WO2014054417A1 - X線撮影装置 - Google Patents

X線撮影装置 Download PDF

Info

Publication number
WO2014054417A1
WO2014054417A1 PCT/JP2013/075045 JP2013075045W WO2014054417A1 WO 2014054417 A1 WO2014054417 A1 WO 2014054417A1 JP 2013075045 W JP2013075045 W JP 2013075045W WO 2014054417 A1 WO2014054417 A1 WO 2014054417A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
image
ray tube
fpd
imaging
Prior art date
Application number
PCT/JP2013/075045
Other languages
English (en)
French (fr)
Inventor
智晴 奥野
尚 丸目
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to EP13843543.3A priority Critical patent/EP2904973B1/en
Priority to CN201380051885.1A priority patent/CN104717923B/zh
Priority to US14/432,894 priority patent/US9700277B2/en
Priority to JP2014539658A priority patent/JP6102935B2/ja
Publication of WO2014054417A1 publication Critical patent/WO2014054417A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/547Control of apparatus or devices for radiation diagnosis involving tracking of position of the device or parts of the device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • A61B6/5241Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT combining overlapping images of the same imaging modality, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4452Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other

Definitions

  • the present invention relates to an X-ray imaging apparatus that performs long imaging such as slot imaging in which a plurality of X-ray images are connected to acquire a long image.
  • an X-ray imaging apparatus is opposed to an X-ray imaging table having a top plate on which the subject M is placed, an X-ray tube that irradiates (exposes) X-rays toward the subject, and the X-ray tube. And an X-ray detector that detects X-rays transmitted through the subject.
  • the X-ray tube is held by, for example, an X-ray tube holding device suspended from the ceiling.
  • the X-ray detector is provided in a position opposite to the X-ray tube in the X-ray imaging table with the top plate interposed therebetween.
  • slot photographing slot radiography
  • X-rays are narrowed down in a slit shape
  • X-ray images are obtained by continuous imaging while the X-ray tube and the X-ray detector are moved in parallel, and a plurality of X-ray images are joined together. An image is obtained.
  • JP 2010-075245 JP 2010-240247 A International Publication No. 2010/050032
  • the X-ray imaging apparatus performs imaging so that the X-ray axis that is the center of X-rays emitted from the X-ray tube is positioned at the center of the detection surface that is the X-ray detection region of the X-ray detector. That is, the X-ray tube and the X-ray detector are synchronously moved along the body axis direction of the subject so that the relative positions of the X-ray tube and the X-ray detector are always equal. For this reason, it is necessary to drive the X-ray tube and the X-ray detector at the same timing and the movement speeds of the X-ray tube and the X-ray detector.
  • the X-ray tube and the X-ray detector are driven independently, it is difficult to match the above timing and moving speed with high accuracy.
  • the X-ray tube and the X-ray detector are accelerated so that the time until the X-ray tube and the X-ray detector are in a state of constant velocity movement coincide.
  • FPD flat panel X-ray detector
  • the FPD is generally heavier than the X-ray tube. If the acceleration time is slow on either side, the time until shooting will increase by the delay.
  • the conventional apparatus has to perform complicated control, and this requires an expensive motor such as an AC servo motor. Therefore, the apparatus has become expensive.
  • Patent Document 3 discloses the following problem. In other words, the movement of the FPD does not always follow the setting, and the position is somewhat shifted from the setting. If the relative movement distance of the FPD with respect to the subject is too long, a fluoroscopic image of the subject reflected in the slit-like image is obtained. Misalignment unexpectedly. Then, since the FPD is regarded as moving as set and the slit images are superimposed, the perspective images that are unexpectedly misaligned are superimposed on each other. Therefore, Patent Document 3 proposes to minimize the positional deviation of the fluoroscopic image reflected in the slit-like image by minimizing the relative movement distance of the FPD. However, it is desirable to obtain a long image in which the influence of positional deviation is suppressed regardless of the relative movement distance of the X-ray tube or the FPD.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an X-ray imaging apparatus capable of simplifying control of an X-ray tube and an X-ray detector in long imaging.
  • an X-ray imaging apparatus includes an X-ray source that emits X-rays toward a subject, an X-ray source moving unit that moves the X-ray source along the body axis of the subject, An X-ray detector that is provided opposite to the X-ray source and detects X-rays transmitted through the subject and outputs them as an X-ray image, and along the body axis of the subject independently of the X-ray source An X-ray detector moving unit that moves the X-ray detector, and an area that is provided on the X-ray irradiation side of the X-ray source and is narrower than the detection area of the X-ray detector in the moving direction of the X-ray detector X-ray imaging of an X-ray irradiation region image that is a region in which the collimated X-ray is reflected in the X-ray image and a collimator that moves
  • An X-ray irradiation area discriminating unit that discriminates every time and position information of the X-ray source for each X-ray imaging An X-ray irradiation area such that the center of the X-ray detector movement direction in each of the X-ray irradiation area images is the X-ray incidence position at the time of imaging based on the position information acquisition unit and the position information
  • a long image creation unit that creates a long image by shifting the images and joining the X-ray irradiation region images together.
  • the X-ray source irradiates the subject with X-rays and is moved along the body axis of the subject by the X-ray source moving unit.
  • the X-ray detector is provided facing the X-ray source, detects X-rays that have passed through the subject, and outputs them as an X-ray image.
  • the X-ray detector moving unit moves the X-ray detector along the body axis of the subject independently of the X-ray source.
  • a collimator is provided on the X-ray irradiation side of the X-ray source.
  • the collimator focuses irradiation X-rays in a region narrower than the detection region of the X-ray detector in the moving direction of the X-ray detector and moves following the X-ray source.
  • the X-ray irradiation area discriminating unit discriminates for each X-ray imaging an X-ray irradiation area image that is an area in which collimated X-rays are reflected in the X-ray image.
  • the position information acquisition unit acquires position information of the X-ray source for each X-ray imaging.
  • the long image creation unit determines the X-ray irradiation area so that the center of the X-ray detector movement direction in each X-ray irradiation area image is the X-ray incidence position at the time of imaging based on the position information.
  • a long image is created by shifting the images and joining the X-ray irradiation region images together.
  • the X-ray irradiation area determination unit is an X-ray irradiation that is an area in which the collimated X-ray is reflected in the X-ray image.
  • the region image is determined for each X-ray imaging, and the position information acquisition unit acquires the X-ray source position information for each X-ray imaging.
  • the long image creation unit determines the X-ray irradiation area so that the center of the X-ray detector movement direction in each X-ray irradiation area image is the X-ray incidence position at the time of imaging based on the position information.
  • a long image is created by shifting the images and joining the X-ray irradiation region images together.
  • the X-ray irradiation area images can be obtained with certainty, and the X-ray irradiation area images can be joined together with high accuracy. it can.
  • the control since it is not necessary to make the timing of movement of the X-ray tube and the X-ray detector and their movement speeds the same, the control becomes simple and the apparatus can be made inexpensive.
  • the conventional X-ray imaging apparatus is controlled so that the X-ray axis of the X-ray irradiated from the X-ray source is positioned at the center of the detection surface which is the X-ray detection area of the X-ray detector. Therefore, the long imaging range is a distance corresponding to the moving distance of the X-ray detector.
  • the long imaging range is set wide even if the movement distance of the X-ray detector is the same as the conventional one. can do.
  • the X-ray irradiation region image corresponding to the slit-like image is determined from the X-ray image.
  • the X-ray irradiation area image is an irradiation X-ray area narrowed down to an area narrower than the detection area of the X-ray detector. Therefore, when X-rays are irradiated from an X-ray source at a predetermined position, even if the X-ray detector is slightly displaced, it can be determined if the irradiated X-rays are within the detection region of the X-ray detector.
  • the X-ray irradiation area images to be obtained are the same.
  • the X-ray detector moving unit moves the X-ray detector slower on average than the X-ray source.
  • “Slow on average” here means slow when compared on average through a series of operations from the start to the end of shooting.
  • a high-power motor has been used to move an X-ray detector that is heavier than the X-ray source in the same manner as the X-ray source.
  • a motor having a smaller output than the conventional one Therefore, a power-saving and inexpensive motor can be used, and the apparatus can be made inexpensive.
  • an example of the position information acquisition unit is an X-ray source position sensor.
  • the position information of the actual X-ray source can be obtained, so that even when there is an error (positional deviation), the X-ray irradiation region images can be connected with high accuracy.
  • Patent Document 3 As described above, when X-rays are emitted from an X-ray source at a predetermined position, even if the X-ray detector is slightly displaced, it is determined if the irradiated X-rays are within the detection region of the X-ray detector.
  • the X-ray irradiation region images obtained in this way are the same. Further, if the actual position information of the X-ray source is used, the X-ray irradiation area images can be connected in consideration of the positional deviation of the X-ray source. Therefore, it is possible to obtain a long image in which the influence of the positional deviation is suppressed regardless of the relative movement distance of the X-ray source or the X-ray detector.
  • an example of the position information is calculated from imaging time interval information and X-ray source moving speed information.
  • the X-ray imaging time interval and the moving speed of the X-ray source are constant, for example, there is no need to provide an X-ray source position sensor. Therefore, the configuration is simplified and the apparatus can be made inexpensive.
  • an example of the X-ray irradiation region image is an image extracted from the X-ray image. Images other than the X-ray irradiation area can be removed, and the data capacity can be made smaller than the original X-ray image.
  • the X-ray irradiation area determination unit adds the position information to the X-ray irradiation area image every X-ray imaging.
  • management of an X-ray irradiation area image and position information can be simplified. For example, even when the order of a plurality of X-ray irradiation area images for creating a long image is changed, the position of the X-ray irradiation area image when the images are joined by the position information added to the X-ray irradiation area image Can know.
  • the X-ray source moving unit moves the X-ray source at a constant speed. Thereby, control is simple and a long image of stable quality can be obtained.
  • an X-ray source that irradiates the subject with X-rays, and an X-ray source angle changing unit that changes the angle of the X-ray source around an axis set in advance so as to follow the body axis of the subject;
  • An X-ray detector that is provided opposite to the X-ray source and detects X-rays transmitted through the subject and outputs them as an X-ray image; and on the body axis of the subject independently of the X-ray source
  • An X-ray detector moving unit that moves the X-ray detector along the X-ray detector, and an X-ray detector on the X-ray irradiation side of the X-ray source, the detection area of the X-ray detector in the moving direction of the X-ray detector
  • a collimator that narrows the irradiated X-rays in a narrow area and moves following the angle of the X-ray source, and an X-ray irradiation area image that is an area in
  • An X-ray irradiation area discriminating unit for discriminating each radiograph and angle information of the X-ray source for each radiograph.
  • An angle information acquisition unit that performs X-ray irradiation based on the angle information so that the center of each X-ray irradiation region image in the direction of movement of the X-ray detector is the position of X-ray irradiation at the time of imaging.
  • An X-ray imaging apparatus comprising: a long image creation unit that shifts region images and creates a long image by joining the X-ray irradiation region images together.
  • the above-described configuration includes an X-ray source angle changing unit instead of the X-ray source moving unit described above, and an angle information acquiring unit instead of the position information acquiring unit.
  • the X-ray irradiation region determination unit is configured to collimate X-rays in the X-ray image.
  • the X-ray irradiation area image which is the area in which is reflected, is determined for each X-ray imaging, and the angle information acquisition unit acquires the position information of the X-ray source for each X-ray imaging.
  • the long image creation unit determines the X-ray irradiation region so that the center of the X-ray detector movement direction in each X-ray irradiation region image is the X-ray irradiation position at the time of imaging based on the angle information.
  • a long image is created by shifting the images and joining the X-ray irradiation region images together.
  • the conventional X-ray imaging apparatus is controlled so that the X-ray axis of the X-ray irradiated from the X-ray source is positioned at the center of the detection surface which is the X-ray detection area of the X-ray detector. Therefore, the long imaging range is a distance corresponding to the moving distance of the X-ray detector.
  • the long imaging range is set wide even if the movement distance of the X-ray detector is the same as the conventional one. can do.
  • the X-ray irradiation region determination unit is configured to detect collimated X-rays in the X-ray image.
  • An X-ray irradiation area image which is a reflected area, is determined for each X-ray imaging, and the position information acquisition unit acquires X-ray source position information for each X-ray imaging.
  • the long image creation unit determines the X-ray irradiation area so that the center of the X-ray detector movement direction in each X-ray irradiation area image is the X-ray incidence position at the time of imaging based on the position information.
  • a long image is created by shifting the images and joining the X-ray irradiation region images together.
  • the X-ray irradiation area images can be obtained with certainty, and the X-ray irradiation area images can be joined together with high accuracy. it can.
  • the control since it is not necessary to make the timing of movement of the X-ray tube and the X-ray detector and their movement speeds the same, the control becomes simple and the apparatus can be made inexpensive.
  • FIG. 1 is a diagram illustrating a schematic configuration of an X-ray imaging apparatus according to Embodiment 1.
  • FIG. It is a figure where it uses for description of the setting method of long imaging
  • (A) is a diagram for explaining the operation of the X-ray irradiation region discriminating unit
  • (b) is a diagram showing a profile of pixel values of the line L in (a), and (c) is an X-ray irradiation region discrimination. It is a figure which shows an example of the output image of a part.
  • (A)-(e) It is a figure where it uses for description of a X-ray irradiation area
  • (A), (b) is a figure where it uses for operation
  • FIG. It is a figure which shows schematic structure of the X-ray imaging apparatus which concerns on a modification. It is a figure where it uses for description of the calculation method of the position of X-ray irradiation.
  • FIG. 1 is a diagram illustrating a schematic configuration of the X-ray imaging apparatus according to the first embodiment.
  • the X-ray imaging apparatus 1 is provided so as to face the top plate 2 on which the subject M is placed, the X-ray tube 3 that irradiates the subject M with X-rays, and the X-ray tube 3. And a flat panel X-ray detector (FPD) 4 that outputs an X-ray image by detecting X-rays transmitted through the X-ray.
  • the X-ray tube 3 corresponds to the X-ray source of the present invention
  • the FPD 4 corresponds to the X-ray detector of the present invention.
  • the X-ray tube 3 is controlled by the X-ray tube control unit 5.
  • the X-ray tube controller 5 has a high voltage generator 6 that generates the tube voltage and tube current of the X-ray tube 3.
  • the X-ray tube controller 5 irradiates X-rays from the X-ray tube 3 in accordance with X-ray irradiation conditions such as tube voltage, tube current, and irradiation time. Further, a collimator 7 is provided on the X-ray irradiation side of the X-ray tube 3 to narrow down the X-rays irradiated from the X-ray tube 3.
  • the collimator 7 includes, for example, four leaves (not shown). These four leaves shield the X-rays emitted from the X-ray tube 3 and irradiate the X-rays in a rectangular region having an arbitrary size.
  • the collimator 7 in FIG. 1 is configured to focus the irradiated X-rays on a region R2 that is in the body axis direction 11 (X direction) of the subject M and is narrower than the detection region R1 of the FPD 4, for example.
  • the collimator 7 moves following the X-ray tube 3. That is, the collimator 7 moves integrally with the X-ray tube 3.
  • the FPD 4 has a horizontal and vertical two-dimensional matrix shape in which a large number of X-ray detection elements that detect X-rays by converting them into electric signals on an X-ray detection surface on which a transmission X-ray image of a detection target (subject M) is projected. Is arranged. Examples of the array matrix of the X-ray detection elements include horizontal: several thousand ⁇ vertical: several thousand.
  • the X-ray detection element is configured as a direct conversion type in which X-rays are directly converted into electric signals, or an indirect conversion type in which X-rays are once converted into light and then converted into electric signals.
  • the X-ray imaging apparatus 1 also includes an X-ray tube moving unit 8 that moves the X-ray tube 3 along the body axis direction 11 of the subject M, and the body axis direction of the subject M independently of the X-ray tube 3. 11 and an X-ray detector moving unit 9 that moves the FPD 4 along the line 11. Both the X-ray tube moving unit 8 and the X-ray detector moving unit 9 move the X-ray tube 3 and the FPD 4 along the body axis direction 11 (X direction) of the subject M. That is, the X-ray detector moving unit 9 moves the FPD 4 in parallel with the moving direction of the X-ray tube 3.
  • the X-ray tube moving unit 8 performs X-ray imaging by moving the X-ray tube 3 at a constant speed and irradiating X-rays from the X-ray tube 3 moved at a constant speed.
  • the X-ray tube moving unit 8 is configured by, for example, an AC servo motor, and the X-ray detector moving unit 9 is configured by, for example, a DC brush motor.
  • the X-ray tube moving unit 8 corresponds to the X-ray source moving unit of the present invention.
  • an A / D converter 13, an image processing unit 15, and a main control unit 17 are provided in order.
  • the A / D converter 13 converts the analog X-ray image (X-ray detection signal) output from the FPD 4 into a digital X-ray image.
  • the image processing unit 15 performs necessary processing such as gradation processing on the digitally converted X-ray image, and outputs the processed X-ray image G1.
  • the main control unit 17 comprehensively controls each component of the X-ray imaging apparatus 1 and includes a central processing unit (CPU) and the like. For example, the main control unit 17 controls the X-ray tube moving unit 8 and the X-ray detector moving unit 9 to move the X-ray tube 3 and the FPD 4.
  • the X-ray imaging apparatus 1 includes a display unit 19, an input unit 21, and a storage unit 23.
  • the display unit 19 includes a monitor or the like.
  • the input unit 21 includes a keyboard, a mouse, and the like.
  • the storage unit 23 includes a removable storage medium such as a ROM (Read-only Memory), a RAM (Random-Access Memory), or a hard disk.
  • FIG. 2 is a diagram for explaining a setting method for long shooting.
  • a long photographing range S that is between the symbols A and B is set.
  • the positions of the symbols A and B are set while irradiating visible light with a projector (not shown) such as a collimator lamp or a laser marker provided in the collimator 7.
  • a projector such as a collimator lamp or a laser marker provided in the collimator 7.
  • FIG. 3 is a diagram for explaining the long photographing range S, the photographing ranges E for each time, the overlapping portion OL, and the like.
  • An overlapping portion OL is set in the two adjacent photographing ranges E.
  • the X-ray imaging apparatus 1 further includes an X-ray tube position sensor 31 that acquires position information of the X-ray tube 3 for each X-ray imaging in the body axis direction 11 of the subject M, and an X-ray image G1 acquired by the FPD 4.
  • the X-ray irradiation region discriminating unit 33 that discriminates an X-ray irradiation region image G2 (see FIG. 4A) irradiated with X-rays by performing image processing on the basis of the X-ray tube 3 position information P.
  • the X-ray irradiation area image G2 is shifted so that the center of the movement direction of the FPD 4 in each X-ray irradiation area image G2 is the X-ray incidence position at the time of imaging, and the X-ray irradiation area images G2 are joined together.
  • the X-ray tube position sensor 31 corresponds to the position information acquisition unit of the present invention.
  • the X-ray tube position sensor 31 acquires position information P of the X-ray tube 3 in the body axis direction 11 of the subject M for each X-ray imaging.
  • the position information P of the X-ray tube 3 by the X-ray tube position sensor 31 is actual position information P including an error.
  • the X-ray tube position sensor 31 is configured by a linear encoder or the like.
  • position information (or positions) P for the first, second, and third X-ray imaging are indicated by reference signs P1, P2, and P3, respectively, and n-th position information P is indicated by reference sign Pn. Note that the first, second, third,..., N-th position information P1, P2, P3,.
  • the X-ray irradiation area discriminating unit 33 discriminates for each X-ray imaging an X-ray irradiation area image G2 that is an area in which X-rays collimated in a slit shape are reflected in the X-ray image G1.
  • an X-ray image G1 is an image obtained by detecting X-rays in the entire detection region of the FPD 4, for example.
  • the X-ray irradiation area determination unit 33 determines an X-ray irradiation area image G2 from the X-ray image G1.
  • the image NI shows a region shielded by the leaf of the collimator 7.
  • FIG. 4B is a diagram showing a profile PF of pixel values (luminance) of the line L in FIG.
  • the discrimination of the X-ray irradiation region image G2 is performed, for example, by detecting a position where the pixel value indicating the X-ray intensity greatly changes and setting it as a boundary.
  • an existing method such as edge detection processing is used.
  • the X-ray image G1 may not be detected in the entire detection area of the FPD 4, but it is necessary to be an image larger than the X-ray irradiation area image G2 in order to obtain the effect of the present invention.
  • FIG. 4C is a diagram illustrating an example of an output image of the X-ray irradiation area determination unit 33.
  • the X-ray irradiation region determination unit 33 cuts out and extracts the X-ray irradiation region image G2 from the X-ray image G1. That is, the X-ray irradiation area determination unit 33 outputs only the X-ray irradiation area image G2.
  • the X-ray irradiation area determination unit 33 adds the position information P of the X-ray tube 3 to the X-ray irradiation area image G2 for each X-ray imaging. That is, the X-ray irradiation region image G2 is related to the position information P of the X-ray tube 3 when the X-ray irradiation region image G2 is acquired. For example, the position of the X-ray tube 3 is related to the X-ray irradiation region image G2. Information P is included. This association process is performed for each X-ray irradiation region image G2. The position information P of the X-ray tube 3 has been added to the X-ray irradiation area image G2, but the X-ray irradiation area image G2 and the position information P may be separate.
  • the positional relationship between the X-ray tube 3 and the FPD 4 is allowed to some extent for the purpose of simplifying the control. If this is the case, the X-ray tube 3 and the FPD 4 will not move with the same behavior. From this point of view, it seems that a positional shift may occur when the long image G3 is acquired by joining the X-ray irradiation region images G2. However, according to the configuration of the present invention, there is no influence on the long image G3 even under such circumstances.
  • FIG. 5 explains the reason.
  • FIG. 5A shows a state in which the irradiation X-rays focused by the collimator 7 are located at the center of the detection surface 4 a of the FPD 4. In other words, the X-ray tube 3 and the FPD 4 are moving as ideal.
  • FIG. 5B shows a state in which the FPD 4 is shifted to the right side of the drawing with respect to the FPD 4 in FIG. 5A, and the irradiation X-rays focused to the same shape as FIG. It is located on the end side of the detection surface 4a. In other words, this is a case where the X-ray tube 3 and the FPD 4 are moving out of ideal.
  • FIGS. 5A and 5B are both at the position P1 corresponding to the position information P1, for example.
  • X-ray images G1 acquired by X-ray imaging in the states of FIGS. 5A and 5B are shown in FIGS. 5C and 5D, respectively.
  • the X-ray irradiation area determination unit 33 determines an X-ray irradiation area image G2 from the X-ray image G1.
  • FIG. 5E shows the determined X-ray irradiation region image G2. That is, when the X-ray tube 3 is imaged at the same position P1 in FIGS. 5 (a) and 5 (b), the imaged position P1 is the same.
  • the acquired X-ray irradiation region image G2 is the same after all. If so, the spatial relationship between the X-ray irradiation region image G2 and the position indicated by the position information of the X-ray tube 3 does not change depending on the positional deviation of the FPD 4 with respect to the X-ray tube 3. Therefore, if a long image is generated while shifting the X-ray irradiation region image G2 based on the associated position information P, an image with no shift is obtained.
  • the long image creation unit 35 shifts each X-ray irradiation region image G2 which is a fragment obtained by extracting the shape of the X-ray irradiation region based on the position information P of the X-ray tube 3, and each X-ray irradiation region image G2 is shifted. Create long images by joining them together.
  • the long image creation unit 35 arranges the X-ray irradiation region images G2 so as to be arranged in the order of the respective photographing ranges E of the long photographing range S of FIG.
  • the position information P1 serving as a position reference and the position information of the X-ray tube 3 each time.
  • the relative distances with P2, P3,..., Pn are calculated.
  • the X-ray irradiation region image G2 corresponding to each position information P (P1, P2, P3,..., Pn) is shifted and arranged using the calculated relative distance.
  • a plurality of X-ray irradiation region images G2 are connected at the arranged position to generate one long image.
  • the relative distance is based on the reference line SL of each X-ray irradiation region image G2 (see FIG. 6).
  • the X-ray irradiation region determination unit 33 and the main control unit 17 calculate a value at which the width R2 of the X-ray irradiation region image G2 is halved. .
  • the reference line SL is obtained by straightening a wavy line after calculating 1/2 of the width R2.
  • it may be obtained by calculating 1 ⁇ 2 of the width R2 after straightening the wavy end portions Eg1, Eg2.
  • Linearization is performed using, for example, statistical values (average value, maximum value, minimum value, mode value, or median value).
  • FIG. 6 for convenience of illustration, a part of the drawing is omitted in order to show the overlapping portion OL of the X-ray irradiation region image G2.
  • long shooting conditions are set.
  • the long shooting conditions for example, a long shooting range S, each shooting range E, an overlapped portion OL, and the number of shootings are set. This setting is performed by the input unit 21 or the like.
  • the shooting position for each time is set as follows, for example.
  • the region R2 in the movement direction of the FPD 4 is set to 100 mm, and the overlapping portion OL where two adjacent X-ray irradiation regions overlap is set to 10 mm.
  • the main control unit 17 executes movement control of the X-ray tube moving unit 8 and the X-ray detector moving unit 9 according to the long imaging conditions.
  • the X-ray tube 3 and the FPD 4 independently translate, and irradiate X-rays from the X-ray tube 3 a plurality of times, that is, at each imaging position.
  • X-rays irradiated from the X-ray tube 3 pass through the subject M and enter the detection surface 4 a of the FPD 4.
  • the FPD 4 detects the incident X-ray and outputs an X-ray image G1.
  • the output X-ray image (X-ray detection signal) G1 is digitized by the A / D converter 13.
  • the digitized X-ray image is subjected to necessary processing by the image processing unit 15 and then stored in the storage unit 23 or the like.
  • the X-ray tube position sensor 31 acquires (detects) actual position information P of the X-ray tube 3 that is coordinate information in the moving direction of the X-ray tube 3. Then, the data is transferred to the X-ray irradiation area determination unit 33 or the storage unit 23.
  • the X-ray image G1 stored in the storage unit 23 or the like is transferred to the X-ray irradiation region determination unit 33.
  • the X-ray irradiation area discriminating unit 33 discriminates an area of the X-ray image G1 that has been irradiated with X-rays focused in a slit shape.
  • the X-ray irradiation region determination unit 33 outputs an X-ray irradiation region image G2 extracted by cutting out the determined X-ray irradiation region, and stores it in the storage unit 23 or the like.
  • the X-ray irradiation region discriminating unit 33 converts the position information P of the X-ray tube 3 at the time of X-ray imaging acquired by the X-ray tube position sensor 31 into an X-ray irradiation region image G2 corresponding to the position information P.
  • the addition of the position information P to the X-ray irradiation region image G2 is not limited to the X-ray irradiation region determination unit 33.
  • the main control unit controls the X-ray irradiation region image G2 stored in the storage unit 23. 17 may do.
  • the long image creation unit 35 performs X-ray irradiation based on each X-ray irradiation region image G2 stored in the storage unit 23 and the like and the position information P of the X-ray tube 3 added to each X-ray irradiation region image G2.
  • a long image G3 is created by overlaying the region image G2 relatively shifted (see FIG. 6). The created long image G3 is displayed on the display unit 19 or stored in the storage unit 23.
  • the X-ray tube 3 emits X-rays toward the subject M, and is moved along the body axis direction 11 of the subject M by the X-ray tube moving unit 8. .
  • the FPD 4 is provided facing the X-ray tube 3, detects X-rays that have passed through the subject M, and outputs them as an X-ray image G 1.
  • the X-ray detector moving unit 9 moves the FPD 4 along the body axis direction 11 of the subject M independently of the X-ray tube 3.
  • a collimator 7 is provided on the X-ray irradiation side of the X-ray tube 3.
  • the collimator 7 narrows the irradiated X-rays in a region R2 narrower than the detection region R1 of the FPD 4 in the movement direction of the FPD 4 and moves following the X-ray tube 3.
  • the X-ray irradiation area determination unit 33 determines an X-ray irradiation area image G2 that is an area in which the collimated X-ray is reflected in the X-ray image G1, for each X-ray imaging. Further, the X-ray tube position sensor 31 acquires position information P of the X-ray tube 3 for each X-ray imaging.
  • the long image creation unit 35 sets the X-ray irradiation area so that the center in the direction of movement of the FPD 4 in each X-ray irradiation area image G2 is the X-ray incident position at the time of imaging.
  • the long image G3 is created by shifting the image G2 and joining the X-ray irradiation region images G2.
  • the X-ray irradiation area determination unit 33 is an X-ray irradiation that is an area in which the collimated X-ray is reflected in the X-ray image G1.
  • the region image G2 is determined for each X-ray imaging, and the X-ray tube position sensor 31 acquires the position information P of the X-ray tube 3 for each X-ray imaging.
  • the long image creation unit 35 sets the X-ray irradiation area so that the center in the direction of movement of the FPD 4 in each X-ray irradiation area image G2 is the X-ray incident position at the time of imaging.
  • the long image G3 is created by shifting the image G2 and joining the X-ray irradiation region images G2.
  • the X-ray irradiation region image G2 can be obtained with certainty, and the X-ray irradiation region images G2 can be connected with high accuracy. it can.
  • the control since it is not necessary to make the timing of movement of the X-ray tube 3 and the FPD 4 and the movement speeds thereof the same, the control becomes simple and the apparatus can be made inexpensive.
  • the motor of the X-ray detector moving unit 9 that moves the FPD 4 can be a relatively inexpensive motor such as a DC brush motor instead of an expensive XC servo motor.
  • the operation command given to the X-ray tube moving unit 8 and the X-ray detector moving unit 9 at the same time is given only to the X-ray tube moving unit 8, for example, to the X-ray detector moving unit 9.
  • An operation command can be given after the first X-ray imaging.
  • the conventional X-ray imaging apparatus is controlled so that the X-ray axis ax of the X-rays emitted from the X-ray tube 3 is positioned at the center of the detection surface 4a that is the X-ray detection region of the FPD 4. Therefore, the long shooting range S is a distance J1 corresponding to the moving distance of the FPD 4 as shown in FIG.
  • X-ray imaging may be performed at any position on the detection surface 4a of the FPD 4. Therefore, even if the movement distance of the FPD 4 is the same as the conventional one, the long imaging is performed as the distance J2 in FIG.
  • the range S can be set wide.
  • the X-ray tube position sensor 31 is used. Therefore, since the actual position information P of the X-ray tube 3 can be obtained, even when there is an error, the X-ray irradiation region images G2 can be joined together with high accuracy.
  • the X-ray irradiation region image G2 is an image extracted from the X-ray image G1. Images other than the X-ray irradiation region image G2 can be removed, and the data capacity can be made smaller than that of the original X-ray image G1.
  • the X-ray irradiation area determination unit 33 adds position information P to the X-ray irradiation area image G2 for each X-ray imaging.
  • management of the X-ray irradiation region image G2 and the position information P can be simplified.
  • the X-ray irradiation at the time of joining is performed by the position information P added to the X-ray irradiation region image G2.
  • the position of the area image G2 can be known.
  • the X-ray tube moving unit 8 moves the X-ray tube 3 at a constant speed. Thereby, control is simple and the long image G3 of the stable quality can be obtained.
  • the X-ray irradiation region image G2 corresponding to the slit image is discriminated from the X-ray image G1.
  • the X-ray irradiation area image G2 is an irradiation X-ray area narrowed down to an area R2 narrower than the detection area R1 of the FPD 4. Therefore, when X-rays are irradiated from the X-ray tube 3 at a predetermined position, even if the FPD 4 is slightly displaced, the X-ray irradiation obtained by discrimination is obtained if the irradiation X-rays are within the detection region R1 of the FPD 4.
  • the area image G2 is the same. Furthermore, if the actual position information P of the X-ray tube 3 is used, the X-ray irradiation region images G2 can be connected in consideration of the positional deviation of the X-ray tube 3. Therefore, if the X-ray irradiation region image G2 discriminated from the X-ray image G1 is shifted based on the acquired position information P of the X-ray tube 3 and the X-ray irradiation region images G2 are connected, the X-ray tube 3 and the FPD 4 Regardless of the relative movement distance, a long image G3 in which the influence of the positional deviation is suppressed can be obtained.
  • Embodiment 2 of the present invention will be described with reference to the drawings.
  • 8A and 8B are diagrams for explaining the operation of the X-ray imaging apparatus according to the second embodiment. Note that the description of the same configuration as in the first embodiment is omitted.
  • the FPD 4 moves independently of the X-ray tube 3, but the moving method of the FPD 4 is not particularly specified. Therefore, in the second embodiment, for example, the X-ray detector moving unit 9 moves the FPD 4 later than the X-ray tube 3.
  • the X-ray detector moving unit 9 moves the FPD 4 on an average later than the X-ray tube 3.
  • Slow on average does not mean that the moving speed of the FPD 4 is instantaneously slower than that of the X-ray tube 3, but the movement of the X-ray tube 3 and FPD 4 that moves from the start to the end of long imaging.
  • Means slow average speed over distance. Moving on average slow can be performed by operating as follows. For example, as shown in FIG. 8A, at the start of imaging, the X-ray irradiation region including the X-ray axis ax is positioned in a region opposite to the moving direction of the detection surface 4a, which is one end side of the detection surface 4a of the FPD 4. To. Then, as shown in FIG. 8B, at the end of imaging, the X-ray irradiation region is positioned in the region on the moving direction side of the detection surface 4a which is the other end side of the detection surface 4a of the FPD 4.
  • X-ray imaging may be performed at any position on the detection surface 4a as long as the X-rays are within the detection surface 4a of the FPD 4.
  • the FPD 4 is moved by a preset movement distance. That is, if the detection surface 4a of the FPD 4 is used effectively, the movement amount of the FPD 4 can be suppressed.
  • the width R2 of the X-ray irradiation region which is the spread of X-rays, is not considered for convenience of explanation.
  • the X-ray detector moving unit 9 moves the FPD 4 on an average slower than the X-ray tube 3.
  • a high output motor has been used to move the FPD 4 which is heavier than the X-ray tube 3 in the same manner as the X-ray tube 3.
  • a motor having a smaller output than the conventional one can be used. Therefore, a power-saving and inexpensive motor can be used, and the X-ray imaging apparatus 1 can be made inexpensive.
  • the X-ray tube position sensor 31 is provided to actually measure the position information P of the X-ray tube 3. Not necessary.
  • the main control unit 17 notifies the long image creation unit 35 of the X-ray imaging time interval information U and the X-ray tube moving speed information V before or after X-ray imaging.
  • the long image creation unit 35 Based on the position information P of the X-ray tube 3 that is information on the position P to be imaged each time, the long image creation unit 35 creates a long image G3. Note that the main control unit 17 calculates the position information P of the X-ray tube 3 that is information of the imaging position P of each time from the X-ray imaging time interval information U and the X-ray tube moving speed information V, and a long image creation unit 35 may be notified.
  • the X-ray tube moving speed information V corresponds to the X-ray source moving speed information of the present invention.
  • the position information P is calculated from the imaging time interval information U and the X-ray tube moving speed information V.
  • the X-ray imaging time interval U and the moving speed of the X-ray tube 3 are constant, for example, it is not necessary to provide the X-ray tube position sensor 31. Therefore, the configuration is simplified and the apparatus can be made inexpensive.
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the subject M is placed on the top 2 and is elongated by the X-ray tube 3 and the FPD 4 that are disposed to face the top and bottom 2.
  • a plurality of X-ray images G1 for photographing were taken.
  • a screen also called a stand
  • the subject M is placed in a standing position along the screen, and a long image is taken by the X-ray tube 3 and the FPD 4 arranged opposite to each other before and after the screen (lateral direction).
  • At least one of the X-ray tube 3 and the FPD 4 may not be moved at a constant speed.
  • the FPD 4 may be accelerated or decelerated.
  • the FPD 4 may move by combining at least two of constant speed movement, acceleration movement, and deceleration movement.
  • the X-ray irradiation region determination unit 33 extracts and extracts the X-ray irradiation region image G2 from the X-ray image G1. It was. However, for example, the X-ray irradiation region determination unit 33 determines the X-ray irradiation region image G2, and does not cut out the image NI of the region not irradiated with X-rays, and sets the image NI as “no information”. An image may be output. Further, the image NI may be output as it is, or may be output after reducing noise added to the image NI as it is.
  • the X-ray irradiation region determination unit 33 is provided separately from the image processing unit 15.
  • the image processing unit 15 may include an X-ray irradiation area determination unit 33.
  • the X-ray imaging apparatus 41 first replaces the X-ray tube moving unit 8 with an X-ray tube angle changing unit 43 and replaces with the X-ray tube position sensor 31.
  • An X-ray tube angle sensor 45 is provided.
  • the X-ray tube angle changing unit 43 changes the angle of the X-ray tube 3 around a preset axis so as to follow the body axis direction 11 of the subject M.
  • the X-ray tube angle sensor 45 acquires angle information ⁇ of the X-ray tube 3 for each X-ray imaging.
  • the long image creation part 47 makes the center about the direction of movement of the FPD 4 in each of the X-ray irradiation region images G2 based on the angle information ⁇ be the X-ray irradiation position at the time of imaging.
  • the X-ray irradiation area image G2 is shifted to each other, and the respective X-ray irradiation area images G2 are connected to create a long image G3.
  • the angle of the X-ray tube 3 when the X-ray tube 3 is irradiated so that the center axis ax of the X-ray is perpendicular to the body axis direction 11 of the subject M (Z direction) is used as a reference.
  • the angle based on the angle of the X-ray tube 3 at this time is the angle information ⁇ .
  • An imaging distance D between the focal point of the X-ray tube 3 and the detection surface 4a of the FPD 4 is set.
  • the position Pa (Pa1, Pa2, Pa3,..., Pa (n)) of X-ray irradiation is calculated from angle information ⁇ ( ⁇ 1, ⁇ 2, ⁇ 3,..., ⁇ n) for each X-ray imaging.
  • the angle information ⁇ of the X-ray tube 3 may be added to the X-ray irradiation region image G2 for each X-ray imaging.
  • the X-ray irradiation position Pa is calculated by the long image creation unit 47, but may be calculated by the main control unit 17 and transferred to the long image creation unit 47.
  • the X-ray tube angle changing unit 43 corresponds to the X-ray source angle changing unit of the present invention
  • the X-ray tube angle sensor 45 corresponds to the angle information acquiring unit of the present invention.
  • the X-ray imaging apparatus 41 may be configured as follows.
  • the X-ray detector moving unit 9 may move the FPD 4 slower on average than the moving speed of the X-ray axis ax irradiated from the X-ray tube 3.
  • the angle information ⁇ of the X-ray tube 3 is calculated not by the angle information ⁇ acquired by the X-ray tube angle sensor 45 but by the X-ray imaging time interval information U and the angular velocity of the X-ray tube 3. May be.
  • the X-ray irradiation region image G2 acquired for each X-ray imaging is selected from these. It is possible to calculate the position Pa of each X-ray irradiation.
  • the moving speed of the X-ray axis ax irradiated from the X-ray tube 3 may not be constant.
  • the FPD 4 has been described as an example of the X-ray detector, but an image intensifier and a camera may be used.
  • the shooting range E of each long shooting was a slit shape for slot shooting.
  • a rectangular imaging range other than a slit shape may be used.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 FPD4がX線管3と独立して移動するX線撮影装置1において、X線照射領域判別部33は、FPD4から出力されたX線画像G1のうちX線照射領域画像G2をX線撮影ごとに識別し、X線管位置センサ31は、X線撮影ごとのX線管3の位置情報Pを取得する。長尺画像作成部35は、位置情報Pに基づいてX線照射領域画像G2をずらし、各X線照射領域画像G2を繋ぎ合わせて長尺画像G3を作成する。よって、X線管3とFPD4の相対位置が一致せずに可変しても、X線照射領域画像G2を確実に得られ、それらを精度よく繋ぎ合わせることができる。また、X線管3とFPD4の動き出しのタイミングおよび移動速度を同一にさせなくてもよく、制御が簡単となる。

Description

X線撮影装置
 本発明は、複数枚のX線画像を繋ぎ合わせて長尺画像を取得するスロット撮影などの長尺撮影を行うX線撮影装置に関する。
 従来、X線撮影装置は、被検体Mを載置する天板を有するX線撮影台と、被検体に向けてX線を照射(曝射)するX線管と、X線管と対向して配置され、被検体を透過したX線を検出するX線検出器とを備えている。X線管は、例えば、天井から懸架されたX線管保持装置で保持されている。X線検出器は、X線撮影台内であって天板を挟んでX線管と反対側の位置に設けられている。
 このX線撮影装置において、被検体の全脊椎や全下肢をX線撮影する場合、X線検出器のX線検出領域内にそれらを一度に収めることができない。そのため、長尺撮影という手法が用いられる(例えば、特許文献1および2参照)。長尺撮影は、次のように行われる。まず、被検体に沿ってX線管およびX線検出器を平行移動させながら撮影し、連続する複数枚のX線画像を得る。そして、得られた複数枚のX線画像を繋ぎ合わせることで、1枚の長尺画像を作成する。
 さらに、長尺撮影には、照射するX線をスリット状(スロット状ともいう)に絞って長尺画像を得るスロット撮影(スロットラジオグラフィ)という手法がある(例えば、特許文献3および非特許文献1参照)。この手法は、X線をスリット状に絞り、X線管とX線検出器とを平行移動させながら連続撮影してX線画像を得て、複数枚のX線画像を繋ぎ合わせることで長尺画像を得るものである。スリット状にX線を絞ることで、無限遠からの平行X線照射と見なすことができ、歪みのない長尺画像を得ることができる。また、スロット撮影では散乱X線の影響を抑えることも可能であるので、高画質な長尺画像を得ることができる。
特開2010-075245号公報 特開2010-240247号公報 国際公開第2010/050032号
「スロットラジオグラフィ」、株式会社島津製作所 URL<http://www.med.shimadzu.co.jp/safire/appli/02.html>
 しかしながら、スロット撮影する従来のX線撮影装置は、次のような問題がある。X線撮影装置は、X線管から照射されたX線の中心であるX線軸がX線検出器のX線検出領域である検出面の中心に位置するように撮影が行われる。すなわち、X線管とX線検出器の相対位置が常に等しくなるように、X線管とX線検出器は、同期して被検体の体軸方向に沿って移動される。そのため、X線管とX線検出器の動き出すタイミング、およびX線管とX線検出器との移動速度を同一にして駆動させる必要がある。特に、X線管とX線検出器がそれぞれ独立して駆動する場合、上述のタイミングおよび移動速度を高精度に一致させることは難しい。また、X線管とX線検出器は、等速移動の状態にするまでの時間が一致するように加速される。X線検出器としてフラットパネル型X線検出器(以下適宜、「FPD」と称する)を用いる場合、FPDは、一般的にX線管よりも重たい。加速時間がどちらか一方で遅いと、その遅れた分だけ撮影までの時間が長くなってしまう。このように従来装置は、複雑な制御をしなければならず、これにはACサーボモータなどの高価なモータが必要となる。そのため、装置が高価なものになってしまっている。
 なお、特許文献3には、次のような問題が開示されている。すなわち、FPDの移動は、必ずしも設定どおりにならず、設定からいくらかは位置ずれしており、被検体に対するFPDの相対移動距離が長すぎると、スリット状画像に映り込んだ被検体の透視像が予想外に位置ずれする。そして、FPDは、設定どおり移動しているものとみなして、各スリット状画像を重ね合わせるので、予想外に位置ずれした透視像が互いに重ね合わされてしまう。そこで、特許文献3では、FPDの相対移動距離を最小限にすることで、スリット状画像に映り込んだ透視像の位置ずれを小さく抑えることが提案されている。しかしながら、X線管やFPDの相対移動距離に関わらず、位置ずれの影響が抑えられた長尺画像を得ることが望まれる。
 本発明は、このような事情に鑑みてなされたものであって、長尺撮影におけるX線管とX線検出器の制御を簡単にすることが可能なX線撮影装置を提供することを目的とする。
 本発明は、このような目的を達成するために、次のような構成をとる。
 すなわち、本発明に係るX線撮影装置は、被検体に向けてX線を照射するX線源と、前記X線源を被検体の体軸に沿って移動させるX線源移動部と、前記X線源と対向して設けられ、被検体を透過したX線を検出してX線画像として出力するX線検出器と、前記X線源と独立して前記被検体の体軸に沿って前記X線検出器を移動させるX線検出器移動部と、前記X線源のX線照射側に設けられ、前記X線検出器の移動方向における前記X線検出器の検出領域よりも狭い領域に照射X線を絞るとともに、前記X線源に追従して移動するコリメータと、前記X線画像のうちコリメートされたX線が映り込んでいる領域であるX線照射領域画像を前記X線撮影ごとに判別するX線照射領域判別部と、X線撮影ごとの前記X線源の位置情報を取得する位置情報取得部と、前記位置情報に基づいて前記X線照射領域画像の各々における前記X線検出器の移動の方向についての中心が撮影時のX線入射の位置となるようにX線照射領域画像をずらし、各X線照射領域画像を繋ぎ合わせて長尺画像を作成する長尺画像作成部と、を備えることを特徴とするものである。
 本発明に係るX線撮影装置によれば、X線源は被検体に向けてX線を照射し、X線源移動部によって被検体の体軸に沿って移動されるようになっている。X線検出器は、X線源と対向して設けられ、被検体を透過したX線を検出してX線画像として出力する。X線検出器移動部は、X線源と独立して被検体の体軸に沿ってX線検出器を移動させるようになっている。また、X線源のX線照射側には、コリメータが設けられている。コリメータは、X線検出器の移動方向におけるX線検出器の検出領域よりも狭い領域に照射X線を絞るとともに、前記X線源に追従して移動するようになっている。X線照射領域判別部は、X線画像のうちコリメートされたX線が映り込んでいる領域であるX線照射領域画像を前記X線撮影ごとに判別している。また、位置情報取得部は、X線撮影ごとのX線源の位置情報を取得している。そして、長尺画像作成部は、位置情報に基づいてX線照射領域画像の各々におけるX線検出器の移動の方向についての中心が撮影時のX線入射の位置となるようにX線照射領域画像をずらし、各X線照射領域画像を繋ぎ合わせて長尺画像を作成している。
 すなわち、X線検出器がX線源と独立して移動する長尺撮影において、X線照射領域判別部は、X線画像のうちコリメートされたX線が映り込んでいる領域であるX線照射領域画像をX線撮影ごとに判別し、位置情報取得部は、X線撮影ごとのX線源の位置情報を取得する。そして、長尺画像作成部は、位置情報に基づいてX線照射領域画像の各々におけるX線検出器の移動の方向についての中心が撮影時のX線入射の位置となるようにX線照射領域画像をずらし、各X線照射領域画像を繋ぎ合わせることで、長尺画像を作成している。これらにより、X線源とX線検出器の相対位置が一致せずに可変しても、X線照射領域画像を確実に得ることができ、各X線照射領域画像を精度よく繋ぎ合わせることができる。また、X線管とX線検出器の動き出しのタイミングおよびそれらの移動速度を同一にさせる必要がなくなるので、制御が簡単となり、装置を安価にすることができる。
 また、従来のX線撮影装置は、X線源から照射されたX線のX線軸が、X線検出器のX線検出領域である検出面の中心に位置するように制御されている。そのため、長尺撮影範囲は、X線検出器の移動距離に対応する距離であった。しかしながら、本発明により、X線検出器の検出面のどの位置でX線撮影を行ってもよいので、X線検出器の移動距離が従来と同じであっても、長尺撮影範囲を広く設定することができる。
 なお、ここで特許文献3に対する効果について説明する。本発明によれば、スリット状画像に相当するX線照射領域画像をX線画像から判別している。X線照射領域画像は、X線検出器の検出領域よりも狭い領域に絞られた照射X線の領域である。そのため、所定の位置にあるX線源からX線を照射した場合、X線検出器が多少位置ずれしても、照射X線がX線検出器の検出領域内にあれば、判別して得られるX線照射領域画像は同じである。そのため、取得したX線源の位置情報に基づき、X線画像から判別したX線照射領域画像をずらして、各X線照射領域画像を繋ぎ合わせれば、X線検出器の相対移動距離に関わらず、位置ずれの影響が抑えられた長尺画像を得ることができる。
 また、本発明に係るX線撮影装置において、前記X線検出器移動部は、前記X線検出器を前記X線源よりも平均的に遅く移動させることが好ましい。ここでいう平均的に遅いとは、撮影開始から終了までの一連の動作を通じた平均で比較したときに遅いということを意味している。従来、X線源に比べて重量のあるX線検出器をX線源と同じように移動させるために高出力のモータを用いていた。しかしながら、X線検出器をX線源よりも遅く移動させることで、従来よりも出力の小さいモータを用いることができる。そのため、省電力で安価なモータを用いることができ、装置を安価にすることができる。
 また、本発明に係るX線撮影装置において、前記位置情報取得部の一例は、X線源位置センサである。これにより、実際のX線源の位置情報を得ることができるので、誤差(位置ずれ)を有する場合でも、各X線照射領域画像を精度よく繋ぎ合わせることができる。
 また、ここで特許文献3に対する効果について説明する。上述のように、所定の位置にあるX線源からX線を照射した場合、X線検出器が多少位置ずれしても、照射X線がX線検出器の検出領域内にあれば、判別して得られるX線照射領域画像は同じである。さらに、X線源の位置情報を実際のものを用いれば、X線源の位置ずれを考慮して各X線照射領域画像を繋ぎ合わせることができる。そのため、X線源やX線検出器の相対移動距離に関わらず、位置ずれの影響が抑えられた長尺画像を得ることができる。
 また、本発明に係るX線撮影装置において、前記位置情報の一例は、撮影時間間隔情報とX線源移動速度情報により算出されるものである。X線撮影時間間隔およびX線源の移動速度が一定である場合は、例えば、X線源位置センサを設ける必要がなくなる。そのため、構成が簡単となり、装置を安価にすることができる。
 また、本発明に係るX線撮影装置において、前記X線照射領域画像の一例は、前記X線画像から抽出された画像である。X線照射領域以外の画像を取り除くことができ、元のX線画像よりもデータ容量を小さくすることができる。
 また、本発明に係るX線撮影装置において、前記X線照射領域判別部は、X線撮影ごとに前記X線照射領域画像に前記位置情報を付加することが好ましい。これにより、X線照射領域画像と位置情報の管理を簡単にすることができる。例えば、長尺画像を作成するための複数枚のX線照射領域画像の順番が変わった場合でも、X線照射領域画像に付加された位置情報により、繋ぎ合わせる際のX線照射領域画像の位置を知ることができる。
 また、本発明に係るX線撮影装置において、前記X線源移動部は、前記X線源を等速移動させることが好ましい。これにより、制御が簡単であり、安定した品質の長尺画像を得ることができる。
 なお、本明細書は、次のようなX線撮影装置に係る発明も開示している。
 (1)被検体に向けてX線を照射するX線源と、前記X線源の角度を被検体の体軸に沿うように予め設定された軸周りに変更するX線源角度変更部と、前記X線源と対向して設けられ、被検体を透過したX線を検出してX線画像として出力するX線検出器と、前記X線源と独立して前記被検体の体軸に沿って前記X線検出器を移動させるX線検出器移動部と、前記X線源のX線照射側に設けられ、前記X線検出器の移動方向における前記X線検出器の検出領域よりも狭い領域に照射X線を絞るとともに、前記X線源の角度に追従して移動するコリメータと、前記X線画像のうちコリメートされたX線が映り込んでいる領域であるX線照射領域画像をX線撮影ごとに判別するX線照射領域判別部と、X線撮影ごとの前記X線源の角度情報を取得する角度情報取得部と、前記角度情報に基づいて前記X線照射領域画像の各々における前記X線検出器の移動の方向についての中心が撮影時のX線照射の位置となるようにX線照射領域画像をずらし、各X線照射領域画像を繋ぎ合わせて長尺画像を作成する長尺画像作成部と、を備えることを特徴とするX線撮影装置。
 上述の構成は、先に説明したX線源移動部の代わりにX線源角度変更部を備え、位置情報取得部の代わりに角度情報取得部を備える構成となっている。上述の構成に係るX線撮影装置によれば、X線検出器がX線源と独立して移動する長尺撮影において、X線照射領域判別部は、X線画像のうちコリメートされたX線が映り込んでいる領域であるX線照射領域画像をX線撮影ごとに判別し、角度情報取得部は、X線撮影ごとのX線源の位置情報を取得する。そして、長尺画像作成部は、角度情報に基づいてX線照射領域画像の各々におけるX線検出器の移動の方向についての中心が撮影時のX線照射の位置となるようにX線照射領域画像をずらし、各X線照射領域画像を繋ぎ合わせることで、長尺画像を作成している。これらにより、X線源とX線検出器の相対位置が一致せずに可変しても、X線照射領域画像を確実に得ることができ、各X線照射領域画像を精度よく繋ぎ合わせることができる。また、X線管とX線検出器の動き出しのタイミングおよびそれらの移動速度を同一にさせる必要がなくなるので、制御が簡単となり、装置を安価にすることができる。
 また、従来のX線撮影装置は、X線源から照射されたX線のX線軸が、X線検出器のX線検出領域である検出面の中心に位置するように制御されている。そのため、長尺撮影範囲は、X線検出器の移動距離に対応する距離であった。しかしながら、本発明により、X線検出器の検出面のどの位置でX線撮影を行ってもよいので、X線検出器の移動距離が従来と同じであっても、長尺撮影範囲を広く設定することができる。
 本発明に係るX線撮影装置によれば、X線検出器がX線源と独立して移動する長尺撮影において、X線照射領域判別部は、X線画像のうちコリメートされたX線が映り込んでいる領域であるX線照射領域画像をX線撮影ごとに判別し、位置情報取得部は、X線撮影ごとのX線源の位置情報を取得する。そして、長尺画像作成部は、位置情報に基づいてX線照射領域画像の各々におけるX線検出器の移動の方向についての中心が撮影時のX線入射の位置となるようにX線照射領域画像をずらし、各X線照射領域画像を繋ぎ合わせることで、長尺画像を作成している。これらにより、X線源とX線検出器の相対位置が一致せずに可変しても、X線照射領域画像を確実に得ることができ、各X線照射領域画像を精度よく繋ぎ合わせることができる。また、X線管とX線検出器の動き出しのタイミングおよびそれらの移動速度を同一にさせる必要がなくなるので、制御が簡単となり、装置を安価にすることができる。
実施例1に係るX線撮影装置の概略構成を示す図である。 長尺撮影の設定方法の説明に供する図である。 長尺撮影範囲、各回の撮影範囲および重なり部分等の説明に供する図である。 (a)はX線照射領域判別部の動作説明に供する図であり、(b)は(a)中のラインLの画素値のプロファイルを示す図であり、(c)はX線照射領域判別部の出力画像の一例を示す図である。 (a)~(e)X線照射領域画像および位置情報の説明に供する図である。 長尺画像作成部の動作説明に供する図である。 効果の説明に供する図である。 (a)、(b)は実施例2に係るX線撮影装置の動作説明に供する図である。 変形例に係るX線撮影装置の概略構成を示す図である。 X線照射の位置の算出方法の説明に供する図である。
 以下、図面を参照して本発明の実施例1を説明する。図1は、実施例1に係るX線撮影装置の概略構成を示す図である。
 図1を参照する。X線撮影装置1は、被検体Mを載置する天板2と、被検体Mに向けてX線を照射するX線管3と、X線管3と対向して設けられ、被検体Mを透過したX線を検出してX線画像を出力するフラットパネル型X線検出器(FPD)4とを備えている。なお、X線管3は本発明のX線源に相当し、FPD4は本発明のX線検出器に相当する。
 X線管3は、X線管制御部5により制御される。X線管制御部5は、X線管3の管電圧および管電流を発生させる高電圧発生部6を有している。X線管制御部5は、管電圧、管電流および照射時間等のX線照射条件に応じてX線管3からX線を照射させる。また、X線管3のX線照射側には、X線管3から照射されたX線を絞るコリメータ7が設けられている。
 コリメータ7は、例えば4枚のリーフ(図示しない)を備えている。この4枚のリーフは、X線管3から照射されたX線を遮蔽して、任意の大きさの矩形領域にX線を絞って照射するようになっている。図1のコリメータ7は、例えば、被検体Mの体軸方向11(X方向)であってFPD4の検出領域R1よりも狭い領域R2に照射X線を絞るようになっている。また、コリメータ7は、X線管3に追従して移動する。つまり、コリメータ7は、X線管3と一体となって移動する。
 FPD4は、検出対象(被検体M)の透過X線像が投影されるX線検出面にX線を電気信号に変換して検出する多数のX線検出素子が横・縦の2次元マトリックス状に配列されている。X線検出素子の配列マトリックスとしては、例えば横:数千×縦:数千が挙げられる。X線検出素子は、X線が直に電気信号に変換される直接変換タイプ、あるいはX線が一旦光に変換されてから更に電気信号に変換される間接変換タイプで構成される。
 また、X線撮影装置1は、X線管3を被検体Mの体軸方向11に沿って移動させるX線管移動部8と、X線管3と独立して被検体Mの体軸方向11に沿ってFPD4を移動させるX線検出器移動部9とを備えている。X線管移動部8とX線検出器移動部9は共に、被検体Mの体軸方向11(X方向)に沿ってX線管3およびFPD4を移動させる。すなわち、X線検出器移動部9は、FPD4をX線管3の移動方向と平行に移動させる。X線管移動部8は、X線管3を等速移動させ、等速移動させたX線管3からX線を照射させることにより、X線撮影する。X線管移動部8は例えばACサーボモータで構成され、X線検出器移動部9は例えばDCブラシモータで構成される。なお、X線管移動部8は本発明のX線源移動部に相当する。
 FPD4の後段には、A/D変換器13と画像処理部15と主制御部17とが順番に設けられている。A/D変換器13は、FPD4から出力されたアナログのX線画像(X線検出信号)をディジタルのX線画像に変換する。画像処理部15は、ディジタル変換されたX線画像に対して階調処理など必要な処理を行って、処理後のX線画像G1を出力する。主制御部17は、X線撮影装置1の各構成を統括的に制御し、中央演算処理装置(CPU)などで構成される。主制御部17は、例えば、X線管移動部8およびX線検出器移動部9を制御して、X線管3およびFPD4を移動させる。
 また、X線撮影装置1は、表示部19と入力部21と記憶部23とを備えている。表示部19は、モニタ等で構成される。入力部21は、キーボードやマウス等で構成される。記憶部23は、ROM(Read-only Memory)、RAM(Random-Access Memory)またはハードディスク等、取り外し可能なものを含む記憶媒体で構成される。
 長尺撮影の設定等は入力部21により行われる。図2は、長尺撮影の設定方法の説明に供する図である。図2に示すように、符号Aと符号Bとの間からなる長尺撮影範囲Sを設定する。符号Aおよび符号Bの位置の設定は、コリメータ7に設けられたコリメータランプやレーザマーカなどの投光器(図示しない)により、可視光を照射させながら行う。また、X線管3とFPD4の検出面4aと間からなる撮影距離Dを設定し、FPD4の検出面4aと被検体Mの任意の撮影面Maと間の距離dを設定することで、X線管3やFPD4等における長尺撮影の各回の撮影位置を設定する。図3は、長尺撮影範囲S、各回の撮影範囲E、および重なり部分OL等の説明に供する図である。隣接する2枚の撮影範囲Eには、重なり部分OLが設定される。
 次に、長尺画像を作成するための構成について説明する。図1に戻る。X線撮影装置1は、さらに、被検体Mの体軸方向11におけるX線撮影ごとのX線管3の位置情報を取得するX線管位置センサ31と、FPD4で取得したX線画像G1に対して画像処理を行ってX線が照射されたX線照射領域画像G2(図4(a)参照)を判別するX線照射領域判別部33と、X線管3の位置情報Pに基づいてX線照射領域画像G2の各々におけるFPD4の移動の方向についての中心が撮影時のX線入射の位置となるようにX線照射領域画像G2をずらし、各X線照射領域画像G2を繋ぎ合わせて長尺画像G3を作成する長尺画像作成部35とを備えている。なお、X線管位置センサ31は本発明の位置情報取得部に相当する。
 X線管位置センサ31は、被検体Mの体軸方向11におけるX線管3の位置情報PをX線撮影ごとに取得する。このX線管位置センサ31によるX線管3の位置情報Pは、誤差を含む実際の位置情報Pである。X線管位置センサ31は、リニアエンコーダ等により構成される。なお、図2において、1回目、2回目、3回目のX線撮影の位置情報(またはその位置)Pをそれぞれ符号P1,P2,P3で示し、n回目の位置情報Pを符号Pnで示す。なお、1回目,2回目,3回目,…,n回目の位置情報P1,P2,P3,…Pnは、特に区別しないときは符号Pで表すものとする。
 X線照射領域判別部33は、X線画像G1のうち、スリット状にコリメートされたX線が映り込んでいる領域であるX線照射領域画像G2をX線撮影ごとに判別する。図4(a)において、X線画像G1は、例えばFPD4の全検出領域でX線を検出して得られた画像とする。X線照射領域判別部33は、このX線画像G1のうちX線照射領域画像G2を判別する。なお、図4(a)において、画像NIは、コリメータ7のリーフで遮蔽された領域を示す。
 図4(b)は、図4(a)中のラインLの画素値(輝度)のプロファイルPFを示す図である。X線照射領域画像G2の判別は、例えば、X線強度を示す画素値が大きく変化する位置を検出して境界とすることにより行われる。具体的な処理としては、例えば、エッジ検出処理等の既存の手法が用いられる。なお、X線画像G1は、FPD4の全検出領域で検出されなくともよいが、本発明の効果を得るためにX線照射領域画像G2より大きな画像である必要がある。
 図4(c)は、X線照射領域判別部33の出力画像の一例を示す図である。本実施例において、図4(c)に示すように、X線照射領域判別部33は、X線画像G1からX線照射領域画像G2を切り出して抽出する。すなわち、X線照射領域判別部33は、X線照射領域画像G2のみを出力する。
 また、X線照射領域判別部33は、X線撮影ごとのX線照射領域画像G2にX線管3の位置情報Pを付加する。すなわち、X線照射領域画像G2と、そのX線照射領域画像G2を取得した際のX線管3の位置情報Pとを関係付けし、例えばX線照射領域画像G2にX線管3の位置情報Pを含ませるようにする。この関係付けの処理を各X線照射領域画像G2ごとに行う。なお、X線管3の位置情報PはX線照射領域画像G2に付加されていたが、X線照射領域画像G2と位置情報Pは、個別であってもよい。
 実施例1の構成によれば、制御を単純にする目的でX線管3とFPD4との位置関係の変動をある程度許容する構成となっている。であるとすれば、X線管3とFPD4とが同じ挙動で移動しないことになってしまう。この考えで行くと、X線照射領域画像G2を繋ぎ合わせて長尺画像G3を取得するときに、位置ずれが生じるのではないかとも思われる。しかし、本発明の構成によれば、このような事情があっても長尺画像G3に影響はない。
 図5は、その理由を説明している。図5(a)は、コリメータ7で絞られた照射X線がFPD4の検出面4aの中央に位置した状態を示している。いわば、X線管3とFPD4とが理想通りに移動している場合である。一方、図5(b)は、図5(a)のFPD4に対し、紙面右側にFPD4がずれている状態を示しており、図5(a)と同じ形状に絞られた照射X線は、検出面4aの端側に位置している。いわば、X線管3とFPD4とが理想から外れた移動をしている場合である。
 図5(a)および図5(b)のX線管3は共に、例えば、位置情報P1に対応する位置P1にある。図5(a)および図5(b)の状態でそれぞれX線撮影して取得したX線画像G1を図5(c)および図5(d)に示す。X線照射領域判別部33は、X線画像G1からX線照射領域画像G2を判別する。図5(e)には、判別されたX線照射領域画像G2を示す。つまり、X線管3が、図5(a)および図5(b)で共に同じ、位置P1で撮影した時は、撮影する位置P1が同じであるので、FPD4の検出面4aのどの位置にX線が照射されても、取得されるX線照射領域画像G2は結局、同じである。だとすれば、X線照射領域画像G2とX線管3の位置情報が示す位置との空間的な関係は、X線管3に対するFPD4の位置ずれによっては変化しないのである。したがって、X線照射領域画像G2を関連付けられた位置情報Pに基づいてずらしながら長尺画像を生成すれば、ずれのない画像になるというわけである。
 長尺画像作成部35は、X線照射領域の形状を抽出した断片であるX線照射領域画像G2の各々をX線管3の位置情報Pに基づいてずらし、各X線照射領域画像G2を繋ぎ合わせて長尺画像を作成する。長尺画像作成部35は、図3の長尺撮影範囲Sの各回の撮影範囲Eの順番で配置されるように、各X線照射領域画像G2を配置する。具体的には、X線管位置センサ31で取得した各回の位置情報P(P1,P2,P3,…,Pn)に基づき、位置基準となる位置情報P1と各回のX線管3の位置情報P2,P3,…,Pnとの相対距離を算出する。算出した相対距離を用いて各位置情報P(P1,P2,P3,…,Pn)に対応するX線照射領域画像G2をずらして配置する。配置した位置で複数枚のX線照射領域画像G2を繋ぎ合わせて1枚の長尺画像を生成する。
 なお、各X線照射領域画像G2をずらして配置する際に、相対距離は、各X線照射領域画像G2の基準線SLを基準とする(図6参照)。基準線SLは、図4(c)に示すように、例えば、X線照射領域判別部33や主制御部17によって、X線照射領域画像G2の幅R2が1/2となる値を算出する。また、仮に、判別されたX線照射領域画像G2の端部Eg1,Eg2が一直線でない場合は、基準線SLは、幅R2の1/2を算出した後のうねりのある線を直線化して求めてもよいし、また、うねりのある端部Eg1,Eg2を直線化してから幅R2の1/2を算出して求めてもよい。直線化は、例えば、統計値(平均値、最大値、最小値、最頻値、または中央値)を用いて行う。なお、図6では、図示の便宜上、X線照射領域画像G2の重なり部分OLを示すために図を一部省いている。
 次に、X線撮影装置1の動作について説明する。まず、長尺撮影条件を設定する。長尺撮影条件は、例えば長尺撮影範囲S、各回の撮影範囲E、重なり部分OL、および撮影回数等を設定する。この設定は、入力部21等によって行われる。
 各回の撮影位置は、例えば、次のように設定される。スリット状に成形されたX線が照射されるFPD4の検出面4aのうち、FPD4の移動方向の領域R2を100mmと設定し、隣接する2つのX線照射領域が重なる重なり部分OLを10mmと設定する。この場合、X線管3の相対的な移動距離は、100mm-10mm=90mmとなる。すなわち、X線管3は、90mm移動するごとにX線撮影される。したがって、1枚目の撮影位置を基準として0mmとすると、2枚目の撮影位置は90mm、3枚目の撮影位置は180mmとなる。
 X線撮影を実行する。主制御部17は、長尺撮影条件に従い、X線管移動部8およびX線検出器移動部9の移動制御等を実行する。X線管3およびFPD4は、独立して平行移動し、複数回、つまり各撮影位置でX線管3からX線を照射する。X線管3から照射されたX線は、被検体Mを透過してFPD4の検出面4aに入射する。FPD4は、入射したX線を検出してX線画像G1を出力する。出力されたX線画像(X線検出信号)G1は、A/D変換器13によりディジタル化される。ディジタル化されたX線画像は、画像処理部15により必要な処理が行われた後、記憶部23等に記憶される。
 また、各撮影位置でX線撮影を行うごとに、X線管位置センサ31は、X線管3の移動方向における座標情報であるX線管3の実際の位置情報Pを取得(検出)して、X線照射領域判別部33または記憶部23に転送する。
 記憶部23等に記憶されたX線画像G1は、X線照射領域判別部33に転送される。X線照射領域判別部33は、X線画像G1のうちスリット状に絞られたX線が照射された領域を判別する。そして、本実施例では、X線照射領域判別部33は、判別したX線照射領域を切り出して抽出したX線照射領域画像G2を出力して、記憶部23等に記憶させる。この際、X線照射領域判別部33は、X線管位置センサ31で取得したX線撮影時のX線管3の位置情報Pを、この位置情報Pと対応するX線照射領域画像G2に付加する。なお、X線照射領域画像G2への位置情報Pの付加は、X線照射領域判別部33に限定されず、例えば、記憶部23に記憶されるX線照射領域画像G2に対して主制御部17が行ってもよい。
 長尺撮影範囲Sの全てのX線撮影が完了する。長尺画像作成部35は、記憶部23等に記憶された各X線照射領域画像G2と、各X線照射領域画像G2に付加されたX線管3の位置情報Pに基づき、X線照射領域画像G2を相対的にずらして重ね合わせることで長尺画像G3を作成する(図6参照)。作成された長尺画像G3は、表示部19に表示させたり、記憶部23に記憶させたりする。
 本実施例によれば、X線管3は被検体Mに向けてX線を照射し、X線管移動部8によって被検体Mの体軸方向11に沿って移動されるようになっている。FPD4は、X線管3と対向して設けられ、被検体Mを透過したX線を検出してX線画像G1として出力する。X線検出器移動部9は、X線管3と独立して被検体Mの体軸方向11に沿ってFPD4を移動させるようになっている。また、X線管3のX線照射側には、コリメータ7が設けられている。コリメータ7は、FPD4の移動方向におけるFPD4の検出領域R1よりも狭い領域R2に照射X線を絞るとともに、X線管3に追従して移動するようになっている。X線照射領域判別部33は、X線画像G1のうちコリメートされたX線が映り込んでいる領域であるX線照射領域画像G2をX線撮影ごとに判別している。また、X線管位置センサ31は、X線撮影ごとのX線管3の位置情報Pを取得している。そして、長尺画像作成部35は、位置情報Pに基づいてX線照射領域画像G2の各々におけるFPD4の移動の方向についての中心が撮影時のX線入射の位置となるようにX線照射領域画像G2をずらし、各X線照射領域画像G2を繋ぎ合わせて長尺画像G3を作成している。
 すなわち、FPD4がX線管3と独立して移動する長尺撮影において、X線照射領域判別部33は、X線画像G1のうちコリメートされたX線が映り込んでいる領域であるX線照射領域画像G2をX線撮影ごとに判別し、X線管位置センサ31は、X線撮影ごとのX線管3の位置情報Pを取得する。そして、長尺画像作成部35は、位置情報Pに基づいてX線照射領域画像G2の各々におけるFPD4の移動の方向についての中心が撮影時のX線入射の位置となるようにX線照射領域画像G2をずらし、各X線照射領域画像G2を繋ぎ合わせることで、長尺画像G3を作成している。これらにより、X線管3とFPD4の相対位置が一致せずに可変しても、X線照射領域画像G2を確実に得ることができ、各X線照射領域画像G2を精度よく繋ぎ合わせることができる。また、X線管3とFPD4の動き出しのタイミングおよびそれらの移動速度を同一にさせる必要がなくなるので、制御が簡単となり、装置を安価にすることができる。
 例えば、FPD4を移動させるX線検出器移動部9のモータを、高価なXCサーボモータではなく、例えばDCブラシモータなどの比較的低価格のモータを用いることができる。また、X線管3とFPD4の動き出しのタイミングおよびそれらの移動速度を同一にさせる必要がなくなる。そのため、従来では、X線管移動部8およびX線検出器移動部9に同時に与えていた動作指令を、X線管移動部8のみに与えて、例えば、X線検出器移動部9には、1回目のX線撮影後に動作指令を与えることができる。
 また、従来のX線撮影装置は、X線管3から照射されたX線のX線軸axが、FPD4のX線検出領域である検出面4aの中心に位置するように制御されている。そのため、長尺撮影範囲Sは、図7に示すように、FPD4の移動距離に対応する距離J1であった。しかしながら、本発明により、FPD4の検出面4aのどの位置でX線撮影を行ってもよいので、FPD4の移動距離が従来と同じであっても、図7の距離J2のように、長尺撮影範囲Sを広く設定することができる。
 また、X線管3の位置情報Pを取得するために、X線管位置センサ31を用いている。これにより、実際のX線管3の位置情報Pを得ることができるので、誤差を有する場合でも、各X線照射領域画像G2を精度よく繋ぎ合わせることができる。
 また、X線照射領域画像G2は、X線画像G1から抽出された画像である。X線照射領域画像G2以外の画像を取り除くことができ、元のX線画像G1よりもデータ容量を小さくすることができる。
 また、X線照射領域判別部33は、X線撮影ごとにX線照射領域画像G2に位置情報Pを付加する。これにより、X線照射領域画像G2と位置情報Pの管理を簡単にすることができる。例えば、長尺画像G3を作成するための複数枚のX線照射領域画像G2の順番が変わった場合でも、X線照射領域画像G2に付加された位置情報Pにより、繋ぎ合わせる際のX線照射領域画像G2の位置を知ることができる。
 また、X線管移動部8は、X線管3を等速移動させている。これにより、制御が簡単であり、安定した品質の長尺画像G3を得ることができる。
 なお、ここで特許文献3に対する効果について説明する。本実施例によれば、スリット状画像に相当するX線照射領域画像G2をX線画像G1から判別している。X線照射領域画像G2は、FPD4の検出領域R1よりも狭い領域R2に絞られた照射X線の領域である。そのため、所定の位置にあるX線管3からX線を照射した場合、FPD4が多少位置ずれしても、照射X線がFPD4の検出領域R1内にあれば、判別して得られるX線照射領域画像G2は同じである。さらに、X線管3の位置情報Pを実際のものを用いれば、X線管3の位置ずれを考慮して各X線照射領域画像G2を繋ぎ合わせることができる。そのため、取得したX線管3の位置情報Pに基づき、X線画像G1から判別したX線照射領域画像G2をずらして、各X線照射領域画像G2を繋ぎ合わせれば、X線管3やFPD4の相対移動距離に関わらず、位置ずれの影響が抑えられた長尺画像G3を得ることができる。
 次に、図面を参照して本発明の実施例2を説明する。図8(a)および図8(b)は実施例2に係るX線撮影装置の動作説明に供する図である。なお、実施例1と重複する構成の説明は省略する。
 上述した実施例1では、FPD4がX線管3と独立して移動することに対し、特に、FPD4の移動方法について特定していなかった。そこで、実施例2では、例えば、X線検出器移動部9は、FPD4をX線管3よりも遅く移動させるようにする。
 X線検出器移動部9は、FPD4をX線管3よりも平均的に遅く移動させる。平均的に遅くとは、FPD4の移動速度がX線管3よりも瞬間的に遅くなることを意味するものではなく、長尺撮影の開始から終了までに移動するX線管3およびFPD4の移動距離を通じての平均速度が遅いことを意味する。平均的に遅く移動させることは、次のように動作させることにより、実行することができる。例えば、図8(a)のように、撮影開始時には、X線軸axを含むX線照射領域がFPD4の検出面4aの一端側である検出面4aの移動方向と反対側の領域に位置するようにする。そして、図8(b)のように、撮影終了時には、X線照射領域がFPD4の検出面4aの他端側である検出面4aの移動方向側の領域に位置するようにする。
 実施例1によると、FPD4の検出面4a内にX線が収まるのであれば、その検出面4aのどの位置でX線撮影を行ってもよい。X線照射しながらX線管3が予め設定された移動距離を移動する間に、FPD4を予め設定された移動距離を移動させるようにする。つまり、FPD4の検出面4aを有効に利用すれば、FPD4の移動量を抑えることができる。例えば、X線撮影におけるX線管3の移動距離T1が、FPD4の検出面4aの大きさR1とFPD4の移動距離T2とを加算した値と等しい関係(T1=R1+T2)であるとする。この場合、FPD4の移動量を最小とすることができる。ただし、X線の広がりである、X線照射領域の幅R2を説明の便宜上考慮していないものとする。
 本実施例によれば、X線検出器移動部9は、FPD4をX線管3より平均的に遅く移動させる。従来、X線管3に比べて重量のあるFPD4をX線管3と同じように移動させるために高出力のモータを用いていた。しかしながら、FPD4をX線管3よりも遅く移動させることで、従来よりも出力の小さいモータを用いることができる。そのため、省電力で安価なモータを用いることができ、X線撮影装置1を安価なものにすることができる。
 次に、図面を参照して本発明の実施例3を説明する。なお、各実施例と重複する構成の説明は省略する。
 上述した各実施例では、X線撮影ごとのX線管3の位置情報PをX線管位置センサ31により取得して、取得した位置情報Pを、そのX線撮影で抽出したX線照射領域画像G2に付加していた。しかしながら、例えば、X線撮影時間間隔が一定でかつ、X線管3の移動速度が一定の場合は、X線管位置センサ31を備えて、X線管3の位置情報Pを実際に測定しなくともよい。
 すなわち、主制御部17は、X線撮影前またはX線撮影後に、長尺画像作成部35に対して、X線撮影時間間隔情報UおよびX線管移動速度情報Vを通知する。長尺画像作成部35は、X線撮影時間間隔情報UおよびX線管移動速度情報V、撮影回数Nから各回の撮影する位置P(=U×V×N)を算出する。つまり、X線撮影の時間間隔とX線管3の移動速度が予めわかっていれば、X線撮影ごとX線管3の撮影位置Pを知ることができる。その各回の撮影する位置Pの情報であるX線管3の位置情報Pに基づき、長尺画像作成部35は、長尺画像G3を作成する。なお、主制御部17が、X線撮影時間間隔情報UおよびX線管移動速度情報Vから各回の撮影位置Pの情報であるX線管3の位置情報Pを算出し、長尺画像作成部35に通知するようにしてもよい。なお、X線管移動速度情報Vは本発明のX線源移動速度情報に相当する。
 本実施例によれば、位置情報Pは、撮影時間間隔情報UとX線管移動速度情報Vにより算出されるものである。X線撮影時間間隔UおよびX線管3の移動速度が一定である場合は、例えば、X線管位置センサ31を設ける必要がなくなる。そのため、構成が簡単となり、装置を安価にすることができる。
 本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
 (1)上述した各実施例では、図1に示すように、被検体Mを天板2に載置させて、天板2の上下に対向配置されたX線管3およびFPD4によって、長尺撮影のための複数枚のX線画像G1を撮影していた。しかしながら、天板2に代えて衝立(スタンドともいう)を用いてもよい。衝立に沿って被検体Mを立位で配置し、衝立の前後(横方向)に対向配置されたX線管3およびFPD4によって、長尺撮影をする。
 (2)上述した各実施例および変形例(1)において、X線管3およびFPD4のうち少なくとも一方は、等速移動でなくともよい。例えば、FPD4は、加速移動または減速移動してもよい。また、FPD4は、等速移動、加速移動および減速移動のうち少なくとも2つを組み合わせた移動をしてもよい。
 (3)上述した各実施例および各変形例では、図4(c)に示すように、X線照射領域判別部33は、X線画像G1からX線照射領域画像G2を切り出して抽出していた。しかしながら、例えば、X線照射領域判別部33は、X線照射領域画像G2を判別し、X線が照射されていない領域の画像NIを切り出さないで、画像NIを「情報なし」としたX線画像を出力してもよい。また、画像NIをそのままの状態で出力してもよく、画像NIのそのままの状態画像に加わるノイズを低減した後で出力してもよい。
 (4)上述した各実施例および各変形例では、X線照射領域判別部33は、画像処理部15と個別に設けられていた。しかしながら、画像処理部15は、X線照射領域判別部33を有していてもよい。
 (5)上述した各実施例および各変形例では、X線管3およびFPD4を被検体Mの体軸方向11に対して平行移動ながら長尺撮影の各回のX線撮影を行い、X線照射領域画像G2およびX線管3の位置情報Pを取得していた。しかしながら、X線管3の向きを変更しながらX線を照射するようにしてもよい。すなわち、X線管3は、被検体Mの体軸方向11に沿うように、予め設定された軸(例えば、水平軸)周りに首振り運動する。
 図9を参照する。X線撮影装置41は、まず、図1のX線撮影装置1と比べて、X線管移動部8に代えてX線管角度変更部43を、また、X線管位置センサ31に代えてX線管角度センサ45を備えている。X線管角度変更部43は、X線管3の角度を被検体Mの体軸方向11に沿うように予め設定された軸周りに変更する。X線管角度センサ45は、X線撮影ごとのX線管3の角度情報θを取得する。そして、本変形例では、長尺画像作成部47は、角度情報θに基づいてX線照射領域画像G2の各々におけるFPD4の移動の方向についての中心が撮影時のX線照射の位置になるようにX線照射領域画像G2をずらし、各X線照射領域画像G2を繋ぎ合わせて長尺画像G3を作成する。
 図10を参照して角度情報θに基づいてX線照射領域画像G2をずらす位置の算出方法について説明する。まず、X線の中心軸axが被検体Mの体軸方向11に対して直交する方向(Z方向)になるようにX線管3から照射されるときのX線管3の角度を基準とする。このときのX線管3の角度を基準とした角度が角度情報θである。また、X線管3の焦点とFPD4の検出面4aまでの撮影距離Dが設定されている。角度情報θおよび撮影距離DからX線照射の位置Pa(=D×tanθ)が算出される。X線照射の位置Pa(Pa1,Pa2,Pa3,…,Pa(n))は、X線撮影ごとの角度情報θ(θ1,θ2,θ3,…、θn)により算出される。なお、X線管3の角度情報θを、X線撮影ごとのX線照射領域画像G2に付加してもよい。また、X線照射の位置Paは、長尺画像作成部47によって算出されるが、主制御部17で算出して長尺画像作成部47に転送してもよい。
 なお、X線管角度変更部43が本発明のX線源角度変更部に相当し、X線管角度センサ45が本発明の角度情報取得部に相当する。
 また、X線撮影装置41を次のような構成としてもよい。X線検出器移動部9は、FPD4をX線管3から照射されるX線軸axの移動速度よりも平均的に遅く移動させてもよい。また、X線管3の角度情報θは、X線管角度センサ45により取得される角度情報θではなく、X線撮影時間間隔情報Uと、X線管3の角速度により算出されるものであってもよい。すなわち、X線撮影時間間隔が一定でかつ、X線管3から照射されるX線軸axの移動速度が一定の場合、これらから、X線撮影ごとに取得されるX線照射領域画像G2をどれだけずらせばよいか、各回のX線照射の位置Paを算出することができる。なお、X線管3から照射されるX線軸axの移動速度は一定でなくてもよい。
 本変形例によれば、X線管3の向きを変えながら長尺撮影することが実施例1と異なるものの、実施例1と同様の効果を有する。
 (6)上述した各実施例および各変形例では、X線検出器の一例として、FPD4を用いて説明したが、イメージインテンシファイアおよびカメラであってもよい。
 (7)上述した各実施例および各変形例では、図3に示すように、長尺撮影の各回の撮影範囲Eは、スロット撮影するためスリット状であった。例えば、スリット状以外の矩形の撮影範囲であってもよい。
 1,41 … X線撮影装置
 3  … X線管
 4  … フラットパネル型X線検出器(FPD)
 4a … 検出面
 7  … コリメータ
 8  … X線管移動部
 9  … X線検出器移動部
 11 … 体軸方向
 17 … 主制御部
 31 … X線管位置センサ
 33 … X線照射領域判別部
 35,47 … 長尺画像作成部
 43 … X線管角度変更部
 45 … X線管角度センサ
 M  … 被検体
 R1 … 検出領域
 R2 … 狭い領域
 G1 … X線画像
 G2 … X線照射領域画像
 G3 … 長尺画像
 P(P1,P2,P3,…,Pn) … 位置情報(位置)
 SL … 基準線

Claims (7)

  1.  被検体に向けてX線を照射するX線源と、
     前記X線源を被検体の体軸に沿って移動させるX線源移動部と、
     前記X線源と対向して設けられ、被検体を透過したX線を検出してX線画像として出力するX線検出器と、
     前記X線源と独立して前記被検体の体軸に沿って前記X線検出器を移動させるX線検出器移動部と、
     前記X線源のX線照射側に設けられ、前記X線検出器の移動方向における前記X線検出器の検出領域よりも狭い領域に照射X線を絞るとともに、前記X線源に追従して移動するコリメータと、
     前記X線画像のうちコリメートされたX線が映り込んでいる領域であるX線照射領域画像を前記X線撮影ごとに判別するX線照射領域判別部と、
     X線撮影ごとの前記X線源の位置情報を取得する位置情報取得部と、
     前記位置情報に基づいて前記X線照射領域画像の各々における前記X線検出器の移動の方向についての中心が撮影時のX線入射の位置となるようにX線照射領域画像をずらし、各X線照射領域画像を繋ぎ合わせて長尺画像を作成する長尺画像作成部と、
     を備えることを特徴とするX線撮影装置。
  2.  請求項1に記載のX線撮影装置において、
     前記X線検出器移動部は、前記X線検出器を前記X線源よりも平均的に遅く移動させることを特徴とするX線撮影装置。
  3.  請求項1または2に記載のX線撮影装置において、
     前記位置情報取得部は、X線源位置センサであることを特徴とするX線撮影装置。
  4.  請求項1または2に記載のX線撮影装置において、
     前記位置情報は、撮影時間間隔情報とX線源移動速度情報により算出されるものであることを特徴とするX線撮影装置。
  5.  請求項1から4のいずれかに記載のX線撮影装置において、
     前記X線照射領域画像は、前記X線画像から抽出された画像であることを特徴とするX線撮影装置。
  6.  請求項1から5のいずれかに記載のX線撮影装置において、
     前記X線照射領域判別部は、X線撮影ごとに前記X線照射領域画像に前記位置情報を付加することを特徴とするX線撮影装置。
  7.  請求項1から6のいずれかに記載のX線撮影装置において、
     前記X線源移動部は、前記X線源を等速移動させることを特徴とするX線撮影装置。
PCT/JP2013/075045 2012-10-02 2013-09-17 X線撮影装置 WO2014054417A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13843543.3A EP2904973B1 (en) 2012-10-02 2013-09-17 X-ray photographing device
CN201380051885.1A CN104717923B (zh) 2012-10-02 2013-09-17 X射线摄影装置
US14/432,894 US9700277B2 (en) 2012-10-02 2013-09-17 X-ray apparatus
JP2014539658A JP6102935B2 (ja) 2012-10-02 2013-09-17 X線撮影装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-220433 2012-10-02
JP2012220433 2012-10-02

Publications (1)

Publication Number Publication Date
WO2014054417A1 true WO2014054417A1 (ja) 2014-04-10

Family

ID=50434747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075045 WO2014054417A1 (ja) 2012-10-02 2013-09-17 X線撮影装置

Country Status (5)

Country Link
US (1) US9700277B2 (ja)
EP (1) EP2904973B1 (ja)
JP (1) JP6102935B2 (ja)
CN (1) CN104717923B (ja)
WO (1) WO2014054417A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016043129A (ja) * 2014-08-25 2016-04-04 株式会社東芝 X線診断装置
CN106456082A (zh) * 2014-06-06 2017-02-22 皇家飞利浦有限公司 用于脊椎层面的成像系统
JP2018019874A (ja) * 2016-08-03 2018-02-08 キヤノン株式会社 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム
JP2018114190A (ja) * 2017-01-20 2018-07-26 株式会社島津製作所 X線透視装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327365B2 (ja) * 2015-01-09 2018-05-23 株式会社島津製作所 放射線撮影装置
JP6072096B2 (ja) * 2015-01-30 2017-02-01 キヤノン株式会社 放射線撮影システム、制御方法、制御方法、及びプログラム
CN107708562A (zh) * 2015-07-06 2018-02-16 株式会社岛津制作所 X射线摄影装置
JP6654397B2 (ja) * 2015-10-09 2020-02-26 株式会社イシダ X線検査装置
JP6707643B2 (ja) * 2015-12-21 2020-06-10 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 走査取得中の合成マンモグラムの計算及び表示
DE102016205176A1 (de) * 2016-03-30 2017-10-05 Siemens Healthcare Gmbh Vorrichtung und Verfahren zur Erstellung einer Röntgenpanoramaaufnahme
JP6658578B2 (ja) * 2017-01-30 2020-03-04 株式会社島津製作所 X線撮影装置
EP3513729A1 (en) * 2018-01-18 2019-07-24 Koninklijke Philips N.V. N-image stitching with minimal traverse path of a flat panel detector
JP2019146679A (ja) * 2018-02-26 2019-09-05 株式会社島津製作所 X線撮影装置
US11071507B2 (en) 2018-12-27 2021-07-27 Medtronic Navigation, Inc. System and method for imaging a subject
US10881371B2 (en) 2018-12-27 2021-01-05 Medtronic Navigation, Inc. System and method for imaging a subject
US10888294B2 (en) 2018-12-27 2021-01-12 Medtronic Navigation, Inc. System and method for imaging a subject
DE102020200959A1 (de) * 2019-02-25 2020-08-27 Siemens Healthcare Gmbh Aufnahme eines Panoramadatensatzes eines Untersuchungsobjektes mittels eines beweglichen medizinischen Röntgengerätes
DE102020204172A1 (de) * 2020-03-31 2021-09-30 Siemens Healthcare Gmbh Verfahren zur Aufnahme einer erweiterten Röntgenaufnahme
DE102020209714A1 (de) * 2020-07-31 2022-02-03 Siemens Healthcare Gmbh Verfahren zur abschnittsweisen Aufnahme einer Röntgenaufnahme

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260027A (ja) * 2006-03-28 2007-10-11 Hitachi Medical Corp 放射線撮影装置
JP2007275228A (ja) * 2006-04-05 2007-10-25 Shimadzu Corp X線撮像装置
JP2008000220A (ja) * 2006-06-20 2008-01-10 Toshiba Corp X線診断装置、その制御方法及びプログラム
JP2010075245A (ja) 2008-09-24 2010-04-08 Fujifilm Corp 放射線画像撮影装置
WO2010050032A1 (ja) 2008-10-30 2010-05-06 株式会社島津製作所 放射線撮影装置
JP2010227372A (ja) * 2009-03-27 2010-10-14 Shimadzu Corp X線撮影装置
JP2010240247A (ja) 2009-04-08 2010-10-28 Shimadzu Corp X線撮影装置
JP2011050494A (ja) * 2009-08-31 2011-03-17 Fujifilm Corp 放射線画像取得装置
WO2011043458A1 (ja) * 2009-10-09 2011-04-14 株式会社 日立メディコ 医用画像処理装置、x線撮影装置、医用画像処理プログラム、及び医用画像処理方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4779699B2 (ja) * 2006-02-24 2011-09-28 株式会社島津製作所 X線撮影装置
JP4682898B2 (ja) 2006-03-30 2011-05-11 株式会社島津製作所 X線撮影装置
JP2008125981A (ja) * 2006-11-24 2008-06-05 Shimadzu Corp 一般撮影システム
US7555100B2 (en) * 2006-12-20 2009-06-30 Carestream Health, Inc. Long length imaging using digital radiography
JPWO2010109531A1 (ja) * 2009-03-26 2012-09-20 株式会社島津製作所 放射線撮影装置
JP5590820B2 (ja) * 2009-05-18 2014-09-17 キヤノン株式会社 制御装置、制御方法およびプログラム
US8213572B2 (en) * 2009-08-11 2012-07-03 Minnigh Todd R Retrofitable long-length digital radiography imaging apparatus and method
JP4516626B1 (ja) * 2009-09-28 2010-08-04 株式会社吉田製作所 歯科用x線撮影装置
JP5438493B2 (ja) * 2009-12-22 2014-03-12 富士フイルム株式会社 放射線撮影システム及びその補助装置
JP5702586B2 (ja) * 2010-02-04 2015-04-15 富士フイルム株式会社 放射線撮影システム
WO2011118236A1 (ja) * 2010-03-26 2011-09-29 富士フイルム株式会社 放射線画像撮影装置、放射線画像撮影方法、体動量測定方法およびプログラム
JP5595188B2 (ja) 2010-08-31 2014-09-24 キヤノン株式会社 画像処理装置および方法
JP5527157B2 (ja) * 2010-10-20 2014-06-18 株式会社島津製作所 放射線撮影装置
EP2497424A1 (en) * 2011-03-07 2012-09-12 Agfa Healthcare Radiographic imaging method and apparatus.
EP2535866A1 (en) * 2011-06-16 2012-12-19 Agfa HealthCare Method to detect and indicate inaccuracies in long length imaging
JP5460666B2 (ja) * 2011-09-27 2014-04-02 富士フイルム株式会社 放射線撮影システムおよび放射線撮影システムの長尺撮影方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260027A (ja) * 2006-03-28 2007-10-11 Hitachi Medical Corp 放射線撮影装置
JP2007275228A (ja) * 2006-04-05 2007-10-25 Shimadzu Corp X線撮像装置
JP2008000220A (ja) * 2006-06-20 2008-01-10 Toshiba Corp X線診断装置、その制御方法及びプログラム
JP2010075245A (ja) 2008-09-24 2010-04-08 Fujifilm Corp 放射線画像撮影装置
WO2010050032A1 (ja) 2008-10-30 2010-05-06 株式会社島津製作所 放射線撮影装置
JP2010227372A (ja) * 2009-03-27 2010-10-14 Shimadzu Corp X線撮影装置
JP2010240247A (ja) 2009-04-08 2010-10-28 Shimadzu Corp X線撮影装置
JP2011050494A (ja) * 2009-08-31 2011-03-17 Fujifilm Corp 放射線画像取得装置
WO2011043458A1 (ja) * 2009-10-09 2011-04-14 株式会社 日立メディコ 医用画像処理装置、x線撮影装置、医用画像処理プログラム、及び医用画像処理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Slot Radiography", SHIMADZU, Retrieved from the Internet <URL:http://www.med.shimadzu.co.jp/safire/appli/02.html>
See also references of EP2904973A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106456082A (zh) * 2014-06-06 2017-02-22 皇家飞利浦有限公司 用于脊椎层面的成像系统
CN106456082B (zh) * 2014-06-06 2020-11-24 皇家飞利浦有限公司 用于脊椎层面的成像系统
JP2016043129A (ja) * 2014-08-25 2016-04-04 株式会社東芝 X線診断装置
JP2018019874A (ja) * 2016-08-03 2018-02-08 キヤノン株式会社 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム
JP2018114190A (ja) * 2017-01-20 2018-07-26 株式会社島津製作所 X線透視装置

Also Published As

Publication number Publication date
EP2904973A4 (en) 2015-10-28
JPWO2014054417A1 (ja) 2016-08-25
JP6102935B2 (ja) 2017-03-29
US20150250441A1 (en) 2015-09-10
EP2904973A1 (en) 2015-08-12
EP2904973B1 (en) 2016-12-21
US9700277B2 (en) 2017-07-11
CN104717923B (zh) 2017-07-25
CN104717923A (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
JP6102935B2 (ja) X線撮影装置
RU2615151C2 (ru) Фильтрация мультифокального рентгеновского излучения
WO2010113415A1 (ja) X線撮影装置及びその制御方法、コンピュータプログラム
JP6150464B2 (ja) ステレオx線撮影装置
JP2009512502A (ja) 画像化システム及び関連する技術
JP2006297111A (ja) X線装置用の絞り装置およびx線装置用の絞り装置の作動方法。
WO2011104011A3 (de) Röntgenröhre sowie system zur herstellung von röntgenbildern für die zahnmedizinische oder kieferorthopädische diagnostik
US8983029B2 (en) Radiographic apparatus and method for the same
RU2015123316A (ru) Динамическое уменьшение дозы при обследовании с помощью рентгеновских лучей
JP6408003B2 (ja) 可変遮蔽プレートを有する走査x線イメージングデバイス及び当該デバイスを動作させる方法
WO2011086604A1 (ja) 放射線断層撮影装置
EP3850346B1 (en) Dynamic radiation collimation for non-destructive analysis of test objects
US10709405B2 (en) X-ray CT scanning apparatus and scanning method thereof
WO2020095482A1 (ja) X線位相撮像システム
WO2009007902A3 (en) X-ray source for measuring radiation
JP5994299B2 (ja) X線撮影装置
JP5697656B2 (ja) X線撮像装置
JP2015232453A (ja) X線検査装置
JP5974059B2 (ja) 医療用x線測定装置及び方法
JP5677596B2 (ja) X線撮影装置
EP3370618B1 (en) Dynamic image data treatment in dental imaging devices
JP2015116408A (ja) X線ct装置及び不良素子補正方法
JP2015136390A (ja) 制御装置、断層撮影装置
JPH0562205U (ja) X線像用x線撮影装置
US11249034B2 (en) X-ray Talbot capturing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539658

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14432894

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013843543

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013843543

Country of ref document: EP