WO2014050907A1 - 鋼板検査装置、鋼板検査方法、および鋼板製造方法 - Google Patents
鋼板検査装置、鋼板検査方法、および鋼板製造方法 Download PDFInfo
- Publication number
- WO2014050907A1 WO2014050907A1 PCT/JP2013/075944 JP2013075944W WO2014050907A1 WO 2014050907 A1 WO2014050907 A1 WO 2014050907A1 JP 2013075944 W JP2013075944 W JP 2013075944W WO 2014050907 A1 WO2014050907 A1 WO 2014050907A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magneto
- steel sheet
- optical element
- steel plate
- magnetic domain
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/38—Heating by cathodic discharges
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D11/00—Process control or regulation for heat treatments
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1294—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/86—Investigating moving sheets
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/032—Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/86—Investigating moving sheets
- G01N2021/8609—Optical head specially adapted
Definitions
- the present invention relates to a steel plate inspection apparatus, a steel plate inspection method, and a steel plate manufacturing method.
- An electrical steel sheet is a steel sheet having excellent magnetic properties such as high magnetic permeability and low iron loss.
- grain oriented electrical steel sheets are often used in transformer cores.
- the alternating current flowing in the electric wire wound around the transformer core generates an alternating magnetic field inside the core.
- eddy current loss and hysteresis loss occur.
- Magnetic steel sheets are required to reduce these eddy current loss and hysteresis loss.
- Occurrence of eddy current loss is inevitable when an alternating magnetic field is applied to the steel sheet, and the higher the frequency, the larger the eddy current loss.
- One factor affecting the eddy current loss is the width of the magnetic domain of the steel sheet. The narrower the width, the lower the eddy current loss. Thus, it is known that the magnetic properties of the steel sheet and the shape of the magnetic domain have a very deep connection.
- a technique for subdividing the magnetic domain (magnetic domain refining process) is applied in order to reduce eddy current loss.
- the magnetic domains of the grain-oriented electrical steel sheet extend in the rolling direction, and the magnetic domains can be subdivided by adding strain or forming grooves in the direction crossing the magnetic domains.
- a method of applying strain a method of applying thermal strain by irradiating a laser or an electron beam in a direction crossing the magnetic domain is known.
- an inspection technique for observing a magnetic domain structure such as a magnetic domain shape is known (see Patent Documents 1 and 2).
- JP 2007-101519 A Japanese Patent Laid-Open No. 2002-257718
- the magnetic domain structure of the steel plate subjected to the magnetic domain refinement process cannot be detected immediately after the magnetic domain refinement process, and it is necessary to separately inspect the steel sheet offline.
- the inspection technique described in Patent Document 1 it takes time for the magnetic powder to move through the solution and form an image reflecting the magnetic domain structure. For this reason, even if a problem occurs in the magnetic domain subdivision process, a decrease in yield occurs due to continued production of defective products.
- the inspection technique described in Patent Document 2 uses a magneto-optical effect, but forms a light beam spot and scans the light beam spot one-dimensionally or two-dimensionally to inspect a magnetic domain. Therefore, a long inspection time is required for the inspection on the production line.
- the present invention has been made in view of the above, and its purpose is to provide a steel sheet inspection apparatus, a steel sheet inspection method, and a steel sheet inspection method capable of improving the yield by visual inspection of the magnetic domain structure of the steel sheet immediately after the magnetic domain subdivision processing, and It is to provide a steel plate manufacturing method.
- a steel plate inspection apparatus includes a magneto-optic device capable of detecting a magnetic domain structure of a steel plate to be inspected as an optical characteristic, and the magneto-optical device.
- a light source that irradiates the element with linearly polarized light
- a detector that detects the linearly polarized light whose polarization plane is rotated according to the magnetic domain structure of the steel sheet transferred to the magneto-optical element, the steel sheet, and the magneto-optical element;
- a drive mechanism for driving at least the magneto-optical element so as to contact and detach.
- a steel plate inspection method includes a contact step of bringing a magneto-optical element capable of detecting a magnetic domain structure of a steel plate to be inspected as an optical characteristic into contact with the steel plate.
- a detaching step of detaching the magneto-optical element from the steel plate.
- a steel sheet manufacturing method includes a magnetic domain subdividing step of irradiating the surface of a steel sheet with an electron beam or a laser, and a steel sheet irradiated with the electron beam or laser.
- a detection step for detecting rotation of a surface an extraction step for extracting a magnetic domain discontinuity formed by irradiating the electron beam or laser, a width evaluation step for evaluating an average width of the magnetic domain discontinuity, An output adjustment step for increasing or decreasing the output of the electron beam or laser based on the evaluation by the width evaluation step; and That.
- the steel plate inspection apparatus, the steel plate inspection method, and the steel plate manufacturing method according to the present invention have the effect that the yield can be improved by visual inspection of the magnetic domain structure of the steel plate immediately after the magnetic domain refinement process.
- FIG. 1 is a production line configuration diagram showing an arrangement of a steel plate inspection apparatus according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram illustrating an internal configuration example of an inspection unit of the steel plate inspection apparatus.
- FIG. 3 is a cross-sectional view showing a configuration example of the magneto-optical element.
- FIG. 4 is a side view of the drive mechanism of the steel plate inspection apparatus.
- FIG. 5 is a top view of the drive mechanism of the steel sheet inspection apparatus.
- FIG. 6 is a schematic configuration diagram illustrating a modified example of the driving method of the steel sheet inspection apparatus according to the embodiment of the present invention.
- FIG. 7 is a flowchart showing the steel sheet inspection method according to the embodiment of the present invention.
- FIG. 1 is a production line configuration diagram showing an arrangement of a steel plate inspection apparatus according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram illustrating an internal configuration example of an inspection unit of the steel plate inspection apparatus.
- FIG. 3 is a cross
- FIG. 8 is an image showing an example of an inspection image of a grain-oriented electrical steel sheet by the steel sheet inspection apparatus and the steel sheet inspection method according to the embodiment of the present invention.
- FIG. 9 is a configuration diagram showing a production line incorporating a steel plate inspection apparatus according to an embodiment of the present invention.
- FIG. 10 is a flowchart showing the steel sheet manufacturing method according to the embodiment of the present invention.
- FIG. 1 is a production line configuration diagram showing an arrangement of a steel plate inspection apparatus 1 according to an embodiment of the present invention.
- a steel plate inspection apparatus 1 according to an embodiment of the present invention is disposed at a subsequent stage of a magnetic domain refinement apparatus 2 that performs a magnetic domain refinement process of a steel plate S.
- the magnetic domain segmentation apparatus 2 is an apparatus that includes an electron gun 3 inside, and applies an electron beam to the steel plate S from the electron gun 3 to apply thermal strain in a direction across the magnetic domain of the steel plate S.
- the steel plate inspection device 1 is a device that inspects the magnetic domain structure of the steel plate S by contacting the steel plate S by driving the inspection unit 4 when the production line is temporarily stopped.
- a configuration example of the steel plate inspection apparatus 1 will be described with reference to FIGS. 2 to 5.
- FIG. 2 is a schematic diagram showing an example of the internal configuration of the inspection unit 4 of the steel plate inspection apparatus 1.
- the inspection unit 4 includes a magneto-optical element 5 that converts the magnetic domain structure of the steel sheet S into optical characteristics, a holder 6 that fixes the magneto-optical element 5 to the inspection unit 4 via an elastic body, An epi-illumination optical system that irradiates the magneto-optical element 5 with linearly polarized light and detects reflected polarized light reflected from the magneto-optical element 5 is provided. That is, the inspection unit 4 includes a light source 7, a collimator lens 8, a polarizer (polarizing filter) 9, a half mirror 10, an analyzer (polarizing filter) 11, and a detector 12 as an incident light optical system. Prepare.
- the magneto-optical element 5 is an element that converts the magnetic domain structure of the steel sheet S into optical characteristics by a magneto-optical effect called a Faraday effect.
- the Faraday effect is the effect of rotating the plane of polarization by the magnetic field felt by a material when linearly polarized light is transmitted through the material.
- a typical material that exhibits this Faraday effect is magnetic garnet. .
- the magneto-optical element 5 comes into contact with the steel plate S, the magnetic domain structure of the steel plate S is transferred to the magneto-optical element 5, and the polarization plane of polarized light irradiated to the magneto-optical element 5 rotates.
- the holder 6 fixes the magneto-optical element 5 to the inspection unit 4 via an elastic body in order to reduce the impact when the inspection unit 4 is driven to bring the magneto-optical element 5 into contact with the steel sheet S.
- the light source 7 is for irradiating the magneto-optical element 5 with linearly polarized light, and a general light source such as a semiconductor laser light source or an LED light source is used.
- the light source 7 does not need to be a light source that directly emits polarized light, and generates linearly polarized light that is irradiated to the magneto-optical element 5 in combination with a polarizer (polarization filter) 9.
- the light source 7 is used in combination with an optical element such as a collimator lens 8 so that polarized light can be emitted as parallel light.
- the polarizer 9 is a polarization filter that converts light emitted from the light source 7 into linearly polarized light.
- the polarizer 9 adjusts the polarization detected by the detector 12 by adjusting the relative angle with the analyzer 11. That is, the polarizer 9 has a rotation mechanism and can adjust the angle of the polarization plane of linearly polarized light. When the analyzer 11 has a rotation mechanism, the rotation mechanism in the polarizer 9 can be omitted.
- the half mirror 10 is an optical path splitting unit that guides the linearly polarized light transmitted through the polarizer 9 to the magneto-optical element 5 and guides the reflected polarized light reflected from the magneto-optical element 5 to the detector 12.
- the analyzer 11 adjusts the polarization detected by the detector 12 by adjusting the relative angle with the polarizer 9 described above.
- the detector 12 is a general two-dimensional image acquisition device such as a so-called CCD camera or CMOS camera.
- the image detected by the detector 12 is subjected to appropriate image processing by a separate image processing means 13 such as a PC.
- the diameter of the light beam applied to the magneto-optical element 5 is adjusted by an optical element such as a lens (not shown in FIG. 2) so as to match the size of the magneto-optical element 5.
- the optical system from the magneto-optical element 5 to the detector 12 is a telecentric optical system.
- FIG. 3 is a cross-sectional view showing a configuration example of the magneto-optical element 5.
- the magneto-optical element 5 includes a protective film 5a, a reflective film 5b, a magneto-optic film 5c, and a substrate 5d in order from the direction facing the steel plate S.
- the magneto-optical film 5c preferably includes magnetic garnet in the composition.
- the polarized light applied to the magneto-optical element 5 is incident on the substrate 5d, passes through the magneto-optical film 5c, is reflected by the reflective film 5b, and then passes through the magneto-optical film 5c and the substrate 5d again. Ejected from element 5.
- FIG. 4 and 5 are schematic configuration diagrams for explaining a driving method of the steel sheet inspection apparatus 1 according to the embodiment of the present invention.
- FIG. 4 is a side view of the drive mechanism of the steel plate inspection apparatus 1
- FIG. 5 is a top view of the drive mechanism of the steel sheet inspection apparatus 1.
- the inspection unit 4 can be moved up and down along rails 14 suspended on both sides of the production line of the steel plate S. It has become.
- the inspection unit 4 is installed so as to be movable on the rail 14 by wheels 15, and motors 17 are provided on the axles 16 of the wheels 15.
- the inspection unit 4 moves up and down along the rail 14 by the rotational drive of the motor 17.
- the inspection unit 4 includes a proximity sensor 18.
- the proximity sensor 18 is a sensor for measuring the distance between the inspection unit 4 and the surface of the steel sheet S.
- the proximity sensor 18 detects the height at which the lowering speed of the inspection unit 4 should be changed to a low speed.
- FIGS. 4 and 5 is only an example applicable to the steel sheet inspection apparatus 1 according to the embodiment of the present invention. Therefore, not only the drive mechanism shown in FIGS. 4 and 5 but also other mechanisms such as a winch type can be adopted.
- 4 and 5 drives the inspection unit 4 as a unit, but drives only some of the components included in the inspection unit 4, such as the magneto-optical element 5 and the holder 6. A configuration is also possible.
- FIG. 6 is a schematic configuration diagram illustrating a modified example of the driving method of the steel plate inspection apparatus 1 according to the embodiment of the present invention.
- the modified example of the driving method of the steel plate inspection apparatus 1 according to the embodiment of the present invention bonds the surface of the steel plate S and the magneto-optical element 5 while running the steel plate S in the through plate. .
- the inspection unit 4 moves on the rail 14a close to the steel plate S and the rail 14b far from the steel plate S.
- the magneto-optical element 5 of the inspection unit 4 comes into contact with the surface of the steel plate S and the magnetic domain structure of the steel plate S can be inspected.
- the magneto-optical element 5 of the inspection unit 4 does not contact the surface of the steel sheet S. Move upstream of the plate.
- similar to the steel plate S and the rail 14b far from the steel plate S can be switched as shown in FIG. 6, it can also be a circular track.
- the power for moving the inspection unit 4 on the rail is supplied by a motor provided on the wheel axle as in the driving method shown in FIGS.
- the internal configuration of the inspection unit 4 can be the same as the internal configuration example of the inspection unit 4 shown in FIG.
- FIG. 7 is a flowchart showing a steel sheet inspection method according to an embodiment of the present invention.
- the steel plate inspection method according to the embodiment of the present invention is performed in a state where the production line of the steel plate S is stopped (step S11).
- this step S11 is omitted may be adopted.
- the inspection unit 4 of the steel plate inspection apparatus 1 descends to the surface of the steel plate S (step S12).
- the magneto-optical element 5 comes into contact with the surface of the steel plate S, and the magnetic domain structure of the steel plate S is transferred to the magneto-optical film 5 c of the magneto-optical element 5.
- the magnetic properties (magnetic domain structure) of the steel sheet S are visualized and inspected (step S13). That is, when the linearly polarized light is irradiated onto the magneto-optical element 5 and the linearly polarized light passes through the magneto-optical film 5c of the magneto-optical element 5, the polarization plane is rotated by the Faraday effect. Visual inspection of the magnetic domain structure of the steel sheet S is performed with the rotation of.
- the visualized magnetic domain structure of the steel sheet S is subjected to appropriate image processing by a separate image processing means 13 such as a PC.
- the image processing means 13 evaluates the magnetic domain discontinuity for the visualized image of the magnetic domain structure of the steel sheet S, and detects the boundary between the magnetic domain and the magnetic domain discontinuity. Further, the image processing means 13 calculates the width of the magnetic domain discontinuity based on the size of the magneto-optical element 5, the magnification of the measurement optical system, the distance to the steel plate S, etc., and becomes a predetermined width. Check if it is.
- the inspection unit 4 of the steel plate inspection apparatus 1 rises from the surface of the steel plate S (step S14), and the magneto-optical element 5 is detached from the surface of the steel plate S. Then, the operation of the production line for the steel sheet S is resumed (step S15).
- step S16 it is determined whether or not the processing range of the magnetic domain subdivision processing of the steel sheet S has been completed. If it has not been completed (step S16; No), the processing from the above steps S11 to S15 is repeated. . On the other hand, when the processing range of the magnetic domain subdivision processing of the steel plate S is completed (step S16; Yes), the steel plate inspection is finished. When the steel plate inspection method according to the embodiment of the present invention is actually performed, the processing from the above steps S11 to S15 takes about 1 second.
- FIG. 8 is an image showing an example of an inspection image of a grain-oriented electrical steel sheet by the steel sheet inspection apparatus 1 and the steel sheet inspection method according to the embodiment of the present invention.
- the image shown by FIG. 8 cuts out the rolling direction 10mm * board width direction 10mm in the test
- Bi-substituted iron garnet is used for the magneto-optical film 5 c in the magneto-optical element 5 as an example of the magnetic garnet.
- the light source 7 is a combination of a green LED light source (wavelength 505 nm) and a polarizing filter, and the detector 12 is a CCD camera.
- the grain-oriented electrical steel sheet has a closed domain (hereinafter referred to as magnetic domain discontinuity) so as to divide a main magnetic domain facing the rolling direction in a portion irradiated with an electron beam or a laser. Part) is formed. It has been clarified that the width of the magnetic domain discontinuity has a good correlation with the iron loss.
- the magnetic domain discontinuity has a magnetic property different from that of the surrounding magnetic domain, and the width of the magnetic domain discontinuity can be measured by using the steel sheet inspection apparatus 1 and the steel sheet inspection method according to the embodiment of the present invention. As can be seen from FIG.
- the width of the magnetic domain discontinuity is 150 ⁇ m to 300 ⁇ m (see, for example, JP 2012-52230 A). Further, as the width of the subdivided magnetic domains is reduced, the moving distance of the domain wall at the time of excitation is shortened, and the loss associated therewith is also reduced.
- the width of the magnetic domains is preferably 200 ⁇ m or less.
- FIG. 9 is a configuration diagram showing a production line incorporating the steel plate inspection apparatus 1 according to the embodiment of the present invention.
- the steel plate inspection apparatus 1 according to the embodiment of the present invention is arranged at the subsequent stage of the magnetic domain subdivision apparatus 2 that performs the magnetic domain subdivision processing of the steel sheet S.
- the magnetic domain segmentation apparatus 2 is an apparatus that includes an electron gun 3 inside, and applies an electron beam to the steel plate S from the electron gun 3 to apply thermal strain in a direction across the magnetic domain of the steel plate S.
- the magnetic domain refinement device 2 performs the magnetic domain refinement process on the surface of the steel sheet S, and the steel plate inspection device 1 inspects the surface of the steel sheet S subjected to the magnetic domain refinement process by the magnetic domain refinement device 2. And based on the inspection result by the steel plate inspection apparatus 1, the control means 19 controls the magnetic domain subdivision apparatus 2.
- FIG. The control means 19 may be either an automatic control device such as a PLC or manual control by an operator.
- FIG. 10 is a flowchart showing a steel sheet manufacturing method according to an embodiment of the present invention.
- the magnetic properties (magnetic domain structure) of the steel sheet S subjected to the magnetic domain refinement process by the magnetic domain refinement apparatus 2 are measured. 1 performs a visual inspection (step S21).
- the image processing means 13 of the steel plate inspection apparatus 1 performs the magnetic domain discontinuity evaluation on the visualized magnetic domain structure image of the steel plate S, and detects the boundary between the magnetic domain and the magnetic domain discontinuity (step S22). Further, the image processing means 13 of the steel plate inspection apparatus 1 determines the average width of the magnetic domain discontinuities included in the predetermined range based on the size of the magneto-optical element 5, the magnification of the measurement optical system, the distance to the steel plate S, and the like. Is calculated (step S23).
- control means 19 evaluates the average width of the magnetic domain discontinuities and determines whether or not the average width is within a predetermined range (step S24).
- the average width is within the predetermined width range (step S24; Yes)
- the process returns to step S21 in order to continue manufacturing the steel sheet S.
- the average width is compared with the predetermined width (step S25).
- step S25 When the average width is wider than the predetermined value (step S25; average wide), the control means 19 issues a command to reduce the electron beam power of the electron gun 3 of the magnetic domain subdivision device 2 (step S26), and the same conditions have already been reached. Thus, the shipment of the steel sheet S that has been subjected to the magnetic domain refinement process is avoided (step S28).
- step S25 the control means 19 issues a command to increase the electron beam power of the electron gun 3 of the magnetic domain subdivision device 2 (step S27) and has already been performed. Shipment of the steel sheet S that has been subjected to the magnetic domain refinement process under the same conditions is avoided (step S28).
- the control means 19 determines whether or not the continuous operation (resumption) of the production line of the steel sheet S is possible (step S29). That is, factors that cause the average width of the magnetic domain discontinuities to be out of the predetermined range may be due to the life of the filament of the electron gun 3 or the occurrence of a malfunction on the apparatus. Therefore, the control means 19 determines whether or not the continuous operation of the production line is possible based on the factor that the average width of the magnetic domain discontinuity part is out of the predetermined range, and when the continuous operation is possible (step S29; Yes), the steel sheet S The process returns to step S21 to continue manufacturing. On the other hand, when the continuous operation is not possible (step S29; No), the production line is stopped for replacement of the filament of the electron gun 3 or the like.
- a steel plate inspection apparatus 1 includes a magneto-optical element 5 that can detect a magnetic domain structure of a steel plate S to be inspected as an optical characteristic, a light source 7 that irradiates the magneto-optical element 5 with linearly polarized light, and a magnetic The detector 12 that detects linearly polarized light whose polarization plane is rotated in accordance with the magnetic domain structure of the steel sheet S transferred to the optical element 5, and at least the magneto-optical element 5 so that the steel sheet S and the magneto-optical element 5 are brought into contact with and separated from each other. Therefore, the yield can be improved by visual inspection of the magnetic domain structure of the steel sheet S immediately after the magnetic domain refinement process.
- the magneto-optical element 5 includes a protective film 5a, a reflective film 5b, a magneto-optical film 5c, and a substrate 5d in order from the direction facing the steel plate S, and linearly polarized light is converted into the substrate 5d. Since it is incident from the side and reflected by the reflecting film 5b, the Faraday effect can be doubled by reciprocating the incident linearly polarized light through the magneto-optical film 5c.
- the magneto-optical film 5c preferably contains magnetic garnet in the composition.
- the steel sheet inspection apparatus, the steel sheet inspection method, and the steel sheet manufacturing method according to the present invention can be applied to a process of visualizing and inspecting the magnetic domain structure of a steel sheet immediately after the magnetic domain refinement process.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Power Engineering (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Measuring Magnetic Variables (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
図1は、本発明の実施形態にかかる鋼板検査装置1の配置を示す製造ライン構成図である。図1に示されるように、本発明の実施形態にかかる鋼板検査装置1は、鋼板Sの磁区細分化処理を行う磁区細分化装置2の後段に配置される。磁区細分化装置2は、内部に電子銃3を備え、電子銃3から鋼板Sに電子ビームを照射することにより、鋼板Sの磁区を横切る方向に熱歪みを与える装置である。
図6は、本発明の実施形態にかかる鋼板検査装置1の駆動方式の変形例を説明する概略構成図である。図6に示されるように、本発明の実施形態にかかる鋼板検査装置1の駆動方式の変形例は、通板中の鋼板Sを併走させながら鋼板Sの表面と磁気光学素子5とを接着させる。
以下、本発明の実施形態にかかる鋼板検査方法について説明する。なお、以下の説明では、本発明の実施形態にかかる鋼板検査装置の構成の図面などを参照しながら本発明の実施形態にかかる鋼板検査方法について説明するが、本発明の実施形態にかかる鋼板検査方法は、これらの図面に表された構成により限定されるものではない。
次に、本発明の実施形態にかかる鋼板製造方法について説明する。
2 磁区細分化装置
3 電子銃
4 検査ユニット
5 磁気光学素子
5a 保護膜
5b 反射膜
5c 磁気光学膜
5d 基板
6 ホルダ
7 光源
8 コリメータレンズ
9 偏光子
10 ハーフミラー
11 検光子
12 検出器
13 画像処理手段
14,14a,14b レール
15 車輪
16 車軸
17 モータ
18 近接センサー
19 制御手段
Claims (13)
- 検査対象である鋼板の磁区構造を光学特性として検出可能な磁気光学素子と、
前記磁気光学素子に直線偏光を照射する光源と、
前記磁気光学素子に転写された前記鋼板の磁区構造に応じて偏光面が回転された前記直線偏光を検出する検出器と、
前記鋼板と前記磁気光学素子とを接触離脱するように少なくとも前記磁気光学素子を駆動する駆動機構と、
を備えることを特徴とする鋼板検査装置。 - 前記磁気光学素子は、前記鋼板に面する方向から順に、保護膜、反射膜、磁気光学膜、および基板により構成され、
前記直線偏光は、前記基板側から入射され、前記反射膜にて反射される、
ことを特徴とする請求項1に記載の鋼板検査装置。 - 前記磁気光学膜は、磁性ガーネットを組成に含むことを特徴とする請求項2に記載の鋼板検査装置。
- さらに偏光子、ハーフミラー、および検光子を備え、
前記光源から射出された光線は、前記偏光子、前記ハーフミラー、前記磁気光学素子、前記ハーフミラー、前記検光子、および前記検出器の順に伝播されることを特徴とする請求項1~3の何れか1項に記載の鋼板検査装置。 - 前記駆動機構は、前記光源、前記偏光子、前記ハーフミラー、前記磁気光学素子、前記検光子、および前記検出器を収容する検査ユニットを駆動することにより、前記鋼板と前記磁気光学素子とを接触離脱することを特徴とする請求項1~4の何れか1項に記載の鋼板検査装置。
- 前記磁気光学素子は、弾性体を介して前記検査ユニットに固定されていることを特徴とする請求項5に記載の鋼板検査装置。
- 検査対象である鋼板の磁区構造を光学特性として検出可能な磁気光学素子を前記鋼板に接触させる接触ステップと、
前記磁気光学素子に直線偏光を照射する照射ステップと、
前記磁気光学素子にて反射する直線偏光の偏光面の回転を検出する検出ステップと、
前記偏光面の回転から前記鋼板の磁区構造を測定する測定ステップと、
前記磁気光学素子を前記鋼板から離脱させる離脱ステップと、
を含むことを特徴とする鋼板検査方法。 - 前記磁気光学素子は、前記鋼板に面する方向から順に、保護膜、反射膜、磁気光学膜、および基板により構成され、
前記直線偏光は、前記基板側から入射され、前記反射膜にて反射される、
ことを特徴とする請求項7に記載の鋼板検査方法。 - 前記磁気光学膜は、磁性ガーネットを組成に含むことを特徴とする請求項8に記載の鋼板検査方法。
- 鋼板の表面に電子ビームまたはレーザを照射する磁区細分化ステップと、
前記電子ビームまたはレーザを照射した鋼板の領域に、鋼板の磁区構造を光学特性として検出可能な磁気光学素子を接触させる接触ステップと、
前記磁気光学素子に直線偏光を照射する照射ステップと、
前記磁気光学素子にて反射する直線偏光の偏光面の回転を検出する検出ステップと、
前記電子ビームまたはレーザを照射したことにより形成された磁区不連続部を抽出する抽出ステップと、
前記磁区不連続部の平均幅を評価する幅評価ステップと、
前記幅評価ステップによる評価に基づいて前記電子ビームまたはレーザの出力を増加減する出力調整ステップと、
を含むことを特徴とする鋼板製造方法。 - 前記出力調整ステップの後に、前記電子ビームまたはレーザの出力を増加減前の条件で製造された前記鋼板の出荷を回避する出荷回避ステップをさらに含むことを特徴とする請求項10に記載の鋼板製造方法。
- 前記磁気光学素子は、前記鋼板に面する方向から順に、保護膜、反射膜、磁気光学膜、および基板により構成され、
前記直線偏光は、前記基板側から入射され、前記反射膜にて反射される、
ことを特徴とする請求項10または請求項11に記載の鋼板製造方法。 - 前記磁気光学膜は、磁性ガーネットを組成に含むことを特徴とする請求項12に記載の鋼板製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380050432.7A CN104662418B (zh) | 2012-09-28 | 2013-09-25 | 钢板检查装置、钢板检查方法、以及钢板制造方法 |
US14/425,983 US10031068B2 (en) | 2012-09-28 | 2013-09-25 | Steel sheet inspection device, steel sheet inspection method, and steel sheet manufacturing method |
EP13841923.9A EP2902778B1 (en) | 2012-09-28 | 2013-09-25 | Steel sheet inspection apparatus, steel sheet inspection method, and steel sheet manufacturing method |
IN2054DEN2015 IN2015DN02054A (ja) | 2012-09-28 | 2013-09-25 | |
KR1020157005763A KR101722496B1 (ko) | 2012-09-28 | 2013-09-25 | 강판 검사 장치, 강판 검사 방법 및, 강판 제조 방법 |
RU2015110994/28A RU2593435C1 (ru) | 2012-09-28 | 2013-09-25 | Устройство для контроля стального листа, способ контроля стального листа и способ изготовления стального листа |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012216379A JP5987610B2 (ja) | 2012-09-28 | 2012-09-28 | 鋼板検査装置、鋼板検査方法、および鋼板製造方法 |
JP2012-216379 | 2012-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014050907A1 true WO2014050907A1 (ja) | 2014-04-03 |
Family
ID=50388302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/075944 WO2014050907A1 (ja) | 2012-09-28 | 2013-09-25 | 鋼板検査装置、鋼板検査方法、および鋼板製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10031068B2 (ja) |
EP (1) | EP2902778B1 (ja) |
JP (1) | JP5987610B2 (ja) |
KR (1) | KR101722496B1 (ja) |
CN (1) | CN104662418B (ja) |
IN (1) | IN2015DN02054A (ja) |
RU (1) | RU2593435C1 (ja) |
WO (1) | WO2014050907A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015186711A1 (ja) * | 2014-06-04 | 2015-12-10 | 浜松ホトニクス株式会社 | 検査装置及び磁気光学結晶の配置方法 |
US10773338B2 (en) | 2014-07-03 | 2020-09-15 | Nippon Steel Corporation | Laser processing apparatus |
US11498156B2 (en) | 2014-07-03 | 2022-11-15 | Nippon Steel Corporation | Laser processing apparatus |
WO2024176610A1 (ja) * | 2023-02-21 | 2024-08-29 | Jfeスチール株式会社 | 方向性電磁鋼板の加工状態判定方法、加工状態判定装置、製造設備の調整方法、製造方法、品質管理方法、及び製造設備 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5561335B2 (ja) * | 2012-09-28 | 2014-07-30 | Jfeスチール株式会社 | 電子銃異常検出装置および電子銃異常検出方法 |
CN106944743B (zh) * | 2015-10-08 | 2020-01-03 | 诺威科技集团有限公司 | 利用激光束的电气钢板的永久性磁区微细化成形方法及成形装置 |
CN108369211B (zh) * | 2015-12-03 | 2021-12-07 | 浜松光子学株式会社 | 检查装置及检查方法 |
CN106093182B (zh) * | 2016-05-31 | 2019-02-01 | 电子科技大学 | 一种基于环电流的可视化漏磁检测建模方法 |
JP6968176B2 (ja) | 2016-12-23 | 2021-11-17 | ポスコPosco | 方向性電磁鋼板の磁区微細化方法とその装置 |
JP6607242B2 (ja) * | 2017-01-31 | 2019-11-20 | Jfeスチール株式会社 | 方向性電磁鋼板の加工状態評価方法、加工状態評価装置、及び製造方法 |
CN114424060B (zh) * | 2019-09-19 | 2024-09-10 | 杰富意钢铁株式会社 | 移动式检查装置、移动式检查方法及钢材的制造方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59180355A (ja) * | 1983-03-31 | 1984-10-13 | Nippon Steel Corp | 電磁鋼板のオンライン結晶粒度測定装置 |
JPS62102103A (ja) * | 1985-10-30 | 1987-05-12 | Hitachi Ltd | 微細磁化パタ−ン計測装置 |
JPS62115357A (ja) * | 1985-11-14 | 1987-05-27 | Toshiba Corp | 欠陥検査装置 |
JPH05119130A (ja) * | 1991-02-04 | 1993-05-18 | Japan Aircraft Mfg Co Ltd | 磁場顕微鏡装置 |
JP2002257718A (ja) | 2001-02-28 | 2002-09-11 | Nippon Steel Corp | 光ビーム走査磁区検出装置 |
JP2007101519A (ja) | 2005-09-07 | 2007-04-19 | Nippon Steel Corp | 磁性体の粒形状観察装置 |
JP2012031519A (ja) * | 2010-06-30 | 2012-02-16 | Jfe Steel Corp | 方向性電磁鋼板およびその製造方法 |
JP2012052230A (ja) | 2010-08-06 | 2012-03-15 | Jfe Steel Corp | 方向性電磁鋼板およびその製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1246756A (en) * | 1969-04-16 | 1971-09-22 | Tokyo Shibaura Electric Co | Measuring dimensions of objects |
JPS59180335A (ja) * | 1983-03-30 | 1984-10-13 | Fujitsu Ltd | スペクトラムアナライザ |
US4919733A (en) * | 1988-03-03 | 1990-04-24 | Allegheny Ludlum Corporation | Method for refining magnetic domains of electrical steels to reduce core loss |
JP2665294B2 (ja) * | 1992-03-30 | 1997-10-22 | 新日本製鐵株式会社 | 磁気光学式欠陥検出方法 |
JPH11293416A (ja) * | 1998-04-10 | 1999-10-26 | Nkk Corp | 残留磁束密度の低い高珪素鋼板およびその製造方法 |
US6359686B1 (en) * | 1999-06-29 | 2002-03-19 | Corning Incorporated | Inspection system for sheet material |
JP3210654B1 (ja) * | 2001-05-02 | 2001-09-17 | レーザーテック株式会社 | 光学式走査装置及び欠陥検出装置 |
CN1271387C (zh) * | 2002-03-07 | 2006-08-23 | 株式会社高岳制作所 | 偏振方向测定型两维光接收时标测定装置及使用它的表面形状测量装置 |
JP4223769B2 (ja) * | 2002-08-30 | 2009-02-12 | 富士通株式会社 | 測定装置 |
US6934068B2 (en) * | 2003-02-10 | 2005-08-23 | Lake Shore Cryotronics, Inc. | Magnetic field and electrical current visualization system |
EP1569177A1 (en) * | 2004-02-24 | 2005-08-31 | Kba-Giori S.A. | Method and apparatus for checking magnetizable elements |
JP5640298B2 (ja) * | 2010-08-27 | 2014-12-17 | Fdk株式会社 | 磁気光学探傷方法及びそれに用いる装置 |
-
2012
- 2012-09-28 JP JP2012216379A patent/JP5987610B2/ja not_active Expired - Fee Related
-
2013
- 2013-09-25 CN CN201380050432.7A patent/CN104662418B/zh not_active Expired - Fee Related
- 2013-09-25 IN IN2054DEN2015 patent/IN2015DN02054A/en unknown
- 2013-09-25 RU RU2015110994/28A patent/RU2593435C1/ru active
- 2013-09-25 WO PCT/JP2013/075944 patent/WO2014050907A1/ja active Application Filing
- 2013-09-25 KR KR1020157005763A patent/KR101722496B1/ko active IP Right Grant
- 2013-09-25 EP EP13841923.9A patent/EP2902778B1/en active Active
- 2013-09-25 US US14/425,983 patent/US10031068B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59180355A (ja) * | 1983-03-31 | 1984-10-13 | Nippon Steel Corp | 電磁鋼板のオンライン結晶粒度測定装置 |
JPS62102103A (ja) * | 1985-10-30 | 1987-05-12 | Hitachi Ltd | 微細磁化パタ−ン計測装置 |
JPS62115357A (ja) * | 1985-11-14 | 1987-05-27 | Toshiba Corp | 欠陥検査装置 |
JPH05119130A (ja) * | 1991-02-04 | 1993-05-18 | Japan Aircraft Mfg Co Ltd | 磁場顕微鏡装置 |
JP2002257718A (ja) | 2001-02-28 | 2002-09-11 | Nippon Steel Corp | 光ビーム走査磁区検出装置 |
JP2007101519A (ja) | 2005-09-07 | 2007-04-19 | Nippon Steel Corp | 磁性体の粒形状観察装置 |
JP2012031519A (ja) * | 2010-06-30 | 2012-02-16 | Jfe Steel Corp | 方向性電磁鋼板およびその製造方法 |
JP2012052230A (ja) | 2010-08-06 | 2012-03-15 | Jfe Steel Corp | 方向性電磁鋼板およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2902778A4 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015186711A1 (ja) * | 2014-06-04 | 2015-12-10 | 浜松ホトニクス株式会社 | 検査装置及び磁気光学結晶の配置方法 |
KR20170015311A (ko) * | 2014-06-04 | 2017-02-08 | 하마마츠 포토닉스 가부시키가이샤 | 검사 장치 및 자기 광학 결정의 배치 방법 |
CN106537133A (zh) * | 2014-06-04 | 2017-03-22 | 浜松光子学株式会社 | 检查装置及磁光晶体的配置方法 |
JPWO2015186711A1 (ja) * | 2014-06-04 | 2017-05-25 | 浜松ホトニクス株式会社 | 検査装置及び磁気光学結晶の配置方法 |
US10139370B2 (en) | 2014-06-04 | 2018-11-27 | Hamamatsu Photonics K.K. | Inspection device and method for disposing magneto-optical crystal |
TWI645208B (zh) * | 2014-06-04 | 2018-12-21 | 日商濱松赫德尼古斯股份有限公司 | Inspection device and configuration method of magnetic optical crystal |
CN106537133B (zh) * | 2014-06-04 | 2019-10-29 | 浜松光子学株式会社 | 检查装置及磁光晶体的配置方法 |
KR102288805B1 (ko) | 2014-06-04 | 2021-08-12 | 하마마츠 포토닉스 가부시키가이샤 | 검사 장치 및 자기 광학 결정의 배치 방법 |
US10773338B2 (en) | 2014-07-03 | 2020-09-15 | Nippon Steel Corporation | Laser processing apparatus |
US11498156B2 (en) | 2014-07-03 | 2022-11-15 | Nippon Steel Corporation | Laser processing apparatus |
WO2024176610A1 (ja) * | 2023-02-21 | 2024-08-29 | Jfeスチール株式会社 | 方向性電磁鋼板の加工状態判定方法、加工状態判定装置、製造設備の調整方法、製造方法、品質管理方法、及び製造設備 |
Also Published As
Publication number | Publication date |
---|---|
EP2902778A4 (en) | 2016-08-17 |
CN104662418A (zh) | 2015-05-27 |
EP2902778B1 (en) | 2020-08-05 |
US20150253242A1 (en) | 2015-09-10 |
US10031068B2 (en) | 2018-07-24 |
RU2593435C1 (ru) | 2016-08-10 |
IN2015DN02054A (ja) | 2015-08-14 |
CN104662418B (zh) | 2018-05-15 |
JP2014070972A (ja) | 2014-04-21 |
KR20150036805A (ko) | 2015-04-07 |
KR101722496B1 (ko) | 2017-04-03 |
JP5987610B2 (ja) | 2016-09-07 |
EP2902778A1 (en) | 2015-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5987610B2 (ja) | 鋼板検査装置、鋼板検査方法、および鋼板製造方法 | |
JP6149370B2 (ja) | 磁区不連続部検出方法 | |
US7973922B2 (en) | Optical inspection method and optical inspection apparatus | |
US8753903B1 (en) | Methods and apparatuses for performing wafer level characterization of a plasmon element | |
JP5561335B2 (ja) | 電子銃異常検出装置および電子銃異常検出方法 | |
KR20120024571A (ko) | Soi 웨이퍼의 검사 방법 | |
Long et al. | Fused silica contamination layer removal using magnetic field‐assisted finishing | |
KR101833484B1 (ko) | 철도용 레일 검사 장치 | |
RU2673271C2 (ru) | Установка лазерной обработки | |
KR101913367B1 (ko) | 방향성 전기강판의 자구미세화 방법과 그 장치 | |
JP2011069654A (ja) | バルクハウゼンノイズ検査装置およびバルクハウゼンノイズ検査方法 | |
US20200087744A1 (en) | Method for refining magnetic domain of grain-oriented electrical steel plate and device therefor | |
CN108415243B (zh) | 带磨耗补偿的自动对中控制方法 | |
KR101584464B1 (ko) | 차륜의 자분탐상용 자화 장치 | |
JP6191112B2 (ja) | 鋼板検査装置および鋼板検査方法 | |
JP2009301610A (ja) | 磁界強度測定方法および磁界強度測定装置 | |
WO1992021964A1 (fr) | Procede de detection d'un flux magnetique et dispositif conçu a cet effet | |
CN108819963B (zh) | 一种带磨耗补偿的自动对中控制装置 | |
WO2011054903A1 (de) | VERFAHREN ZUR REGELUNG DES TEMPERATURVERLAUFS UND DER GESCHWINDIGKEIT EINES GIEßSTRANGS IN EINER STRANGGIEßANLAGE UND STRANGGIEßANLAGE ZUR DURCHFÜHRUNG DES VERFAHRENS | |
KR101978448B1 (ko) | 방향성 전기강판의 자구미세화 장치 및 자구미세화 방법 | |
KR101859019B1 (ko) | 금속소재 표면검사장치 | |
JP2010038623A (ja) | 微小共振器デバイス用光計測装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13841923 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14425983 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157005763 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013841923 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2015110994 Country of ref document: RU Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |