WO2014054454A1 - 電気自動車のモータ異常検出装置 - Google Patents

電気自動車のモータ異常検出装置 Download PDF

Info

Publication number
WO2014054454A1
WO2014054454A1 PCT/JP2013/075653 JP2013075653W WO2014054454A1 WO 2014054454 A1 WO2014054454 A1 WO 2014054454A1 JP 2013075653 W JP2013075653 W JP 2013075653W WO 2014054454 A1 WO2014054454 A1 WO 2014054454A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
electric
vehicle
electric motor
detection device
Prior art date
Application number
PCT/JP2013/075653
Other languages
English (en)
French (fr)
Inventor
李国棟
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP13844458.3A priority Critical patent/EP2905165A1/en
Priority to CN201380051789.7A priority patent/CN104684752A/zh
Publication of WO2014054454A1 publication Critical patent/WO2014054454A1/ja
Priority to US14/674,340 priority patent/US20150202963A1/en
Priority to IN2689DEN2015 priority patent/IN2015DN02689A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/24Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a motor abnormality detection device for an electric vehicle, and relates to a technique capable of accurately detecting an abnormality of a drive unit.
  • Patent Documents 1 and 2 In an electric vehicle that includes a drive unit including an electric motor and drives at least a pair of left and right wheels independently by the drive unit, detection means for detecting an abnormality of the drive unit when one of the drive units is abnormal is important. .
  • the detection means are shown in the following 1-3.
  • the torque command of the drive motor is compared with the drive current supplied to the drive motor, and when the drive current corresponding to the torque command becomes abnormal, it is determined that the drive unit is abnormal.
  • the wheel speed of the wheel driven by the drive unit is compared with the vehicle speed or the wheel speed of a comparison target wheel such as a symmetric wheel. When an abnormality occurs in the wheel speed, it is determined that the drive unit is abnormal.
  • the drive unit includes a torque sensor that detects the drive torque of the drive motor. When the output torque of the drive motor detected by the torque sensor becomes abnormal with respect to the torque command of the drive motor, Judge as abnormal.
  • the electric motor When the electric motor is determined to be abnormal, there is a method of generating a steering assist torque in a direction that cancels the yaw moment that occurs due to the abnormality of the electric motor.
  • the tires are reduced by reducing the yaw moment generated in the vehicle and reducing the driving force on the opposite side. For example, there is a method for reducing the slip ratio of the tire and ensuring a sufficient lateral friction force generated in the tire.
  • the detection means for detecting the abnormality of the drive unit described above has the following problems. 1.
  • the drive unit requires a torque sensor for detecting the drive torque of the drive motor, and is expensive.
  • the torque command and the motor torque detected by the torque sensor are not always within the normal error range due to the voltage drop of the battery or the execution of field weakening control in the high speed region. As a result, a problem of erroneous detection of abnormality of the drive motor occurs.
  • An object of the present invention is to provide a motor abnormality detection device for an electric vehicle that can detect an abnormality of the electric motor in the electric vehicle with high accuracy and can reduce the cost as compared with the prior art.
  • the motor abnormality detecting apparatus for an electric vehicle includes a drive unit 8 for driving the wheel 2 by the electric motor 6, and at least the pair of left and right wheels 2, 2 are independently driven by the drive unit 8, 8.
  • the motor abnormality detection device for detecting an abnormality of the electric motor 6 in FIG. 1 includes a steering angle detection sensor 15b for detecting a steering angle of the vehicle, a rotation angle sensor 36 for obtaining a rotation angle of the electric motor 6, and a vehicle speed.
  • the steering angle detection sensor 15b detects the steering angle of the vehicle during driving of the electric vehicle.
  • the rotation angle sensor 36 detects the rotation angle of the electric motor 6.
  • the vehicle speed sensor 9 detects the vehicle speed.
  • the control map 10a the relationship between the value based on the difference between the rotation angles of the electric motors 6 and 6 when the left and right are normal, the steering angle, and the vehicle speed is set. Since there is a difference in rotation between the inner and outer wheels according to the steering angle when turning left or right, the steering angle is also added to the control map 10a. In other words, the control map 10a is set with a rotation angle that allows for a difference in rotation between the inner and outer wheels according to the steering angle, so that the abnormality determination of the electric motor 6 can be performed not only when the vehicle is traveling straight.
  • the abnormality determination means 11 is a rotation in which the difference in the current rotation angle obtained by the rotation angle sensor 36 is obtained by comparing the current steering angle and vehicle speed obtained by the steering angle detection sensor 15b and the vehicle speed sensor 9 with reference to the control map 10a. When it is within the value based on the difference in angle, the electric motor 6 is determined to be normal. Conversely, when the current rotation angle difference deviates from the value based on the rotation angle difference determined in light of the control map 10a, the abnormality determination means 11 determines that the electric motor 6 is abnormal. In this case, even if there is a voltage drop or the like of the battery 19, an abnormality of the electric motor 6 can be accurately detected.
  • the abnormality of the electric motor 6 can be detected without using an expensive torque sensor or the like, the cost can be reduced as compared with the prior art.
  • it is determined that the electric motor 6 is abnormal for example, it is possible to alert the driver that the electric motor 6 is abnormal and to take necessary measures for the electric motor 6 at an early stage.
  • the control map 10a includes the normal rotation angle of the electric motor 6 that drives one of the left and right wheels 2 and 2 and the normal time of the electric motor 6 that drives the other wheel 2.
  • the threshold value of the difference from the rotation angle may be set every vehicle speed.
  • a value based on the difference in rotation angle is set as a threshold value for the difference in rotation angle between the left and right electric motors 6 and 6 at normal times.
  • the abnormality determination means 11 is the difference between the rotation angle of the electric motor 6 that drives one of the left and right wheels 2 and 2 and the rotation angle of the electric motor 6 that drives the other wheel 2. However, when it deviates from the threshold set in the control map 10a, one or both of the electric motors 6 may be determined as abnormal.
  • the abnormality determination unit 11 determines that the electric motor 6 is abnormal, the abnormality determination unit 11 further calculates the electric power of the pair of left and right wheels 2, 2 obtained based on the rotation angle obtained by the rotation angle sensor 36. The difference between the rotational speeds of the motors 6 and 6 and the vehicle speed obtained by the vehicle speed sensor 9 may be compared, and one of the electric motors 6 having the large difference may be determined to be abnormal. By specifying the electric motor 6 determined to be abnormal in this way, the normal electric motor 6 can be used as it is, and only the abnormal electric motor 6 can be repaired or replaced. Therefore, the work man-hour can be reduced.
  • the abnormality determining means 11 may determine that the electric motor 6 is abnormal both when the vehicle is moving forward and when the vehicle is moving backward. Thus, since the electric motor 6 can be determined to be abnormal not only when the vehicle is moving forward but also when the vehicle is moving backward, not only can the abnormality of the electric motor 6 be detected at an early stage, but also the versatility of the motor abnormality detection device is improved. It becomes possible.
  • the electric vehicle may drive one or both of the front and rear wheels 3 and 2 of the vehicle with the electric motor 6.
  • the drive unit 8 may constitute an in-wheel motor drive device including the electric motor 6, the wheel bearing 4, and the speed reducer 7 in which a part or the whole of the electric motor 6 is disposed in the wheel 2. good.
  • FIG. 1 is a block diagram of a conceptual configuration showing an electric vehicle according to a first embodiment of the present invention in a plan view. It is a block diagram of a control system showing a motor abnormality detection device and the like of the electric vehicle. It is a circuit diagram of the inverter apparatus of the same electric vehicle. It is a figure which shows an example of the control map of the motor abnormality detection apparatus.
  • FIG. 1 is a block diagram of a conceptual configuration showing in plan view an electric vehicle equipped with a motor abnormality detection device according to this embodiment.
  • This electric vehicle is a four-wheeled vehicle in which the wheels 2 that are the left and right rear wheels of the vehicle body 1 are drive wheels and the wheels 3 that are the left and right front wheels are driven wheels.
  • the front wheel 3 is a steering wheel.
  • the electric vehicle of this example includes drive units 8 and 8 for driving left and right wheels 2 and 2 as drive wheels by independent electric motors 6 and 6, respectively.
  • the rotation of the electric motor 6 is transmitted to the wheel 2 via the speed reducer 7 and the wheel bearing 4.
  • a part or the whole of the electric motor 6 is disposed in the wheel 2 and constitutes an in-wheel motor driving device including the electric motor 6, the speed reducer 7, and the wheel bearing 4.
  • Each wheel 2 and 3 is provided with a brake (not shown).
  • a motor driving device 20 including an ECU 21 and a plurality of inverter devices 22 is mounted on the vehicle body 1.
  • the ECU 21 is a higher-level control unit that performs overall control of the entire vehicle and gives commands to the inverter devices 22.
  • Each inverter device 22 controls the electric motor 6 for each driving according to a command from the ECU 21.
  • the ECU 21 includes a computer, a program executed by the computer, and various electronic circuits.
  • the ECU 21 and the weak electric system of each inverter device 22 may be configured by a common computer or an electronic circuit on a common substrate.
  • the ECU 21 has torque distribution means 48.
  • the torque distribution means 48 is based on the accelerator opening signal output from the accelerator operating section 16, the deceleration command output from the brake operating section 17, and the turning command output from the steering means 15. 6 is generated as a torque value and output to each inverter device 22. Further, the torque distribution means 48, when receiving a deceleration command output from the brake operation unit 17, is divided into a braking torque command value for causing the electric motor 6 to function as a regenerative brake and a braking torque command value for operating a brake (not shown). Has the function of distributing. The braking torque command value that functions as a regenerative brake is reflected in the torque command value of the acceleration / deceleration command given to the electric motors 6 and 6 for traveling.
  • the accelerator operation unit 16 and the brake operation unit 17 have pedals such as an accelerator pedal and a brake pedal, respectively, and a sensor that detects an operation amount of the pedal.
  • the steering means 15 includes a steering wheel 15a and a steering angle detection sensor 15b that detects a steering angle that is a rotation angle of the steering wheel 15a.
  • the battery 19 is mounted on the vehicle body 1 and is used as a drive for the electric motor 6 and as a power source for the electric system of the entire vehicle.
  • the inverter device 22 includes a power circuit unit 28 provided for each electric motor 6 and a motor control unit 29 that controls the power circuit unit 28.
  • the motor control unit 29 may be provided in common for each power circuit unit 28 or may be provided separately.
  • the motor control unit 29 has a function of outputting information such as detection values and control values relating to the in-wheel motor drive device of the motor control unit 29 to the ECU 21.
  • the power circuit unit 28 includes an inverter 31 and a PWM driver 32 that drives the inverter 31.
  • the inverter 31 converts the DC power of the battery 19 into three-phase AC power used for driving the electric motor 6.
  • the electric motor 6 is a three-phase synchronous motor, for example, an IPM type (embedded magnet type) synchronous motor or the like.
  • the inverter 31 includes a plurality of drive elements 31a, and outputs a drive voltage of each phase of the three phases (U, V, W phase) of the electric motor 6 in a pulse waveform.
  • a semiconductor switching element is applied as each drive element 31a.
  • the motor drive control unit 37 performs pulse width modulation based on the input current command and gives an on / off command to the PWM driver 32.
  • the PWM driver 32 drives each drive element 31a.
  • the PWM driver 32 which is a weak electric circuit part of the power circuit part 28 and the motor control unit 29 constitute an arithmetic part 33 which is a weak electric circuit part in the inverter device 22.
  • the calculation unit 33 includes a computer, a program executed on the computer, and an electronic circuit.
  • the inverter device 22 is provided with, for example, a smoothing section 34 using a smoothing capacitor interposed in parallel between the battery 19 and the inverter 31.
  • the electric motor 6 is provided with a rotation angle sensor 36 for detecting the rotation angle of the motor rotor.
  • the application timing of each phase of each wave of alternating current flowing through the stator coil is determined based on the relative rotation angle between the stator and the motor rotor detected by the rotation angle sensor 36. Control is performed by the motor drive control unit 37 of the motor control unit 29.
  • this electric vehicle is equipped with a motor abnormality detection device that detects abnormality of the electric motor 6.
  • the motor abnormality detection device includes a steering angle detection sensor 15b, a rotation angle sensor 36, a vehicle speed sensor 9 that detects a vehicle speed, a storage unit 10, an abnormality determination unit 11, and an abnormality report unit 12.
  • the motor control unit 29 configured as described above is provided with an abnormality determination unit 11 and an abnormality report unit 12.
  • the storage means 10 is provided in a storage area in the ECU 21.
  • a control map 10a (to be described later) in which a value based on a difference in rotation angle, a steering angle, and a vehicle speed is set is set is set to be rewritable.
  • a control map may be provided in the storage area of the motor control unit 29.
  • the abnormality determination means 11 determines that the difference between the rotation angles of the left and right electric motors 6 and 6 obtained by the rotation angle sensor 36, that is, the difference between the AD values of the left and right rotation angle sensor signals, is the steering angle detection sensor 15b and the vehicle speed sensor 9.
  • the AD value is a value obtained by converting an analog value of the rotation angle sensor signal into a digital value.
  • the abnormality determination unit 11 determines that the electric motor 6 is abnormal both when the vehicle is moving forward and when the vehicle is moving backward.
  • FIG. 4A and 4B show examples of control maps.
  • FIG. 4A shows the AD value of the rotation angle sensor signal in the left and right electric motors in the normal state set according to the steering angle at the time of left turn or left corner when the steering wheel is operated counterclockwise when viewed from the driver, and the vehicle speed. It is the figure which showed the threshold value of difference.
  • a value based on the difference in rotation angle is set as a threshold value for the difference in rotation angle between the left and right electric motors 6 and 6 at normal times.
  • FIG. 4B is a diagram showing a threshold value of a difference between AD values of rotation angle sensor signals in the right and left electric motors set in accordance with the steering angle at the time of right turn or right corner and the normal vehicle speed.
  • the threshold of the value obtained by subtracting the AD value of the rotation angle sensor signal from the right normal electric motor from the AD value of the rotation angle sensor signal from the normal electric motor on the left side depends on the steering angle and the vehicle speed. 4A and 4B, this is represented as Data_ij.
  • the threshold value is appropriately determined by, for example, an actual vehicle test or a simulation. 4A and 4B, the vehicle speed is cut every 10 km / h and the steering angle is cut every 0.5 ⁇ radians, but this is not necessarily limited to this example.
  • the abnormality determination means 11 shown in FIG. 2 is configured to detect the AD value of the rotation angle sensor signal from the electric motor 6 that drives one wheel 2 and the rotation angle sensor signal from the electric motor 6 that drives the other wheel 2. When the difference from the AD value deviates from the normal Data_ij set in the control map 10a, one or both of the electric motors 6 are determined to be abnormal. Further, when the abnormality determination means 11 determines that the electric motor 6 is abnormal, the abnormality determination means 11 further determines the number of rotations of the electric motors 6 and 6 of the pair of left and right wheels 2 and 2 obtained based on the rotation angle obtained by the rotation angle sensor 36 (described later).
  • the abnormality report unit 12 outputs an abnormality report of the electric motor 6 to the ECU 21 when the abnormality determination unit 11 determines that the electric motor 6 is abnormal.
  • FIG. 5 is a graph showing a change in the rotation angle of the electric motor when traveling in the vehicle drive range (during forward) in the motor abnormality detection device. This will be described with reference to FIG.
  • An analog signal having an electrical angle of 360 ° of the rotation angle sensor 36 provided in the electric motor 6 is converted into an n-bit digital value, and the electrical angle 360 ° is expressed by an AD value of the rotation angle sensor signal.
  • the rotation angle sensor 36 with a shaft double angle 4X if the motor rotor of the electric motor 6 makes one rotation (mechanical angle 360 °), four sawtooth waves are output as signals of the rotation angle sensor 36.
  • One sawtooth wave represents a mechanical angle of 90 degrees.
  • the value of the rotation angle sensor 36 increases from 0 to the upper limit value. When it reaches, it returns to 0 and increases again from 0 to the upper limit. The movement is to be repeated.
  • the rotation speed (rpm) of the electric motor 6 can be calculated using the signal change amount of the rotation angle sensor 36 during a certain sampling time. Specifically, when the rotation angle sensor 36 having a shaft angle multiplier of 4X is applied, the value obtained by dividing “60” by the sampling time for acquiring the rotation angle sensor signal is multiplied by the signal change amount of the rotation angle sensor 36. By dividing the value obtained by multiplying the signal change amount by the value obtained by multiplying the upper limit value by 4, the rotational speed of the electric motor 6 can be calculated.
  • FIG. 6 is a graph showing a change state of the rotation angle of the electric motor in accordance with the change in the rotation speed when traveling in the drive range of the vehicle in the motor abnormality detection device.
  • FIG. 6 shows a change state of the AD value of the rotation angle sensor signal according to the case where the rotation direction of the electric motor is counterclockwise (CCW) when viewed from the output shaft side and the rotation speed rot2> rot1> rot3. Yes.
  • CCW counterclockwise
  • the higher the rotation speed of the electric motor the greater the number of sawtooth waves of the rotation angle sensor output within a certain time.
  • FIG. 7 is a graph showing a change in the rotation angle of the electric motor during traveling in the reverse range of the vehicle (during reverse travel) in this motor abnormality detection device.
  • FIG. 7 shows a change state of the AD value of the rotation angle sensor signal when the motor rotor of the electric motor rotates in the clockwise direction (CW) as viewed from the output shaft side of the electric motor.
  • the value of the rotation angle sensor decreases from the upper limit value to 0, and when it reaches 0, it returns to the upper limit value and decreases from the set value to 0 again. The movement is to be repeated.
  • FIG. 8 is a graph showing the change state of the rotation angle of the electric motor according to the change in the rotation speed when the vehicle is traveling in the reverse range in the motor abnormality detection device.
  • FIG. 8 shows a change in the AD value of the rotation angle sensor signal according to the case where the rotation direction of the electric motor is clockwise (CW) when viewed from the output shaft side of the electric motor and the rotation speed rot2> rot1> rot3. Represents the situation.
  • the steering angle detection sensor 15b detects the steering angle of the vehicle
  • the rotation angle sensor 36 detects the rotation angle of the electric motor 6
  • the vehicle speed sensor 9 detects the vehicle speed.
  • the abnormality determination means 11 is configured such that the difference between the AD value of the rotation angle sensor signal from the electric motor 6 that drives one wheel 2 and the AD value of the rotation angle sensor signal from the electric motor 6 that drives the other wheel 2.
  • the abnormality determination means 11 further determines the number of rotations of the electric motors 6 and 6 of the pair of left and right wheels 2 and 2 obtained based on the rotation angle obtained by the rotation angle sensor 36 when determining that the electric motor 6 is abnormal.
  • the difference between the vehicle speed obtained by the vehicle speed sensor 9 is compared, and one of the electric motors 6 having the large difference is determined to be abnormal.
  • the abnormality determination means 11 can detect an abnormality of the electric motor 6 with high accuracy regardless of the vehicle speed.
  • a rotation angle that allows for a rotation difference between the inner and outer wheels according to the steering angle is set, so that the abnormality determination of the electric motor 6 can be performed with high accuracy other than when the vehicle is traveling straight. Even if there is a voltage drop or the like of the battery 19, an abnormality of the electric motor 6 can be detected with high accuracy. Further, since the abnormality of the electric motor 6 can be detected without using an expensive torque sensor or the like, the cost can be reduced as compared with the prior art.
  • the abnormality reporting means 12 outputs an abnormality report of the electric motor 6 to the ECU 21, and the abnormality display means 13 of the ECU 21 outputs to the display device 14 that the electric motor 6 is abnormal to alert the driver. obtain.
  • the driver can take necessary measures for the electric motor 6 at an early stage.
  • the motor abnormality detection device is applied to a front wheel drive type electric vehicle in which the left and right front wheels are drive wheels and the left and right rear wheels are driven wheels. May be. Furthermore, this motor abnormality detection device may be applied to a four-wheel drive type electric vehicle having left and right front and rear wheels 3 and 2 as drive wheels as in the second embodiment shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

 電気自動車における電動モータの異常を精度良く検出することができると共に、従来技術よりもコストダウンを図ることができる電気自動車のモータ異常検出装置を提供する。車両の操舵角を検出する操舵角検出センサ(15b)と、電動モータ(6)の回転角を得る回転角度センサ(36)と、車速度センサ(9)と、左右一対の車輪(2,2)をそれぞれ駆動する左右の正常時における電動モータ(6,6)の回転角の差に基づく値と操舵角と車速との関係を設定した制御マップ(10a)と、回転角度センサ(36)で得られる左右の電動モータ(6,6)の回転角の差が、操舵角検出センサ(15b)および車速度センサ(9)で得られる操舵角および車速を制御マップ(10a)に照らして求まる回転角の差に基づく値から外れたとき、電動モータ(6)を異常と判定する異常判定手段(11)とを備える。

Description

電気自動車のモータ異常検出装置 関連出願
 本出願は、2012年10月3日出願の特願2012-221070の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、電気自動車のモータ異常検出装置に関し、ドライブユニットの異常を精度良く検出し得る技術に関する。
 電気自動車用のインホイールモータ駆動装置における電動モータ、またはドライブユニットの機能が失陥する等の異常時には、正常な電動モータにより車両の走行を継続できる電気自動車の制御方法および制御装置が提案されている(特許文献1,2)。電動モータを含むドライブユニットを備え、少なくとも左右一対の車輪のそれぞれを、前記ドライブユニットにより独立に駆動する電気自動車において、ドライブユニットのいずれか一方の異常時には、そのドライブユニットの異常を検出する検出手段が重要である。検出手段を以下の1~3に示す。
 1.駆動用モータのトルク指令と、この駆動用モータへ供給される駆動電流とを比較し、トルク指令に対する駆動電流が異常になったとき、そのドライブユニットの異常と判断する。
 2.ドライブユニットにより駆動される車輪の車輪速度と、車両速度または左右対称車輪などの比較対象車輪の車輪速度とを比較し、車輪速度に異常を生じたとき、そのドライブユニットの異常と判断する。
 3.ドライブユニットは駆動用モータの駆動トルクを検出するトルクセンサを備え、このトルクセンサで検出した駆動用モータの出力トルクが、前記駆動用モータのトルク指令に対して異常になったとき、駆動用モータの異常と判断する。
 電動モータが異常と判断された場合、電動モータの異常に伴い発生するヨーモーメントを打ち消す方向へ操舵補助トルクを発生させる方法がある。また、その異常と判断した側と同軸左右反対側の駆動モータの駆動力を低下させることにより、車両に発生するヨーモーメントを小さくするとともに、左右反対側の駆動力を低下させることにより、そのタイヤのスリップ率を小さくして、タイヤに発生する横方向摩擦力を十分に確保する方法等がある。
特開2010-166740号公報 特開2006-333603号公報
 前述したドライブユニットの異常を検出する検出手段には、以下に示すような課題がある。
 1.駆動用電動モータの異常を検出するため、ドライブユニットは、駆動用モータの駆動トルクを検出するトルクセンサが必要となり、高価なものとなる。しかも、バッテリの電圧降下や高速領域で弱め界磁制御の実施等により、トルク指令とトルクセンサで検出したモータのトルクとは、必ず正常な誤差範囲内にあるとは限らない。それによって、駆動モータの異常の誤検知の問題が生じる。
 2.車輪の車輪速度と車両速度または左右対称車輪等の比較対象車輪とを比較する車輪速度センサを備えることが必要になり、コストアップに繋がる。
 この発明の目的は、電気自動車における電動モータの異常を精度良く検出することができると共に、従来技術よりもコストダウンを図ることができる電気自動車のモータ異常検出装置を提供することである。以下、この発明の概要について、実施形態を示す図面中の符号を用いて説明する。
 この発明の電気自動車のモータ異常検出装置は、車輪2を電動モータ6により駆動するドライブユニット8を備え、少なくとも左右一対の車輪2,2のそれぞれを、前記ドライブユニット8,8により独立に駆動する電気自動車における、前記電動モータ6の異常を検出するモータ異常検出装置であって、車両の操舵角を検出する操舵角検出センサ15bと、前記電動モータ6の回転角を得る回転角度センサ36と、車速を検出する車速度センサ9と、前記左右一対の車輪2,2をそれぞれ駆動する左右の正常時における電動モータ6,6の回転角の差に基づく値と、前記操舵角と、前記車速との関係を設定した制御マップ10aと、前記回転角度センサ36で得られる左右の電動モータ6,6の回転角の差が、前記操舵角検出センサ15bおよび前記車速度センサ9で得られる操舵角および車速を前記制御マップ10aに照らして求まる前記回転角の差に基づく値から外れたとき、前記電動モータ6を異常と判定する異常判定手段11とを備えている。
 この構成によると、電気自動車の運転時、操舵角検出センサ15bは、車両の操舵角を検出する。回転角度センサ36は、電動モータ6の回転角を検出する。車速度センサ9は車速を検出する。制御マップ10aには、左右の正常時における電動モータ6,6の回転角の差に基づく値と、操舵角と、車速との関係が設定されている。右左折時に、操舵角に応じた内外輪の回転差が生じるため、制御マップ10aに操舵角をも加味している。換言すれば、制御マップ10aには、操舵角に応じた内外輪の回転差を見込んだ回転角が設定され、車両直進時以外にも電動モータ6の異常判定を行えるようになっている。
 異常判定手段11は、回転角度センサ36で得られる現在の回転角の差が、操舵角検出センサ15bおよび車速度センサ9で得られる現在の操舵角および車速を、制御マップ10aに照らして求まる回転角の差に基づく値内にあるとき、電動モータ6を正常と判定する。異常判定手段11は、逆に現在の回転角の差が、制御マップ10aに照らして求まる回転角の差に基づく値から外れたとき、電動モータ6を異常と判定する。この場合、バッテリ19の電圧降下等があったとしても、電動モータ6の異常を精度良く検出することができる。また高価なトルクセンサ等を用いることなく電動モータ6の異常を検出できるため、従来技術よりもコストダウンを図れる。なお、電動モータ6を異常と判定した場合、例えば、運転者に電動モータ6が異常である旨注意を喚起し、早期にこの電動モータ6に対し必要な対策を講じることが可能となる。
 前記制御マップ10aは、左右一対の車輪2,2のいずれか一方の車輪2を駆動する電動モータ6の正常時の回転角と、いずれか他方の車輪2を駆動する電動モータ6の正常時の回転角との差の閾値を、車速おきに設定したものであっても良い。この例では、前記回転角の差に基づく値を、左右の電動モータ6,6の正常時の回転角の差の閾値とする。このように正常時の回転角の差の閾値を、車速おきにきめ細かく設定することで、電動モータ6の異常を、車速にかかわらず精度良く検出し得る。
 前記異常判定手段11は、左右一対の車輪2,2のいずれか一方の車輪2を駆動する電動モータ6の回転角と、いずれか他方の車輪2を駆動する電動モータ6の回転角との差が、前記制御マップ10aに設定された前記閾値から外れたとき、いずれか一方または両方の電動モータ6を異常と判定するものとしても良い。
 前記異常判定手段11が前記電動モータ6の異常を判定したとき、前記異常判定手段11は、さらに前記回転角度センサ36で得られる回転角に基づき求めた左右一対の前記車輪2,2の前記電動モータ6,6の回転数と、前記車速度センサ9で得られる車速との差を比較し、この差の大きいいずれか一方の前記電動モータ6を異常と判定しても良い。このように異常と判定された電動モータ6を特定することで、正常な電動モータ6をそのまま使用することができるうえ、異常な電動モータ6のみを修理または交換することができる。よって作業工数の低減を図れる。
 前記異常判定手段11は、前記車両の前進時、後退時の両方とも前記電動モータ6を異常と判定するものとしても良い。このように車両の前進時だけでなく後退時にも、電動モータ6を異常と判定し得るため、電動モータ6の異常を早期に検出し得るだけでなく、モータ異常検出装置としての汎用性を高めることが可能となる。
 前記電気自動車は、車両の前後輪3,2のいずれか一方または両方を前記電動モータ6で駆動するものとしても良い。前記ドライブユニット8は、前記電動モータ6の一部または全体が前記車輪2内に配置されて前記電動モータ6と車輪用軸受4と減速機7とを含むインホイールモータ駆動装置を構成するものとしても良い。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1実施形態に係る電気自動車を平面図で示す概念構成のブロック図である。 同電気自動車のモータ異常検出装置等を示す制御系のブロック図である。 同電気自動車のインバータ装置の回路図である。 同モータ異常検出装置の制御マップの一例を示す図である。 同モータ異常検出装置の制御マップの他の例を示す図である。 同モータ異常検出装置における、車両のドライブレンジでの走行時の電動モータの回転角の変化を示すグラフである。 同モータ異常検出装置における、車両のドライブレンジでの走行時の回転数変化に応じた電動モータの回転角の変化状況を示すグラフである。 同モータ異常検出装置における、車両のリバースレンジでの走行時の電動モータの回転角の変化を示すグラフである。 同モータ異常検出装置における、車両のリバースレンジでの走行時の回転数変化に応じた電動モータの回転角の変化状況を示すグラフである。 この発明の第2実施形態に係る電気自動車の電動モータの概略構成を示す平面図である。
 この発明の第1実施形態に係る電気自動車のモータ異常検出装置を図1ないし図8と共に説明する。図1は、この実施形態に係るモータ異常検出装置を装備した電気自動車を平面図で示す概念構成のブロック図である。この電気自動車は、車体1の左右の後輪となる車輪2が駆動輪とされ、左右の前輪となる車輪3が従動輪とされた4輪の自動車である。前輪となる車輪3は操舵輪とされている。この例の電気自動車は、駆動輪となる左右の車輪2,2を、それぞれ独立の電動モータ6,6により駆動するドライブユニット8,8を備えている。電動モータ6の回転は、減速機7および車輪用軸受4を介して車輪2に伝達される。ドライブユニット8は、電動モータ6の一部または全体が車輪2内に配置されて、電動モータ6、減速機7、および車輪用軸受4を含むインホイールモータ駆動装置を構成している。各車輪2,3には、図示しないブレーキが設けられている。
 制御系を説明する。図1に示すように、車体1には、ECU21と、複数のインバータ装置22とを含むモータ駆動装置20が搭載されている。ECU21は、自動車全般の統括制御を行い、各インバータ装置22に指令を与える上位制御手段である。各インバータ装置22は、ECU21の指令に従って各走行駆動用の電動モータ6の制御をそれぞれ行う。ECU21は、コンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。ECU21と各インバータ装置22の弱電系とは、互いに共通のコンピュータや共通の基板上の電子回路で構成されていても良い。
 ECU21は、トルク配分手段48を有する。このトルク配分手段48は、アクセル操作部16の出力するアクセル開度の信号と、ブレーキ操作部17の出力する減速指令と、操舵手段15の出力する旋回指令とから、左右輪の電動モータ6,6に与える加速・減速指令をトルク値として生成し、各インバータ装置22へ出力する。また、トルク配分手段48は、ブレーキ操作部17の出力する減速指令があったときに、電動モータ6を回生ブレーキとして機能させる制動トルク指令値と、図示しないブレーキを動作させる制動トルク指令値とに配分する機能を有する。回生ブレーキとして機能させる制動トルク指令値は、各走行用の電動モータ6,6に与える加速・減速指令のトルク指令値に反映させる。
 アクセル操作部16およびブレーキ操作部17は、それぞれアクセルペダルおよびブレーキペダル等のペダルと、そのペダルの動作量を検出するセンサとを有する。操舵手段15は、ステアリングホイール15aと、その回転角度である操舵角を検出する操舵角検出センサ15bとを有する。バッテリ19は、車体1に搭載され、電動モータ6の駆動、および車両全体の電気系統の電源として用いられる。
 図2に示すように、インバータ装置22は、各電動モータ6に対して設けられたパワー回路部28と、このパワー回路部28を制御するモータコントロール部29とを有する。モータコントロール部29は、各パワー回路部28に対して共通して設けられていても、別々に設けられていても良い。モータコントロール部29は、このモータコントロール部29が持つインホイールモータ駆動装置に関する各検出値や制御値等の各情報をECU21に出力する機能を有する。パワー回路部28は、インバータ31と、このインバータ31を駆動するPWMドライバ32とを有する。インバータ31は、バッテリ19の直流電力を電動モータ6の駆動に用いる3相の交流電力に変換する。
 図3に示すように、電動モータ6は、3相の同期モータ、例えば、IPM型(埋込磁石型)同期モータ等からなる。インバータ31は、複数の駆動素子31aで構成され、電動モータ6の3相(U,V,W相)の各相の駆動電圧をパルス波形で出力する。各駆動素子31aとして半導体スイッチング素子が適用される。モータ駆動制御部37は、入力された電流指令に基づきパルス幅変調しPWMドライバ32にオンオフ指令を与え、PWMドライバ32は各駆動素子31aを駆動する。
 パワー回路部28の弱電回路部であるPWMドライバ32と、モータコントロール部29とで、インバータ装置22における弱電回路部分である演算部33が構成される。演算部33は、コンピュータとこれに実行されるプログラム、および電子回路により構成される。インバータ装置22には、この他、例えば、バッテリ19とインバータ31間に並列に介在させた平滑コンデンサによる平滑部34等が設けられている。
 電動モータ6には、モータロータの回転角を検出する回転角度センサ36が設けられている。電動モータ6では、その効率を最大にするため、回転角度センサ36で検出されるステータとモータロータ間の相対回転角度に基づき、ステータのコイルへ流す交流電流の各波の各相の印加タイミングを、モータコントロール部29のモータ駆動制御部37によって制御する。
 図2に示すように、この電気自動車には、電動モータ6の異常を検出するモータ異常検出装置が搭載されている。同モータ異常検出装置は、操舵角検出センサ15bと、回転角度センサ36と、車速を検出する車速度センサ9と、記憶手段10と、異常判定手段11と、異常報告手段12とを有する。前記構成のモータコントロール部29に、異常判定手段11および異常報告手段12を設けている。記憶手段10は、ECU21における記憶領域に設けられている。記憶手段10には、回転角の差に基づく値と、操舵角と、車速との関係を設定した制御マップ10a(後述する)が書換え可能に設定されている。なおモータコントロール部29における記憶領域に、制御マップを設けても良い。
 異常判定手段11は、回転角度センサ36で得られる左右の電動モータ6,6の回転角の差、つまり左右の回転角度センサ信号のAD値の差が、操舵角検出センサ15bおよび車速度センサ9で得られる操舵角および車速を、制御マップ10aに照らして求まる前記回転角の差に基づく値から外れたとき、電動モータ6を異常と判定する。前記AD値とは、回転角度センサ信号のアナログ値をデジタル値に変換した値である。異常判定手段11は、車両の前進時、後退時の両方とも電動モータ6を異常と判定する。
 図4A,4Bは制御マップの一例を示す。図4Aは、ステアリングホイールを運転者から見て反時計回りに操作した左折または左コーナー時の操舵角、および車速に応じて設定される正常時の左右の電動モータにおける回転角度センサ信号のAD値の差の閾値を示した図である。この例では、前記回転角の差に基づく値を、左右の電動モータ6,6の正常時の回転角の差の閾値とする。図4Bは、右折または右コーナー時の操舵角、および車速に応じて設定される正常時の左右の電動モータにおける回転角度センサ信号のAD値の差の閾値を示した図である。
 左側の正常時の電動モータからの回転角度センサ信号のAD値から、右側の正常時の電動モータからの回転角度センサ信号のAD値を減じて求めた値の閾値を、操舵角および車速に応じて、図4A,4BにてData_ijと表す。前記閾値は、例えば、実車試験やシミュレーション等により適宜に定められる。なお図4A,4Bにおいては、車速を10km/hおきに刻み、操舵角を0.5πラジアンおきに刻んでいるが、この例に必ずしも限定されるものではない。
 したがって、図2に示す異常判定手段11は、一方の車輪2を駆動する電動モータ6からの回転角度センサ信号のAD値と、他方の車輪2を駆動する電動モータ6からの回転角度センサ信号のAD値との差が、制御マップ10aに設定された正常時のData_ijから外れたとき、いずれか一方または両方の電動モータ6を異常と判定する。また異常判定手段11は、電動モータ6を異常と判定したとき、さらに回転角度センサ36で得られる回転角に基づき求めた左右一対の車輪2,2の電動モータ6,6の各回転数(後述する)と、車速度センサ9で得られる車速との差をそれぞれ比較し、この差の大きいいずれか一方の電動モータ6を異常と判定する。異常報告手段12は、異常判定手段11により電動モータ6を異常と判定したときに、ECU21に前記電動モータ6の異常報告を出力する。
 図5は、モータ異常検出装置における、車両のドライブレンジでの走行時(前進時)の電動モータの回転角の変化を示すグラフである。図2も参照しつつ説明する。電動モータ6に設けられた回転角度センサ36の電気角360°のアナログ信号を、nビットのデジタル値に変換し、電気角360°を回転角度センサ信号のAD値で表現する。例えば、軸倍角4Xの回転角度センサ36を使用した場合、電動モータ6のモータロータが1回転(機械角360°)すると、回転角度センサ36の信号として4個ののこぎり波が出力される。1個ののこぎり波は機械角90度を表す。また電動モータ6のモータロータを、この電動モータ6の出力軸側から見て逆時計回り(CCW)の方向で回すと、回転角度センサ36の値が0から上限値まで増加し、この上限値に達したらまた0に戻して、再び0から上限値まで増加する。その動きを繰り返し行うことになっている。
 電動モータ6の回転数(rpm)は、一定のサンプリング時間における回転角度センサ36の信号変化量を用いて算出し得る。具体的には、軸倍角4Xの回転角度センサ36を適用すると、「60」を、回転角度センサ信号を取得するサンプリング時間で除した値に、回転角度センサ36の信号変化量を乗じる。この信号変化量を乗じて求めた値を、前記上限値に4を乗じた値で除すことで、電動モータ6の回転数を算出し得る。
 図6は、このモータ異常検出装置における、車両のドライブレンジでの走行時の回転数変化に応じた電動モータの回転角の変化状況を示すグラフである。この図6は、電動モータの回転方向が出力軸側から見て逆時計回り(CCW)で、回転数rot2>rot1>rot3の場合に応じた回転角度センサ信号のAD値の変化状況を表している。電動モータの回転数が高いほど、一定時間内で出力された回転角度センサののこぎり波の数が多くなる。
 図7は、このモータ異常検出装置における、車両のリバースレンジでの走行時(後進時)の電動モータの回転角の変化を示すグラフである。この図7は、電動モータのモータロータが、この電動モータの出力軸側から見て順時計回り(CW)の方向で回転するときの回転角度センサ信号のAD値の変化状況を示している。回転角度センサの値が上限値から0まで減少し、0に達したらまた上限値に戻して、再び設定値から0まで減少する。その動きを繰り返し行うことになっている。
 図8は、このモータ異常検出装置における、車両のリバースレンジでの走行時の回転数変化に応じた電動モータの回転角の変化状況を示すグラフである。この図8は、電動モータの回転方向がこの電動モータの出力軸側から見て順時計回り(CW)で、回転数rot2>rot1>rot3の場合に応じた回転角度センサ信号のAD値の変化状況を表している。
 作用効果について説明する。電気自動車の運転時において、図2に示すように、操舵角検出センサ15bは車両の操舵角を検出し、回転角度センサ36は電動モータ6の回転角を検出し、車速度センサ9は車速を検出する。異常判定手段11は、一方の車輪2を駆動する電動モータ6からの回転角度センサ信号のAD値と、他方の車輪2を駆動する電動モータ6からの回転角度センサ信号のAD値との差が、制御マップ10aに設定された正常時のData_ijから外れたとき、いずれか一方または両方の電動モータ6を異常と判定する。
 また異常判定手段11は、電動モータ6を異常と判定したとき、さらに回転角度センサ36で得られる回転角に基づき求めた左右一対の車輪2,2の電動モータ6,6の各回転数と、車速度センサ9で得られる車速との差をそれぞれ比較し、この差の大きいいずれか一方の電動モータ6を異常と判定する。このように異常と判定された電動モータ6を特定することで、正常な電動モータ6をそのまま使用することができるうえ、異常な電動モータ6のみを修理または交換することができる。よって作業工数の低減を図れる。
 制御マップ10aに、左右の回転角差の閾値(Data_ij)を、車速おきにきめ細かく設定することで、異常判定手段11は、電動モータ6の異常を車速にかかわらず精度良く検出し得る。制御マップ10aには、操舵角に応じた内外輪の回転差を見込んだ回転角が設定され、車両直進時以外にも電動モータ6の異常判定を精度良く行えるようになっている。バッテリ19の電圧降下等があったとしても、電動モータ6の異常を精度良く検出することができる。また高価なトルクセンサ等を用いることなく電動モータ6の異常を検出できるため、従来技術よりもコストダウンを図れる。また異常報告手段12は、ECU21に電動モータ6の異常報告を出力し、ECU21の異常表示手段13は、表示装置14に前記電動モータ6が異常である旨出力して運転者に注意を喚起し得る。これにより運転者は、早期にこの電動モータ6に対し必要な対策を講じることが可能となる。
 上記実施形態では、後輪駆動式の電気自動車について説明したが、左右の前輪を駆動輪とし、左右の後輪を従動輪とした前輪駆動式の電気自動車に、このモータ異常検出装置を適用しても良い。さらに、図9に示す第2実施形態のように、左右の前後輪3,2を駆動輪とした4輪駆動式の電気自動車に、このモータ異常検出装置を適用しても良い。
 以上のとおり、図面を参照しながら好適な実施形態および応用形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
2,3…車輪
6…電動モータ
8…ドライブユニット
9…車速度センサ
10a…制御マップ
11…異常判定手段
15b…操舵角検出センサ
36…回転角度センサ

Claims (7)

  1.  車輪を電動モータにより駆動するドライブユニットを備え、少なくとも左右一対の車輪のそれぞれを、前記ドライブユニットにより独立に駆動する電気自動車における、前記電動モータの異常を検出するモータ異常検出装置であって、
     車両の操舵角を検出する操舵角検出センサと、
     前記電動モータの回転角を得る回転角度センサと、
     車速を検出する車速度センサと、
     前記左右一対の車輪をそれぞれ駆動する左右の正常時における電動モータの回転角の差に基づく値と、前記操舵角と、前記車速との関係を設定した制御マップと、
     前記回転角度センサで得られる左右の電動モータの回転角の差が、前記操舵角検出センサおよび前記車速度センサで得られる操舵角および車速を前記制御マップに照らして求まる前記回転角の差に基づく値から外れたとき、前記電動モータを異常と判定する異常判定手段とを備える電気自動車のモータ異常検出装置。
  2.  請求項1に記載の電気自動車のモータ異常検出装置において、前記制御マップは、左右一対の車輪のいずれか一方の車輪を駆動する電動モータの正常時の回転角と、いずれか他方の車輪を駆動する電動モータの正常時の回転角との差の閾値を、車速おきに設定したものである電気自動車のモータ異常検出装置。
  3.  請求項2に記載の電気自動車のモータ異常検出装置において、前記異常判定手段は、左右一対の車輪のいずれか一方の車輪を駆動する電動モータの回転角と、いずれか他方の車輪を駆動する電動モータの回転角との差が、前記制御マップに設定された前記閾値から外れたとき、いずれか一方または両方の電動モータを異常と判定する電気自動車のモータ異常検出装置。
  4.  請求項2または請求項3に記載の電気自動車のモータ異常検出装置において、前記異常判定手段が前記電動モータを異常を判定したとき、前記異常判定手段は、さらに前記回転角度センサで得られる回転角に基づき求めた左右一対の前記車輪の前記電動モータの回転数と、前記車速度センサで得られる車速との差を比較し、この差の大きいいずれか一方の前記電動モータを異常と判定する電気自動車のモータ異常検出装置。
  5.  請求項1ないし請求項4のいずれか一項に記載の電気自動車のモータ異常検出装置において、前記異常判定手段は、前記車両の前進時、後退時の両方とも前記電動モータを異常と判定する電気自動車のモータ異常検出装置。
  6.  請求項1ないし請求項5のいずれか一項に記載の電気自動車のモータ異常検出装置において、前記電気自動車は、車両の前後輪のいずれか一方または両方を前記電動モータで駆動する電気自動車のモータ異常検出装置。
  7.  請求項1ないし請求項6のいずれか一項に記載の電気自動車のモータ異常検出装置において、前記ドライブユニットは、前記電動モータの一部または全体が前記車輪内に配置されて前記電動モータと車輪用軸受と減速機とを含むインホイールモータ駆動装置を構成する電気自動車のモータ異常検出装置。
PCT/JP2013/075653 2012-10-03 2013-09-24 電気自動車のモータ異常検出装置 WO2014054454A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13844458.3A EP2905165A1 (en) 2012-10-03 2013-09-24 Motor fault detection device for electric automobile
CN201380051789.7A CN104684752A (zh) 2012-10-03 2013-09-24 电动汽车的电动机异常检测装置
US14/674,340 US20150202963A1 (en) 2012-10-03 2015-03-31 Motor fault detection device for electric automobile
IN2689DEN2015 IN2015DN02689A (ja) 2012-10-03 2015-04-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-221070 2012-10-03
JP2012221070A JP2014075868A (ja) 2012-10-03 2012-10-03 電気自動車のモータ異常検出装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/674,340 Continuation US20150202963A1 (en) 2012-10-03 2015-03-31 Motor fault detection device for electric automobile

Publications (1)

Publication Number Publication Date
WO2014054454A1 true WO2014054454A1 (ja) 2014-04-10

Family

ID=50434783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075653 WO2014054454A1 (ja) 2012-10-03 2013-09-24 電気自動車のモータ異常検出装置

Country Status (6)

Country Link
US (1) US20150202963A1 (ja)
EP (1) EP2905165A1 (ja)
JP (1) JP2014075868A (ja)
CN (1) CN104684752A (ja)
IN (1) IN2015DN02689A (ja)
WO (1) WO2014054454A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10439538B2 (en) * 2016-04-29 2019-10-08 Deere & Company Method and system for estimating a rotor position with a notch filter
JP2018098868A (ja) * 2016-12-12 2018-06-21 Ntn株式会社 車両制御装置
JP6457589B2 (ja) * 2017-06-23 2019-01-23 ファナック株式会社 異常診断装置および異常診断方法
JP6380628B1 (ja) * 2017-07-31 2018-08-29 株式会社安川電機 電力変換装置、サーバ、及びデータ生成方法
WO2019124311A1 (ja) * 2017-12-18 2019-06-27 Ntn株式会社 モータ搭載自動車の駆動制御装置
CN110062410B (zh) * 2019-03-28 2021-09-28 东南大学 一种基于自适应谐振理论的小区中断检测定位方法
KR20220025972A (ko) * 2020-08-24 2022-03-04 현대자동차주식회사 휠 모터 구동차량의 주행 안정화 방법
KR20220121284A (ko) 2021-02-24 2022-09-01 현대자동차주식회사 차량의 구동계 하드웨어 손상 진단 장치 및 그 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168184A (ja) * 2003-12-03 2005-06-23 Toyota Motor Corp 電動機駆動車輌の電動機性能低下判定装置
JP2006333603A (ja) 2005-05-25 2006-12-07 Hiroshi Shimizu 電気自動車の駆動制御装置
JP2008126752A (ja) * 2006-11-17 2008-06-05 Jtekt Corp 車両用操舵装置
WO2009004826A1 (ja) * 2007-06-29 2009-01-08 Toyota Jidosha Kabushiki Kaisha 車両の操舵装置
JP2010166740A (ja) 2009-01-17 2010-07-29 Nissan Motor Co Ltd 電気自動車の制御装置
JP2012029475A (ja) * 2010-07-23 2012-02-09 Nissan Motor Co Ltd 電動車両のトルク異常判定装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005025287A1 (de) * 2005-06-02 2006-12-07 Continental Teves Ag & Co. Ohg Fahrzustandsangepaßte, auf Lenkeingriffen basierende Fahrdynamikregelung
KR101008320B1 (ko) * 2005-12-27 2011-01-13 혼다 기켄 고교 가부시키가이샤 차량 제어 장치
US20090240389A1 (en) * 2006-05-31 2009-09-24 Nsk Ltd Electric power steering apparatus
JP2008068777A (ja) * 2006-09-15 2008-03-27 Toyota Motor Corp 電動パワーステアリング装置
JP4495739B2 (ja) * 2007-02-16 2010-07-07 本田技研工業株式会社 操舵システム
US8423257B2 (en) * 2010-03-17 2013-04-16 Honda Motor Co., Ltd. System for and method of maintaining a driver intended path
JP5527081B2 (ja) * 2010-07-23 2014-06-18 日産自動車株式会社 電動車両の駆動力推定装置
EP2662266B1 (en) * 2011-01-07 2015-11-25 Honda Motor Co., Ltd. Electric power steering device
KR101285464B1 (ko) * 2011-06-28 2013-07-12 주식회사 만도 조향각센서 페일 검출 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168184A (ja) * 2003-12-03 2005-06-23 Toyota Motor Corp 電動機駆動車輌の電動機性能低下判定装置
JP2006333603A (ja) 2005-05-25 2006-12-07 Hiroshi Shimizu 電気自動車の駆動制御装置
JP2008126752A (ja) * 2006-11-17 2008-06-05 Jtekt Corp 車両用操舵装置
WO2009004826A1 (ja) * 2007-06-29 2009-01-08 Toyota Jidosha Kabushiki Kaisha 車両の操舵装置
JP2010166740A (ja) 2009-01-17 2010-07-29 Nissan Motor Co Ltd 電気自動車の制御装置
JP2012029475A (ja) * 2010-07-23 2012-02-09 Nissan Motor Co Ltd 電動車両のトルク異常判定装置

Also Published As

Publication number Publication date
US20150202963A1 (en) 2015-07-23
EP2905165A1 (en) 2015-08-12
JP2014075868A (ja) 2014-04-24
CN104684752A (zh) 2015-06-03
IN2015DN02689A (ja) 2015-09-04

Similar Documents

Publication Publication Date Title
WO2014054454A1 (ja) 電気自動車のモータ異常検出装置
EP2728736B1 (en) Motor drive device
CN103384614B (zh) 电动汽车
JP5702237B2 (ja) モータ駆動装置
WO2013073547A1 (ja) 電気自動車のモータ制御装置
JP6500653B2 (ja) インバータの制御装置
US9956890B2 (en) Device for controlling electric automobile
WO2016052234A1 (ja) 電気自動車の制御装置
JP6517089B2 (ja) 車輪独立駆動式車両の駆動制御装置
JP2013017352A (ja) モータ駆動装置
WO2017018335A1 (ja) モータ駆動装置
JP5785004B2 (ja) モータ駆動装置
US9586484B2 (en) Electric-vehicle control device
JP6087399B2 (ja) モータ駆動装置
JP2002136171A (ja) ハイブリッド自動車の主軸モータ制御方法及びハイブリッド自動車
JP6772501B2 (ja) 自動車
JP5259936B2 (ja) 電動車両のモータ診断装置
JP6269328B2 (ja) 同期モータの制御装置、及び、これを備える車両制御システム
WO2016043077A1 (ja) 車両の駆動制御装置
JP2010220431A (ja) 駆動装置
JP2012100409A (ja) 回転角度検出装置
US20200331335A1 (en) Synchronous machine drive control device, and vehicle equipped with synchronous machine subjected to drive control by said synchronous machine drive control device
JP2024044729A (ja) 電動車両
JP2001260919A (ja) 動力舵取装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844458

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013844458

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013844458

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE