiC elements can be applied.
  • the semiconductor element mounting portion of the conductive portion is made flat, so that the bonding between the conductive portion and the semiconductor element is performed. Reliability can be improved.
  • a portion serving as a thermal resistor is not formed on the joint surface, so that heat can be radiated efficiently. For this reason, when mounting a semiconductor element whose operating temperature is high, a method that does not involve a bonding material such as a pressure bonding method, a friction stir welding method, or a room temperature bonding method is preferable.
  • the semiconductor element when the semiconductor element is bonded to the semiconductor element mounting portion of the conductive portion without using a bonding material, it is preferable to apply a load of 2 kN or more to bond the semiconductor element.
  • the copper plate an oxygen-free copper plate is preferably used.
  • the Vickers hardness (HV) of the oxygen-free copper plate is stipulated as 55 or more according to JIS-H-3100, and about 55 to 120.
  • the upper limit of the load is preferably 20 kN or less. If the upper limit of the load exceeds 20 kN, the copper plate may be deformed. Therefore, the load is preferably 2 to 20 kN, more preferably 3 to 10 kN.
  • the load can be reduced to less than 2 kN by giving the semiconductor element a movement corresponding to a rotational speed of 500 to 4000 rpm.
  • the two can be bonded so that no gap is generated in the bonding portion between the semiconductor element and the semiconductor element mounting portion of the conductive portion.
  • the presence or absence of a gap can be analyzed by an ultrasonic flaw detection method. Note that the ultrasonic flaw detection method is performed by a vertical flaw detection method using a pulse reflection method.
  • 5 to 7 show a structure in which only one semiconductor element is mounted as an embodiment, the present invention is not limited to these, and a plurality of semiconductor elements may be mounted.
  • Semiconductor elements tend to be reduced in area in consideration of yield and cost. When a small semiconductor element is mounted, even a slight joint failure with the conductor portion becomes a thermal resistor, which affects heat dissipation. In the case of a semiconductor element with a small area, in order to increase the capacity of the semiconductor device, it is necessary to connect a plurality of semiconductor elements in parallel. Even in such a case, the same effect can be obtained by making the semiconductor element mounting portion of the conductive portion for mounting the individual semiconductor elements flat. Therefore, it is also suitable for a semiconductor device on which a plurality of semiconductor elements are mounted.
  • Example 3 As an insulating (ceramics) substrate (length 30 mm ⁇ width 35 mm), an alumina substrate (thickness 0.635 mm, thermal conductivity 15 W / m ⁇ K, three-point bending strength 450 MPa), aluminum nitride substrate (thickness 0.635 mm, A thermal conductivity of 180 W / m ⁇ K, a three-point bending strength of 400 MPa, and a silicon nitride substrate (thickness 0.320 mm, a thermal conductivity of 90 W / m ⁇ K, a three-point bending strength of 650 MPa) were prepared.
  • the active metal brazing material used was Ti 3 wt%, Cu 30 wt% and the balance Ag, applied at a thickness of 15 ⁇ m, and heat-bonded at a temperature of 820 to 860 ° C. in a vacuum (10 ⁇ 3 Pa or less).
  • the copper plate used was an oxygen-free copper plate (Vickers hardness Hv80).
  • an etching resist was printed on a copper plate on the surface, an etching process was performed to form a circuit pattern, and then the etching resist was peeled off. Moreover, the edge part of the circuit pattern was etched as needed, and cross-sectional angle (theta) of the side surface edge part of a copper plate and the protrusion area
  • the sizes of the obtained semiconductor circuit substrates are Samples 1 to 8 shown in Table 1.
  • the semiconductor element mounting portions were processed into flat surfaces shown in Table 2 for the semiconductor circuit substrates of Samples 1 to 8.
  • polishing processing method was performed by the etching process, and was set as the Example.
  • polish was made into the comparative example.
  • Semiconductor devices were fabricated by mounting semiconductor elements on the semiconductor element mounting portions of the conductor portions of the semiconductor circuit substrates according to Examples 1 to 10 and Comparative Examples 1 to 3.
  • Table 3 shows the bonding conditions between the conductor portion and the semiconductor element. Note that an active metal brazing material was used as a method through the bonding material, and a pressure bonding method and a friction stir welding method (FSW) were used as a method without using the brazing material.
  • FSW friction stir welding method
  • the bonding method using the active metal brazing material is applied in a vacuum (10 ⁇ 3) using an active metal brazing material composed of Ti 3 wt%, Cu 20 wt%, Sn 8 wt%, In 8 wt%, and the remaining Ag, and having a thickness of 10 ⁇ m.
  • the crimping method was performed under a load of 3 to 10 kN.
  • the friction stir welding method FSW
  • the semiconductor elements were joined at a load of 1 kN while rotating at a rotational speed of 1000 to 3000 rpm.
  • a TCT test (thermal cycle test) was performed on each semiconductor device thus prepared.
  • 2000 cycles were carried out as test 1 with -50 ° C. ⁇ 30 minutes ⁇ room temperature ⁇ 10 minutes ⁇ 155 ° C. ⁇ 30 minutes ⁇ room temperature ⁇ 10 minutes as one cycle.
  • Test 2 a sample using a silicon nitride substrate as a ceramic substrate was subjected to 2000 cycles, with -50 ° C. ⁇ 30 minutes ⁇ room temperature ⁇ 10 minutes ⁇ 210 ° C. ⁇ 30 minutes ⁇ room temperature ⁇ 10 minutes as one cycle.
  • the ultrasonic flaw detection method the vertical flaw detection method based on the pulse reflection method is used when the gap between the copper plate and the semiconductor element (the junction between the semiconductor element and the semiconductor element mounting portion of the copper plate) is confirmed to be defective. Those that were not confirmed were defined as non-defective products (those without defects). As a result, “ ⁇ ” indicates that there was no defect, and “X” indicates that there was a defect.
  • the semiconductor device according to each example exhibits excellent TCT characteristics even in a high temperature use environment of 150 ° C. and further 200 ° C. or higher. Particularly, those using a silicon nitride substrate showed excellent characteristics. Further, in the semiconductor device according to the example, no gap was observed at the junction between the semiconductor element and the copper plate even after the completion of Test 2. In Examples 1 to 4, peeling of the copper plate was confirmed in Test 2, but the amount of peeling was smaller than that of Comparative Examples 1 and 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geometry (AREA)
  • Dispersion Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

 絶縁性基板上に導体部を設けた半導体回路基板において、導体部の半導体素子搭載部の表面粗さが、算術平均粗さでRa0.3μm以下であり、十点平均粗さRzjisで2.5μm以下であり、最大高さがRz2.0μm以下であり、かつ算術平均うねりWaが0.5μm以下であることを特徴とする半導体回路基板である。また、絶縁性基板の厚さをt1、導体部の厚さをt2としたとき、0.1≦t2/t1≦50であることが好ましい。上記構成によれば、半導体素子の発熱量が増加しても優れたTCT特性を示す半導体回路基板およびそれを用いた半導体装置が提供できる。

Description

半導体回路基板およびそれを用いた半導体装置並びに半導体回路基板の製造方法
 本発明は、半導体回路基板およびそれを用いた半導体装置並びに半導体回路基板の製造方法に関する。
 電子制御に使用される半導体チップ(半導体素子)は小型化が進みチップからの発熱量は増加の一途をたどっている。そのため、半導体チップを搭載する半導体回路基板(モジュール含む)においては放熱性の向上が重要になっている。これは、チップ上の一点だけでも半導体チップの真性温度を超えてしまうと、抵抗が負のマイナス側の温度係数に変化してしまうために、電力が集中的に流れる熱暴走を起こして瞬時に破壊してしまうためである。つまり、チップの電力損失に見合ったマージンを考慮した放熱設計を行うことが求められている。
 熱抵抗(Rth)はRth=L/(k×A)の式で表すことができる。式中、Rth は熱抵抗、Lは熱伝達経路、kは熱伝導度、Aは放熱面積である。この式によると、熱抵抗(Rth)は、熱伝達経路(L)が短いほど、そして、熱伝動度(k)と放熱面積(A)が大きいほど減少する。なお、熱伝達経路(L)は一般的に回路基板の厚さに相当する。
 半導体チップを使用した一般的な半導体装置は、相異なる材質間の接触があり、熱伝達経路はチップ→半田→電極回路材→絶縁性基板→裏金属板→半田→放熱部材(ヒートシンク)であり、放熱部材以外は絶縁回路基板である。つまり、熱伝達経路の大部分を占める絶縁回路板の放熱性能が優れていなければ、半導体装置の性能向上を図ることはできない。
 また、現在の半導体チップの主流であるSiチップの応答速度には限界が見えており、更なる機器の小型化や性能向上のために、次世代半導体素子としてSiCやGaNを用いたチップの開発が国を挙げてのプロジェクトとして急ピッチで進んでいる。特にSiCチップは、動作可能温度がSiチップの主流が125~150℃であるのに対し、600℃まで使用できると言われており、応答速度が速いだけでなく動作温度が高いことも特徴の一つになっている。
 しかしながら、チップと電極回路材との接合に従来のような半田材を使用した場合には、動作温度が半田材の融点以下となり、高い動作温度という特徴を活かすことができないと考えられる。このため、高融点半田材の開発が行われているが現状では融点が600℃以上で信頼性が十分なものは開発されていない。また、例えば、国際公開WO2007/105361号パンフレット(特許文献1)には高融点半田材に替えてAg-Cuろう材を使うことが提案されている。特許文献1のような接合温度が600℃以上となる高融点ろう材を使うことにより、電極回路材と半導体素子との接合の信頼性に関しては一定の向上が確認されている。
 一方で接合の信頼性向上だけではなく、更なる放熱性の改善が試みられている。例えば、半導体チップをろう材等の接合材を介さずに電極回路材に直接接合する方法、電極回路材を厚くして上下方向だけでなく横方向にも放熱を行う方法が考えられている。また、従来の半導体回路基板モジュールでは、絶縁回路基板を介してヒートシンクと接合する片面冷却方式が主流であるのに対し、半導体チップの両面から冷却させる両面冷却方式等が用いられるようになっている。
国際公開WO2007/105361号パンフレット 特許第3797905号公報
 前述のように半導体素子の動作温度の上昇に備えて、様々な放熱構造の改善が試みられている。半導体チップをろう材等の接合材を介さずに電極回路材に直接接合する方法は熱伝達経路(L)の短縮に繋がる。また、電極回路材を厚くして上下方向だけでなく横方向にも放熱を行う方法は放熱面積(A)の増大になる。また、半導体チップの両面から冷却させる両面冷却方式も放熱面積(A)の増大になる。
 しかしながら、放熱性の更なる向上につながる各種の熱抵抗低減方式に適した半導体回路基板が無いと言った問題があった。
 本発明は、このような問題に対応するためのものであり、放熱性のよい半導体回路基板を提供するためのものである。
 本発明の半導体回路基板は、絶縁性基板上に導体部を設けた半導体回路基板において、導体部の半導体素子搭載部の表面粗さが、算術平均粗さRaで0.3μm以下であり、十点平均粗さRzjisで2.5μm以下であり、最大高さRzで2.0μm以下であり、かつ算術平均うねりWaが0.5μm以下であることを特徴とするものである。
 また、絶縁性基板の厚さをt1、導体部の厚さをt2としたとき、0.1≦t2/t1≦50であることが好ましい。また、導体部の側面端部の断面角度が45°以下であることが好ましい。また、導体部が金属板から成る一方、絶縁性基板がセラミックス基板から成り、金属板とセラミックス基板とを接合する接合層は金属板からのはみ出し領域(幅)が0.2mm以下であることが好ましい。また、絶縁性基板が、アルミナ基板、窒化アルミニウム基板、窒化珪素基板および絶縁樹脂基板のいずれか1種で構成されることが好ましい。また、導体部が、銅、銅合金、アルミニウムおよびアルミニウム合金のいずれか1種から成ることが好ましい。
 また、本発明に係る半導体装置は、本発明の半導体回路基板の導体部に半導体素子を搭載したことを特徴とするものである。また、半導体素子がSi素子、GaN素子およびSiC素子から選択される1種以上であることが好ましい。また、半導体素子が接合材を介して導電部に接合されていることが好ましい。また、半導体素子が接合材を介さずに導体部に直接接合されていることが好ましい。
 また、本発明の半導体回路基板の製造方法は、絶縁性基板上に導体部を形成する導体部形成工程と、導体部の半導体素子搭載部の表面粗さを算術平均粗さRaで0.3μm以下にし、十点平均粗さRzjisで2.5μm以下にし、最大高さRzで2.0μm以下にし、かつ算術平均うねりWaを0.5μm以下にする表面加工工程と、を具備することを特徴とするものである。
 また、表面加工工程が、研磨工程であることが好ましい。また、研磨工程が、エッチング工程であることが好ましい。また、研磨工程が、プレス加工であることが好ましい。
 本発明の半導体回路基板は導体部の半導体素子搭載部の平坦性を大幅に向上させているので放熱性に優れている。また、半導体素子を搭載した半導体装置において、放熱性を向上させることができる。また、半導体素子を搭載する際に、接合材を使用する場合や接合材を使用しない場合のどちらにも対応できる。
本発明に係る半導体回路基板の一実施例を示す断面図である。 本発明に係る半導体回路基板の他の実施例を示す断面図である。 本発明に係る半導体回路基板のさらに別の実施例を示す断面図である。 本発明に係る半導体回路基板のさらに別の実施例を示す断面図である。 本発明に係る半導体装置の一実施例を示す断面図である。 本発明に係る半導体装置の他の実施例を示す断面図である。 本発明に係る半導体装置のさらに別の実施例を示す断面図である。
 本発明に係る半導体回路基板は、絶縁性基板上に導体部を設けた半導体回路基板において、導体部の半導体素子搭載部の表面粗さが、算術平均粗さでRa0.3μm以下であり、十点平均粗さRzjisで2.5μm以下であり、最大高さがRz2.0μm以下であり、かつ算術平均うねりWaが0.5μm以下であることを特徴とするものである。
 図1に本発明の半導体回路基板の一実施例を示す。図1中、符号1は半導体回路基板であり、2は絶縁性基板であり、3は導体部であり、4は導体部(裏導体部)であり、5は絶縁性基板と導体部との接合層である。
 まず、絶縁性基板は両面に設ける導体部3と導体部4との間の絶縁性が確保できるものであれば特に限定されるものではないが、絶縁性基板は、アルミナ基板、窒化アルミニウム基板、窒化珪素基板および絶縁樹脂基板のいずれか1種から構成されることが好ましい。アルミナ基板、窒化アルミニウム基板、窒化珪素基板および絶縁樹脂基板はいずれも優れた絶縁性を有することから、基板厚さが1.5mm以下と薄型化しても使用可能である。この中では窒化珪素基板が好ましい。窒化珪素基板は、例えば特許第3797905号公報(特許文献2)に示すように、3点曲げ強度が500MPa以上であり、かつ熱伝導率が50W/m・K以上であるという強度および熱伝導率に優れたものが開発されている。窒化珪素基板であれば、後述するSiC素子のように使用温度が200℃以上の高温になったとしても優れた耐久性を示す。また、200℃以上の高温下で使用するのであれば、窒化珪素基板に限らず、アルミナ基板や窒化アルミニウム基板と言ったセラミックス基板であれば耐熱性に優れているので好ましい。
 また、導体部が、銅、銅合金、アルミニウムおよびアルミニウム合金のいずれか1種からなることが好ましい。これらの金属は導電性に優れていることから好ましい。また、熱伝導率も高いことから放熱性にも優れている。また、導体部は銅、銅合金、アルミニウムおよびアルミニウム合金のいずれか1種からなる金属板であることが好ましい。また、導体部3および導体部4は接合層5を介して絶縁性基板2と接合されていることが好ましい。導体部は接合層を介さずに絶縁性基板に接合してもよい。前述のように絶縁性基板としてセラミックス基板を使用すれば、ろう材を使用した活性金属接合法や、ろう材を使用しない直接接合法などの接合方法を適用することができる。
 本発明の半導体回路基板は、導体部の半導体素子搭載部の表面粗さが算術平均粗さRaで0.3μm以下であり、十点平均粗さRzjisで2.5μm以下であり、最大高さRzで2.0μm以下であり、かつ算術平均うねりWaが0.5μm以下、であることを特徴とするものである。
 なお、上記算術平均粗さRa、十点平均粗さRzjis、最大高さRz2.0μm以下および算術平均うねりWaはJIS-B-0601(2001)の規定に基づくものである。なお、JIS-B-0601(2001)における最大高さRzは、JIS-B-0601(1994)におけるRyに対応する。また、JIS-B-0601(2001)における十点平均粗さRzjisは、JIS-B-0601(1994)におけるRzに対応する。
 導体部の半導体素子搭載部の表面粗さが算術平均粗さRaで0.3μm以下であり、十点平均粗さRzjisで2.5μm以下であり、最大高さRzで2.0μm以下であり、かつ算術平均うねりWaが0.5μm以下であるということは、導体部の半導体素子搭載部の平坦性が非常に優れていることを意味する。
 後述するように半導体素子の高性能化に伴う発熱量の増加が見込まれている。例えば、Si素子のジャンクション温度は150~170℃の高温化が進められている。また、GaN素子またはSiC素子はジャンクション温度が300~400℃になると見込まれている。実際の使用温度は、それぞれジャンクション温度よりも低くなるが、一般的なSi素子よりは高くなる傾向にある。半導体素子の発熱量が高くなると、導体部が熱膨張により歪んでくる。このとき導体部の半導体素子搭載部の平坦性が悪いと、導体部が歪んだときに半導体素子の位置ずれやはがれなどの不具合が生じる。本発明では、導体部の半導体素子搭載部の平坦性が非常に優れているので熱膨張に伴う導体部の歪みが発生したとしても、その歪みを均一化できるので半導体素子の位置ずれやはがれなどの不具合を抑制できる。また、導体部と半導体素子との密着性が向上し、導体部と半導体素子との結合に欠陥として現れる未反応部や隙間(未接合部)の発生を抑制できる。同様に、接合材を介して導体部と半導体素子とを接合した場合も未反応部や隙間の発生を抑制できる。
 導体部の半導体素子搭載部の表面粗さは算術平均粗さでRa0.1μm以下であり、十点平均粗さRzjisで2.0μm以下であり、最大高さRzで1.2μm以下であり、かつ算術平均うねりWaが0.1μm以下であることが好ましい。
 また、絶縁性基板の厚さをt1、導体部の厚さをt2としたとき、0.1≦t2/t1≦50であることが好ましい。後述するように、半導体素子はSi素子、GaN素子、SiC素子など様々なものがある。いずれの場合も高出力化に伴い発熱量が増加する傾向にある。半導体素子が発生する熱を効率的に放熱させるためには、熱伝導率が高い導体部が一定の厚さを具備していることが好ましい。t1≦1.5mm、さらには0.1mm≦t1≦0.8mmであることが好ましい。絶縁性基板の厚さt1が0.1mm未満では、導体部3と導体部4との間の絶縁性を確保できない恐れがある。一方、絶縁性基板の厚さt1が1.5mmを超えると絶縁性基板自体が熱抵抗体となり、半導体回路基板としての放熱性が低下する。さらに導体部の厚さt2は、1≦t2/t1≦10、であることが好ましい。また、裏面側の導体部(導体部4)に関しても、絶縁性基板と同様の厚さ関係であることが好ましい。
 また、導体部の側面端部の断面角度が45°以下であることが好ましい。図2に導体部の側面端部に角度を付けた半導体回路基板の一例を示す。図2中、符号1は半導体回路基板であり、2は絶縁性基板であり、3は導体部であり、4は導体部(裏導体部)であり、5は絶縁性基板と導体部との接合層であり、6は接合層のはみ出し領域(幅)であり、θは導体部の側面端部の角度である。
 前述のように半導体素子の発熱量が高くなると、導体部が熱膨張により歪んでくる。このとき、導体部の側面端部の断面角度θを45°以下と小さくすると、導体部の側面端部の熱膨張による歪みを小さくすることができる。導体部の側面端部の歪みを小さくすることができると、絶縁性基板と導体部との剥がれを抑制することができる。
 また、導体部が金属板から成る一方、絶縁性基板がセラミックス基板から成り、金属板とセラミックス基板とを接合する接合層は金属板からのはみ出し領域(幅)が0.2mm以下であることが好ましい。接合層のはみ出し領域6は、セラミックス基板と金属板との接合面において金属板の側面端部からはみ出た接合層である。接合層のはみ出し領域6を設けることにより、セラミックス基板と金属板の接合端面との剥がれを抑制することができる。はみ出し領域6の幅が0.2mmを超えて大きいと、それ以上のはがれ抑制効果が得られないだけでなくコストアップの要因となる。また、前述の導体部の側面端部の断面角度45°以下にすることと組み合わせると、さらに効果的である。特に、導体部の厚さt2が2mm以上の厚い導体部を設ける場合に有効である。
 また、図3および図4に本発明の半導体回路基板の他の実施例を示す。図中の符号は図1と同一である。図3は導体部3を凸状に形成したものであり、図4は導体部3を凹状に形成したものである。図3において、導体部の半導体素子搭載部は、凸面の一番高い箇所であってもよいし、段差部であってもよい。また、図4において、導体部の半導体素子搭載部は、凹部の一番低い箇所であってもよいし、高い箇所であってもよい。いずれの場合であっても、半導体素子導体部の表面粗さを算術平均粗さRaで0.3μm以下、十点平均粗さRzjisで2.5μm以下、最大高さRzで2.0μm以下、かつ算術平均うねりWaで0.5μm以下の平坦面とする。
 図3のような凸状導電部であると、導電部の凸面の一番高い所に半導体素子を搭載することにより、導電部の端部の熱膨張を緩和できるので絶縁性基板と導電部のはがれを抑制できる。また、図4のような凹状導電部であると、導電部の凹部の一番低い箇所に半導体素子を搭載することにより、半導体素子の熱を、導体部を経由して効率的に放熱できる。
 なお、図3のような凸状導体部の場合、導体部の厚さt2は導体部の最も厚い箇所をt2とする。また、図4のような凹状導体部の場合も、導体部の厚さt2は導体部の最も厚い箇所をt2とする。
 以上のような半導体回路基板は、導体部の半導体素子搭載部が優れた平坦性を有しているので、半導体素子の発熱量が上がったとしても導体部の歪みを抑制できるので半導体素子の剥がれなどの不具合を抑制できる。従って、本発明の半導体回路基板を使った半導体装置は信頼性を向上させることができる。
 また、半導体装置に用いる半導体素子としては、Si素子、GaN素子、SiC素子、熱電素子など様々な半導体素子に適用できる。これらの中では、特に、Si素子、GaN素子、SiC素子のいずれか1種以上であることが好ましい。Si素子のジャンクション温度は150~170℃の高温化が進められている。また、GaN素子またはSiC素子はジャンクション温度が300~400℃になると見込まれている。いずれの場合も使用温度が130℃以上、さらには200℃以上と高くなる方向にある半導体素子である。
 本発明の半導体回路基板は、半導体素子導体部の平坦性を向上させているので使用温度が高くなっても、半導体素子の位置ずれを防ぐことができる。そのため、接合材を介して半導体素子を導電部に接合する方法、接合材を介さずに半導体素子を導体部に直接接合させる方法の両方とも適用することができる。図5に接合層8を介して半導体素子7を搭載した半導体装置の一実施例を示す。また、図6に接合層を介さずに半導体素子7を搭載した半導体装置の一例を示す。図5および図6中、符号1は半導体回路基板(半導体装置)であり、2は絶縁性基板であり、3は導体部であり、4は導体部(裏導体部)であり、5は絶縁性基板と導体部との接合層であり、7は半導体素子であり、8は半導体素子を接合するための接合層である。
 半導体素子が接合材を介して導電部に接合されている構造をとる際の接合材は、半田、活性金属ろう材または熱伝導性樹脂が挙げられる。
 半田は鉛フリー半田が好ましく、融点が半導体素子の使用温度よりも100℃以上高いものが好ましい。
 また、活性金属ろう材は、Ti、Zr、Hfから選ばれる少なくとも1種の活性金属を含有するAg-Cu合金ろう材である。活性金属ろう材は、活性金属を1~6質量%、Cuを10~35質量%、残部Agであることが好ましく、必要に応じ、InまたはSnを10~20質量%を添加してもよい。活性金属ろう材は融点が700℃以上と高いことから、半導体素子の使用温度が200℃以上の高温になったとしても強固な接合を維持できる。
 一方、半導体素子が接合材を介さずに導体部に直接接合されている構造とするには、圧着法、摩擦攪拌接合法(FSW:Friction Stir Welding)または常温接合法が挙げられる。
 ここで上記圧着法は、半導体素子を導体部の半導体素子搭載部に接触させ、一定の圧力で押し込んで接合する方法である。また、必要に応じ、熱を加えながら一定の圧力で押し込んで接合したり、接合面を真空中でArビーム等を接合面に照射して表面を活性化したりして接合してもよい。
 また、摩擦攪拌接合法(FSW)は、半導体素子または半導体回路基板のどちらか一方を回転させながら相手部材に圧力で押し当て、その摩擦熱と攪拌力で接合する方法である。摩擦熱と攪拌力を利用しているため、母材を溶融せずに塑性流動を利用した固相接合を行うことができる。
 上記圧着法、摩擦攪拌接合法または常温接合法のように接合材を用いずに半導体素子と導体部を直接接合しているので、接合材の剥がれによる接合不良を発生させることがない。また、半導体素子が直接的に導体部と接合されているので、半導体素子の発熱量が増加したとしても放熱性が良好である。
 また、図7にヒートシンクを接合した半導体装置(半導体回路基板)を示す。図7中、符号1は半導体回路基板であり、2は絶縁性基板であり、3は導体部であり、4は導体部(裏導体部)であり、5は絶縁性基板と導体部との接合層であり、7は半導体素子であり、8は半導体素子を接合するための接合層であり、9はヒートシンクである。裏導体部4にヒートシンク9を接合することにより、さらに放熱性を向上させることができる。
 本発明の半導体装置は、半導体素子の発熱量が増大したとしても、優れた放熱性を維持した上で、半導体素子と導体部との接合の信頼性を維持できる。また、導電部の側面端部形状や導電部と絶縁性基板の接合層のはみ出し量を調整することにより、導電部および絶縁性基板のTCT特性が向上し、剥がれの不具合が発生することを抑制できる。そのため、半導体装置としてのTCT特性を大幅に向上し、信頼性を向上させることができる。そのため、自動車や電気自動車、電鉄車両、産業機械およびエアコン等のインバターに用いられるPCU(出力調整装置)、IGBT(絶縁ゲートバイポーラトランジスタ)、IPM(インテリジェントパワーモジュール)など様々な分野に適用できる。
 次に製造方法について説明する。本発明の半導体回路基板の製造方法は特に限定されるものではないが、効率的に回路基板を得るための方法として以下の方法がある。
 まず、絶縁性基板を用意する。絶縁性基板としては、セラミックス基板や絶縁性樹脂基板が挙げられる。セラミックス基板としては、アルミナ基板、窒化アルミニウム基板、窒化珪素基板が好ましい。また、アルミナ基板は、熱伝導率は10~30W/m・Kであるが、3点曲げ強度が400MPa以上と高い。また、アルミナ基板は窒化アルミニウム基板や窒化珪素基板と比較して安価であるため、コスト低減のためには効果的である。また、窒化アルミニウム基板は熱伝導率170W/m・K以上の熱伝導率の高いものが好ましい。窒化アルミニウム基板は、3点曲げ強度250MPa以上とアルミナ基板と比較して低いが、焼結助剤成分などを改善することにより350~550MPaと高強度化することができる。また、窒化珪素基板は、熱伝導率50W/m・K以上かつ3点曲げ強度500MPa以上の高熱伝導・高強度のものが好ましい。
 絶縁性樹脂基板は、絶縁性を確保できれば特に限定されるものではない。また、絶縁性樹脂基板はセラミックス基板と比較して安価である。絶縁性基板の選択は、搭載する半導体素子の発熱量や用途毎の使用環境に応じて選択するものとする。例えば、SiC素子のように素子の発熱が高温になる場合はセラミックス基板が好ましい。特に、窒化珪素基板は高熱伝導化かつ高強度化することにより、基板厚さを0.4mm以下と薄くできる。基板厚さを薄くすることにより、窒化珪素基板が熱抵抗体となることを防止することができるので、さらに放熱性を向上させることができる。また、絶縁性基板は厚さ1.5mm以下、さらには0.1~1.0mmのものが好ましい。
 次に、絶縁性基板に導電部を設ける工程を行う。導体部は、金属板、金属粉末ペーストを焼成したもの、スパッタ膜などの金属蒸着膜、金属メッキ膜などが挙げられる。この中では、金属板が好ましい。金属板であれば、金属板の厚さt2と絶縁性基板の厚さt1の厚さ比を調整し易い。
 また、金属板と絶縁性基板との接合は、絶縁性基板がセラミックス基板の場合、直接接合法(DBC法)や活性金属ろう材法が好適である。また、絶縁性基板が絶縁性樹脂基板である場合、接着剤などで接合する方法が挙げられる。
 また、半導体素子を搭載する導体部の形状を図3に示すような凸状導体部を形成する場合または図4に示すような凹状導体部を形成する場合、予め凸状金属板や凹状金属板を用いてもよいし、後述するようにエッチング加工やプレス加工により形状を整えてもよい。
 また、必要に応じ、エッチング加工やプレス加工により、導電部に回路形状を付与するものとする。また、エッチング加工により、導体部の側面端部形状および接合層のはみ出し領域(幅)を調整するものとする。
 また、導体部を接合した絶縁性基板を調製した後、半導体素子搭載部の平坦性を向上させる研磨加工を行う。平坦性を向上させる研磨加工は、エッチング加工またはプレス加工である。算術平均粗さRaで0.3μm以下であり、十点平均粗さRzjisで2.5μm以下であり、最大高さRzで2.0μm以下であり、かつ算術平均うねりWaで0.5μm以下である平坦面を得るための研磨加工は、前述の回路形状を付与するためのエッチング加工やプレス加工とは異なる条件となる。
 すなわち、回路形状を整える加工の場合、導体部の不要な箇所を完全に除去する必要がある。それに対し、平坦性を向上させる研磨加工は、導体部を完全に除去するのではなく、半導体素子搭載部のみを目的とする平坦面になるように加工するもので、導体部の厚さを1~50μm除去することにより平坦面を形成する。
 特に、前述の接合材を介さない方法で半導体素子を搭載する場合には、導体部の半導体素子搭載部は算術平均粗さRaで0.1μm以下であり、十点平均粗さRzjisで2.0μm以下であり、最大高さRzで1.2μm以下であり、かつ算術平均うねりWaで0.1μm以下であることが好ましいため、導体部は10μm以上除去することが望ましい。
 エッチング加工の場合、エッチング液や浸漬あるいは流動時間等の処理条件を導体部の材質と必要とする平坦性に応じて選定する。また、プレス加工の場合は、プレス金型の表面を目的とする平坦面として導体部に真空中にて700~860℃で加熱しながら加圧するプレス加工を行うものである。また、導体部の半導体素子搭載部のみを平坦面とすることにより、半導体素子を搭載する箇所を識別し易くなるマーキング効果も得ることができる。なお、平坦面とするのは、導体部の半導体素子搭載部のみでよいが、導体部の全面を平坦面としてもよいことは言うまでもない。
 次に、半導体装置の製造方法として、得られた半導体回路基板に半導体素子を搭載する工程を行う。半導体素子と導電部の半導体素子搭載部との接合は、前述のように接合材を介する方法または接合材を介さない方法のいずれでもよい。
 半導体素子が接合材を介して導電部に接合されている構造をとる際の接合材は、半田、活性金属ろう材または熱伝導性樹脂が挙げられる。この接合材の厚さは30μm以下、さらには10μm以下と薄い方がよい。接合材を薄くすることにより、半導体素子搭載部を平坦面にした効果がより得られるようになる。
 また、半導体素子を接合するための活性金属ろう材は、金属成分の合計を100wt(質量)%としたとき、Tiを1~6wt%、Cuを10~35wt%、SnまたはInの1種または2種を10~20wt%、Agを残部とすることが好ましい。Ag-Cu-Tiから成る活性金属ろう材にSnまたはInの1種または2種を添加させることにより活性金属ろう材の共晶温度を下げることができる。活性金属ろう材の共晶温度を下げることにより、接合温度を650~800℃にすることができる。セラミックス基板と銅板とを接合する場合には、Ag-Cu-Tiから成る活性金属ろう材の接合温度が820~900℃となる。
 これに対して、半導体素子を接合するための活性金属ろう材の接合温度を800℃以下とすることにより、セラミックス基板と銅板との接合温度をより低くすることができる。これにより、半導体素子の接合工程の加熱処理によりセラミックス基板と銅板との接合層に悪影響が発現しないようにすることができる。
 なお、セラミックス基板と銅板との接合と、銅板と半導体素子との接合とを同時に実施する場合には、同じ組成の活性金属ろう材を使用することが好ましい。
 また、接合材を介さない場合は、圧着法、摩擦攪拌接合法(FSW)、常温接合法などが挙げられる。
 圧着法は、半導体素子を導体部の半導体素子搭載部に接触させ、一定の圧力で押し込んで接合する方法である。また、必要に応じ、熱を加えながら一定の圧力で押し込んで接合したり、接合面を真空中にてArビーム等を照射させることで表面を活性化して接合したりしてもよい。また、摩擦攪拌接合法(FSW)は、半導体素子または半導体回路基板のどちらか一方を回転させながら相手部材に圧力で押し当て、その摩擦熱と攪拌力で接合する方法である。摩擦熱と攪拌力を利用しているため、母材を溶融せずに塑性流動を利用した固相接合を行うことができる。
 また、半導体素子は、Si素子、GaN素子、SiC素子など様々なものが適用できる。特に、使用温度が130℃以上、さらには200℃以上の高温になる半導体素子であったとしても、導電部の半導体素子搭載部を平坦面にしているので、導電部と半導体素子との接合の信頼性を向上させることができる。また、半導体素子と導電部との間の未反応部や隙間を抑制できるので、接合面に熱抵抗体となる部分が形成されないので効率的に放熱できる。このため、使用温度が高くなる半導体素子を搭載する場合は、圧着法、摩擦攪拌接合法、常温接合法のような接合材を介さない方法が好ましい。
 また、接合材を介さずに導電部の半導体素子搭載部へ半導体素子の接合を実施する場合は、2kN以上の荷重を負荷させて半導体素子を接合することが好ましい。銅板としては無酸素銅板が好適に使用される。無酸素銅板のビッカース硬度(HV)は、JIS-H-3100にて55以上、さらには55~120程度と規定されている。また、荷重負荷を2kN以上とすることにより、無酸素銅板からなる導電部の半導体素子搭載部に半導体素子が傾くこと無く、正確に圧入させることができる。なお、負荷の上限は20kN以下であることが好ましい。負荷の上限が20kNを超えると銅板が変形してしまうおそれがある。そのため、負荷は2~20kN、さらには3~10kNであることが好ましい。
 また、摩擦攪拌接合法については、半導体素子に回転速度500~4000rpmに相当する動きを与えることで、負荷を2kN未満にすることもできる。
 圧着法または摩擦攪拌接合法を上記条件で実施すれば、半導体素子と導電部の半導体素子搭載部との接合部に隙間が生じないように両者を接合することができる。隙間の発生の有無は超音波探傷法にて分析することができる。なお、超音波探傷法は、パルス反射法を用いた垂直探傷法により実施するものとする。
 また、図5~7では、半導体素子を一個のみ搭載した構造を実施例として示したが、本発明はこれらに限らず、半導体素子を複数個搭載してもよい。半導体素子は、歩留りやコストを考慮して、小面積化していく傾向にある。小型の半導体素子を搭載する場合、導体部とのわずかな接合不良であっても熱抵抗体となり、放熱性に影響する。また、小面積の半導体素子の場合、半導体装置として容量を増加させるには、複数の半導体素子を並列接続する必要がある。このような場合も、個々の半導体素子を搭載する導電部の半導体素子搭載部を平坦面とすることにより、同様の効果が得られる。従って、複数個の半導体素子を搭載する半導体装置にも好適である。
(実施例)
(実施例1~10および比較例1~3)
 絶縁性(セラミックス)基板(縦30mm×横35mm)として、アルミナ基板(厚さ0.635mm、熱伝導率15W/m・K、3点曲げ強度450MPa)、窒化アルミニウム基板(厚さ0.635mm、熱伝導率180W/m・K、3点曲げ強度400MPa)、窒化珪素基板(厚さ0.320mm、熱伝導率90W/m・K、3点曲げ強度650MPa)を用意した。
 次に、活性金属ろう材法により、絶縁性基板の両面に銅板(縦25mm×横30mm)を接合した。なお、活性金属ろう材はTi3wt%、Cu30wt%、残部Agのものを用い、厚さ15μmで塗布して、真空中(10-3Pa以下)で、温度820~860℃で加熱接合した。また、銅板は無酸素銅板(ビッカース硬度Hv80)のものを用いた。
 次に、回路形状を設けるために、表面の銅板にエッチングレジストを印刷し、エッチング処理を行って回路パターンを形成した後、エッチングレジストを剥離した。また、必要に応じ、回路パターンの端部をエッチング加工して、銅板の側面端部の断面角度θおよび接合層のはみ出し領域を調整した。
 得られた半導体回路基板のサイズは、表1に示した試料1~8である。
Figure JPOXMLDOC01-appb-T000001
 次に、試料1~8の半導体回路基板に対し、半導体素子搭載部を表2に示す平坦面に加工した。なお、研磨加工方法はエッチング加工にて行って実施例とした。また、研磨加工を行わないものを比較例とした。
Figure JPOXMLDOC01-appb-T000002
 実施例1~10および比較例1~3に係る半導体回路基板に対し、導体部の半導体素子搭載部に半導体素子を搭載して半導体装置を作製した。導体部と半導体素子との接合条件は表3に示す通りである。なお、接合材を介する方法として活性金属ろう材を用い、ろう材を介さない方法として、圧着法、摩擦攪拌接合法(FSW)を用いた。
 なお、活性金属ろう材を用いた接合法は、Ti3wt%、Cu20wt%、Sn8wt%、In8wt%、Ag残部からなる活性金属ろう材を用いて、厚さ10μm塗布して、真空中(10-3Pa以下)で温度700~750℃で加熱接合した。また、圧着法は荷重負荷3~10kNにて行った。また、摩擦攪拌接合法(FSW)は半導体素子を回転速度1000~3000rpmで回転させながら、荷重負荷1kNにて接合した。
 こうして調製した各半導体装置に対して、TCT試験(熱サイクル試験)を実施した。TCT試験は、試験1として、-50℃×30分→室温×10分→155℃×30分→室温×10分を1サイクルとして2000サイクル実施した。また、試験2として、セラミック基板として窒化珪素基板を用いた試料について、-50℃×30分→室温×10分→210℃×30分→室温×10分を1サイクルとして2000サイクル実施した。
 そして試験後の、セラミックス基板と銅板との接合不良の有無、銅板と半導体素子との接合不良の有無を目視及び超音波探傷法により確認した。なお、超音波探傷法はパルス反射法による垂直探傷法により銅板と半導体素子との接合部(半導体素子と銅板の半導体素子搭載部との接合部)に隙間が確認されたものを不良、隙間が確認されなかったものを良品(不良のなかったもの)とした。この結果、不良のなかったものを「○」、不良のあったものを「×」で示した。
Figure JPOXMLDOC01-appb-T000003
上記表3に示す結果から明らかなように各実施例に係る半導体装置は、150℃、さらには200℃以上の高温度使用環境においても、優れたTCT特性を示すことが判明した。特に窒化珪素基板を用いたものは優れた特性を示した。また、実施例に係る半導体装置は、試験2の完了後であったとしても、半導体素子と銅板との接合部に隙間は観察されなかった。なお、実施例1~4は試験2にて銅板の剥がれが確認されたが、その剥がれ量は比較例1~2と比較して小さかった。
 以上説明の通り、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…半導体回路基板(半導体装置)
2…絶縁性基板
3…導体部(銅回路板)
4…導体部(裏導体部、裏回路板)
5…絶縁性基板と導体部との接合層
6…接合層のはみ出し領域(幅)
7…半導体素子
8…半導体素子を接合するための接合層
9…ヒートシンク

Claims (14)

  1.  絶縁性基板上に導体部を設けた半導体回路基板において、導体部の半導体素子搭載部の表面粗さが、算術平均粗さRaで0.3μm以下であり、十点平均粗さRzjisで2.5μm以下であり、最大高さRzで2.0μm以下であり、かつ算術平均うねりWaが0.5μm以下であることを特徴とする半導体回路基板。
  2.  前記絶縁性基板の厚さをt1、前記導体部の厚さをt2としたとき、0.1≦t2/t1≦50であることを特徴とする請求項1記載の半導体回路基板。
  3.  前記導体部の側面端部の断面角度が45°以下であることを特徴とする請求項1ないし請求項2のいずれか1項に記載の半導体回路基板。
  4.  前記導体部が金属板から成る一方、前記絶縁性基板がセラミックス基板から成り、上記金属板とセラミックス基板とを接合する接合層は上記金属板からのはみ出し領域の幅が0.2mm以下であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の半導体回路基板。
  5.  前記絶縁性基板が、アルミナ基板、窒化アルミニウム基板、窒化珪素基板および絶縁樹脂基板のいずれか1種で構成されることを特徴とする請求項1ないし請求項4のいずれか1項に記載の半導体回路基板。
  6.  前記導体部が、銅、銅合金、アルミニウムおよびアルミニウム合金のいずれか1種からなることを特徴とする請求項1ないし請求項5のいずれか1項に記載の半導体回路基板。
  7.  請求項1ないし請求項6のいずれか1項に記載の半導体回路基板の導体部に半導体素子を搭載したことを特徴とする半導体装置。
  8.  前記半導体素子がSi素子、GaN素子およびSiC素子から選択される1種以上であることを特徴とする請求項7記載の半導体装置。
  9.  前記半導体素子が前記接合材を介して前記導電部に接合されていることを特徴とする請求項7ないし請求項8のいずれか1項に記載の半導体装置。
  10.  前記半導体素子が接合材を介さずに前記導体部に直接接合されていることを特徴とする請求項7ないし請求項8のいずれか1項に記載の半導体装置。
  11.  絶縁性基板上に導体部を形成する導体部形成工程と、上記導体部の半導体素子搭載部の表面粗さを算術平均粗さRaで0.3μm以下にし、十点平均粗さRzjisで2.5μm以下にし、最大高さRzで2.0μm以下にし、かつ算術平均うねりWaを0.5μm以下にする表面加工工程と、を具備することを特徴とする半導体回路基板の製造方法。
  12.  前記表面加工工程が、研磨工程であることを特徴とする請求項11記載の半導体回路基板の製造方法。
  13.  前記研磨工程が、エッチング工程であることを特徴とする請求項12記載の半導体回路基板の製造方法。
  14.  前記研磨工程が、プレス加工であることを特徴とする請求項12記載の半導体回路基板の製造方法。
PCT/JP2013/076645 2012-10-04 2013-10-01 半導体回路基板およびそれを用いた半導体装置並びに半導体回路基板の製造方法 WO2014054609A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/433,342 US9277639B2 (en) 2012-10-04 2013-10-01 Semiconductor circuit board, semiconductor device using the same, and method for manufacturing semiconductor circuit board
CN201380051959.1A CN104718615B (zh) 2012-10-04 2013-10-01 半导体电路板及其制造方法和使用其的半导体装置
JP2014539744A JP6359455B2 (ja) 2012-10-04 2013-10-01 半導体回路基板およびそれを用いた半導体装置並びに半導体回路基板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-222239 2012-10-04
JP2012222239 2012-10-04

Publications (1)

Publication Number Publication Date
WO2014054609A1 true WO2014054609A1 (ja) 2014-04-10

Family

ID=50434935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076645 WO2014054609A1 (ja) 2012-10-04 2013-10-01 半導体回路基板およびそれを用いた半導体装置並びに半導体回路基板の製造方法

Country Status (4)

Country Link
US (1) US9277639B2 (ja)
JP (1) JP6359455B2 (ja)
CN (1) CN104718615B (ja)
WO (1) WO2014054609A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2991105A4 (en) * 2013-04-26 2016-12-07 Kyocera Corp COMPOSITE LAMINATE AND ELECTRONIC DEVICE
JPWO2018021472A1 (ja) * 2016-07-28 2019-05-23 株式会社東芝 接合体、回路基板、および半導体装置
JP2020113686A (ja) * 2019-01-16 2020-07-27 三菱マテリアル株式会社 ヒートシンク付き絶縁回路基板の製造方法及びヒートシンク付き絶縁回路基板

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6139329B2 (ja) * 2013-08-16 2017-05-31 日本碍子株式会社 セラミック回路基板及び電子デバイス
WO2015132969A1 (ja) * 2014-03-07 2015-09-11 三菱電機株式会社 絶縁基板及び半導体装置
EP2918191B1 (en) 2014-03-11 2024-01-24 The Procter & Gamble Company Head for an oral care implement
EP3460838B1 (en) * 2016-05-19 2021-02-24 Mitsubishi Materials Corporation Substrate for power modules
ES2778085T3 (es) 2016-06-03 2020-08-07 Procter & Gamble Cabezal para un utensilio de cuidado bucal y utensilio de cuidado bucal
EP3251548B1 (en) 2016-06-03 2024-02-14 The Procter & Gamble Company Filament for an oral care implement and oral care implement
CN109417057B (zh) * 2016-07-14 2022-08-02 株式会社东芝 陶瓷电路基板及半导体模块
US10104759B2 (en) * 2016-11-29 2018-10-16 Nxp Usa, Inc. Microelectronic modules with sinter-bonded heat dissipation structures and methods for the fabrication thereof
WO2018155014A1 (ja) * 2017-02-23 2018-08-30 日本碍子株式会社 絶縁放熱基板
JP6437162B1 (ja) * 2017-03-23 2018-12-12 三菱電機株式会社 半導体素子接合体、半導体装置、及び半導体素子接合体の製造方法
EP3606299B1 (en) 2017-03-30 2022-08-31 Kabushiki Kaisha Toshiba Ceramic-copper circuit substrate and semiconductor device using same
US10251470B1 (en) 2017-10-10 2019-04-09 The Procter & Gamble Company Head for an oral care implement and oral care implement
CN110709969B (zh) * 2017-06-02 2024-06-04 三菱电机株式会社 半导体元件接合用基板、半导体装置及电力转换装置
US20190006254A1 (en) * 2017-06-30 2019-01-03 Kyocera International, Inc. Microelectronic package construction enabled through ceramic insulator strengthening and design
DE102017114893B4 (de) * 2017-07-04 2023-11-23 Rogers Germany Gmbh Lötmaterial zum Aktivlöten und Verfahren zum Aktivlöten
US11219302B2 (en) 2017-10-10 2022-01-11 The Procter & Gamble Company Head for an oral care implement and oral care implement
JP7025948B2 (ja) * 2018-02-13 2022-02-25 ローム株式会社 半導体装置および半導体装置の製造方法
US10638604B1 (en) 2019-06-19 2020-04-28 Borgwarner, Inc. Insulated metal printed circuit board
EP4124184A4 (en) * 2020-03-18 2024-04-17 Kabushiki Kaisha Toshiba LAMINATE, CERAMIC-COPPER CIRCUIT BOARD, METHOD FOR PRODUCING A LAMINATE AND METHOD FOR PRODUCING A CERAMIC-COPPER CIRCUIT BOARD
DE102020112276A1 (de) * 2020-05-06 2021-11-11 Danfoss Silicon Power Gmbh Leistungsmodul
CN114080088B (zh) * 2020-08-10 2024-05-31 鹏鼎控股(深圳)股份有限公司 电路板及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077253A (ja) * 1999-09-01 2001-03-23 Aronshiya:Kk 半導体用ヒートシンク及びその製造方法
JP2004172378A (ja) * 2002-11-20 2004-06-17 Mitsubishi Materials Corp パワーモジュール用基板の製造方法並びにパワーモジュール用基板及びパワーモジュール
JP2006278595A (ja) * 2005-03-29 2006-10-12 Dowa Mining Co Ltd 放熱板およびその製造法
JP2008117833A (ja) * 2006-11-01 2008-05-22 Mitsubishi Materials Corp パワーモジュール用基板及びパワーモジュール用基板の製造方法並びにパワーモジュール

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332651A (ja) * 2000-05-24 2001-11-30 Kyocera Corp 電子部品搭載用基板
JP3797905B2 (ja) 2000-10-27 2006-07-19 株式会社東芝 窒化けい素セラミックス基板およびそれを用いた窒化けい素セラミックス回路基板並びにその製造方法
US7190016B2 (en) * 2004-10-08 2007-03-13 Rohm And Haas Electronic Materials Llc Capacitor structure
US8273993B2 (en) 2006-03-08 2012-09-25 Kabushiki Kaisha Toshiba Electronic component module
JP2008138066A (ja) * 2006-12-01 2008-06-19 Lintec Corp 再剥離粘着シート
JP4442609B2 (ja) * 2007-01-18 2010-03-31 富士電機システムズ株式会社 半導体装置およびその製造方法
JP4864757B2 (ja) * 2007-02-14 2012-02-01 東京エレクトロン株式会社 基板載置台及びその表面処理方法
JP5133960B2 (ja) * 2009-10-22 2013-01-30 電気化学工業株式会社 半導体搭載用回路基板及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077253A (ja) * 1999-09-01 2001-03-23 Aronshiya:Kk 半導体用ヒートシンク及びその製造方法
JP2004172378A (ja) * 2002-11-20 2004-06-17 Mitsubishi Materials Corp パワーモジュール用基板の製造方法並びにパワーモジュール用基板及びパワーモジュール
JP2006278595A (ja) * 2005-03-29 2006-10-12 Dowa Mining Co Ltd 放熱板およびその製造法
JP2008117833A (ja) * 2006-11-01 2008-05-22 Mitsubishi Materials Corp パワーモジュール用基板及びパワーモジュール用基板の製造方法並びにパワーモジュール

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2991105A4 (en) * 2013-04-26 2016-12-07 Kyocera Corp COMPOSITE LAMINATE AND ELECTRONIC DEVICE
JPWO2018021472A1 (ja) * 2016-07-28 2019-05-23 株式会社東芝 接合体、回路基板、および半導体装置
JP2022003010A (ja) * 2016-07-28 2022-01-11 株式会社東芝 接合体の製造方法および回路基板の製造方法
JP7013374B2 (ja) 2016-07-28 2022-01-31 株式会社東芝 接合体、回路基板、および半導体装置
JP7155372B2 (ja) 2016-07-28 2022-10-18 株式会社東芝 接合体の製造方法および回路基板の製造方法
JP2020113686A (ja) * 2019-01-16 2020-07-27 三菱マテリアル株式会社 ヒートシンク付き絶縁回路基板の製造方法及びヒートシンク付き絶縁回路基板
JP7243201B2 (ja) 2019-01-16 2023-03-22 三菱マテリアル株式会社 ヒートシンク付き絶縁回路基板の製造方法及びヒートシンク付き絶縁回路基板

Also Published As

Publication number Publication date
US9277639B2 (en) 2016-03-01
CN104718615B (zh) 2018-01-02
JP6359455B2 (ja) 2018-07-18
JPWO2014054609A1 (ja) 2016-08-25
CN104718615A (zh) 2015-06-17
US20150257252A1 (en) 2015-09-10

Similar Documents

Publication Publication Date Title
JP6359455B2 (ja) 半導体回路基板およびそれを用いた半導体装置並びに半導体回路基板の製造方法
KR102146589B1 (ko) 히트싱크가 부착된 파워 모듈용 기판, 히트싱크가 부착된 파워 모듈, 및 히트싱크가 부착된 파워 모듈용 기판의 제조 방법
EP3136431B1 (en) Substrate for power modules, substrate with heat sink for power modules and power module with heat sink
KR102097177B1 (ko) 파워 모듈용 기판, 히트싱크가 부착된 파워 모듈용 기판 및 파워 모듈
JP6307832B2 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール
JP4524716B2 (ja) ヒートシンク付パワーモジュール用基板及びその製造方法、並びに、ヒートシンク付パワーモジュール、パワーモジュール用基板
WO2017006661A1 (ja) セラミックス金属回路基板およびそれを用いた半導体装置
JP5991102B2 (ja) ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法
JP5957862B2 (ja) パワーモジュール用基板
KR20150135285A (ko) 파워 모듈용 기판, 히트 싱크가 부착된 파워 모듈용 기판 및 파워 모듈
JP2013211546A (ja) セラミックス−銅接合体およびその製造方法
JP2004022973A (ja) セラミック回路基板および半導体モジュール
JP2009088330A (ja) 半導体モジュール
JP2014167984A (ja) ヒートシンク付パワーモジュール用基板の製造方法
JP6790945B2 (ja) 絶縁回路基板の製造方法、及び、ヒートシンク付き絶縁回路基板の製造方法
JP2004055576A (ja) 回路基板及びそれを用いたパワーモジュール
JP2017168635A (ja) パワーモジュール用基板及びパワーモジュールの製造方法
JP5392901B2 (ja) 窒化珪素配線基板
JP2000049425A (ja) セラミックス回路基板とその製造方法、それを用いたパワーモジュール
JP4941827B2 (ja) 半導体モジュール
CN113597674A (zh) 陶瓷铜电路基板及使用了其的半导体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844285

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539744

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14433342

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844285

Country of ref document: EP

Kind code of ref document: A1