WO2020138282A1 - エイコサペンタエン酸アルキルエステル含有組成物及びその製造方法 - Google Patents

エイコサペンタエン酸アルキルエステル含有組成物及びその製造方法 Download PDF

Info

Publication number
WO2020138282A1
WO2020138282A1 PCT/JP2019/051107 JP2019051107W WO2020138282A1 WO 2020138282 A1 WO2020138282 A1 WO 2020138282A1 JP 2019051107 W JP2019051107 W JP 2019051107W WO 2020138282 A1 WO2020138282 A1 WO 2020138282A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl ester
acid alkyl
epa
area
equosa
Prior art date
Application number
PCT/JP2019/051107
Other languages
English (en)
French (fr)
Inventor
一郎 後藤
昌卓 原田
信吾 野中
Original Assignee
日清ファルマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清ファルマ株式会社 filed Critical 日清ファルマ株式会社
Priority to JP2020562404A priority Critical patent/JPWO2020138282A1/ja
Priority to CA3125090A priority patent/CA3125090A1/en
Priority to EP19902643.6A priority patent/EP3904328A4/en
Priority to US17/418,439 priority patent/US20210395183A1/en
Priority to KR1020217016710A priority patent/KR20210108948A/ko
Priority to CN201980086203.8A priority patent/CN113195447A/zh
Publication of WO2020138282A1 publication Critical patent/WO2020138282A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/587Monocarboxylic acid esters having at least two carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C67/54Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/58Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/12Refining fats or fatty oils by distillation

Definitions

  • the present invention relates to a composition containing an alkyl ester of eicosapentaenoic acid and a method for producing the same.
  • PUFA Polyunsaturated fatty acid
  • EPA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • the raw material for fats and oils of biological origin is a mixture of various fatty acids having different numbers of carbon atoms, number and position of double bonds, and composition ratio of stereoisomers, and the content of PUFA is not necessarily high.
  • PUFA purified from a biologically-derived oil/fat raw material contains various trace impurities derived from the oil/fat raw material or produced by heat treatment in the refining process.
  • impurities include, for example, unfavorable fatty acids such as arachidonic acid, saturated fatty acids, and PUFA trans isomers for cardiovascular events, and environmental pollutants such as environmental hormones and other substances that adversely affect the living body. obtain. Therefore, as a raw material for pharmaceuticals and health foods, there is a demand for a high-purity PUFA-containing composition that not only contains PUFA in a high concentration but also contains impurities that adversely affect the living body as low as possible.
  • Patent Document 1 discloses environmental pollution including removal of environmental pollutants such as polychlorinated dibenzoparadioxin (PCDD) and polychlorinated dibenzofuran (PCDF) by thin film distillation from a feed oil containing PUFA as a constituent fatty acid.
  • PCDD polychlorinated dibenzoparadioxin
  • PCDF polychlorinated dibenzofuran
  • Patent Document 2 an arachidonic acid ester and an EPA alkyl ester containing a EPA alkyl ester-containing composition, which is subjected to concentration distillation using chromatography after precision distillation at 0.2 Torr and 190° C. or lower.
  • Patent Document 3 discloses that an oil composition is treated with an aqueous fluid and then subjected to a stripping treatment such as short-step distillation, so that an undesirable component in the oil composition, for example, a hydrophilic component such as a proteinaceous compound or an environment A method for removing lipophilic components such as pollutants and cholesterol is described.
  • Patent Document 4 describes a method for producing purified fish oil, which comprises contacting fish oil with alkali and then with activated clay, and then contacting the steam with fish oil at 150 to 230° C. by steam distillation to deodorize the fish oil. Has been done.
  • Patent Document 5 discloses that an alkyl ester form of a polyunsaturated fatty acid is brought into contact with an aqueous solution containing a silver salt and then vacuum distilled at 170 to 190° C. and a column top vacuum degree of 1 Pa or less to give a trans isomer. It is described that a PUFA alkyl ester-containing composition having a very low content was produced.
  • the EPA-containing composition produced by the conventional method contains unknown impurities, and these impurities are known so far. It was found to be a novel EPA analog that is not present. Since the impurity substance is an unknown substance, purification of EPA by paying attention to the impurity substance has not been conventionally performed. Further, since the impurity substance has a chemical structure similar to that of EPA, it is extremely difficult to remove it from the EPA-containing composition. For these reasons, it was speculated that the impurities may have been included in conventional EPA-containing compositions without their knowledge of their presence. By removing these impurities, the purity of the EPA-containing composition can be further improved.
  • the present invention provides a high-concentration and high-purity EPA-containing composition from which the above-mentioned conventionally unknown EPA analogs have been removed, and a method for producing the same.
  • the present invention provides a method for producing an eicosapentaenoic acid alkyl ester-containing composition, (1) recovering an aqueous layer after bringing a feedstock oil containing eicosapentaenoic acid alkyl ester into contact with an aqueous solution containing a silver salt; (2) recovering the organic solvent layer after adding the organic solvent to the aqueous layer; and (3) vacuum distilling the organic solvent layer at a temperature of 180 to 188° C. and a top vacuum degree of 0.7 Pa or less. And recovering the eicosapentaenoic acid alkyl ester from the organic solvent layer, And a method including.
  • the present invention has a content of alkyl ester of eicosapentaenoic acid of 95% by area or more, and (4Z,7Z,10Z,13Z,16Z)-equosa-4,7,10,13,16-pentaenoic acid alkyl ester.
  • an eicosapentaenoic acid alkyl ester-containing composition in which the content of each of 7,10,13,16,19-hexaenoic acid alkyl ester is 0.1 area% or less.
  • the present invention is a method for measuring the purity of an eicosapentaenoic acid alkyl ester-containing composition, wherein (4Z,7Z,10Z,13Z,16Z)-equosa-4,7,10,13, 16-pentaenoic acid alkyl ester, (7Z,10Z,13Z,16Z,19Z)-ikosa-7,10,13,16,19-pentaenoic acid alkyl ester, and (4Z,7Z,10Z,13Z,16Z,19Z) -Echosa-4,7,10,13,16,19-providing a method comprising measuring the content of at least one substance selected from the group consisting of alkyl esters of hexaenoic acid.
  • the present invention is (4Z,7Z,10Z,13Z,16Z)-ikosa-4,7,10,13,16-pentaenoic acid alkyl ester, (7Z,10Z,13Z,16Z,19Z)-ikosa-7, Provided is 10,13,16,19-pentaenoic acid alkyl ester, or (4Z,7Z,10Z,13Z,16Z,19Z)-equosa-4,7,10,13,16,19-hexaenoic acid alkyl ester.
  • a high-concentration, high-purity EPA-containing composition containing as little fatty acid as possible that may adversely affect the living body is useful as a raw material for medicines and health foods.
  • arachidonic acid which has been conventionally removed as an impurity
  • the concentration of EPA-related substances that have not been recognized as impurities has been reduced, and a higher concentration and higher purity EPA-containing composition has been obtained. Things are offered.
  • the present invention relates to unknown impurities contained in a conventional eicosapentaenoic acid (EPA) alkyl ester-containing composition.
  • EPA eicosapentaenoic acid
  • a high-concentration and high-purity eicosapentaenoic acid (EPA)-containing composition containing as little impurities as possible such as fatty acids and trans isomers that may adversely affect the living body is useful as a raw material for pharmaceuticals and health foods.
  • the present inventors have detected and identified impurities contained in the conventional EPA-containing composition in order to search for a higher-purity EPA-containing composition.
  • the present inventor has found that the EPA alkyl ester-containing composition obtained by the conventional method (for example, the method described in Patent Document 5) contains the following unknown impurities.
  • Impurities of the present invention can be separated from the EPA alkyl ester-containing composition. Since the impurities of the present invention have a structure similar to that of EPA, it is extremely difficult to separate it from EPA by the conventional purification method of EPA, which has hitherto been separated or identified. It was presumed to be the reason why it was not done.
  • the present inventor has conducted research on a method of removing the impurities of the present invention from an EPA alkyl ester-containing composition in order to produce a higher purity EPA-containing composition, and has improved the EPA alkyl ester-containing composition.
  • one aspect of the present invention relates to a method for producing an EPA alkyl ester-containing composition having a reduced content of impurities according to the present invention. Further, another aspect of the present invention relates to the EPA alkyl ester-containing composition of the present invention, which is produced by the production method and has a reduced content of impurities.
  • the raw material oil of the composition containing the EPA alkyl ester can be prepared from the biological fat or oil containing the EPA.
  • the organism-derived oils and fats include oils and fats derived from marine animals such as fish and plankton, oils and fats derived from microorganisms such as algae, among others, sardines, mackerel, oils and fats derived from fish such as tuna, and oils and fats derived from algae are preferred examples.
  • These bio-based fats and oils mainly contain fatty acid in the form of triglyceride in which one molecule of glycerin is bound with three molecules of fatty acid. It may contain a small amount of diglyceride, monoglyceride or free fatty acid.
  • the biological fat and oil contains 20% by area or more of EPA in all contained fatty acids.
  • EPA may be present in the biological fat or oil in the form of free fatty acids, or in the form of fatty acid chains of mono-, di- or triglycerides.
  • the ratio of each constituent fatty acid to the total fatty acids in the oil or fat can be measured by gas chromatography under the conditions described below.
  • the biological fat or oil is prepared as a raw material oil in the production method of the present invention by alkyl-esterifying the contained EPA and concentrating the EPA if necessary.
  • the EPA alkyl ester can be produced, for example, by subjecting a fat or oil containing EPA and an acid having a desired alkyl group to an esterification reaction by a known method.
  • an EPA alkyl ester can be obtained by reacting EPA in a glyceride contained in the biological fat and oil with a lower alcohol in the presence of a catalyst or an enzyme to form an alkyl ester.
  • the oil/fat containing the EPA alkyl ester used as the raw material oil a commercially available oil/fat may be used. From the viewpoint of obtaining a high content of alkyl ester of EPA, it is preferable to use a commercially available oil and fat derived from fish oil in which the amount of EPA contained is standardized.
  • the raw material oil used in the production method of the present invention is preferably an oil and fat containing 40 area% or more of EPA in the total fatty acids contained. In the production method of the present invention, by using a feedstock oil having an EPA content of 40% by area or more in all fatty acids, a composition containing EPA in a high concentration can be efficiently obtained finally.
  • the above-mentioned raw material oil is preferably applied in a liquid form.
  • the feed oil is in a liquid form at the reaction temperature in each step, it can be directly applied to each step of the present invention.
  • the raw material oil may be appropriately dissolved or diluted in an organic solvent or another oil and applied.
  • the organic solvent an organic solvent that can be separated from water is used in order to carry out the following step (1), and examples thereof include ethyl acetate, chloroform, carbon tetrachloride, diethyl ether, and hexane.
  • the method of making the EPA alkyl ester-containing composition of the present invention comprises: (1) recovering an aqueous layer after contacting a feedstock oil containing an EPA alkyl ester with an aqueous solution containing a silver salt; (2) recovering the organic solvent layer after adding the organic solvent to the aqueous layer; and (3) vacuum distilling the organic solvent layer at a temperature of 180 to 188° C. and a top vacuum degree of 0.7 Pa or less. And recover the EPA alkyl ester from the organic solvent layer.
  • the steps (1) and (2) are carried out by forming a complex with a silver salt at a carbon-carbon double bond portion of a polyunsaturated fatty acid (PUFA) to form a PUFA alkyl containing EPA.
  • PUFA polyunsaturated fatty acid
  • This is a step of separating and purifying the EPA alkyl ester from the feed oil by utilizing the fact that the solubility of the ester in the extraction solvent changes.
  • the step (1) is a step of recovering an aqueous layer after bringing a feedstock oil containing an EPA alkyl ester into contact with an aqueous solution containing a silver salt.
  • This step can be performed according to the method described in, for example, Japanese Patent No. 2786748, Japanese Patent No. 2895258, Japanese Patent No. 2935555, Japanese Patent No. 3001954, or the like.
  • an aqueous solution containing a silver salt is added to the above-mentioned stock oil containing EPA alkyl ester, and stirred for 5 minutes to 4 hours, preferably 10 minutes to 2 hours.
  • the reaction temperature at this time is, for example, about 80° C. or lower, with the upper limit being the temperature at which the product of the step (1) becomes completely liquid, while the lower limit is preferably 5° C. or higher. More preferably, the reaction temperature is around room temperature (20 to 30° C.).
  • the reaction produces a silver-EPA complex. Since the complex is dissolved in the layer of the aqueous solution, EPA can be selectively recovered by recovering the aqueous layer from the solution.
  • the silver salt is not particularly limited as long as it can form a complex with the unsaturated bond of PUFA, and silver nitrate, silver perchlorate, silver tetrafluoroborate, silver acetate and the like can be used. Of these, silver nitrate is preferred.
  • the solvent of the aqueous solution include water or a mixed medium of water and a compound having a hydroxyl group such as glycerin or ethylene glycol, and water is preferably used.
  • the concentration of silver salt in the aqueous solution may be 0.1 mol/L or more, but is preferably about 1 to 20 mol/L.
  • the molar ratio of PUFA to silver salt is about 1:100 to 100:1, preferably about 1:5 to 1:1.
  • step (2) of the production method of the present invention an organic solvent is added to the aqueous layer recovered in the above step (1) to extract the EPA alkyl ester in the aqueous layer into the organic solvent layer, and then the EPA. It is a step of recovering an organic solvent layer containing an alkyl ester.
  • This step can be performed according to the method described in, for example, Japanese Patent No. 2786748, Japanese Patent No. 2895258, Japanese Patent No. 2935555, Japanese Patent No. 3001954, or the like.
  • the organic solvent added to the aqueous layer examples include hexane, ether, ethyl acetate, butyl acetate, chloroform, cyclohexane, benzene, toluene, xylene and the like, which have high solubility in PUFA and are separable from water.
  • the solution (reaction solution) added with the organic solvent is heated to a temperature higher than the reaction temperature in the step (1), that is, the temperature at which the silver-EPA complex is formed. More preferably, the reaction temperature in step (1), that is, the temperature at which the temperature of forming the complex is higher by 20° C. or more.
  • the temperature of the reaction solution in the step (2) is preferably 40° C. or higher, more preferably about 50 to 80° C.
  • the extraction reaction time of the EPA alkyl ester into the organic solvent layer may be 10 minutes to 6 hours, preferably 30 minutes to 2 hours, and the solution may be stirred during the reaction. Then, the aqueous layer is removed, and the organic solvent layer containing the EPA alkyl ester is recovered. Alternatively, the residual silver ions may be further removed by passing the recovered organic solvent layer through an adsorbent such as silica gel, activated carbon, or silicon dioxide.
  • steps (1) and (2) above are performed according to the method described in WO2017/191821 instead of batch mixing the feedstock and the aqueous solution or the aqueous solution and the organic solvent as described above. May be done. That is, a droplet of an aqueous solution containing a silver salt is passed through a feedstock oil containing an EPA alkyl ester in a first reaction vessel to bring the aqueous solution into contact with the feedstock oil to form a silver-EPA complex. An aqueous solution containing is produced and is recovered.
  • a droplet of the aqueous solution containing the recovered silver-EPA complex is passed through the organic solvent in the second reaction tank to extract the EPA alkyl ester into the organic solvent, and then the EPA alkyl is extracted.
  • the organic solvent layer containing the ester is collected.
  • the droplets of the aqueous solution are passed through the feedstock oil, and the aqueous solution containing the silver-EPA complex is recovered, and/or the droplets of the aqueous solution containing the silver-EPA complex are collected in an organic solvent.
  • the recovery of the organic solvent layer containing the EPA alkyl ester are carried out in parallel while optionally adding an aqueous solution and optionally a feed oil or an organic solvent to the first and/or second reaction tank, And preferably it is carried out continuously.
  • the passage time of the aqueous solution in the first and second reaction tanks is the difference in specific gravity between the aqueous solution and the feed oil or the organic solvent, and the volume of the feed oil or the organic solvent.
  • it can be controlled according to (size of reaction tank), it can also be controlled by controlling the flow rate and flow rate of the aqueous solution in the reaction tank and, if necessary, the feed oil or the organic solvent with a pump or the like.
  • the temperatures of the liquids in the first and second reaction tanks may be the same as the temperatures of the reaction liquids of the steps (1) and (2) described above, respectively.
  • the aqueous solution containing the silver salt after being brought into contact with the organic solvent can be repeatedly reused and used again for contact with the feedstock oil. Therefore, in the present embodiment, the amount of the aqueous solution containing the silver salt used is reduced to about 1/2 to 1/20 as compared with the method in which the aqueous solution containing the silver salt is collectively added to the raw material oil and stirred. It is possible to
  • the step (3) of the production method of the present invention is a step of vacuum-distilling the organic solvent layer obtained in the step (2) to recover the target EPA alkyl ester. More specifically, the target EPA alkyl ester is selectively recovered from the organic solvent layer containing the EPA alkyl ester obtained in step (2) due to the difference in boiling point.
  • a vacuum distillation apparatus of a known system such as a filling system, a spring system, or a tray system can be used, or a continuous distillation system may be adopted.
  • the conditions for vacuum distillation in the method of the present invention are set to a lower pressure and a temperature in a more restricted range as compared with the conventional vacuum distillation method (for example, the method described in Patent Document 5). That is, in the method of the present invention, the vacuum distillation conditions in the step (3) are such that the top vacuum of the distillation machine is 0.7 Pa or less and the distillation temperature is 180 to 188°C, preferably 185 to 188°C. ..
  • the degree of vacuum at the top of the column exceeds 0.7 Pa, the separation from the impurities of the present invention becomes poor and it becomes difficult to recover the high-purity EPA alkyl ester. Further, if the distillation temperature is lower than 180°C, the distillation time required for concentrating EPA and removing the impurities of the present invention becomes long, while if it exceeds 188°C, the distillation efficiency is improved although the energy cost increases. No, the cost is high.
  • the distillation temperature in this step is represented as the temperature of the organic solvent layer containing the EPA alkyl ester.
  • the fraction containing the EPA alkyl ester obtained in the above vacuum distillation step may be refluxed and again subjected to vacuum distillation under the above conditions.
  • the above steps are carried out in the order of (1) ⁇ (2) ⁇ (3). If this order is changed, it is impossible to obtain a composition having a high EPA content and a sufficiently low ratio of impurities according to the present invention.
  • the step (3) is performed before the step (1) or (2), it becomes difficult to obtain a composition having a high EPA content, or the EPA content is high.
  • the composition also has a high content of impurities.
  • the EPA alkyl ester-containing composition produced by the production method of the present invention preferably contains 95% by area or more, more preferably 96 area% or more, and even more preferably 98 area% of the EPA alkyl ester in the total fatty acids contained therein. Or more, more preferably 99 area% or more.
  • the content of a given fatty acid in an oil/fat composition is the ratio of the peak area of the fatty acid to the total peak area of all fatty acids in the composition measured by gas chromatography under the following conditions ( Area%).
  • Area% Area %.
  • the column conditions and detection conditions may be as follows.
  • the content of the impurities of the present invention in the EPA alkyl ester-containing composition is (4Z,7Z,10Z,13Z,16Z)-equosa-4,7,10,13,16-pentaenoic acid alkyl ester, (7Z, 10Z,13Z,16Z,19Z)-equosa-7,10,13,16,19-pentaenoic acid alkyl ester, and (4Z,7Z,10Z,13Z,16Z,19Z)-equosa-4,7,10,13 It is 0.1 area% or less for all of the 16,16,19-hexaenoic acid alkyl esters.
  • the content of (4Z,7Z,10Z,13Z,16Z)-equosa-4,7,10,13,16-pentaenoic acid alkyl ester is 0.1% by area or less.
  • the content of (7Z,10Z,13Z,16Z,19Z)-equosa-7,10,13,16,19-pentaenoic acid alkyl ester is 0.07 area% or less, (4Z,7Z,10Z ,13Z,16Z,19Z)-equosa-4,7,10,13,16,19-hexaenoic acid alkyl ester content is 0.09 area% or less.
  • the content of (4Z,7Z,10Z,13Z,16Z)-equosa-4,7,10,13,16-pentaenoic acid alkyl ester is 0.05% by area.
  • the content of (7Z,10Z,13Z,16Z,19Z)-equosa-7,10,13,16,19-pentaenoic acid alkyl ester is 0.07 area% or less
  • (4Z,7Z The content of (10Z,13Z,16Z,19Z)-equosa-4,7,10,13,16,19-hexaenoic acid alkyl ester is 0.08 area% or less.
  • the EPA alkyl ester-containing composition has an EPA alkyl ester content of 95 area% or more, preferably 96 area% or more, more preferably 98 area% or more, still more preferably 99 area% or more.
  • the EPA alkyl ester-containing composition has an EPA alkyl ester content of 95 area% or more, preferably 96 area% or more, more preferably 98 area% or more, still more preferably 99 area% or more.
  • the content of (4Z,7Z,10Z,13Z,16Z)-equosa-4,7,10,13,16-pentaenoic acid alkyl ester is 0.1 area% or less, (7Z,10Z,13Z, 16Z,19Z)-equosa-7,10,13,16,19-pentaenoic acid alkyl ester content of 0.07 area% or less, and (4Z,7Z,10Z,13Z,16Z,19Z)-equosa
  • the content of -4,7,10,13,16,19-hexaenoic acid alkyl ester is 0.09 area% or less.
  • the EPA alkyl ester-containing composition has a content of EPA alkyl ester of 98 area% or more, preferably 99 area% or more, and is (4Z,7Z,10Z,13Z,16Z)-equosa-
  • the content of 4,7,10,13,16-pentaenoic acid alkyl ester is 0.05 area% or less, (7Z,10Z,13Z,16Z,19Z)-equosa-7,10,13,16,19 -
  • the content of alkyl pentaenoic acid ester is 0.07 area% or less, and (4Z,7Z,10Z,13Z,16Z,19Z)-Icosa-4,7,10,13,16,19-alkyl hexaenoic acid
  • the ester content is 0.08 area% or less.
  • the present inventor has found that the impurities of the present invention are related substances of EPA that are extremely difficult to separate from EPA, and therefore their content can be an index of the purity of the EPA alkyl ester-containing composition. It was Therefore, a further aspect of the present invention relates to a method of measuring the purity of an EPA alkyl ester-containing composition, which comprises measuring the content of impurities of the present invention.
  • the content of the substance can be calculated, for example, from the ratio of the peak area of the substance to the total peak area of all fatty acids measured by gas chromatography under the above-mentioned conditions.
  • the content of the measured substance in the EPA alkyl ester-containing composition indicates the mixing level of the measured substance with respect to the target EPA, which is a substance in which the impurities of the present invention are extremely difficult to separate from the EPA. Taking this into account, it reflects the purity of the EPA of interest in the composition.
  • (4Z,7Z,10Z,13Z,16Z)-equosa-4,7,10,13,16-pentaenoic acid alkyl ester in the EPA alkyl ester-containing composition (7Z,10Z,13Z, 16Z,19Z)-Ikosa-7,10,13,16,19-pentaenoic acid alkyl ester, and (4Z,7Z,10Z,13Z,16Z,19Z)-Ikosa-4,7,10,13,16,19 -
  • the content of any of the hexaenoic acid alkyl ester is 0.5 area% or less, preferably 0.3 area% or less, more preferably 0.1 area% or less
  • the EPA alkyl ester-containing composition is It is evaluated to have high purity.
  • the EPA alkyl ester-containing composition is evaluated to have sufficiently high purity as a raw material for medicines or foods.
  • (4Z,7Z,10Z,13Z,16Z)-equosa-4,7,10,13,16-pentaenoic acid alkyl ester in the EPA alkyl ester-containing composition (7Z,10Z,13Z ,16Z,19Z)-equosa-7,10,13,16,19-pentaenoic acid alkyl ester, and (4Z,7Z,10Z,13Z,16Z,19Z)-equosa-4,7,10,13,16, When the content of the 19-hexaenoic acid alkyl ester is 0.5 area% or less, preferably 0.3 area% or less, and more preferably 0.1 area% or less, the EPA alkyl ester-containing composition is It is evaluated to have high purity.
  • the EPA alkyl ester-containing composition is evaluated to have sufficiently high purity as a raw material for medicines or foods.
  • the content of (4Z,7Z,10Z,13Z,16Z)-equosa-4,7,10,13,16-pentaenoic acid alkyl ester in the EPA alkyl ester-containing composition is 0.1.
  • the EPA alkyl ester-containing composition The product is evaluated as having high purity. More specifically, the EPA alkyl ester-containing composition is evaluated to have sufficiently high purity as a raw material for medicines or foods.
  • the content of (4Z,7Z,10Z,13Z,16Z)-equosa-4,7,10,13,16-pentaenoic acid alkyl ester in the EPA alkyl ester-containing composition is 0.05.
  • the EPA alkyl ester-containing composition The product is evaluated as having high purity. More specifically, the EPA alkyl ester-containing composition is evaluated to have sufficiently high purity as a raw material for medicines or foods.
  • the content of EPA alkyl ester in the composition containing EPA alkyl ester may be further measured.
  • the content of the EPA alkyl ester in the EPA alkyl ester-containing composition is 95 area% or more, preferably 96 area% or more, more preferably 98 area% or more, still more preferably 99 area%.
  • the EPA alkyl ester-containing composition is evaluated to have sufficiently high purity as a raw material for medicines or foods.
  • the content of EPA alkyl ester in the EPA alkyl ester-containing composition is 95 area% or more, preferably 96 area% or more, more preferably 98 area% or more, still more preferably 99 area% or more.
  • the content of (4Z,7Z,10Z,13Z,16Z)-equosa-4,7,10,13,16-pentaenoic acid alkyl ester is 0.1 area% or less, (7Z,10Z,13Z, 16Z,19Z)-equosa-7,10,13,16,19-pentaenoic acid alkyl ester content of 0.07 area% or less, and (4Z,7Z,10Z,13Z,16Z,19Z)-equosa If the content of -4,7,10,13,16,19-hexaenoic acid alkyl ester is 0.09 area% or less, the EPA alkyl ester-containing composition is evaluated to have high purity.
  • the EPA alkyl ester-containing composition is evaluated to have sufficiently high purity as a raw material for medicines or foods.
  • the content of EPA alkyl ester in the EPA alkyl ester-containing composition is 98 area% or more, more preferably 99 area% or more, and (4Z,7Z,10Z,13Z,16Z)-equosa -4,7,10,13,16-pentaenoic acid alkyl ester content is not more than 0.05 area%, (7Z,10Z,13Z,16Z,19Z)-equosa-7,10,13,16,
  • the content of 19-pentaenoic acid alkyl ester is 0.07 area% or less, and (4Z,7Z,10Z,13Z,16Z,19Z)-ikosa-4,7,10,13,16,19-hexaenoic acid
  • the EPA alkyl ester-containing composition is 98 area% or more, more preferably 99 area% or more, and (4Z,
  • Reference Example 1 Fatty Acid Composition Analysis 9 ⁇ L of a measurement sample was diluted with 1.5 mL of n-hexane, and a fatty acid was analyzed under the following conditions using a gas chromatography analyzer (Type 6890 GC; manufactured by Agilent Technologies). The fatty acid content was calculated as the ratio (area%) of the peak area of each fatty acid to the total peak area of all fatty acids in the chromatogram.
  • ⁇ Column condition> Column: J&W DB-WAX 0.25mm ⁇ 60m (Capillary column with a 0.25 mm inner diameter and 60 m long fused silica tube coated with polyethylene glycol to a film thickness of 0.25 ⁇ m) Column temperature: 210°C He flow rate: 1.3 mL/min ⁇ Detection conditions> H 2 flow rate: 30 mL/min, Air flow rate: 400 mL/min DET temperature: 260°C Alternatively, ⁇ Column condition> Column: GL Sciences TC-2560 0.25mm ⁇ 100m ⁇ 0.20 ⁇ m (Chemical column of non-chemical bond type in which cyanopropyl is coated in a thickness of 0.20 ⁇ m on a fused silica tube with an inner diameter of 0.25 mm and a length of 100 m) Column temperature: 170°C (150min hold) ⁇ Temperature rise (10°C/min) ⁇ 240°C(15min hold) He flow rate: 1.0 to 1.5 mL
  • Reference Example 2 Preparation of stock oil To 2 kg of sardine oil, 2000 mL of anhydrous ethanol solution in which 100 g of sodium hydroxide was dissolved was added and mixed and stirred at 70 to 80° C. for 1 hour. Let stand for hours. The separated aqueous layer was removed, and the oil layer was washed several times with water to neutralize the washing liquid, to obtain ethyl esterified sardine oil.
  • the fatty acid composition of the sardine oil was examined according to Reference Example 1. As shown in Table 1, the sardine oil contained 20.4 area% EPA in all fatty acids, and also (4Z,7Z,10Z,13Z,16Z)-equosa-4,7,10,13,16-pentaene.
  • Acid 0.047 area% (compared to EPA 0.0023), (7Z,10Z,13Z,16Z,19Z)-equosa-7,10,13,16,19-pentaenoic acid 0.018 area% (compared to EPA ratio 0.0009) and 0.04 area% of (4Z,7Z,10Z,13Z,16Z,19Z)-equosa-4,7,10,13,16,19-hexaenoic acid (compared to EPA ratio of 0.009). 0012) contained.
  • the crude product contained 44.0 area% of EPA in all fatty acids, and (4Z,7Z,10Z,13Z,16Z)-ikosa-4,7,10,13,16- Pentaenoic acid 0.097 area% (EPA ratio 0.0022), (7Z,10Z,13Z,16Z,19Z)-equosa-7,10,13,16,19-pentaenoic acid 0.040 area% ( EPA ratio 0.0009), and (4Z,7Z,10Z,13Z,16Z,19Z)-equosa-4,7,10,13,16,19-hexaenoic acid 0.053 area% (to EPA ratio 0 .0012) contained.
  • This refined product was used as a feedstock in the following examples.
  • Example 1 Production of EPA-Containing Composition Step (1): To 300 g of the raw material oil obtained in Reference Example 2, 160 mL of n-hexane was added, mixed well and dissolved. 500 mL of 50 mass% silver nitrate aqueous solution was added thereto, and the mixture was stirred at 5 to 30°C. After allowing the mixed solution to stand, the separated n-hexane layer was removed and the aqueous layer was recovered. Step (2): 2000 mL of n-hexane was newly added to the recovered aqueous layer and mixed well at 52 to 68° C., and the fatty acid ethyl ester in the aqueous layer was extracted into n-hexane.
  • the separated aqueous layer was removed and the n-hexane layer was concentrated.
  • the fatty acid composition of the n-hexane layer obtained in the step (2) was examined.
  • the fatty acid ethyl ester contained in the n-hexane layer contained 74.5 area% of EPA in all the fatty acids, and (4Z,7Z,10Z,13Z,16Z)-ikosa-4.
  • Step (3) The n-hexane layer containing the fatty acid ethyl ester obtained in Step (2) was subjected to a column top precision distillation machine under conditions of a column top vacuum of 0.7 Pa or less and a distillation temperature of 180 to 183° C. Vacuum distillation was performed while maintaining the above to obtain an EPA ethyl ester-containing composition.
  • the fatty acid composition of the composition obtained according to Reference Example 1 was investigated. As shown in Table 1, the composition contained 98.4 area% EPA in all fatty acids, and also contained (4Z,7Z,10Z,13Z,16Z)-equosa-4,7,10,13,16-pentaene.
  • Acid 0.098 area% (compared to EPA 0.0010), (7Z,10Z,13Z,16Z,19Z)-equosa-7,10,13,16,19-pentaenoic acid 0.069 area% (compared to EPA ratio 0.0007), 0.04 area% of (4Z,7Z,10Z,13Z,16Z,19Z)-equosa-4,7,10,13,16,19-hexaenoic acid (ratio to EPA 0.0009). ) Contained.
  • Example 2 In the step (3), an EPA ethyl ester-containing composition was obtained by the same procedure as in Example 1 except that the column top vacuum degree was 0.7 Pa and the distillation temperature was 180° C. to 188° C.
  • the fatty acid composition of the composition obtained according to Reference Example 1 was investigated. As shown in Table 1, the composition contained 98.2 area% EPA in all fatty acids, and also contained (4Z,7Z,10Z,13Z,16Z)-equosa-4,7,10,13,16-pentaene.
  • Acid 0.079 area% (compared to EPA 0.0008), (7Z,10Z,13Z,16Z,19Z)-equosa-7,10,13,16,19-pentaenoic acid 0.069 area% (compared to EPA ratio 0.0007), 0.04 area% of (4Z,7Z,10Z,13Z,16Z,19Z)-equosa-4,7,10,13,16,19-hexaenoic acid (ratio to EPA 0.0009). ) Contained.
  • Example 3 In the step (3), an EPA ethyl ester-containing composition was obtained by the same procedure as in Example 1 except that the overhead vacuum was 0.7 Pa and the distillation temperature was 185° C. to 188° C.
  • the fatty acid composition of the composition obtained according to Reference Example 1 was investigated. As shown in Table 1, the composition contained 99.0 area% EPA in all fatty acids, and also contained (4Z,7Z,10Z,13Z,16Z)-equosa-4,7,10,13,16-pentaene.
  • Acid 0.050 area% (compared to EPA 0.0005), (7Z,10Z,13Z,16Z,19Z)-equosa-7,10,13,16,19-pentaenoic acid 0.069 area% (compared to EPA ratio 0.0007), (4Z,7Z,10Z,13Z,16Z,19Z)-equosa-4,7,10,13,16,19-hexaenoic acid 0.079 area% (compared to EPA 0.0008) ) Contained.
  • Comparative Example 1 In the step (3), an EPA ethyl ester-containing composition was obtained by the same procedure as in Example 1 except that the column top vacuum degree was 0.9 to 1.0 Pa and the distillation temperature was 172°C to 188°C.
  • the fatty acid composition of the composition obtained according to Reference Example 1 was investigated. As shown in Table 1, the composition had a high EPA content of 98.3% in total fatty acids, but it was an impurity (4Z,7Z,10Z,13Z,16Z)-ikosa-4,7.
  • step (2) of Example 1 the ratio of impurities to EPA was almost the same as that of the feedstock, and impurities were concentrated together with EPA.
  • step (3) of Example 1 the EPA was concentrated while the impurities were reduced, which indicates that the impurities were separated from the EPA in the step (3).
  • the ratio of impurities to EPA in Comparative Example 1 was almost the same as that of the feed oil and the step (2), it was found that the vacuum distillation conditions in the step (3) are important for the separation of impurities. Was shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

高濃度かつ高純度なエイコサペンタエン酸含有組成物の提供。エイコサペンタエン酸アルキルエステル含有組成物の製造方法であって、(1)エイコサペンタエン酸アルキルエステルを含有する原料油を、銀塩を含む水溶液と接触させた後、水層を回収すること;(2)該水層に有機溶媒を添加した後、有機溶媒層を回収すること;及び、(3)該有機溶媒層を、温度180~188℃、塔頂真空度0.7Pa以下で真空蒸留して、該有機溶媒層からエイコサペンタエン酸アルキルエステルを回収すること、を含む方法。

Description

エイコサペンタエン酸アルキルエステル含有組成物及びその製造方法
 本発明は、エイコサペンタエン酸アルキルエステル含有組成物及びその製造方法に関する。
 エイコサペンタエン酸(EPA)やドコサヘキサエン酸(DHA)などの高度不飽和脂肪酸(polyunsaturated fatty acid、PUFA)は、近年その薬理効果が明らかになり、医薬品や健康食品の原料として利用されている。PUFAは二重結合を複数有するために、化学合成によって得ることは容易でない。工業利用されるPUFAのほとんどは、PUFAを豊富に含む生物由来の油脂原料、例えば魚油などから抽出又は精製することによって製造されている。
 しかしながら、生物由来の油脂原料は、炭素数、二重結合の数や位置、さらには立体異性体の構成比が異なる多種の脂肪酸の混合物であり、PUFAの含有量は必ずしも高くない。さらに、生物由来油脂原料から精製されたPUFAには、該油脂原料に由来する、又は精製過程での加熱処理などによって生じた種々の微量不純物が含まれている。そのような不純物のなかには、例えば、アラキドン酸、飽和脂肪酸、PUFAトランス異性体等の心血管イベントに対して好ましくない脂肪酸や、環境ホルモン等の環境汚染物質などの生体に悪影響を及ぼす物質が含まれ得る。したがって、医薬品や健康食品の原料として、PUFAを高濃度に含むだけでなく、生体に悪影響を及ぼす不純物の含有量が可能な限り低い高純度なPUFA含有組成物が求められている。
 これまでに、高純度なPUFA含有組成物の製造方法が開示されている。特許文献1には、PUFAを構成脂肪酸として含有する原料油から、薄膜蒸留によって、ポリ塩化ジベンゾパラジオキシン(PCDD)、ポリ塩化ジベンゾフラン(PCDF)等の環境汚染物質を除去することを含む、環境汚染物質の含有量が低減されたPUFAエチルエステルを製造する方法が記載されている。特許文献2には、EPAアルキルエステル含有組成物に対して、0.2Torr、190℃以下での精密蒸留の後、クロマトグラフィーを用いた濃縮処理を行うことを含む、アラキドン酸エステル及びEPAアルキルエステルのモノトランス体の含有量が一定量以下である高濃度EPAアルキルエステル含有組成物を製造する方法が記載されている。特許文献3には、油組成物を水性流体処理した後、短工程蒸留等のストリッピング処理にかけることにより、油組成物中の好ましくない成分、例えばタンパク質性化合物等の親水性成分や、環境汚染物質、コレステロール等の親油性成分を除去する方法が記載されている。特許文献4には、魚油をアルカリ、次いで活性白土に接触させた後、減圧水蒸気蒸留等により150~230℃の魚油に水蒸気を接触させて脱臭処理することを含む、精製魚油の製造方法が記載されている。特許文献5には、高度不飽和脂肪酸のアルキルエステル体を、銀塩を含む水性溶液と接触させた後に、170~190℃、塔頂真空度1Pa以下で真空蒸留することで、トランス異性体の含有量が極めて低いPUFAアルキルエステル含有組成物を製造したことが記載されている。
国際公開公報第2013/172346号 国際公開公報第2016/043251号 特表2016-502573号公報 特開2015-105354号公報 国際公開公報第2014/054435号
 本発明者の研究により、従来の方法(例えば特許文献5に記載の方法)で製造されたEPA含有組成物が未知の不純物質を含有すること、及びこれらの不純物質が、これまで知られていない新規なEPAの類縁物質であることが見出された。該不純物質は未知の物質であったため、該不純物質に着目してEPAを精製することは従来行われていなかった。また該不純物質は、EPAと化学構造が類似しているため、EPA含有組成物からの除去が極めて困難である。これらの理由により、該不純物質は、それらの存在を知られることなく従来のEPA含有組成物中に含まれていたのであろうと推定された。これらの不純物質を除去することで、EPA含有組成物の純度をさらに向上させることができる。
 本発明は、上述した従来未知のEPAの類縁物質が除去された、高濃度かつ高純度なEPA含有組成物、及びその製造方法を提供する。
 したがって、本発明は、エイコサペンタエン酸アルキルエステル含有組成物の製造方法であって、
(1)エイコサペンタエン酸アルキルエステルを含有する原料油を、銀塩を含む水溶液と接触させた後、水層を回収すること;
(2)該水層に有機溶媒を添加した後、有機溶媒層を回収すること;及び
(3)該有機溶媒層を、温度180~188℃、塔頂真空度0.7Pa以下で真空蒸留して、該有機溶媒層からエイコサペンタエン酸アルキルエステルを回収すること、
を含む方法、を提供する。
 また本発明は、エイコサペンタエン酸のアルキルエステルの含有量が95面積%以上であり、かつ(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステル、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステル、及び(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルの含有量が、それぞれ0.1面積%以下である、エイコサペンタエン酸アルキルエステル含有組成物を提供する。
 また本発明は、エイコサペンタエン酸アルキルエステル含有組成物の純度を測定する方法であって、該組成物における、(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステル、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステル、及び(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルからなる群より選択される少なくとも1種の物質の含有量を測定することを含む方法、を提供する。
 また本発明は、(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステル、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステル、又は(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルを提供する。
 生体に悪影響を及ぼす可能性のある脂肪酸の含有量ができるだけ少ない、高濃度かつ高純度なEPA含有組成物は、医薬品や健康食品の原料として有用である。本発明によれば、従来不純物として除去されていたアラキドン酸等に加えて、これまで不純物として認識されていなかったEPAの類縁物質の濃度が低減された、より高濃度かつ高純度なEPA含有組成物が提供される。
 本発明は、従来のエイコサペンタエン酸(EPA)アルキルエステル含有組成物に含まれていた未知の不純物質に関する。
 生体に悪影響を及ぼす可能性のある脂肪酸やトランス異性体等の不純物の含有量ができるだけ少ない、高濃度かつ高純度なエイコサペンタエン酸(EPA)含有組成物は、医薬品や健康食品の原料として有用である。本発明者は、より高純度なEPA含有組成物を探求すべく、従来のEPA含有組成物に含まれている不純物の検出及び同定を行った。その結果、本発明者は、従来の方法(例えば、特許文献5に記載の方法)で得られるEPAアルキルエステル含有組成物に、以下に記載する従来未知の不純物質が含まれていることを見出した:
 (4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステル、
 (7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステル、
 (4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステル。
 これら3つの物質は、いずれもEPAの類縁物質であり、かつ従来知られていない新規物質であった。以下の本明細書において、これら3つの物質をまとめて、本発明の不純物質とも称する。本発明の不純物質は、EPAアルキルエステル含有組成物から分離されたものであり得る。本発明の不純物質は、EPAと構造が類似しているために従来のEPAの精製方法ではEPAと分離することが極めて困難であり、それが、これまでに本発明の不純物質が分離又は同定されていなかった理由であろうと推定された。
 さらに本発明者は、より高純度のEPA含有組成物を製造するために、EPAアルキルエステル含有組成物から本発明の不純物質を除去する方法について研究を重ね、改良されたEPAアルキルエステル含有組成物の製造方法を開発した。
 したがって、本発明の一態様は、本発明の不純物質の含有量が低減されたEPAアルキルエステル含有組成物の製造方法に関する。また本発明の別の一態様は、当該製造方法によって製造された、本発明の不純物質の含有量が低減されたEPAアルキルエステル含有組成物に関する。
 本発明の製造方法において、EPAアルキルエステルを含有する組成物の原料油は、EPAを含有する生物由来の油脂から調製され得る。当該生物由来油脂の例としては、魚類等の海産動物やプランクトン由来の油脂、藻類等の微生物由来の油脂などが挙げられ、中でもイワシ、サバ、マグロ等の魚類由来の油脂、及び藻類由来の油脂が好ましい例として挙げられる。これらの生物由来油脂は、主に、1分子のグリセリンに3分子の脂肪酸が結合したトリグリセリドの形態で脂肪酸を含有する。また少量ではあるが、ジグリセリドやモノグリセリド、遊離脂肪酸を含有し得る。
 当該生物由来油脂は、含有する全脂肪酸中に、EPAを20面積%以上含有する油脂であることが好ましい。EPAは、該生物由来油脂中に遊離脂肪酸の形態で存在していてもよく、又はモノ、ジもしくはトリグリセリドの脂肪酸鎖の形態で存在していてもよい。油脂における全脂肪酸中の各構成脂肪酸の比率は、後述する条件でのガスクロマトグラフィーにより測定することができる。
 当該生物由来油脂は、含まれるEPAをアルキルエステル化し、必要に応じてEPAを濃縮することで、本発明の製造方法における原料油として調製される。EPAアルキルエステルは、例えば、EPAを含有する油脂と所望のアルキル基を有する酸とを公知の方法によりエステル化反応させることにより製造することができる。あるいは、該生物由来油脂に含まれるグリセリド中のEPAを、触媒又は酵素の存在下で低級アルコールと反応させてアルキルエステル化することにより、EPAアルキルエステルを得ることができる。アルキルエステル化の程度は高いほど好適であり、該原料油中に含まれる目的のPUFA(遊離体を含む)の全量のうち、好ましくは90%以上、より好ましくは95%以上がアルキルエステル化されているとよい。該EPAのアルキルエステルを構成するアルキル基としては、炭素数1~6の直鎖状又は分岐鎖状のアルキル基が挙げられ、好ましくはメチル基又はエチル基であり、より好ましくはエチル基である。
 当該原料油として用いられるEPAアルキルエステルを含有する油脂としては、市販されている油脂を用いてもよい。EPAのアルキルエステルを高含量で得るという観点からは、含有するEPAの量が規格化された市販の魚油由来の油脂を用いることが好ましい。本発明の製造方法で用いられる該原料油は、含有する全脂肪酸中に、EPAを40面積%以上含有する油脂であることが好ましい。本発明の製造方法においては、全脂肪酸中のEPA含有量が40面積%以上である原料油を用いることにより、最終的に、EPAを高濃度に含む組成物を効率よく得ることができる。
 本発明のEPAアルキルエステル含有組成物の製造方法の各工程において、上述した原料油は、液体の形態で適用されることが好ましい。当該原料油は、各工程での反応温度において液体の形態である場合は、そのまま本発明の各工程に適用され得る。各工程での反応温度において固体の形態である場合は、当該原料油は、適宜有機溶媒や他の油に溶解又は希釈して適用され得る。該有機溶媒としては、下記工程(1)を遂行するために、水と分離可能な有機溶媒が使用され、例えば、酢酸エチル、クロロホルム、四塩化炭素、ジエチルエーテル、ヘキサン等が挙げられる。
 本発明のEPAアルキルエステル含有組成物の製造方法は、以下を含む:
(1)EPAアルキルエステルを含有する原料油を、銀塩を含む水溶液と接触させた後、水層を回収すること;
(2)該水層に有機溶媒を添加した後、有機溶媒層を回収すること;及び
(3)該有機溶媒層を、温度180~188℃、塔頂真空度0.7Pa以下で真空蒸留して、該有機溶媒層からEPAアルキルエステルを回収すること。
 本発明の製造方法において、当該(1)及び(2)の工程は、高度不飽和脂肪酸(PUFA)の炭素-炭素二重結合部に銀塩が錯体を形成することにより、EPAを含むPUFAアルキルエステルの抽出溶媒への溶解性が変わることを利用して、原料油からEPAアルキルエステルを分離精製する工程である。より詳細には、該工程(1)は、EPAアルキルエステルを含む原料油を、銀塩を含む水性溶液と接触させた後、水層を回収する工程である。該工程は、例えば、特許第2786748号公報、特許第2895258号公報、特許第2935555号公報、特許第3001954号公報等に記載されている方法に従って行うことができる。
 より詳細には、上述したEPAアルキルエステルを含む原料油に、銀塩を含む水性溶液を添加し、5分~4時間、好ましくは10分~2時間程度攪拌する。このときの反応温度は、当該工程(1)の生成物が完全に液体となる温度を上限とし、例えば約80℃以下であり、一方、下限として5℃以上とすることが好ましい。より好ましくは、反応温度は室温(20~30℃)付近である。当該反応により、銀-EPAの錯体が生成される。当該錯体は、水性溶液の層に溶解するので、溶液から水層を回収することによってEPAを選択的に回収することができる。
 当該銀塩としては、PUFAの不飽和結合と錯体を形成し得るものであれば特に制限されず、硝酸銀、過塩素酸銀、四フッ化ホウ素酸銀、酢酸銀等を用いることができる。このうち、硝酸銀が好ましい。水性溶液の溶媒としては、水、又は水とグリセリンやエチレングリコール等の水酸基を有する化合物との混合媒体が挙げられるが、好ましくは水が用いられる。水性溶液中の銀塩濃度は、0.1mol/L以上であればよいが、好ましくは1~20mol/L程度とする。PUFAと銀塩とのモル比は、1:100~100:1、好ましくは1:5~1:1程度である。
 本発明の製造方法の工程(2)は、上記工程(1)で回収した水層に有機溶媒を添加して、該水層中のEPAアルキルエステルを有機溶媒層に抽出させた後、該EPAアルキルエステルを含む有機溶媒層を回収する工程である。該工程は、例えば、特許第2786748公報、特許第2895258公報、特許第2935555公報、特許第3001954公報等に記載されている方法に従って行うことができる。
 当該水層に添加する有機溶媒としては、ヘキサン、エーテル、酢酸エチル、酢酸ブチル、クロロホルム、シクロヘキサン、ベンゼン、トルエン、キシレン等の、PUFAへの溶解性が高く、かつ水と分離可能な溶媒が挙げられる。好ましくは、有機溶媒を添加した溶液(反応液)を、上記工程(1)での反応温度、すなわち上記銀-EPAの錯体の生成温度よりも高い温度になるよう加温する。より好ましくは工程(1)での反応温度、すなわち該錯体の生成温度よりも20℃以上高い温度にする。例えば、上記工程(1)にて錯体を室温で生成させた場合、工程(2)での反応液の温度は、好ましくは40℃以上、より好ましくは50~80℃程度にするとよい。EPAアルキルエステルの有機溶媒層への抽出反応の時間は、10分~6時間、好ましくは30分~2時間とするとよく、また反応中には溶液を攪拌するとよい。次いで、水層を除去し、EPAアルキルエステルを含有する有機溶媒層を回収する。または回収した有機溶媒層をさらにシリカゲル、活性炭、二酸化ケイ素などの吸着剤に通液することにより、残留する銀イオンをさらに除去してもよい。
 一実施形態において、上記工程(1)及び(2)は、上述したように原料油と水性溶液、又は水性溶液と有機溶媒とをバッチで混合する代わりに、WO2017/191821に記載される方法に従って行われてもよい。すなわち、銀塩を含む水性溶液の液滴を、第一反応槽中のEPAアルキルエステルを含有する原料油中に通過させることで、該水性溶液を原料油と接触させて銀-EPAの錯体を含む水性溶液を生成させ、これを回収する。続いで、回収した銀-EPAの錯体を含む水性溶液の液滴を、第二反応槽中の有機溶媒中に通過させることで、EPAアルキルエステルを該有機溶媒中に抽出させ、次いで該EPAアルキルエステルを含む有機溶媒層を回収する。好ましくは、該水性溶液の液滴の原料油中の通過と、銀-EPAの錯体を含む水性溶液の回収は、及び/又は該銀-EPAの錯体を含む水性溶液の液滴の有機溶媒中の通過と、EPAアルキルエステルを含む有機溶媒層の回収は、該第一及び/又は第二反応槽に随時、水性溶液及び必要に応じて原料油又は有機溶媒を添加しながら、並行して、かつ好ましくは連続的に実施される。該第一及び第二反応槽中での水性溶液の通過時間(原料油又は有機溶媒との接触時間)は、水性溶液と原料油又は有機溶媒との比重差、及び原料油又は有機溶媒の容積(反応槽のサイズ)に従って制御され得るが、反応槽における水性溶液、及び必要に応じて原料油又は有機溶媒の流速や流量をポンプ等で制御することによっても制御され得る。該第一及び第二反応槽中の液体の温度は、それぞれ上述した工程(1)及び(2)の反応液の温度と同様でよい。さらに本実施形態では、有機溶媒と接触させた後の銀塩を含む水性溶液を繰り返し再利用し、再び原料油との接触に用いることができる。したがって、本実施形態では、銀塩を含む水性溶液の使用量を、上述した原料油に銀塩を含む水性溶液をまとめて添加し攪拌する方法と比べて1/2~1/20程度に減量することが可能である。
 本発明の製造方法の工程(3)は、工程(2)で得られた有機溶媒層を真空蒸留し、目的のEPAアルキルエステルを回収する工程である。より詳細には、工程(2)で得られたEPAアルキルエステルを含有する有機溶媒層から、沸点の差により、目的とするEPAアルキルエステルを選択的に回収する。
 工程(3)の真空蒸留のためには、充填式、スプリング式、棚段式等の公知の方式による真空蒸留装置を用いることができ、また連続蒸留方式を採用してもよい。一方、本発明の方法における真空蒸留の条件は、従来の真空蒸留法(例えば特許文献5に記載の方法)と比べて、より低い圧力かつより制限された範囲の温度に設定される。すなわち、本発明の方法において、工程(3)の真空蒸留の条件は、蒸留機の塔頂真空度が0.7Pa以下であり、蒸留温度が180~188℃、好ましくは185~188℃である。塔頂真空度が0.7Paを超えると、本発明の不純物質との分離が悪くなり、高純度EPAアルキルエステルの回収が困難になる。また、蒸留温度が180℃未満であるとEPAの濃縮や本発明の不純物質の除去のために必要な蒸留時間が長くなり、他方188℃を超えると、エネルギーコストが上がる割に蒸留効率は上がらず、コスト高になる。本工程における蒸留温度とは、EPAアルキルエステルを含有する有機溶媒層の温度として表される。
 上記真空蒸留工程で得られたEPAアルキルエステルを含む留分は、還流されて、再度上記の条件での真空蒸留に供されてもよい。
 本発明のEPAアルキルエステル含有組成物の製造方法においては、上記各工程を(1)→(2)→(3)の順序で行う。この順序を変更すると、目的のEPAを高含有し、かつ本発明の不純物質の比率が充分に低い組成物を得ることはできない。特に、工程(3)を工程(1)又は(2)よりも先に行うと、目的のEPAを高含有する組成物を得ることが難しくなるか、又は、EPAの含量は高いが、本発明の不純物質の含有量も高い組成物となる。
 本発明の製造方法により製造されたEPAアルキルエステル含有組成物は、含有する全脂肪酸中に、EPAアルキルエステルを、好ましくは95面積%以上、より好ましくは96面積%以上、さらに好ましくは98面積%以上、さらに好ましくは99面積%以上含有する。
 本明細書において、油脂組成物中の所与の脂肪酸の含有量は、下記条件でのガスクロマトグラフィーにより測定された、組成物中の全脂肪酸の合計ピーク面積に対する該脂肪酸のピーク面積の割合(面積%)で表される。
 <試料>
  測定試料9μLをn-ヘキサン1.5mLに希釈
 <カラム条件>
  カラム  :内径0.25mm、長さ60mの溶融シリカ管に、ポリエチレン
        グリコールを膜厚0.25μmに被膜したキャピラリーカラム
        (例えば、J&W社製DB-WAX)
  カラム温度:210℃
  He流量 :1.3mL/min
 <検出条件>
  H2流量:30mL/min、 Air流量:400mL/min
  DET温度:260℃
 あるいは、カラム条件と検出条件は下記のとおりでもよい。
 <カラム条件>
  カラム  :内径0.25mm、長さ100mの溶融シリカ管に、シアノプロピル
        を膜厚0.20μmに被膜した非化学結合タイプのキャピラリー
        カラム(例えば、ジーエルサイエンス社製TC-2560
        0.25mm×100m×0.20μm)
  カラム温度:170℃(150min hold)→昇温(10℃/min)
        →240℃(15min hold)
  He流量 :1.0~1.5mL/min
 <検出条件>
  H2流量:30mL/min、 Air流量:400mL/min

  DET温度:270℃
 当該EPAアルキルエステル含有組成物における本発明の不純物質の含有量は、(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステル、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステル、及び(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルのいずれについても、0.1面積%以下である。好ましくは、該EPAアルキルエステル含有組成物中、(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステルの含有量は0.1面積%以下であり、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステルの含有量は0.07面積%以下であり、(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルの含有量は0.09面積%以下である。より好ましくは、該EPAアルキルエステル含有組成物中、(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステルの含有量は0.05面積%以下であり、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステルの含有量は0.07面積%以下であり、(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルの含有量は0.08面積%以下である。
 好ましい実施形態において、該EPAアルキルエステル含有組成物は、EPAアルキルエステルの含有量が95面積%以上、好ましくは96面積%以上、より好ましくは98面積%以上、さらに好ましくは99面積%以上であり、かつ(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステル、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステル、及び(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルの含有量が、それぞれ0.1面積%以下である。
 より好ましい実施形態において、該EPAアルキルエステル含有組成物は、EPAアルキルエステルの含有量が95面積%以上、好ましくは96面積%以上、より好ましくは98面積%以上、さらに好ましくは99面積%以上であり、(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステルの含有量が0.1面積%以下であり、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステルの含有量が0.07面積%以下であり、かつ(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルの含有量が0.09面積%以下である。
 さらに好ましい実施形態において、該EPAアルキルエステル含有組成物は、EPAアルキルエステルの含有量が98面積%以上、好ましくは99面積%以上であり、(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステルの含有量が0.05面積%以下であり、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステルの含有量が0.07面積%以下であり、かつ(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルの含有量が0.08面積%以下である。
 さらに本発明者は、本発明の不純物質がEPAとの分離が極めて困難なEPAの類縁物質であることから、それらの含有量が、EPAアルキルエステル含有組成物の純度の指標となり得ることを見出した。したがって、本発明のさらなる態様は、本発明の不純物質の含有量を測定することを含む、EPAアルキルエステル含有組成物の純度を測定する方法に関する。
 より詳細には、本発明によるEPAアルキルエステル含有組成物の純度を測定する方法においては、(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステル、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステル、及び(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルからなる群より選択される少なくとも1種の物質の含有量を測定する。当該物質の含有量は、例えば上述した条件でのガスクロマトグラフィーにより測定した、全脂肪酸の合計ピーク面積に対する該物質のピーク面積の割合から算出することができる。測定した物質の該EPAアルキルエステル含有組成物における含有量は、目的のEPAに対する測定した物質の混入レベルを示し、これは、本発明の不純物質が極めてEPAとの分離が困難である物質であることを考慮すると、該組成物における目的のEPAの純度を反映する。
 好ましい実施形態においては、EPAアルキルエステル含有組成物中における(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステル、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステル、及び(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルのいずれかの含有量が、0.5面積%以下、好ましくは0.3面積%以下、より好ましくは0.1面積%以下であれば、該EPAアルキルエステル含有組成物は高純度であると評価される。より詳細には、該EPAアルキルエステル含有組成物は、医薬又は食品の原料として充分に高純度であると評価される。
 より好ましい実施形態においては、EPAアルキルエステル含有組成物中における(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステル、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステル、及び(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルの含有量が、いずれも0.5面積%以下、好ましくは0.3面積%以下、より好ましくは0.1面積%以下であれば、該EPAアルキルエステル含有組成物は高純度であると評価される。より詳細には、該EPAアルキルエステル含有組成物は、医薬又は食品の原料として充分に高純度であると評価される。
 さらに好ましい実施形態においては、EPAアルキルエステル含有組成物中における(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステルの含有量が0.1面積%以下であり、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステルの含有量が0.07面積%以下であり、かつ(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルの含有量が0.09面積%以下であれば、該EPAアルキルエステル含有組成物は高純度であると評価される。より詳細には、該EPAアルキルエステル含有組成物は、医薬又は食品の原料として充分に高純度であると評価される。
 さらに好ましい実施形態においては、EPAアルキルエステル含有組成物中における(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステルの含有量が0.05面積%以下であり、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステルの含有量が0.07面積%以下であり、かつ(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルの含有量が0.08面積%以下であれば、該EPAアルキルエステル含有組成物は高純度であると評価される。より詳細には、該EPAアルキルエステル含有組成物は、医薬又は食品の原料として充分に高純度であると評価される。
 本発明によるEPAアルキルエステル含有組成物の純度測定方法においては、さらに、該EPAアルキルエステル含有組成物におけるEPAアルキルエステルの含有量を測定してもよい。
 したがって、さらに好ましい実施形態においては、EPAアルキルエステル含有組成物中におけるEPAアルキルエステルの含有量が95面積%以上、好ましくは96面積%以上、より好ましくは98面積%以上、さらに好ましくは99面積%以上であり、かつ(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステル、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステル、及び(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルの含有量がいずれも0.5面積%以下、好ましくは0.3面積%以下、より好ましくは0.1面積%以下であれば、該EPAアルキルエステル含有組成物は高純度であると評価される。より詳細には、該EPAアルキルエステル含有組成物は、医薬又は食品の原料として充分に高純度であると評価される。
 さらに好ましい実施形態においては、EPAアルキルエステル含有組成物中におけるEPAアルキルエステルの含有量が95面積%以上、好ましくは96面積%以上、より好ましくは98面積%以上、さらに好ましくは99面積%以上であり、(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステルの含有量が0.1面積%以下であり、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステルの含有量が0.07面積%以下であり、かつ(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルの含有量が0.09面積%以下であれば、該EPAアルキルエステル含有組成物は高純度であると評価される。より詳細には、該EPAアルキルエステル含有組成物は、医薬又は食品の原料として充分に高純度であると評価される。
 さらに好ましい実施形態においては、EPAアルキルエステル含有組成物中におけるEPAアルキルエステルの含有量が98面積%以上、さらに好ましくは99面積%以上であり、(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステルの含有量が0.05面積%以下であり、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステルの含有量が0.07面積%以下であり、かつ(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルの含有量が0.08面積%以下であれば、該EPAアルキルエステル含有組成物は高純度であると評価される。より詳細には、該EPAアルキルエステル含有組成物は、医薬又は食品の原料として充分に高純度であると評価される。
 以下、実施例を挙げて、本発明をさらに詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。
参考例1 脂肪酸組成分析
 測定試料9μLをn-ヘキサン1.5mLに希釈し、ガスクロマトグラフィー分析装置(Type 6890 GC;Agilent Technologies製)を用いて、以下の条件にて脂肪酸を分析した。脂肪酸の含有量は、クロマトグラムにおける全脂肪酸の合計ピーク面積に対する各脂肪酸のピーク面積の割合(面積%)として算出した。
  <カラム条件>
   カラム:J&W社製DB-WAX 0.25mm×60m
      (内径0.25mm、長さ60mの溶融シリカ管に、ポリエチレン
       グリコールを膜厚0.25μmに被膜したキャピラリーカラム)
   カラム温度:210℃
   He流量:1.3mL/min
  <検出条件>
   H2流量:30mL/min、 Air流量:400mL/min
   DET温度:260℃
 あるいは、
  <カラム条件>
   カラム:ジーエルサイエンス社製TC-2560 0.25mm×100m×0.20μm
       (内径0.25mm、長さ100mの溶融シリカ管にシアノプロピル
       を膜厚0.20μmに被膜した、非化学結合タイプのキャピラリ
       ーカラム)
   カラム温度:170℃(150min hold)→昇温(10℃/min)
         →240℃(15min hold)
   He流量:1.0~1.5mL/min
  <検出条件>
   H2流量:30mL/min、Air流量:400mL/min
   DET温度:270℃
参考例2 原料油の調製
 イワシ油2kgに、水酸化ナトリウム100gを溶解させた無水エタノール溶液2000mLを加えて70~80℃にて1時間混合攪拌し、さらに水1000mLを加えてよく混合し、1時間静置した。分離した水層を除去し、油層を数回水洗して洗液を中性にし、エチルエステル化イワシ油を得た。参考例1に従って該イワシ油の脂肪酸組成を調べた。該イワシ油は、表1に示すとおり、全脂肪酸中にEPA20.4面積%を含有し、また(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸を0.047面積%(対EPA比0.0023)、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸を0.018面積%(対EPA比0.0009)、及び(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸を0.024面積%(対EPA比0.0012)含有していた。
 調製したエチルエステル化イワシ油1gを塔頂真空度13.3Pa、蒸留温度120℃~170℃で真空蒸留を行い、粗精製物を得た。参考例1に従って該粗精製物の脂肪酸組成を調べた。該粗精製物は、表1に示すとおり、全脂肪酸中にEPA44.0面積%を含有し、また(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸を0.097面積%(対EPA比0.0022)、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸を0.040面積%(対EPA比0.0009)、及び(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸を0.053面積%(対EPA比0.0012)含有していた。この精製物を、以下の実施例で原料油として用いた。
実施例1 EPA含有組成物の製造
 工程(1):参考例2で得た原料油300gにn-ヘキサン160mLを加え、よく混合して溶解させた。ここに50質量%硝酸銀水溶液500mLを加え、5~30℃の条件下で攪拌した。混合液を静置後、分離したn-ヘキサン層を除去し、水層を回収した。
 工程(2):回収した水層に新たにn-ヘキサン2000mLを加えて52~68℃でよく混合し、水層中の脂肪酸エチルエステルをn-ヘキサン中に抽出させた。混合液を静置後、分離した水層を除去し、n-ヘキサン層を濃縮した。
 参考例1に従って工程(2)で得たn-ヘキサン層の脂肪酸組成を調べた。該n-ヘキサン層に含まれていた脂肪酸エチルエステルは、表1に示すとおり、全脂肪酸中にEPA74.5面積%を含有し、また(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸を0.156面積%(対EPA比0.0021)、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸を0.067面積%(対EPA比0.0009)、及び(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸を0.089面積%(対EPA比0.0012)含有していた。
 工程(3):工程(2)で得た脂肪酸エチルエステルを含むn-ヘキサン層を、充填塔式精密蒸留機を用いて、塔頂真空度0.7Pa以下、蒸留温度180~183℃の条件を維持しながら真空蒸留を行い、EPAエチルエステル含有組成物を得た。参考例1に従って得られた組成物の脂肪酸組成を調べた。該組成物は、表1に示すとおり、全脂肪酸中にEPA98.4面積%を含有し、また(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸を0.098面積%(対EPA比0.0010)、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸を0.069面積%(対EPA比0.0007)、(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸を0.089面積%(対EPA比0.0009)含有していた。
実施例2
 工程(3)において、塔頂真空度0.7Paとし、蒸留温度を180℃~188℃とした以外は、実施例1と同様の手順でEPAエチルエステル含有組成物を得た。参考例1に従って得られた組成物の脂肪酸組成を調べた。該組成物は、表1に示すとおり、全脂肪酸中にEPA98.2面積%を含有し、また(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸を0.079面積%(対EPA比0.0008)、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸を0.069面積%(対EPA比0.0007)、(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸を0.088面積%(対EPA比0.0009)含有していた。
実施例3
 工程(3)において、塔頂真空度0.7Paとし、蒸留温度を185℃~188℃とした以外は、実施例1と同様の手順でEPAエチルエステル含有組成物を得た。参考例1に従って得られた組成物の脂肪酸組成を調べた。該組成物は、表1に示すとおり、全脂肪酸中にEPA99.0面積%を含有し、また(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸を0.050面積%(対EPA比0.0005)、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸を0.069面積%(対EPA比0.0007)、(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸を0.079面積%(対EPA比0.0008)含有していた。
比較例1
 工程(3)において、塔頂真空度0.9~1.0Paとし、蒸留温度を172℃~188℃とした以外は、実施例1と同様の手順でEPAエチルエステル含有組成物を得た。参考例1に従って得られた組成物の脂肪酸組成を調べた。該組成物は、表1に示すとおり、全脂肪酸中のEPAの含有量は98.3%と高かったが、不純物質である(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸、及び(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸の含有量は、それぞれ0.157面積%(対EPA比0.0016)、0.088面積%(対EPA比0.0009)、0.108面積%(対EPA比0.0011)であり、(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸及び(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸が高値であった。
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、実施例1の工程(2)では、不純物質の対EPA比率は原料油とほぼ同じであり、不純物質はEPAと共に濃縮されていた。これに対して、実施例1の工程(3)では、EPAが濃縮される一方で不純物質は減少しており、このことから、該工程(3)によりEPAから不純物質が分離されたことが示された。また、比較例1での不純物質の対EPA比率が原料油及び工程(2)とほぼ同じであったことから、工程(3)における真空蒸留の条件が不純物質の分離にとって重要であることが示された。 

Claims (10)

  1.  エイコサペンタエン酸アルキルエステル含有組成物の製造方法であって、
    (1)エイコサペンタエン酸アルキルエステルを含有する原料油を、銀塩を含む水溶液と接触させた後、水層を回収すること;
    (2)該水層に有機溶媒を添加した後、有機溶媒層を回収すること;及び
    (3)該有機溶媒層を、温度180~188℃、塔頂真空度0.7Pa以下で真空蒸留して、該有機溶媒層からエイコサペンタエン酸アルキルエステルを回収すること、
    を含む、方法。
  2.  前記エイコサペンタエン酸アルキルエステル含有組成物が、エイコサペンタエン酸のアルキルエステルの含有量が95面積%以上であり、かつ(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステル、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステル、及び(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルの含有量が、それぞれ0.1面積%以下である、請求項1記載の方法。
  3.  前記エイコサペンタエン酸アルキルエステル含有組成物が、前記(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステルの含有量が0.1面積%以下であり、前記(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステルの含有量が0.07面積%以下であり、前記(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルの含有量が0.09面積%以下である、請求項2記載の方法。
  4.  前記真空蒸留の温度が185~188℃である、請求項1~3のいずれか1項記載の方法。
  5.  前記原料油が、含有する全脂肪酸中にエイコサペンタエン酸を40面積%以上含有する、請求項1~4のいずれか1項記載の方法。
  6.  エイコサペンタエン酸のアルキルエステルの含有量が95面積%以上であり、かつ(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステル、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステル、及び(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルの含有量が、それぞれ0.1面積%以下である、エイコサペンタエン酸アルキルエステル含有組成物。
  7.  前記(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステルの含有量が0.1面積%以下であり、前記(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステルの含有量が0.07面積%以下であり、前記(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルの含有量が0.09面積%以下である、請求項6記載の組成物。
  8.  エイコサペンタエン酸アルキルエステル含有組成物の純度を測定する方法であって、該組成物における、(4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステル、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステル、及び(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステルからなる群より選択される少なくとも1種の物質の含有量を測定することを含む、方法。
  9.  エイコサペンタエン酸アルキルエステルの含有量を測定することをさらに含む、請求項8記載の方法。
  10.  (4Z,7Z,10Z,13Z,16Z)-イコサ-4,7,10,13,16-ペンタエン酸アルキルエステル、(7Z,10Z,13Z,16Z,19Z)-イコサ-7,10,13,16,19-ペンタエン酸アルキルエステル、又は(4Z,7Z,10Z,13Z,16Z,19Z)-イコサ-4,7,10,13,16,19-ヘキサエン酸アルキルエステル。 
PCT/JP2019/051107 2018-12-26 2019-12-26 エイコサペンタエン酸アルキルエステル含有組成物及びその製造方法 WO2020138282A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020562404A JPWO2020138282A1 (ja) 2018-12-26 2019-12-26 エイコサペンタエン酸アルキルエステル含有組成物及びその製造方法
CA3125090A CA3125090A1 (en) 2018-12-26 2019-12-26 Eicosapentaenoic acid alkyl ester-containing composition and method for producing same
EP19902643.6A EP3904328A4 (en) 2018-12-26 2019-12-26 COMPOSITION CONTAINING AN ALKYL ESTER OF EICOSAPENTAENOIC ACID AND METHOD FOR PRODUCTION
US17/418,439 US20210395183A1 (en) 2018-12-26 2019-12-26 Eicosapentaenoic acid alkyl ester-containing composition and method for producing same
KR1020217016710A KR20210108948A (ko) 2018-12-26 2019-12-26 에이코사펜타엔산 알킬에스테르 함유 조성물 및 그 제조 방법
CN201980086203.8A CN113195447A (zh) 2018-12-26 2019-12-26 含有二十碳五烯酸烷基酯的组合物及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-242417 2018-12-26
JP2018242417 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020138282A1 true WO2020138282A1 (ja) 2020-07-02

Family

ID=71125950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051107 WO2020138282A1 (ja) 2018-12-26 2019-12-26 エイコサペンタエン酸アルキルエステル含有組成物及びその製造方法

Country Status (7)

Country Link
US (1) US20210395183A1 (ja)
EP (1) EP3904328A4 (ja)
JP (1) JPWO2020138282A1 (ja)
KR (1) KR20210108948A (ja)
CN (1) CN113195447A (ja)
CA (1) CA3125090A1 (ja)
WO (1) WO2020138282A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631954B2 (ja) 1980-01-23 1988-01-14 Biseibutsu Kagaku Kenkyukai
JP2786748B2 (ja) 1991-01-28 1998-08-13 ハリマ化成株式会社 高度不飽和脂肪酸類の精製方法
JP2895258B2 (ja) 1990-04-24 1999-05-24 ハリマ化成株式会社 高度不飽和脂肪酸類の選択的取得方法
JP2935555B2 (ja) 1990-10-19 1999-08-16 ハリマ化成株式会社 高度不飽和脂肪酸の分離精製法
WO2013172346A1 (ja) 2012-05-14 2013-11-21 日本水産株式会社 環境汚染物質を低減させた高度不飽和脂肪酸又は高度不飽和脂肪酸エチルエステル及びその製造方法
WO2014054435A1 (ja) 2012-10-01 2014-04-10 日清ファルマ株式会社 高度不飽和脂肪酸アルキルエステル含有組成物の製造方法
JP2015105354A (ja) 2013-12-02 2015-06-08 花王株式会社 精製魚油の製造方法
JP2016502573A (ja) 2012-11-02 2016-01-28 プロノヴァ・バイオファーマ・ノルゲ・アーエスPronova BioPharma Norge AS 油組成物からの好ましくない成分の除去
WO2016043251A1 (ja) 2014-09-17 2016-03-24 日本水産株式会社 エイコサペンタエン酸アルキルエステルを含有する組成物及びその製造方法
WO2017191821A1 (ja) 2016-05-02 2017-11-09 日清ファルマ株式会社 高度不飽和脂肪酸含有組成物の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW514633B (en) * 1996-04-18 2002-12-21 Scotia Holdings Plc Fatty acid derivatives
CN110709496A (zh) * 2017-06-14 2020-01-17 日清药业股份有限公司 含有高度不饱和脂肪酸的组合物的制造方法
CN113574154A (zh) * 2019-03-26 2021-10-29 日清药业股份有限公司 含二十碳五烯酸烷基酯的组合物的制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631954B2 (ja) 1980-01-23 1988-01-14 Biseibutsu Kagaku Kenkyukai
JP2895258B2 (ja) 1990-04-24 1999-05-24 ハリマ化成株式会社 高度不飽和脂肪酸類の選択的取得方法
JP2935555B2 (ja) 1990-10-19 1999-08-16 ハリマ化成株式会社 高度不飽和脂肪酸の分離精製法
JP2786748B2 (ja) 1991-01-28 1998-08-13 ハリマ化成株式会社 高度不飽和脂肪酸類の精製方法
WO2013172346A1 (ja) 2012-05-14 2013-11-21 日本水産株式会社 環境汚染物質を低減させた高度不飽和脂肪酸又は高度不飽和脂肪酸エチルエステル及びその製造方法
WO2014054435A1 (ja) 2012-10-01 2014-04-10 日清ファルマ株式会社 高度不飽和脂肪酸アルキルエステル含有組成物の製造方法
JP2016502573A (ja) 2012-11-02 2016-01-28 プロノヴァ・バイオファーマ・ノルゲ・アーエスPronova BioPharma Norge AS 油組成物からの好ましくない成分の除去
JP2015105354A (ja) 2013-12-02 2015-06-08 花王株式会社 精製魚油の製造方法
WO2016043251A1 (ja) 2014-09-17 2016-03-24 日本水産株式会社 エイコサペンタエン酸アルキルエステルを含有する組成物及びその製造方法
WO2017191821A1 (ja) 2016-05-02 2017-11-09 日清ファルマ株式会社 高度不飽和脂肪酸含有組成物の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERKKI SIPPOLA , FRANK DAVID , PAT SANDRA: "Temperature program optimization by computer simulation for the capillary GC analysis of fatty acid methyl esters on biscyanopropyl siloxane phases", JOURNAL OF HIGH RESOLUTION CHROMATOGRAPHY, vol. 16, no. 2, 1 February 1993 (1993-02-01), pages 95 - 100, XP055722125, DOI: 10.1002/jhrc.1240160206 *
IPID FARDIN-KIA ALI REZA; DELMONTE PIERLUIGI; KRAMER JOHN K; JAHREIS GERHARD; KUHNT KATRIN; SANTERCOLE VIVIANA; RADER JEANNE I: "Separation of the Fatty Acids in Menhaden Oil as Methyl Esters with a Highly Polar Ionic Liquid Gas Chromatographic Column and Identification by Time of Flight Mass spectrometry", LIPIDS, vol. 48, no. 12, 2013, pages 1279 - 1295, XP035364675, ISSN: 0024-4201, DOI: 10.1007/s11745-013-3830-2 *
See also references of EP3904328A4

Also Published As

Publication number Publication date
US20210395183A1 (en) 2021-12-23
JPWO2020138282A1 (ja) 2021-11-04
KR20210108948A (ko) 2021-09-03
EP3904328A1 (en) 2021-11-03
EP3904328A4 (en) 2022-10-05
CN113195447A (zh) 2021-07-30
CA3125090A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
JP6684932B2 (ja) 高度不飽和脂肪酸アルキルエステル含有組成物の製造方法
CN103221524B (zh) 用于浓缩omega-3脂肪酸的方法
KR102117725B1 (ko) 환경 오염 물질을 저감시킨 고도 불포화 지방산 또는 고도 불포화 지방산 에틸에스테르 및 그 제조 방법
DK2330177T3 (en) PROCEDURE FOR GETTING HIGHLY UNSaturated Fatty Acid Derivatives
KR101815110B1 (ko) 오메가-7계 불포화 지방산의 정제공정
JPS649977B2 (ja)
JP6234908B2 (ja) エイコサペンタエン酸及び/又はドコサヘキサエン酸含有組成物の製造方法
JPWO2020122167A1 (ja) 高度不飽和脂肪酸またはそのアルキルエステルを含有する組成物およびその製造方法
JP6518022B1 (ja) 高度不飽和脂肪酸含有組成物の製造方法
JP7535505B2 (ja) 魚油コレステロール
JPH1180083A (ja) エイコサペンタエン酸エステルの製造方法
JP7528054B2 (ja) エイコサペンタエン酸アルキルエステル含有組成物の製造方法
WO2020138282A1 (ja) エイコサペンタエン酸アルキルエステル含有組成物及びその製造方法
JP6464144B2 (ja) ステアリドン酸の精製方法
Petrica Iancu et al. Advanced high vacuum techniques for ω-3 polyunsaturated fatty acids esters concentration
JP2001354991A (ja) 高度不飽和脂肪酸含有油脂の精製方法
JP2011246402A (ja) 不飽和脂肪酸エステルの2,2−重水素化法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562404

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3125090

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019902643

Country of ref document: EP

Effective date: 20210726