WO2014054435A1 - 高度不飽和脂肪酸アルキルエステル含有組成物の製造方法 - Google Patents

高度不飽和脂肪酸アルキルエステル含有組成物の製造方法 Download PDF

Info

Publication number
WO2014054435A1
WO2014054435A1 PCT/JP2013/075454 JP2013075454W WO2014054435A1 WO 2014054435 A1 WO2014054435 A1 WO 2014054435A1 JP 2013075454 W JP2013075454 W JP 2013075454W WO 2014054435 A1 WO2014054435 A1 WO 2014054435A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
unsaturated fatty
alkyl ester
highly unsaturated
acid alkyl
Prior art date
Application number
PCT/JP2013/075454
Other languages
English (en)
French (fr)
Inventor
昌卓 原田
史朗 藤田
Original Assignee
日清ファルマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50434765&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014054435(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日清ファルマ株式会社 filed Critical 日清ファルマ株式会社
Priority to US14/432,237 priority Critical patent/US9365800B2/en
Priority to JP2014539664A priority patent/JP6218738B2/ja
Publication of WO2014054435A1 publication Critical patent/WO2014054435A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C67/54Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/001Refining fats or fatty oils by a combination of two or more of the means hereafter
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/58Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/002Sources of fatty acids, e.g. natural glycerides, characterised by the nature, the quantities or the distribution of said acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/005Splitting up mixtures of fatty acids into their constituents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/007Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids using organic solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/08Refining
    • C11C1/10Refining by distillation
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols

Definitions

  • the present invention relates to a method for producing a highly unsaturated fatty acid alkyl ester-containing composition.
  • Polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have recently been found to have pharmacological effects and are used as raw materials for pharmaceuticals and health foods. Since these polyunsaturated fatty acids have a plurality of double bonds, it is not easy to obtain them by chemical synthesis. Therefore, most of the highly unsaturated fatty acids used industrially are produced by extraction or purification from raw materials derived from marine organisms rich in highly unsaturated fatty acids, such as fish oil.
  • EPA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • the biological raw material is a mixture of various fatty acids having different numbers of carbon atoms, the number and position of double bonds, and the constitutional ratio of stereoisomers, the content of highly unsaturated fatty acids is not necessarily high. Therefore, conventionally, it has been demanded to selectively purify a desired highly unsaturated fatty acid from a biological material.
  • Patent Document 1 when a raw material containing a highly unsaturated fatty acid or an alkyl ester thereof is treated by a thin film distillation method, a supercritical gas extraction method, and a urea addition method, a supercritical gas extraction method is performed after the thin film distillation method. For the purification of highly unsaturated fatty acids or their alkyl esters.
  • Patent Document 2 discloses a high-purity eicosapentaene by subjecting a raw material containing a highly unsaturated fatty acid such as EPA to vacuum precision distillation, and mixing the obtained fraction containing EPA and its lower alcohol ester with an aqueous silver nitrate solution.
  • a method for purifying an acid or its lower alcohol ester is described. It is described that the conditions for the vacuum precision distillation are a pressure of 5 mmHg (665 Pa) or less, preferably 1 mmHg (133 Pa) or less, and 215 ° C. or less, preferably 210 ° C. or less.
  • Patent Document 3 produces eicosapentaenoic acid or an ester thereof having a concentration of 80% or more by stepwise distillation of a raw material containing a highly unsaturated fatty acid or an alkyl ester thereof using a distillation column having three or more stages. How to do is described. It is described that the distillation conditions are 10 Torr (1330 Pa) or less, preferably 0.1 Torr (13.3 Pa) or less, 210 ° C. or less, preferably 195 ° C. or less.
  • polyunsaturated fatty acids there are cis and trans isomers. Most of the polyunsaturated fatty acids in the living body are cis, but may be converted from the cis form to the trans form by heating or the like at the stage of purification from the biological material (Non-patent Document 1). Thus, conventionally, polyunsaturated fatty acids industrially purified from biological materials contain a certain amount of trans isomers. However, trans fatty acids have been reported to increase health risks, particularly LDL cholesterol levels and increase the risk of cardiovascular disease. In the United States and Canada, labeling of trans fatty acid content is required for food.
  • JP-A-10-95744 Japanese Patent Laid-Open No. 7-242895 Japanese Patent No. 3005638
  • the present inventors have conducted intensive studies with the object of providing a composition containing a highly unsaturated fatty acid at a high concentration and having a low trans isomer content of the highly unsaturated fatty acid.
  • the present inventors treated the alkyl ester of a highly unsaturated fatty acid with an aqueous solution containing a silver salt, and then vacuum-distilled to produce a trans isomer in the purification process of the highly unsaturated fatty acid. It has been found that it is possible to obtain a composition containing a highly unsaturated fatty acid alkyl ester in a high concentration but having a very low trans isomer content.
  • the present invention is a method for producing a highly unsaturated fatty acid alkyl ester-containing composition
  • a method for producing a highly unsaturated fatty acid alkyl ester-containing composition comprising: (1) recovering an aqueous phase after bringing a raw material containing a highly unsaturated fatty acid alkyl ester into contact with an aqueous solution containing a silver salt; (2) recovering the organic solvent phase after adding the organic solvent to the aqueous phase; and (3) vacuum-distilling the organic solvent phase at a temperature of 170 to 190 ° C. and a column top vacuum of 1 Pa or less. Recovering a highly unsaturated fatty acid alkyl ester from the organic solvent phase;
  • a method comprising:
  • a composition containing a highly unsaturated fatty acid alkyl ester such as EPA or DHA at a high concentration can be obtained.
  • the composition contains almost no trans fatty acid and is useful as a highly unsaturated fatty acid raw material for producing pharmaceuticals and health foods.
  • eicosapentaenoic acid EPA
  • arachidonic acid AA
  • eicosatetra may be used as the target polyunsaturated fatty acid to be contained in the composition.
  • examples include enoic acid (ETA), docosahexaenoic acid (DHA), and docosapentaenoic acid (DPA). DHA and EPA are preferred, and EPA is more preferred.
  • alkyl group constituting the alkyl ester of the highly unsaturated fatty acid examples include a linear or branched alkyl group having 1 to 6 carbon atoms, preferably a methyl group or an ethyl group, more preferably ethyl. It is a group.
  • the raw material of the polyunsaturated fatty acid alkyl ester-containing composition is fats and oils containing the desired polyunsaturated fatty acid.
  • the raw material include marine animals such as fish, oils and fats derived from plankton, and oils and fats derived from microorganisms such as algae. Among them, oils and fats derived from fishes such as sardines and yellowtails, and oils and fats derived from algae are preferable.
  • the raw material is preferably an oil containing 40% by mass or more of the target highly unsaturated fatty acid in the total fatty acid contained.
  • the content is a value in terms of free fatty acid.
  • the target polyunsaturated fatty acid may be present in the raw material in the form of a free fatty acid, or may be present in the form of a fatty acid chain of mono-, di- or triglycerides.
  • the concentration of the target highly unsaturated fatty acid is 95% by mass or more.
  • the composition of 96% by mass or more, more preferably 98% by mass or more can be obtained efficiently.
  • the ratio of the trans isomer in the target highly unsaturated fatty acid is preferably less than 3% by mass, and preferably 2% by mass. More preferably, it is less.
  • the ratio of the trans isomer in the target highly unsaturated fatty acid is finally obtained. Of less than 1% by mass, preferably 0.5% by mass, can be obtained efficiently.
  • the target highly unsaturated fatty acid in the raw material is alkylesterified.
  • Alkyl esterification can suppress the trans isomerization of a highly unsaturated fatty acid in the production process of the composition of the present invention.
  • the highly unsaturated fatty acid alkyl ester can be produced by esterifying a fat and oil containing a highly unsaturated fatty acid and an acid having a desired alkyl group by a known method.
  • an alkyl esterified product of a highly unsaturated fatty acid can be easily obtained by saponifying an oil containing a highly unsaturated fatty acid triglyceride. The higher the degree of alkyl esterification, the better.
  • the total amount of the desired polyunsaturated fatty acid (including free form) contained in the raw material is preferably 90% or more, more preferably 95% or more. It is good to be.
  • Commercially available fats and oils may be used as fats and oils containing the above highly unsaturated fatty acids and alkyl esters thereof. From the viewpoint of obtaining a high content of the highly unsaturated fatty acid and the alkyl ester thereof aimed at in the present invention described above, commercially available oils and fats derived from fish oil in which the type and amount of the highly unsaturated fatty acid contained are standardized, etc. Is preferably used.
  • the raw material is preferably applied in a liquid form.
  • the raw material can be applied to each step of the present invention as it is.
  • the raw material can be applied by appropriately dissolving or diluting in an organic solvent or other oil.
  • an organic solvent separable from water is used, and examples thereof include ethyl acetate, chloroform, carbon tetrachloride, diethyl ether, hexane and the like.
  • the method for producing a highly unsaturated fatty acid alkyl ester-containing composition of the present invention is characterized by the following: (1) recovering an aqueous phase after bringing a raw material containing a highly unsaturated fatty acid alkyl ester into contact with an aqueous solution containing a silver salt; (2) recovering the organic solvent phase after adding the organic solvent to the aqueous phase; and (3) recovering the highly unsaturated fatty acid alkyl ester from the organic solvent phase by vacuum distillation of the organic solvent phase. thing.
  • the production steps (1) and (2) of the present invention are purification techniques utilizing the fact that the solubility in the extraction solvent is changed by the silver salt forming a complex at the double bond portion of the highly unsaturated fatty acid.
  • This is a process for separating and purifying highly unsaturated fatty acid alkyl esters. More specifically, polyunsaturated fatty acids having 20 or more carbon atoms, such as eicosapentaenoic acid (EPA), arachidonic acid (AA), eicosatetraenoic acid (ETA), docosahexaenoic acid (DHA), or docosapentaene
  • the alkyl ester of acid (DPA) can be separated and purified efficiently.
  • Step (1) of the production method of the present invention is a step of recovering the aqueous phase after contacting a raw material containing a highly unsaturated fatty acid alkyl ester with an aqueous solution containing a silver salt.
  • This step can be performed according to the methods described in Japanese Patent No. 2786748, Japanese Patent No. 2895258, Japanese Patent No. 2935555, Japanese Patent No. 3001954, and the like.
  • an aqueous solution containing a silver salt is added to the raw material containing the target polyunsaturated fatty acid alkyl ester described above, and the mixture is stirred for 5 minutes to 4 hours, preferably about 10 minutes to 2 hours.
  • the upper limit of the reaction temperature at this time is the temperature at which the product of the step (1) becomes completely liquid, for example, about 80 ° C. or lower, while the lower limit is preferably 5 ° C. or higher. More preferably, the reaction temperature is around room temperature (20 to 30 ° C.).
  • the reaction produces a silver-polyunsaturated fatty acid complex. Since the complex is dissolved in the phase of the aqueous solution, the target polyunsaturated fatty acid can be selectively recovered by recovering the aqueous phase from the solution.
  • the silver salt is not particularly limited as long as it can form a complex with an unsaturated bond of a highly unsaturated fatty acid, but silver nitrate, silver perchlorate, silver tetrafluoroborate, silver acetate, etc. can be used. . Of these, silver nitrate is preferred.
  • the solvent for the aqueous solution include water or a mixed medium of water and a compound having a hydroxyl group such as glycerin or ethylene glycol, but water is preferably used.
  • the silver salt concentration in the aqueous solution may be 0.1 mol / L or more, preferably about 1 to 20 mol / L.
  • the molar ratio of the highly unsaturated fatty acid to the silver salt is about 1: 100 to 100: 1, preferably about 1: 5 to 1: 1.
  • step (2) of the production method of the present invention an organic solvent is added to the aqueous phase recovered in step (1), and the highly unsaturated fatty acid alkyl ester in the aqueous phase is extracted into the organic solvent phase.
  • Organic solvents added to the aqueous phase include hexane, ether, ethyl acetate, butyl acetate, chloroform, cyclohexane, benzene, toluene, xylene, and other solvents that are highly soluble in highly unsaturated fatty acids and can be separated from water.
  • the solution (reaction solution) to which the organic solvent has been added is heated to a temperature higher than the reaction temperature in the above step (1), that is, the formation temperature of the silver-highly unsaturated fatty acid complex. More preferably, the reaction temperature is higher by 20 ° C. than the reaction temperature in step (1), that is, the formation temperature of the complex.
  • the temperature of the reaction solution in step (2) is preferably 40 ° C. or higher, more preferably about 50 to 80 ° C.
  • the time for the extraction reaction of the highly unsaturated fatty acid alkyl ester into the organic solvent phase is 10 minutes to 6 hours, preferably 30 minutes to 2 hours, and the solution is preferably stirred during the reaction.
  • the aqueous phase is then removed and the organic solvent phase containing the highly unsaturated fatty acid alkyl ester is recovered.
  • remaining silver ions may be further removed by passing the recovered organic solvent phase through an adsorbent such as silica gel, activated carbon, or silicon dioxide.
  • Step (3) of the production method of the present invention is a step of recovering the desired highly unsaturated fatty acid alkyl ester by vacuum distillation of the organic solvent phase obtained in step (2). More specifically, the target highly unsaturated fatty acid ester is selectively recovered from the organic solvent phase containing the highly unsaturated fatty acid alkyl ester obtained in the step (2) by the difference in boiling points.
  • a vacuum distillation apparatus using a known method such as a filling method, a spring method, a shelf method, or the like may be used, or a continuous distillation method may be employed.
  • the conditions for vacuum distillation are set to a lower pressure and temperature as compared with the conventional vacuum distillation method. That is, in the method of the present invention, the vacuum distillation conditions in step (3) are such that the top vacuum degree of the distiller is 1 Pa or less, preferably 0.5 Pa or less, and the distillation temperature is 170 to 190 ° C., preferably 180 ⁇ 185 ° C. When the column top vacuum exceeds 1 Pa, a trans isomer of a highly unsaturated fatty acid is easily generated.
  • the distillation temperature in this step is expressed as the temperature of the organic solvent phase containing the highly unsaturated fatty acid alkyl ester.
  • the fraction containing the highly unsaturated fatty acid alkyl ester obtained in the vacuum distillation step may be refluxed and again subjected to vacuum distillation under the above conditions.
  • step (3) is performed prior to step (1) or (2), it will be difficult to obtain a composition containing the desired highly unsaturated fatty acid, or the desired highly unsaturated fatty acid.
  • a composition with a high content of but also a high ratio of trans isomers is performed prior to step (1) or (2).
  • Example 1 Raw material: 1000 kg of an absolute ethanol solution in which 50 g of sodium hydroxide was dissolved was added to 1 kg of sardine oil, mixed and stirred at 70 to 80 ° C. for 1 hour, further mixed with 500 mL of water, and allowed to stand for 1 hour. The separated aqueous phase was removed, and the oil phase was washed with water several times to neutralize the washing solution, thereby obtaining 820 g of ethyl esterified sardine oil. As shown in Table 1, the composition of the sardine oil is as follows.
  • Eicosapentaenoic acid EPA 44.09% (mass%, the same applies hereinafter), eicosatetraenoic acid (ETA) 1.52%, arachidonic acid (AA) 1.77% and docosahexaenoic acid (DHA) 6.92%.
  • the trans isomer ratio in EPA was 1.23%.
  • Step (1) 160 mL of n-hexane was added to 300 g of the ethyl esterified sardine oil prepared above, and the mixture was thoroughly stirred and dissolved. To this, 500 mL of an aqueous solution containing 50% by mass of silver nitrate was added and stirred at 5 to 30 ° C.
  • Step (2) 2000 mL of fresh n-hexane was added to the aqueous phase obtained in Step (1) and stirred well at 50 to 69 ° C., and the fatty acid ethyl ester was extracted into n-hexane.
  • the aqueous phase separated after standing was removed, and the n-hexane phase was concentrated.
  • the fatty acid ethyl ester crude purified product contained in the n-hexane phase contained EPA 74.54%, ETA 0.32%, AA 0.17%, and DHA 14.87% in the total fatty acids. It was.
  • Step (3) The n-hexane phase containing the fatty acid ethyl ester obtained in Step (2) is maintained under the conditions of a column top vacuum of 1 Pa or less and a distillation temperature of 170 to 190 ° C. using a packed tower type precision distillation machine. Then, vacuum distillation was performed to obtain a highly purified EPA ethyl ester-containing composition in a yield of about 60%. As shown in Table 1, the EPA ethyl ester-containing composition contained 98.25% EPA, 0.43% ETA, 0.21% AA, and 0.05% DHA in the total fatty acids. The trans isomer ratio in EPA was 0.45%. The yield of EPA in this example in which the steps were performed in the order of (1), (2), and (3) was about 53%.
  • Example 2 Except that the step (3) was carried out while maintaining the distillation temperature of 180 to 185 ° C., the steps (1), (2) and (3) were carried out in the same manner as in Example 1, and the EPA ethyl ester-containing composition The product was obtained in about 58% yield. As shown in Table 1, this EPA ethyl ester-containing composition contained EPA 98.29%, ETA 0.40%, AA 0.32%, and DHA 0.05% in the total fatty acids. Moreover, the trans isomer ratio in EPA was 0.28%, and there were very few trans isomers.
  • step (3) vacuum distillation (step (3)) of ethyl esterified sardine oil was performed, and then steps (1) and (2) were performed to obtain an EPA ethyl ester-containing composition.
  • the conditions for each step were the same as in Example 1.
  • this composition contains EPA 95.05%, ETA 0.72%, AA 0.50%, DHA 0.21% in the total fatty acid, and the trans isomer ratio in EPA is 1.55%. Met.
  • the yield of EPA in this comparative example in which the steps were performed in the order of (3), (1), and (2) was about 31%, and the EPA yield was greatly reduced as compared with Example 1.
  • the distillation temperature is 180 ° C. (Example 3), 190 ° C. (Example 4), 200 ° C. (Comparative Example 3), and the vacuum distillation time is variously changed.
  • a highly purified EPA ethyl ester-containing composition was obtained, and the trans isomer ratio of EPA in the composition was determined.
  • the results are shown in FIG. From FIG. 1, in Examples 3 to 4 where the distillation temperature was 190 ° C. or less, the trans isomer ratio was less than 1% by mass, but in Comparative Example 3 where the distillation temperature was 200 ° C., the trans isomer was obtained in about 1 hour of distillation. The ratio exceeded 1% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Edible Oils And Fats (AREA)

Abstract

 高度不飽和脂肪酸を高含有する組成物の提供。高度不飽和脂肪酸アルキルエステル含有組成物の製造方法であって:高度不飽和脂肪酸アルキルエステルを含有する原料を銀塩を含む水性溶液と接触させた後、水相を回収すること;該水相に有機溶媒を添加した後、有機溶媒相を回収すること;および、該有機溶媒相を、温度170~190℃、塔頂真空度1Pa以下で真空蒸留して、該有機溶媒相から高度不飽和脂肪酸アルキルエステルを回収することを含む、方法。

Description

高度不飽和脂肪酸アルキルエステル含有組成物の製造方法
 本発明は、高度不飽和脂肪酸アルキルエステル含有組成物の製造方法に関する。
 エイコサペンタエン酸(EPA)やドコサヘキサエン酸(DHA)などの高度不飽和脂肪酸は、近年その薬理効果が明らかとなり、医薬品や健康食品の原料として利用されている。これらの高度不飽和脂肪酸は、二重結合を複数有するため、化学合成によって得ることは容易ではない。したがって、工業利用される高度不飽和脂肪酸のほとんどは、高度不飽和脂肪酸を豊富に含む海洋生物由来原料、例えば魚油などから抽出または精製することによって製造されている。しかしながら、生物由来原料は、炭素数、二重結合の数や位置、さらには立体異性体の構成比などが異なる多種の脂肪酸の混合物であるため、高度不飽和脂肪酸の含有量は必ずしも高くない。そのため従来、生物由来原料から目的の高度不飽和脂肪酸を選択的に精製することが求められていた。
 特許文献1には、高度不飽和脂肪酸またはそのアルキルエステルを含む原料を、薄膜蒸留法、超臨界ガス抽出法および尿素付加法により処理する際に、薄膜蒸留法より後に超臨界ガス抽出法を行うことによる高度不飽和脂肪酸またはそのアルキルエステルの精製方法が記載されている。
 特許文献2には、EPA等の高度不飽和脂肪酸を含む原料を真空精密蒸留処理し、得られたEPAやその低級アルコールエステルを含む留分を、硝酸銀水溶液と混合することにより、高純度エイコサペンタエン酸又はその低級アルコールエステルを精製する方法が記載されている。当該真空精密蒸留の条件は、圧力5mmHg(665Pa)以下、好ましくは1mmHg(133Pa)以下で、215℃以下、好ましくは210℃以下であることが記載されている。
 さらに特許文献3には、高度不飽和脂肪酸またはそのアルキルエステルを含む原料を、3段以上の蒸留塔を用いて段階的に蒸留することによる、濃度80%以上のエイコサペンタエン酸またはそのエステルを製造する方法が記載されている。当該蒸留の条件は、10Torr(1330Pa)以下、好ましくは0.1Torr(13.3Pa)以下で、210℃以下、好ましくは195℃以下であることが記載されている。
 しかしながら、医薬品や健康食品の原料として、上記従来の方法で得られるものよりもさらに高い濃度及び純度を有する高度不飽和脂肪酸が求められている。
 高度不飽和脂肪酸には、シスおよびトランス型の異性体が存在する。生体内の高度不飽和脂肪酸はほとんどがシスであるが、生物由来原料からの精製の段階で、加熱などにより、シス体からトランス体に変換されることがある(非特許文献1)。したがって従来、生物由来原料から工業的に精製された高度不飽和脂肪酸は、ある程度の量のトランス異性体を含有する。しかしながら、トランス脂肪酸は、健康へのリスク、特にLDLコレステロール値を上昇させ、心血管疾患のリスクを高めることが報告されている。米国やカナダでは、食品に対しトランス脂肪酸の含有量の表示が義務付けられている。
 したがって、医薬品や健康食品の原料として、目的の高度不飽和脂肪酸を高濃度に含むだけでなく、トランス脂肪酸の含有量が可能な限り低く抑えられた高度不飽和脂肪酸含有組成物が求められている。しかしながら、従来、立体異性体比率に着目して高度不飽和脂肪酸を精製することは行われていなかった。
特開平10-95744号公報 特開平7-242895号公報 特許第3005638号公報
Journal of the American Oil Chemists' Society, 1989, 66(12):1822-1830
 本発明者らは、従来の高度不飽和脂肪酸の精製方法では、精製工程を繰り返して精製物中の目的の高度不飽和脂肪酸の濃度を高くすればするほど、好ましくないトランス異性体の含有比率もより高くなってしまうという問題があることを見出した。そこで本発明者らは、高度不飽和脂肪酸を高濃度で含有し、且つ高度不飽和脂肪酸のトランス異性体の含有量が低い組成物を提供することを課題とし、鋭意研究を行った。
 その結果、本発明者らは、高度不飽和脂肪酸のアルキルエステル体を、銀塩を含む水性溶液で処理した後に、真空蒸留することによって、高度不飽和脂肪酸の精製工程におけるトランス異性体の生成を最小限に抑えることが可能となり、その結果、高度不飽和脂肪酸アルキルエステルを高濃度で含むがトランス異性体の含有量が極めて低い組成物を得ることができることを見出した。
 すなわち、本発明は、高度不飽和脂肪酸アルキルエステル含有組成物の製造方法であって:
 (1)高度不飽和脂肪酸アルキルエステルを含有する原料を銀塩を含む水性溶液と接触させた後、水相を回収すること;
 (2)該水相に有機溶媒を添加した後、有機溶媒相を回収すること;および
 (3)該有機溶媒相を、温度170~190℃、塔頂真空度1Pa以下で真空蒸留して、該有機溶媒相から高度不飽和脂肪酸アルキルエステルを回収すること、
を含む方法を提供する。
 また、本発明は、高度不飽和脂肪酸アルキルエステルを95質量%以上含有し、且つ該高度不飽和脂肪酸アルキルエステル中のトランス異性体の比率が1質量%未満である組成物を提供する。
 本発明によれば、EPA、DHA等の高度不飽和脂肪酸アルキルエステルを高濃度で含む組成物を得ることができる。当該組成物は、トランス脂肪酸をほとんど含まず、医薬品や健康食品の製造用の高度不飽和脂肪酸原料として有用である。
真空蒸留温度上昇によるトランス型脂肪酸アルキルエステル生成の増加。
 本発明の高度不飽和脂肪酸アルキルエステル含有組成物の製造方法において、当該組成物に含有されるべき目的の高度不飽和脂肪酸としては、エイコサペンタエン酸(EPA)、アラキドン酸(AA)、エイコサテトラエン酸(ETA)、ドコサヘキサエン酸(DHA)、ドコサペンタエン酸(DPA)などを挙げることができ、DHA、EPAが好ましく、EPAがより好ましい。該高度不飽和脂肪酸のアルキルエステルを構成するアルキル基としては、炭素数1~6の直鎖状又は分岐鎖状のアルキル基が挙げられ、好ましくはメチル基又はエチル基であり、より好ましくはエチル基である。
 本発明の製造方法において、高度不飽和脂肪酸アルキルエステル含有組成物の原料は、目的の高度不飽和脂肪酸を含有する油脂である。当該原料としては、魚類等の海産動物やプランクトン由来の油脂、藻類等の微生物由来の油脂などが挙げられ、中でもイワシ、ハマチ等の魚類由来の油脂、および藻類由来の油脂が好ましい。
 上記原料は、含有する全脂肪酸中に、目的の高度不飽和脂肪酸を40質量%以上含有する油脂であることが好ましい。当該含有量は遊離脂肪酸換算での値である。当該目的の高度不飽和脂肪酸は、原料中に遊離脂肪酸の形態で存在していてもよく、またはモノ、ジもしくはトリグリセリドの脂肪酸鎖の形態で存在していてもよい。本発明の製造方法においては、全含有脂肪酸中における目的の高度不飽和脂肪酸の含量が40質量%以上の原料を用いることにより、最終的に、目的の高度不飽和脂肪酸の濃度が95質量%以上、好ましくは96質量%以上、より好ましくは98質量%以上の組成物を効率よく得ることができる。
 また上記原料中、目的の高度不飽和脂肪酸におけるトランス異性体の比率(目的の高度不飽和脂肪酸の全量に対するそのトランス異性体量の比)は、3質量%未満であることが好ましく、2質量%未満であることがより好ましい。本発明の製造方法においては、目的の高度不飽和脂肪酸中のトランス異性体の比率が3%未満の原料を用いることにより、最終的に、該目的の高度不飽和脂肪酸中のトランス異性体の比率が質量1%未満、好ましくは0.5質量%の組成物を効率よく得ることができる。
 本発明の製造方法において、上記原料中の目的の高度不飽和脂肪酸は、アルキルエステル化されている。アルキルエステル化することにより、本発明の組成物の製造過程において、高度不飽和脂肪酸のトランス異性体化を抑制することができる。高度不飽和脂肪酸アルキルエステルは、高度不飽和脂肪酸を含有する油脂と所望のアルキル基を有する酸とを公知の方法によりエステル化反応させることにより製造することができる。例えば、高度不飽和脂肪酸のトリグリセリドを含有する油脂をけん化処理することによって、簡便に高度不飽和脂肪酸のアルキルエステル化物を得ることができる。アルキルエステル化の程度は高いほど好適であり、原料中に含まれる目的の高度不飽和脂肪酸(遊離体を含む)の全量のうち、好ましくは90%以上、より好ましくは95%以上がアルキルエステル化されているとよい。
 上記高度不飽和脂肪酸やそのアルキルエステルを含有する油脂としては、市販されている油脂類を用いてもよい。前述した本発明で目的とする高度不飽和脂肪酸や、そのアルキルエステルを高含量で得るという観点からは、含有する高度不飽和脂肪酸の種類や量が規格化された市販の魚油由来の油脂類などを用いるのが好ましい。
 本発明の高度不飽和脂肪酸アルキルエステル含有組成物の製造方法の各工程において、上記原料は、液体の形態で適用されることが好ましい。当該原料は、各工程での反応温度において液体の形態である場合は、そのまま本発明の各工程に適用され得る。各工程での反応温度において固体の形態である場合は、当該原料は、適宜有機溶媒や他の油に溶解または希釈して適用され得る。当該有機溶媒としては、下記工程(1)を遂行するために、水と分離可能な有機溶媒が使用され、例えば、酢酸エチル、クロロホルム、四塩化炭素、ジエチルエーテル、ヘキサン等が挙げられる。
 本発明の高度不飽和脂肪酸アルキルエステル含有組成物の製造方法は、以下を行うことを特徴とする:
 (1)高度不飽和脂肪酸アルキルエステルを含有する原料を銀塩を含む水性溶液と接触させた後、水相を回収すること;
 (2)該水相に有機溶媒を添加した後、有機溶媒相を回収すること;および
 (3)該有機溶媒相を真空蒸留して、該有機溶媒相から高度不飽和脂肪酸アルキルエステルを回収すること。
 本発明の製造工程(1)及び(2)は、高度不飽和脂肪酸の二重結合部に銀塩が錯体を形成することにより、抽出溶媒への溶解性が変わることを利用した精製技術であり、高度不飽和脂肪酸アルキルエステルを分離精製する工程である。より詳細には、炭素数が20以上である高度不飽和脂肪酸、例えばエイコサペンタエン酸(EPA)、アラキドン酸(AA)、エイコサテトラエン酸(ETA)、ドコサヘキサエン酸(DHA)、またはドコサペンタエン酸(DPA)のアルキルエステルを効率よく分離精製することができる。
 本発明の製造方法の工程(1)は、高度不飽和脂肪酸アルキルエステルを含む原料を銀塩を含む水性溶液と接触させた後、水相を回収する工程である。該工程は、特許第2786748号公報、特許第2895258号公報、特許第2935555号公報、特許第3001954号公報等に記載されている方法に従って行うことができる。
 より詳細には、上述した目的の高度不飽和脂肪酸アルキルエステルを含む原料に、銀塩を含む水性溶液を添加し、5分~4時間、好ましくは10分~2時間程度攪拌する。このときの反応温度は、当該工程(1)の生成物が完全に液体となる温度を上限とし、例えば約80℃以下であり、一方、下限として5℃以上とすることが好ましい。より好ましくは反応温度は室温(20~30℃)付近である。当該反応により、銀-高度不飽和脂肪酸の錯体が生成される。当該錯体は、水性溶液の相に溶解するので、溶液から水相を回収することによって、目的の高度不飽和脂肪酸を選択的に回収することができる。
 銀塩としては、高度不飽和脂肪酸の不飽和結合と錯体を形成し得るものであれば特に制限されないが、硝酸銀、過塩素酸銀、四フッ化ホウ素酸銀、酢酸銀等を用いることができる。このうち、硝酸銀が好ましい。水性溶液の溶媒としては、水、または水とグリセリンやエチレングリコール等の水酸基を有する化合物との混合媒体が挙げられるが、好ましくは水が用いられる。水性溶液中の銀塩濃度は、0.1mol/L以上であればよいが、好ましくは1~20mol/L程度とする。高度不飽和脂肪酸と銀塩とのモル比は、1:100~100:1、好ましくは1:5~1:1程度である。
 本発明の製造方法の工程(2)は、上記工程(1)で回収した水相に有機溶媒を添加して、該水相中の高度不飽和脂肪酸アルキルエステルを有機溶媒相に抽出させた後、該高度不飽和脂肪酸アルキルエステルを含む有機溶媒相を回収する工程である。該工程は、特許第2786748公報、特許第2895258公報、特許第2935555公報、特許第3001954公報等に記載されている方法に従って行うことができる。
 水相に添加する有機溶媒としては、ヘキサン、エーテル、酢酸エチル、酢酸ブチル、クロロホルム、シクロヘキサン、ベンゼン、トルエン、キシレン等の、高度不飽和脂肪酸への溶解性が高く、且つ水と分離可能な溶媒が挙げられる。好ましくは、有機溶媒を添加した溶液(反応液)を、上記工程(1)での反応温度、すなわち上記銀-高度不飽和脂肪酸錯体の生成温度よりも高い温度になるよう加温する。より好ましくは工程(1)での反応温度、すなわち該錯体の生成温度よりも20℃以上高い温度にする。例えば、上記工程(1)にて錯体を室温で生成させた場合、工程(2)での反応液の温度は、好ましくは40℃以上、より好ましくは50~80℃程度にするとよい。高度不飽和脂肪酸アルキルエステルの有機溶媒相への抽出反応の時間は、10分~6時間、好ましくは30分~2時間とするとよく、また反応中には溶液を攪拌するとよい。次いで、水相を除去し、高度不飽和脂肪酸アルキルエステルを含有する有機溶媒相を回収する。または回収した有機溶媒相をさらにシリカゲル、活性炭、二酸化ケイ素などの吸着剤に通液することにより、残留する銀イオンをさらに除去してもよい。
 本発明の製造方法の工程(3)は、工程(2)で得られた有機溶媒相を真空蒸留し、目的の高度不飽和脂肪酸アルキルエステルを回収する工程である。より詳細には、工程(2)で得られた高度不飽和脂肪酸アルキルエステルを含有する有機溶媒相から、沸点の差により、目的とする高度不飽和脂肪酸エステルを選択的に回収する。
 工程(3)の真空蒸留のためには、充填式、スプリング式、棚段式等の公知の方式による真空蒸留装置を用いることができ、また連続蒸留方式を採用してもよい。一方、真空蒸留の条件は、従来の真空蒸留法と比べて、より低い圧力および温度に設定される。すなわち、本発明の方法において、工程(3)の真空蒸留の条件は、蒸留機の塔頂真空度が1Pa以下、好ましくは0.5Pa以下であり、蒸留温度が170~190℃、好ましくは180~185℃である。塔頂真空度が1Paを超えると、高度不飽和脂肪酸のトランス異性体が生成し易くなる。また、蒸留温度が170℃未満であると目的の高度不飽和脂肪酸の収率が低下し、他方、190℃を超えると高度不飽和脂肪酸のトランス異性体が生成し易くなる。本工程における蒸留温度とは、高度不飽和脂肪酸アルキルエステルを含有する有機溶媒相の温度として表される。
 上記真空蒸留工程で得られた高度不飽和脂肪酸アルキルエステルを含む留分は、還流されて、再度上記の条件での真空蒸留に供されてもよい。
 本発明の高度不飽和脂肪酸アルキルエステル含有組成物の製造方法においては、上記各工程を(1)→(2)→(3)の順序で行う。この順序を変更すると、目的の高度不飽和脂肪酸を高含有し、且つ該目的の高度不飽和脂肪酸中のトランス異性体の比率が十分に低い組成物を得ることはできない。特に、工程(3)を工程(1)または(2)よりも先に行うと、目的の高度不飽和脂肪酸を高含有する組成物を得ることが難しくなるか、または、目的の高度不飽和脂肪酸の含量は高いがトランス異性体の比率も高い組成物となる。
 本発明の製造方法により製造された高度不飽和脂肪酸アルキルエステル含有組成物は、含有する全脂肪酸中に、遊離脂肪酸換算で、目的の高度不飽和脂肪酸アルキルエステルを95質量%以上、好ましくは96質量%以上、より好ましくは98質量%以上含有する。該組成物中に含まれる目的の高度不飽和脂肪酸アルキルエステルは、好ましくはDHAのアルキルエステルであるかまたはEPAのアルキルエステルであり、より好ましくはEPAのアルキルエステルである。また、該組成物中に含まれる目的の高度不飽和脂肪酸アルキルエステル中、トランス異性体の比率は1質量%未満、好ましくは0.5質量%未満である。
 以下、実施例を挙げて、本発明をさらに詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。
 以下の実施例において、高度不飽和脂肪酸の組成分析方法及び立体異性体の定量方法は次のとおりである。
 測定試料9μLをn-ヘキサン1.5mLに希釈し、ガスクロマトグラフィー分析装置(Type 6890 GC;Agilent Technologies製)を用いて、以下の条件にて各脂肪酸の含有比および異性体の含有比を分析した。結果は、クロマトグラムの面積から換算した質量%として表した。
  <カラム条件>
   カラム:J&W社製DB-WAX 0.25mm×30m、カラム温度:210℃
   He流量:1.0 ml/min、He圧力:134 kPa
  <検出条件>
   H2流量:30 ml/min、 Air流量:400ml/min
   He流量:10 ml/min、DET温度:260℃
 目的の高度不飽和脂肪酸中の異性体比は次の式にて求めた。
Figure JPOXMLDOC01-appb-M000001
(実施例1)
 原料:イワシ油1kgに、水酸化ナトリウム50gを溶解させた無水エタノール溶液1000mLを加え、70~80℃にて1時間混合攪拌後、さらに水500mLを加えてよく混合し、1時間静置した。分離した水相を除去し、油相を数回水洗して洗液を中性にし、エチルエステル化イワシ油820gを得た。
 上記イワシ油の組成は、表1に示すとおり、全脂肪酸中、エイコサペンタエン酸(EPA)44.09%(質量%、以下同じ)、エイコサテトラエン酸(ETA)1.52%、アラキドン酸(AA)1.77%、ドコサヘキサエン酸(DHA)6.92%を含有していた。また、EPA中のトランス異性体比は1.23%であった。
 工程(1):上記で調製したエチルエステル化イワシ油300gにn-ヘキサン160mLを加えてよく攪拌混合し、溶解させた。ここに硝酸銀50質量%の水溶液500mLを加え、5~30℃の条件下で攪拌した。静置後に分離したn-ヘキサン相を除去し、水相を回収した。
 工程(2):工程(1)で得た水相に新しいn-ヘキサン2000mLを加えて、50~69℃でよく攪拌し、脂肪酸エチルエステルをn-ヘキサンに抽出した。静置後に分離した水相を除去し、n-ヘキサン相を濃縮した。このn-ヘキサン相に含まれていた脂肪酸エチルエステル粗精製物は、表1に示すとおり、全脂肪酸中、EPA74.54%、ETA0.32%、AA0.17%、DHA14.87%を含有していた。また、EPA中のトランス異性体比は0.19%であった。
 工程(3):工程(2)で得た脂肪酸エチルエステルを含むn-ヘキサン相を、充填塔式精密蒸留機を用いて塔頂真空度1Pa以下、蒸留温度170~190℃の条件を維持しながら真空蒸留を行い、高度精製EPAエチルエステル含有組成物を約60%の収率で得た。このEPAエチルエステル含有組成物は、表1に示すとおり、全脂肪酸中、EPA98.25%、ETA0.43%、AA0.21%、DHA0.05%を含有していた。また、EPA中のトランス異性体比は0.45%であった。
 工程を(1)、(2)、(3)の順に行った本実施例でのEPAの収率は、約53%であった。
(実施例2)
 工程(3)を蒸留温度180~185℃の条件を維持しながら行った以外は、実施例1と同様にして工程(1)、(2)、(3)の順に行い、EPAエチルエステル含有組成物を約58%の収率で得た。このEPAエチルエステル含有組成物は、表1に示すとおり、全脂肪酸中、EPA98.29%、ETA0.40%、AA0.32%、DHA0.05%を含有していた。また、EPA中のトランス異性体比は0.28%であり、トランス異性体が極めて少なかった。
(比較例1)
 工程(3)において、塔頂真空度13.3Pa(0.1Torr)とした以外は、実施例1と同様にして、EPAエチルエステル含有組成物を得た。この組成物は、表1に示すとおり、全脂肪酸中のEPA含有比は97.44%と高かったが、EPA中のトランス異性体比が高値(1.37%)であった。
(比較例2)
 最初にエチルエステル化イワシ油の真空蒸留(工程(3))を行い、次いで工程(1)および(2)を行って、EPAエチルエステル含有組成物を得た。各工程の条件は、実施例1と同様にした。この組成物は、表1に示すとおり、全脂肪酸中、EPA95.05%、ETA0.72%、AA0.50%、DHA0.21%を含有し、EPA中のトランス異性体比は1.55%であった。工程を(3)、(1)、(2)の順に行った本比較例でのEPAの収率は、約31%であり、実施例1と比較してEPA収率が大きく低下した。
 本比較例での真空蒸留の条件を変更(0.5Pa、185~195℃)することによって、組成物における全脂肪酸中のEPAの含有量を98.12%まで上げることができたが、収率はさらに低下し、またEPA中のトランス異性体比が2.01%となり、さらに増加した。
Figure JPOXMLDOC01-appb-T000002
(実施例3~4、比較例3)
 工程(3)において、蒸留温度を180℃(実施例3)、190℃(実施例4)、200℃(比較例3)とし、且つ真空蒸留時間を様々に変更した以外は、実施例1と同様にして、高度精製EPAエチルエステル含有組成物を得、該組成物中のEPAのトランス異性体比を求めた。結果を図1に示す。図1より、蒸留温度190℃以下の実施例3~4では、トランス異性体比は1質量%を下回っていたが、蒸留温度200℃の比較例3では、蒸留時間1時間程度でトランス異性体比が1質量%を超えた。

Claims (10)

  1.  高度不飽和脂肪酸アルキルエステル含有組成物の製造方法であって:
     (1)高度不飽和脂肪酸アルキルエステルを含有する原料を銀塩を含む水性溶液と接触させた後、水相を回収すること;
     (2)該水相に有機溶媒を添加した後、有機溶媒相を回収すること;および
     (3)該有機溶媒相を、温度170~190℃、塔頂真空度1Pa以下で真空蒸留して、該有機溶媒相から高度不飽和脂肪酸アルキルエステルを回収すること、
    を含む、方法。
  2.  前記原料が含有する全脂肪酸中に高度不飽和脂肪酸を40質量%以上含有し、且つ該高度不飽和脂肪酸中のトランス異性体の比率が3質量%未満である、請求項1記載の方法。
  3.  前記真空蒸留が塔頂真空度0.5Pa以下の条件で行われる、請求項1又は2記載の方法。
  4.  前記真空蒸留が180~185℃の条件で行われる、請求項1~3のいずれか1項記載の方法。
  5.  前記工程(2)において、反応液を、前記工程(1)での反応温度よりも20℃以上高い温度に加温する、請求項1~4のいずれか1項記載の方法。
  6.  前記高度不飽和脂肪酸がエイコサペンタエン酸又はドコサヘキサエン酸である、請求項1~5のいずれか1項記載の方法。
  7.  前記高度不飽和脂肪酸がエイコサペンタエン酸である、請求項6記載の方法。
  8.  高度不飽和脂肪酸アルキルエステルを全脂肪酸中に95質量%以上含有し、且つ該高度不飽和脂肪酸アルキルエステル中のトランス異性体の比率が1質量%未満である組成物。
  9.  前記高度不飽和脂肪酸アルキルエステルがエイコサペンタエン酸又はドコサヘキサエン酸のアルキルエステルである、請求項8記載の組成物。
  10.  前記高度不飽和脂肪酸のアルキルエステルがエイコサペンタエン酸のアルキルエステルである、請求項9記載の組成物。
     
PCT/JP2013/075454 2012-10-01 2013-09-20 高度不飽和脂肪酸アルキルエステル含有組成物の製造方法 WO2014054435A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/432,237 US9365800B2 (en) 2012-10-01 2013-09-20 Method for producing composition containing highly unsaturated fatty acid alkyl ester
JP2014539664A JP6218738B2 (ja) 2012-10-01 2013-09-20 高度不飽和脂肪酸アルキルエステル含有組成物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012219419 2012-10-01
JP2012-219419 2012-10-01

Publications (1)

Publication Number Publication Date
WO2014054435A1 true WO2014054435A1 (ja) 2014-04-10

Family

ID=50434765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075454 WO2014054435A1 (ja) 2012-10-01 2013-09-20 高度不飽和脂肪酸アルキルエステル含有組成物の製造方法

Country Status (3)

Country Link
US (1) US9365800B2 (ja)
JP (4) JP6218738B2 (ja)
WO (1) WO2014054435A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105218367A (zh) * 2014-06-09 2016-01-06 四川国为制药有限公司 一种高纯度二十碳五烯酸乙酯浓缩物
WO2016043251A1 (ja) * 2014-09-17 2016-03-24 日本水産株式会社 エイコサペンタエン酸アルキルエステルを含有する組成物及びその製造方法
WO2017191821A1 (ja) * 2016-05-02 2017-11-09 日清ファルマ株式会社 高度不飽和脂肪酸含有組成物の製造方法
WO2018230622A1 (ja) 2017-06-14 2018-12-20 日清ファルマ株式会社 高度不飽和脂肪酸含有組成物の製造方法
WO2020122167A1 (ja) * 2018-12-12 2020-06-18 日本水産株式会社 高度不飽和脂肪酸またはそのアルキルエステルを含有する組成物およびその製造方法
WO2020138282A1 (ja) 2018-12-26 2020-07-02 日清ファルマ株式会社 エイコサペンタエン酸アルキルエステル含有組成物及びその製造方法
WO2020196749A1 (ja) 2019-03-26 2020-10-01 日清ファルマ株式会社 エイコサペンタエン酸アルキルエステル含有組成物の製造方法
US11330817B2 (en) 2013-12-04 2022-05-17 Nippon Suisan Kaisha, Ltd. Microbial oil, production method for microbial oil, concentrated microbial oil, and production method for concentrated microbial oil
CN115466180A (zh) * 2022-09-13 2022-12-13 江苏海莱康生物科技有限公司 一种纯化二十碳五烯酸乙酯的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054435A1 (ja) * 2012-10-01 2014-04-10 日清ファルマ株式会社 高度不飽和脂肪酸アルキルエステル含有組成物の製造方法
EP3586640A1 (en) 2018-06-21 2020-01-01 Nuseed Pty Ltd Dha enriched polyunsaturated fatty acid compositions
TWI751577B (zh) * 2020-06-05 2022-01-01 中化合成生技股份有限公司 利用連續式反應器以純化多不飽和脂肪酸之方法
CN112679343B (zh) * 2020-12-11 2022-11-25 浙江工业大学 一种利用香榧籽油制备高纯度金松酸乙酯的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240289A (ja) * 1992-06-09 1994-08-30 Bizen Kasei Kk ドコサヘキサエン酸エチルエステルを含有する脂肪酸エチルエステル混合物の製造方法
JPH08218091A (ja) * 1995-02-17 1996-08-27 Maruha Corp 高純度の高度不飽和脂肪酸およびその誘導体の製造方法
JPH09302380A (ja) * 1996-05-10 1997-11-25 Nippon Wax Polymer Kaihatsu Kenkyusho:Kk エイコサペンタエン酸又はそのエステルの精製方法
JP2000504221A (ja) * 1996-01-26 2000-04-11 アボツト・ラボラトリーズ アラキドン酸及びドコサヘキサエン酸を含有する経腸調合乳又は栄養補充剤
EP2438819A1 (en) * 2009-06-02 2012-04-11 Golden Omega S.A. Method for producing a concentrate of eicosapentaenoic and docosahexaenoic acid esters

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219338A (ja) * 1988-06-29 1990-01-23 Century Lab Inc 天燃源からポリ不飽和脂肪酸を抽出精製する方法
JP3001954B2 (ja) * 1990-10-24 2000-01-24 財団法人相模中央化学研究所 高度不飽和脂肪酸の取得方法
JPH07242895A (ja) 1993-03-16 1995-09-19 Ikeda Shiyotsuken Kk 高純度エイコサペンタエン酸又はその低級アルコールエステルの分離精製法
JP3334406B2 (ja) * 1995-01-31 2002-10-15 富士ゼロックス株式会社 画像形成装置の排紙装置
JPH09263787A (ja) * 1996-01-26 1997-10-07 Nof Corp 高度不飽和脂肪酸又はそのアルキルエステルの製造方法
JPH1095744A (ja) * 1996-09-20 1998-04-14 Nof Corp 高度不飽和脂肪酸又はそのアルキルエステルの製造方法
JP4170542B2 (ja) * 1999-11-18 2008-10-22 日油株式会社 高度不飽和脂肪酸誘導体の製造方法及び高純度エイコサペンタエン酸誘導体
CL2010001587A1 (es) * 2010-12-27 2013-01-11 Golden Omega S A Proceso de preparacion de un concentrado de etil esteres de acidos grasos omega-3 que comprende sobre el 80% en peso de dichos esteres en configuracion cis y sus dobles enlaces separados por una unidad metilenica.
WO2014054435A1 (ja) * 2012-10-01 2014-04-10 日清ファルマ株式会社 高度不飽和脂肪酸アルキルエステル含有組成物の製造方法
CN104557542B (zh) * 2014-12-17 2016-04-27 浙江大学 一种超临界色谱制备高纯度epa酯和dha酯单体的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240289A (ja) * 1992-06-09 1994-08-30 Bizen Kasei Kk ドコサヘキサエン酸エチルエステルを含有する脂肪酸エチルエステル混合物の製造方法
JPH08218091A (ja) * 1995-02-17 1996-08-27 Maruha Corp 高純度の高度不飽和脂肪酸およびその誘導体の製造方法
JP2000504221A (ja) * 1996-01-26 2000-04-11 アボツト・ラボラトリーズ アラキドン酸及びドコサヘキサエン酸を含有する経腸調合乳又は栄養補充剤
JPH09302380A (ja) * 1996-05-10 1997-11-25 Nippon Wax Polymer Kaihatsu Kenkyusho:Kk エイコサペンタエン酸又はそのエステルの精製方法
EP2438819A1 (en) * 2009-06-02 2012-04-11 Golden Omega S.A. Method for producing a concentrate of eicosapentaenoic and docosahexaenoic acid esters

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11856952B2 (en) 2013-12-04 2024-01-02 Nippon Suisan Kaisha, Ltd. Microbial oil, production method for microbial oil, concentrated microbial oil, and production method for concentrated microbial oil
US11330817B2 (en) 2013-12-04 2022-05-17 Nippon Suisan Kaisha, Ltd. Microbial oil, production method for microbial oil, concentrated microbial oil, and production method for concentrated microbial oil
CN105218367A (zh) * 2014-06-09 2016-01-06 四川国为制药有限公司 一种高纯度二十碳五烯酸乙酯浓缩物
US10864185B2 (en) 2014-09-17 2020-12-15 Nippon Suisan Kaisha, Ltd. Composition containing eicosapentaenoic acid alkyl ester, and method for producing same
WO2016043251A1 (ja) * 2014-09-17 2016-03-24 日本水産株式会社 エイコサペンタエン酸アルキルエステルを含有する組成物及びその製造方法
US9918953B2 (en) 2014-09-17 2018-03-20 Nippon Suisan Kaisha, Ltd. Composition containing eicosapentaenoic acid alkyl ester, and method for producing same
US11648229B2 (en) 2014-09-17 2023-05-16 Nippon Suisan Kaisha, Ltd. Composition containing eicosapentaenoic acid alkyl ester, and method for producing same
US10105340B2 (en) 2014-09-17 2018-10-23 Nippon Suisan Kaisha, Ltd. Composition containing eicosapentaenoic acid alkyl ester, and method for producing same
JP7190013B2 (ja) 2014-09-17 2022-12-14 日本水産株式会社 エイコサペンタエン酸アルキルエステルを含有する組成物及びその製造方法
CN106795452A (zh) * 2014-09-17 2017-05-31 日本水产株式会社 含有二十碳五烯酸烷基酯的组合物及其制造方法
JP2022008611A (ja) * 2014-09-17 2022-01-13 日本水産株式会社 エイコサペンタエン酸アルキルエステルを含有する組成物及びその製造方法
EP3196280A4 (en) * 2014-09-17 2018-04-11 Nippon Suisan Kaisha, Ltd. Composition containing eicosapentaenoic acid alkyl ester, and method for producing same
JPWO2016043251A1 (ja) * 2014-09-17 2017-08-17 日本水産株式会社 エイコサペンタエン酸アルキルエステルを含有する組成物及びその製造方法
US10576053B2 (en) 2014-09-17 2020-03-03 Nippon Suisan Kaisha, Ltd. Composition containing eicosapentaenoic acid alkyl ester, and method for producing same
JP2020073667A (ja) * 2014-09-17 2020-05-14 日本水産株式会社 エイコサペンタエン酸アルキルエステルを含有する組成物及びその製造方法
WO2017191821A1 (ja) * 2016-05-02 2017-11-09 日清ファルマ株式会社 高度不飽和脂肪酸含有組成物の製造方法
JP6990174B2 (ja) 2016-05-02 2022-02-03 日清ファルマ株式会社 高度不飽和脂肪酸含有組成物の製造方法
JPWO2017191821A1 (ja) * 2016-05-02 2019-03-07 日清ファルマ株式会社 高度不飽和脂肪酸含有組成物の製造方法
US10597607B2 (en) 2016-05-02 2020-03-24 Nisshin Pharma Inc. Method for producing polyunsaturated fatty acid-containing composition
CN109072126A (zh) * 2016-05-02 2018-12-21 日清药业股份有限公司 含有高度不饱和脂肪酸的组合物的制造方法
CN109072126B (zh) * 2016-05-02 2022-03-22 日清药业股份有限公司 含有高度不饱和脂肪酸的组合物的制造方法
WO2018230622A1 (ja) 2017-06-14 2018-12-20 日清ファルマ株式会社 高度不飽和脂肪酸含有組成物の製造方法
JP2019135307A (ja) * 2017-06-14 2019-08-15 日清ファルマ株式会社 高度不飽和脂肪酸含有組成物の製造方法
US10899994B2 (en) 2017-06-14 2021-01-26 Nisshin Pharma Inc. Method for producing polyunsaturated fatty acid-containing composition
JP6518022B1 (ja) * 2017-06-14 2019-05-22 日清ファルマ株式会社 高度不飽和脂肪酸含有組成物の製造方法
US11499119B2 (en) 2018-12-12 2022-11-15 Nippon Suisan Kaisha, Ltd. Composition containing highly unsaturated fatty acid or alkyl ester thereof and a method for producing the same
US11898120B2 (en) 2018-12-12 2024-02-13 Nissui Corporation Composition containing highly unsaturated fatty acid or alkyl ester thereof and a method for producing the same
WO2020122167A1 (ja) * 2018-12-12 2020-06-18 日本水産株式会社 高度不飽和脂肪酸またはそのアルキルエステルを含有する組成物およびその製造方法
US10696924B1 (en) 2018-12-12 2020-06-30 Nippon Suisan Kaisha, Ltd. Composition containing highly unsaturated fatty acid or alkyl ester thereof and a method for producing the same
JP7381491B2 (ja) 2018-12-12 2023-11-15 株式会社ニッスイ 高度不飽和脂肪酸またはそのアルキルエステルを含有する組成物およびその製造方法
US11248190B2 (en) 2018-12-12 2022-02-15 Nippon Suisan Kaisha, Ltd. Composition containing highly unsaturated fatty acid or alkyl ester thereof and a method for producing the same
JPWO2020122167A1 (ja) * 2018-12-12 2021-10-28 日本水産株式会社 高度不飽和脂肪酸またはそのアルキルエステルを含有する組成物およびその製造方法
JPWO2020138282A1 (ja) * 2018-12-26 2021-11-04 日清ファルマ株式会社 エイコサペンタエン酸アルキルエステル含有組成物及びその製造方法
KR20210108948A (ko) 2018-12-26 2021-09-03 닛신 파마 가부시키가이샤 에이코사펜타엔산 알킬에스테르 함유 조성물 및 그 제조 방법
WO2020138282A1 (ja) 2018-12-26 2020-07-02 日清ファルマ株式会社 エイコサペンタエン酸アルキルエステル含有組成物及びその製造方法
CN113195447A (zh) * 2018-12-26 2021-07-30 日清药业股份有限公司 含有二十碳五烯酸烷基酯的组合物及其制造方法
WO2020196749A1 (ja) 2019-03-26 2020-10-01 日清ファルマ株式会社 エイコサペンタエン酸アルキルエステル含有組成物の製造方法
US11767491B2 (en) 2019-03-26 2023-09-26 Nisshin Pharma Inc. Eicosapentaenoic acid alkyl ester-containing composition and method for producing same
EP3950909A4 (en) * 2019-03-26 2022-12-14 Nisshin Pharma Inc. COMPOSITION CONTAINING EICOSAPENTAIC ACID-ALKYLESTER AND PROCESS FOR THE PREPARATION THEREOF
CN115466180A (zh) * 2022-09-13 2022-12-13 江苏海莱康生物科技有限公司 一种纯化二十碳五烯酸乙酯的方法

Also Published As

Publication number Publication date
JP6684932B2 (ja) 2020-04-22
US20150252288A1 (en) 2015-09-10
JP6465938B2 (ja) 2019-02-06
US9365800B2 (en) 2016-06-14
JP2018012842A (ja) 2018-01-25
JP2020111757A (ja) 2020-07-27
JP2019048902A (ja) 2019-03-28
JP6218738B2 (ja) 2017-10-25
JPWO2014054435A1 (ja) 2016-08-25

Similar Documents

Publication Publication Date Title
JP6465938B2 (ja) 高度不飽和脂肪酸アルキルエステル含有組成物の製造方法
KR102678363B1 (ko) 천연 오일로부터의 초장쇄 다중불포화 지방산
JP6302310B2 (ja) 高純度オメガ3系脂肪酸エチルエステルの生産方法
KR101815110B1 (ko) 오메가-7계 불포화 지방산의 정제공정
JP5861968B2 (ja) オメガ3濃縮物を得るための方法
JPS649977B2 (ja)
JP6234908B2 (ja) エイコサペンタエン酸及び/又はドコサヘキサエン酸含有組成物の製造方法
JP7528054B2 (ja) エイコサペンタエン酸アルキルエステル含有組成物の製造方法
JPS62209029A (ja) ヘキサメチルテトラコサン類の製造法
JP6464144B2 (ja) ステアリドン酸の精製方法
Petrica Iancu et al. Advanced high vacuum techniques for ω-3 polyunsaturated fatty acids esters concentration
JPWO2020138282A1 (ja) エイコサペンタエン酸アルキルエステル含有組成物及びその製造方法
KR20140003437A (ko) 다중불포화 지방산을 금속 수소화물로 안정화시키는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539664

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14432237

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843705

Country of ref document: EP

Kind code of ref document: A1