WO2014050079A1 - 水処理装置 - Google Patents

水処理装置 Download PDF

Info

Publication number
WO2014050079A1
WO2014050079A1 PCT/JP2013/005644 JP2013005644W WO2014050079A1 WO 2014050079 A1 WO2014050079 A1 WO 2014050079A1 JP 2013005644 W JP2013005644 W JP 2013005644W WO 2014050079 A1 WO2014050079 A1 WO 2014050079A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
discharge
treatment
tank
flow path
Prior art date
Application number
PCT/JP2013/005644
Other languages
English (en)
French (fr)
Inventor
政弥 西村
香川 謙吉
幸子 山口
維大 大堂
智己 齋藤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012289120A external-priority patent/JP5585644B2/ja
Priority claimed from JP2012289125A external-priority patent/JP5585645B2/ja
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201380049729.1A priority Critical patent/CN104661967B/zh
Priority to US14/430,999 priority patent/US9334179B2/en
Priority to AU2013321956A priority patent/AU2013321956C1/en
Priority to EP13842784.4A priority patent/EP2902370B1/en
Publication of WO2014050079A1 publication Critical patent/WO2014050079A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4608Treatment of water, waste water, or sewage by electrochemical methods using electrical discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4521Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through orifices in elements, e.g. flat plates or cylinders, which obstruct the whole diameter of the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4523Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through sieves, screens or meshes which obstruct the whole diameter of the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/112Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades
    • B01F27/1125Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades with vanes or blades extending parallel or oblique to the stirrer axis
    • B01F27/11252Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades with vanes or blades extending parallel or oblique to the stirrer axis paddle wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/55Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers driven by the moving material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/72Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/42Mixers with shaking, oscillating, or vibrating mechanisms with pendulum stirrers, i.e. with stirrers suspended so as to oscillate about fixed points or axes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/813Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles mixing simultaneously in two or more mixing receptacles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4606Treatment of water, waste water, or sewage by electrochemical methods for producing oligodynamic substances to disinfect the water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46145Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/028Tortuous
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the present invention relates to a water treatment apparatus, and particularly relates to an insulating structure.
  • Patent Document 1 discloses a water treatment apparatus in which a positive electrode and a negative electrode are disposed in water. A high voltage pulse is applied to the positive electrode to treat the water flowing between the two electrodes.
  • both electrodes are disposed in the middle of the water flow. For this reason, there existed a problem that electricity will flow into the water of the upstream and downstream of the processing tank in which both electrodes are provided.
  • the present invention has been made in view of such points, and an object thereof is to prevent electricity from flowing from the water treatment unit.
  • a water treatment part (210) for electrically treating water and an insulation part for electrically insulating water from the water treatment part (210) and the water treatment part (210). 240, 250).
  • the insulating portion (240, 250) since the insulating portion (240, 250) is provided, electricity does not flow from the water treatment portion (210) to the water communicating with the water treatment portion (210). Used efficiently.
  • the water treatment part (210) is provided in the middle of a water passage (203) through which water flows, and the insulating part (240, 250) is provided in the water treatment part. (210) are provided on the inflow side and the outflow side.
  • the insulating portions (240, 250) are provided on the inflow side and the outflow side of the water treatment portion (210), the water treatment portion (210) to the water treatment portion (210) Electricity does not flow in the water on the upstream side and the downstream side, and the supplied power is used efficiently.
  • the water treatment unit (210) is configured to cause a discharge in water in the treatment tank (211) to generate a sterilizing factor in the water. It is a feature.
  • a sterilizing factor is generated in the water by the discharge of the water treatment unit (210). Water is purified by this sterilizing factor.
  • the inflow-side insulating portion (240) is constituted by a nozzle that drops water flowing from the water passage (203) to the water treatment portion (210). It is characterized by.
  • the water flowing from the water passage (203) to the water treatment section (210) is dropped, and the impedance between the water treatment section (210) and the water communicating with the water treatment section (210). Is increased to insulate between the water treatment unit (210) and the water communicating with the water treatment unit (210).
  • the inflow-side insulating section (240) is constituted by a spray section (240) for spraying water flowing from the water passage (203) to the water treatment section (210). It is characterized by being.
  • the water flowing from the water passage (203) to the water treatment section (210) is sprayed, and the impedance between the water treatment section (210) and the water communicating with the water treatment section (210) Is increased to insulate between the water treatment unit (210) and the water communicating with the water treatment unit (210).
  • the outflow side insulating section (250) causes water flowing from the water treatment section (210) to the water passage (203) to flow into the water treatment section. (210) is configured to drop in a bowl shape.
  • the water flowing from the water treatment unit (210) to the water passage (203) is dropped in a bowl shape to form a so-called waterfall, and the water treatment unit (210) and the water treatment unit (210) are dropped.
  • the impedance between the communicating water is increased, and the water treatment unit (210) and the water communicating with the water treatment unit (210) are insulated.
  • the insulating part (240, 250) is provided between the water treatment part (210) and the water communicating with the water treatment part (210), the water treatment part (210) is provided with the water. Since it is possible to reliably suppress electricity from flowing into water communicating with the processing unit (210), it is possible to efficiently use the input power.
  • the insulating portions (240, 250) are provided on the inflow side and the outflow side of the water treatment portion (210), the water treatment portion (210) 210), it is possible to reliably prevent electricity from flowing into the water on the upstream side and the downstream side, so that the input power can be used more efficiently.
  • the sterilization factor is generated in the treated water by the discharge of the water treatment unit (210), the water can be reliably purified by this sterilization factor.
  • the water flowing from the water passage (203) to the water treatment unit (210) is made into droplets, so that the water communicating with the water treatment unit (210) and the water treatment unit (210) Therefore, it is possible to reliably insulate between the water treatment unit (210) and the water communicating with the water treatment unit (210).
  • the fifth aspect of the invention since the water flowing from the water passage (203) to the water treatment unit (210) is sprayed, water communicating with the water treatment unit (210) and the water treatment unit (210) Therefore, it is possible to reliably insulate between the water treatment unit (210) and the water communicating with the water treatment unit (210).
  • the water flowing from the water treatment unit (210) to the water passage (203) is dropped in a bowl shape to form a so-called waterfall, so that the water treatment unit (210) and the water treatment unit Since the impedance between the water communicating with the portion (210) can be increased, the water treatment portion (210) and the water communicating with the water treatment portion (210) can be reliably insulated. .
  • FIG. 1 is a piping diagram illustrating a water treatment apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating a water treatment unit according to the first embodiment.
  • FIG. 3 is a diagram schematically illustrating the water treatment unit according to the first embodiment.
  • FIG. 4 is a schematic cross-sectional view showing the discharge unit according to the first embodiment.
  • FIG. 5 is a diagram illustrating voltage waveforms generated by the high voltage generator according to the first embodiment.
  • FIG. 6 is an enlarged view of a part of the discharge unit according to the first embodiment.
  • FIG. 7 is a piping diagram illustrating a water treatment apparatus according to the second embodiment.
  • FIG. 8 is a perspective view schematically showing a water treatment unit according to the second embodiment.
  • FIG. 1 is a piping diagram illustrating a water treatment apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating a water treatment unit according to the first embodiment.
  • FIG. 3 is a diagram schematically illustrating the water treatment unit according
  • FIG. 9 is a perspective view schematically showing a first discharge processing unit according to the second embodiment.
  • FIG. 10 is a schematic configuration diagram of a discharge unit according to the second embodiment.
  • FIG. 11 is a graph showing voltage waveforms generated by the power supply according to the second embodiment.
  • FIG. 12 is an enlarged view of a part of the discharge unit according to the second embodiment.
  • FIG. 13 is a perspective view schematically showing a second discharge processing unit according to the second embodiment.
  • FIG. 14 is a schematic configuration diagram of a discharge processing unit according to the second embodiment.
  • FIG. 15 is a plan view schematically showing a treatment tank of the second discharge treatment unit according to the second embodiment.
  • FIG. 16 is a side view schematically showing the treatment tank of the second discharge treatment unit according to the second embodiment.
  • FIG. 17 is a partially enlarged view of FIG.
  • FIG. 18 is a plan view schematically showing a treatment tank of the second discharge treatment unit according to the third embodiment.
  • FIG. 19 is a side view schematically showing a treatment tank of the second discharge treatment unit according to the third embodiment.
  • FIG. 20 is a plan view schematically showing a treatment tank of the second discharge treatment unit according to the fourth embodiment.
  • FIG. 21 is a side view schematically showing a treatment tank of the second discharge treatment unit according to the fourth embodiment.
  • FIG. 22 is a front view schematically showing the first flow path adjusting plate according to the fourth embodiment.
  • FIG. 23 is a rear view schematically showing the second flow path adjustment plate according to the fourth embodiment.
  • FIG. 24 is a side view schematically showing a water treatment unit according to the fifth embodiment.
  • FIG. 25 is a side view schematically showing a water treatment unit according to the sixth embodiment.
  • FIG. 26 is a side view schematically showing a water treatment unit according to the seventh embodiment.
  • FIG. 27 is a side view schematically showing a water treatment unit according to the eighth embodiment.
  • FIG. 28 is a side view schematically showing a water treatment unit according to the ninth embodiment.
  • FIG. 29 is a schematic diagram illustrating the periphery of the spray nozzle according to the tenth embodiment.
  • FIG. 30 is a perspective view schematically showing a first discharge processing unit according to the eleventh embodiment.
  • FIG. 31 is a perspective view of a diffusion plate according to the eleventh embodiment.
  • FIG. 32 is a perspective view of the miniaturization means according to the twelfth embodiment.
  • FIG. 33 is a perspective view of the miniaturization means according to the thirteenth embodiment.
  • FIG. 34 is a cross-sectional view of the miniaturization means according to the fourteenth embodiment.
  • FIG. 35 is a cross-sectional view of the miniaturization means according to the fifteenth embodiment.
  • FIG. 36 is a front view of the miniaturization means according to the fifteenth embodiment.
  • FIG. 37 is a diagram illustrating the operation of the miniaturization means according to the fifteenth embodiment.
  • FIG. 38 is a first cross-sectional view of the miniaturization means according to the sixteenth embodiment.
  • FIG. 39 is a second sectional view of the miniaturization means according to the sixteenth embodiment.
  • FIG. 40 is a front view of the miniaturization means according to the sixteenth embodiment.
  • FIG. 41 is a first cross-sectional view of the miniaturization means according to the seventeenth embodiment.
  • FIG. 42 is a second cross-sectional view of the miniaturization means according to the seventeenth embodiment.
  • FIG. 43 is a front view of the miniaturization means according to the seventeenth embodiment.
  • FIG. 44 is a sectional view of the miniaturization means according to the eighteenth embodiment.
  • FIG. 45 is a front view of the miniaturization means according to the eighteenth embodiment.
  • FIG. 46 is a piping diagram illustrating a water treatment apparatus according to the nineteenth embodiment.
  • the water treatment device (201a) As shown in FIG. 1, the water treatment device (201a) according to Embodiment 1 of the present invention includes a water circulation circuit (201) and a water storage tank (202).
  • the water storage tank (202) stores water (including hot water, the same shall apply hereinafter).
  • a water circulation circuit (201), a first flow path pipe (206), and a second flow path pipe (207) are connected to the water storage tank (202).
  • the water circulation circuit (201) circulates the water in the water storage tank (202) and stirs it.
  • a water pipe (203), two on-off valves (204, 204), two pumps (205, 205), and a water treatment unit (210) are connected to the water circulation circuit (201). The detailed configuration of the water treatment unit (210) will be described later.
  • the water pipe (203) is a pipe through which water can circulate.
  • One end of the water pipe (203) is connected to the outer surface of the water storage tank (202), and the other end is connected to the opposite side of the outer surface of the water storage tank (202).
  • the two pumps (205, 205), the two on-off valves (204, 204), and the water treatment unit (210) are connected.
  • the open / close valve (204, 204) is configured as a valve capable of opening / closing the flow path of the water pipe (203).
  • the two on-off valves (204, 204) one is provided on the water inflow side of the water treatment unit (210), and the other one is provided on the water outflow side of the water treatment unit (210).
  • One of the two pumps (205, 205) is provided between the open / close valve (204) and the water storage tank (202) provided on the inflow side of the water treatment section (210), and the other one is a water treatment. It is provided between the part (210) and the opening / closing valve (204) provided on the outflow side thereof.
  • the water treatment unit (210) purifies the water that has flowed in from the inflow portion (203a) of the water pipe (203) and from the outflow portion (203b) of the water pipe (203). It is something to be drained.
  • the water treatment part (210) communicates with the inflow part (203a) of the water pipe (203) via the spray device (240), and the outflow part (203b) of the water pipe (203) via the downstream tank (250).
  • the water treatment section (210) includes a treatment tank (211) and a plurality of discharge units (230a, 230b).
  • the water treatment unit (210) supplies water introduced from the water pipe (203) to the treatment tank (211) from the spray device (240), and is generated in the discharge unit (230a, 230b) in the treatment tank (211).
  • the water is purified by the sterilizing factor.
  • the purified water flows through the downstream tank (250) and flows out from the downstream tank (250) to the water pipe (203) again.
  • the treatment tank (211) is a box-shaped water tank formed in a substantially rectangular shape in plan view. Specifically, the treatment tank (211) is formed in a bottom (212) formed in a substantially rectangular flat plate in plan view and a horizontally long substantially rectangular flat plate, and from both long sides of the bottom (212), respectively.
  • the height of the short wall portion (214b) on the other end side in the longitudinal direction of the treatment tank (211) (that is, the outflow side of water) is one end side in the longitudinal direction of the treatment tank (211) (that is, the inflow of water).
  • the outlet portion (217) is formed so as to be lower than the short wall portion (214a) and the long wall portions (213, 213) on the side.
  • each partition plate (215) is formed in a horizontally long, substantially rectangular flat plate, and is arranged along the longitudinal direction of the processing tank (211) so that the inside of the processing tank (211) has a plurality of lanes (221a to 222b). It is divided into.
  • Each partition plate (215) is formed of an electrically insulating material. Further, the partition plates (215, 215) arranged in the first flow path (221) and the second flow path (222), which will be described later, each have a hole (216) penetrating in the thickness direction.
  • first to fourth lanes (221a to 222b) are formed in order from the front side in FIG. 2 by the partition plates (215).
  • the number of lanes (221a to 222b) formed in the treatment tank (211) is an example, and can be freely changed according to the amount of water to be purified by the water treatment unit (210).
  • the partition plate (215) constitutes a partition member according to the present invention.
  • each lane (221a-222b) the first and second lanes (221a, 221b) are paired to form a first flow path (221), and the third and fourth lanes (222a, 222b) are formed.
  • a second channel (222) is formed as a pair.
  • the plurality of discharge units (230a, 230b) includes a first discharge unit (230a) and a second discharge unit (230b).
  • One discharge unit (230a, 230b) is provided for each pair of lanes (221a, 221b, 222a, 222b) described above.
  • the first discharge unit (230a) purifies the water in the first flow path (221).
  • the first discharge unit (230a) is connected to the electrode pair (231, 232) and the electrode pair (231, 232), and applies a predetermined voltage to the electrode pair (231, 232) ( 233) and a partition plate (215) in which the hole (216) described above is formed.
  • the partition plate (215) is provided with a discharge member (234).
  • the second discharge unit (230b) purifies the water in the second flow path (222). Since the specific configuration of the second discharge unit (230b) is the same as that of the first discharge unit (230a), description thereof is omitted.
  • the electrode pair (231, 232) is for generating discharge in water and is composed of a hot side electrode (231) and a neutral side electrode (232).
  • the electrode (231) is formed in a flat plate shape and is disposed in the first lane (221a).
  • the electrode (231) is connected to the high voltage generator (233).
  • the electrode (232) is formed in a flat plate shape and is disposed in the second lane (221b).
  • the electrode (232) is connected to the high voltage generator (233).
  • the electrode (231) and the electrode (232) are disposed so as to be substantially parallel to each other.
  • These electrodes (231, 232) are made of, for example, a metal material having high corrosion resistance.
  • the high voltage generator (233) is composed of a power source that applies a predetermined voltage to the electrode pair (231, 232).
  • the high voltage generator (233) is configured to apply an alternating waveform voltage in which positive and negative are switched to the electrode pair (231, 232) as illustrated in FIG. ing.
  • the duty of this alternating wave (square wave) is adjusted so that the ratios of the positive electrode side and the negative electrode side are equal.
  • the voltage applied to the electrode pair (231, 232) is an example, and is not limited to a square wave but may be a sine wave as long as it is an alternating voltage.
  • the discharge member (234) is a plate-like insulating member.
  • the discharge member (234) is made of an electrically insulating material such as ceramics.
  • the discharge member (234) is disposed so as to block the hole (216) formed in the partition plate (215) that partitions the first lane (221a) and the second lane (221b).
  • the discharge member (234) is formed with a minute discharge hole (235) at substantially the center thereof.
  • the discharge hole (235) is designed, for example, to have an electric resistance of several M ⁇ .
  • the discharge hole (235) forms a current path between the electrode (231) and the electrode (232).
  • the discharge hole (235) as described above serves as a current density concentration portion that increases the current density of the current path between the electrode pair (231, 232). As shown in FIG.
  • the spraying device (240) is connected to the water pipe (203), sprays the water introduced from the inflow part (203a) of the water pipe (203), and supplies it to the treatment tank (211).
  • the insulating part according to the present invention is configured.
  • the spray device (240) includes a nozzle header (241) and a plurality of spray nozzles (242) corresponding to the lanes (221a to 222b).
  • the nozzle header (241) is formed in an elongated tubular shape, and is provided so as to be orthogonal to the water pipe (203).
  • the water pipe (203) is connected to the side surface of the nozzle header (241), and the water flowing in from the water pipe (203)
  • Each spray nozzle (242) is provided so as to be divided.
  • a plurality of the spray nozzles (242) are provided at predetermined intervals in the longitudinal direction of the nozzle header (241).
  • the spray nozzle (242) is provided corresponding to each lane (221a to 222b).
  • Water flowing through the water pipe (203) flows into the nozzle header (241) from the inflow portion (203a), and becomes granular (droplets) from the spray nozzle (242) toward the corresponding lane (221a to 222b). Sprayed.
  • the water sprayed from the spray nozzle (242) becomes granular (droplets), air is interposed between the particles (between the droplets), and the electrical resistance is increased.
  • the water flowing in from the inflow portion (203a) of the water pipe (203) and the water flowing through the treatment tank (211) are electrically insulated.
  • the electrical resistance between the water of the inflow part (203a) of the water pipe (203) and the water of the treatment tank (211) becomes several hundred M ⁇ or more.
  • the downstream tank (250) is a water tank that is provided on the water outflow side of the treatment tank (211) and into which water that has flowed down from the treatment tank (211) and has a bowl shape flows.
  • the downstream tank (250) is formed in a substantially rectangular box in plan view, and the side surface is surrounded by the outer wall (251).
  • the height of the outer wall part (251) of the downstream tank (250) is the same as the height of the long wall part (213) and the inflow side short wall part (214a) of the treatment tank (211).
  • the outflow part (203b) of the water pipe (203) is connected to the downstream tank (250).
  • the downstream tank (250) and the processing tank (211) are partitioned by a short wall portion (214b) on the outflow side of the processing tank (211). Since this short wall part (214b) is provided with the outflow part (217), the water stored in the processing tank (211) can be removed before the processing tank (211) is full. ) To the bottom of the downstream tank (250). At this time, the distance from the outlet (217) to the bottom of the downstream tank (250) or the level of water stored in the downstream tank (250) has a predetermined height. For this reason, when the water of a processing tank (211) flows down from an outflow part (217) to a downstream tank (250), it becomes a soot.
  • the water flowing into the downstream tank (250) becomes soot (granular or droplets), so that air is interposed between the particles (between the droplets) and the electrical resistance is increased.
  • the water stored in the treatment tank (211) and the water flowing through the downstream tank (250) are electrically insulated.
  • the electrical resistance between the processing tank (211) and the downstream tank (250) is several hundred M ⁇ or more.
  • the water flowing through the downstream tank (250) flows out from the outflow portion (203b) of the water pipe (203).
  • water treatment through the water pipe (203) is performed in the water treatment unit (210).
  • the open / close valve (204, 204) of the water circulation circuit (201) is opened, and the water in the water storage tank (202) flows through the water pipe (203). Then, water flowing through the water pipe (203) flows into the nozzle header (241) from the inflow portion (203a) via the pump (205), and sprays from the spray nozzle (242) to each lane (221a to 222b). Then, water is stored in the treatment tank (211). At this time, since the sprayed water is granular (droplets), air is interposed between the droplets, and the electrical resistance is increased. For this reason, the water which flows in from the inflow part (203a) of a water piping (203) and the water which flows through a processing tank (211) are electrically insulated.
  • the inside of the treatment tank (211) is in a flooded state.
  • a square wave voltage having the same polarity ratio is applied to the electrode pair (231, 232) from the high voltage generator (233), the current density of the current path of the discharge hole (235) of the discharge member (234) rises.
  • a bactericidal factor an active species such as a hydroxyl radical
  • the hydroxyl radical constitutes the bactericidal factor according to the present invention.
  • the water flowing through the lanes (221a to 222b) of the treatment tank (211) flows down from the outlet (217) toward the downstream tank (250).
  • the water flowing down from the outlet part (217) to the downstream tank (250) becomes soot, so that air is interposed between the grains (between the droplets), and the electrical resistance is increased.
  • the water stored in the treatment tank (211) and the water flowing through the downstream tank (250) are electrically insulated.
  • Embodiment 1- since the insulating unit (240, 250) is provided between the water treatment unit (210) and the treated water communicating with the water treatment unit (210), the water treatment unit (210) From this, it is possible to reliably suppress the flow of electricity to the treated water communicating with the water treatment unit (210) from the water treatment unit (210). Electric power can be used efficiently.
  • the said insulation part (240,250) is provided in the inflow side and outflow side of the water treatment part (210), the upstream and downstream of this water treatment part (210) from the water treatment part (210) Since it is possible to reliably suppress the flow of electricity to the treated water with the side, it is possible to cause a discharge more reliably in the water of the water treatment unit (210), and to use the input power more efficiently be able to.
  • the sterilizing factor is generated in the treated water by the discharge of the water treatment unit (210), the treated water can be reliably purified by the sterilizing factor.
  • the water treatment unit (210) and the water treatment unit (210) communicate with each other. Since the impedance between the treated water and the treated water can be increased, it is possible to reliably insulate between the treated water (210) and the treated water communicating with the treated water (210).
  • bubbles (C) are generated in the discharge holes (235) provided between the electrode pairs (231, 232) and discharged in the bubbles (C), so that discharge occurs at the interface between the bubbles (C) and water.
  • An electrode can be formed. Thereby, it can prevent that a metal etc. precipitate from an electrode pair (231,232).
  • the amount of water treated by the water treatment device (201a) can be adjusted according to the number of lanes (221a to 222b).
  • the high voltage generator (233) is an alternating type, the positive and negative voltages applied to the electrode pairs (231, 232) are alternately switched at predetermined intervals. Therefore, spark discharge can be caused in the discharge hole (235) without causing glow discharge. That is, in the case of a direct current, the discharge mode changes from spark discharge to glow discharge as the current increases.
  • the electrode pair (231, 232) before the discharge mode changes to glow discharge. Since the polarity of the voltage applied to is switched, it is possible to continue to generate spark discharge without generating glow discharge in the discharge hole (235). Thereby, the thermal destruction by the glow discharge of the discharge hole (235) can be suppressed, and the hole diameter of the discharge hole (235) can be suppressed from expanding. Therefore, stable discharge can be performed.
  • the oxidation reaction and the reduction reaction can be performed equally in both electrodes (231, 232). Therefore, elution due to the oxidation reaction of the electrode pair (231, 232) can be suppressed, and the alternating voltage waveform generated by the high voltage generator (233) can be used to form metal from each electrode (231, 232). And the like can be prevented from being deposited, so that stable discharge can be performed.
  • the voltage waveform is a square wave, for example, compared to a sine wave or the like, a discharge can be generated without depending on the conductivity of water. Therefore, it is possible to discharge stably.
  • the water treatment apparatus (1a) includes a water circulation circuit (1) and a water storage tank (2), as in the first embodiment.
  • the water storage tank (2) stores water (including hot water, the same shall apply hereinafter).
  • a water circulation circuit (1), a first flow path pipe (6), and a second flow path pipe (7) are connected to the water storage tank (2).
  • the water circulation circuit (1) circulates the water in the water storage tank (2) and stirs it.
  • the water circulation circuit (1) includes a water treatment section having a water pipe (water passage) (3), two on-off valves (4, 4), two pumps (5a, 5b), and a plurality of discharge treatment units. (10) and are connected. The detailed configuration of the water treatment unit (10) will be described later.
  • the water pipe (3) is a pipe through which water can circulate.
  • One end of the water pipe (3) is connected to the side surface of the water storage tank (2), and the other end is connected to the opposite side of the side surface of the water storage tank (2).
  • the above-described two pumps (5a, 5b), two on-off valves (4, 4), and a water treatment section (10) are connected.
  • the open / close valve (4, 4) is configured as a valve that can open and close the flow path of the water pipe (3).
  • the two open / close valves (4, 4) one is provided on the water inflow side of the water treatment section (10), and the other is provided on the water outflow side of the effluent water pump (5b). Yes.
  • each open / close valve (4, 4) is opened, water flows through the water pipe (3), and when closed, the water flow inside the water pipe (3) stops.
  • the water treatment section (10) has an inflow pipe (3a) connected to an inflow pipe (3a) and an outflow pipe (3b) that constitute a part of the water pipe (3).
  • the water flowing in from the outlet is purified and discharged from the outflow pipe (3b).
  • This water treatment part (10) is accommodated in the casing (10a) together with the two pumps (5a, 5b) described above.
  • the inflow pipe (3a) is provided with an inflow water pump (5a), and the outflow pipe (3b) is provided with an outflow water pump (5b).
  • the water treatment unit (10) has first to sixth discharge treatment units (21 to 26). Each of these six discharge processing units (21 to 26) has a water tank (28) in which a flow path (27) is partitioned, and each water tank (28) is arranged vertically.
  • the six discharge processing units (21 to 26) are, from top to bottom, the first discharge processing unit (21), the second discharge processing unit (22), the third discharge processing unit (23), and the fourth discharge processing unit (24 ),
  • the fifth discharge treatment unit (25), and the sixth discharge treatment unit (26) are stacked in this order to constitute the water treatment unit (10).
  • the six discharge processing units (21 to 26) are configured to be slidable in a predetermined horizontal direction via a guide rail, for example, and are configured to be detachable for each discharge processing unit (21 to 26).
  • the first discharge processing unit (21) includes a water tank (28), a spray device (40), and a plurality of discharge units (30).
  • the first discharge processing unit (21) is configured to purify the water flowing in from the water pipe (3) in each flow path (27) and to flow out to the lower second discharge processing unit (22). .
  • the direction in which the flow path (27) of the water treatment section (10) extends that is, the left-right direction in FIG. 9, is referred to as “left-right direction”, and the width direction of the flow path (27), ie, FIG.
  • the depth direction is described as “front-rear direction”.
  • the water tank (28) is formed in a rectangular box shape in plan view. Specifically, the water tank (28) includes a bottom portion (12), two long wall portions (13, 13), and two short wall portions (14, 14).
  • the bottom (12) is formed in a flat plate in plan view.
  • the two long wall portions (13, 13) are each formed in a substantially rectangular flat plate, extend upward from both front and rear end portions of the bottom portion (12), and face each other.
  • the two short wall portions (14, 14) are each formed in a substantially rectangular flat plate, extend upward from both the left and right end portions of the bottom portion (12), and face each other.
  • the long wall portion (13) on the near side is shown through.
  • partition plates (18,..., 18) are arranged at predetermined intervals in the width direction.
  • the partition plates (18,..., 18) are formed by seven flat plates having the same shape as the long wall portions (13, 13).
  • the seven partition plates (18,..., 18) are arranged in parallel to the long wall portions (13, 13) and partition the inside of the water tank (28) into eight flow paths (27).
  • Each partition plate (18, ..., 18) is formed of a material having electrical insulation.
  • the partition plates (15,..., 15) are respectively arranged in the center in the width direction of the eight flow paths (27) partitioned by the partition plates (18,..., 18).
  • the eight partition plates (15,..., 15) are formed by eight flat plates having the same shape as the long wall portions (13, 13).
  • Eight partition plates (15, ..., 15) are arranged in parallel to the partition plates (18, ..., 18), and two lanes (27a, 27b) are arranged in the width direction inside each flow path (27). It is divided into. That is, each flow path (27) is partitioned into a first lane (27a) and a second lane (27b) by each partition plate (15).
  • Each partition plate (15,..., 15) is made of an electrically insulating material, and has a hole (16) penetrating in the thickness direction.
  • the number of the flow paths (27) divided into the water tank (28) is an example, and can be arbitrarily changed according to the amount of water to be purified by the water treatment unit (10).
  • Each lane (27a, 27b) has a dam plate (19).
  • Each dam plate (19) is formed in a flat plate and is provided on the downstream side (right side in the left-right direction in FIG. 9) of each lane (27a, 27b).
  • Each barrier plate (19) is formed of a flat plate whose vertical length is shorter than the vertical length of the short wall portions (14, 14), and is provided such that the lower end is in contact with the bottom portion (12).
  • Each dam plate (19) defines, in each lane (27a, 27b), a treatment tank (11) that temporarily stores water on the upstream side of each dam plate (19), while on the downstream side.
  • An outflow part (50) through which overflowed water flows out from the treatment tank (11) is provided so as to partition.
  • the treatment tank (11) of each lane (27a, 27b) is provided with a flow path adjustment plate (60) that adjusts the flow of water.
  • Each flow path adjustment plate (60) has the same width as the width of each lane (27a, 27b), and the vertical length is longer than the vertical length of the short wall (14, 14). It is formed by a short flat plate.
  • each flow path adjustment plate (60) is disposed at a position where the upper end is higher than the upper end of the dam plate (19) on the upstream side (left side in the left-right direction in FIG. 9) of each treatment tank (11). Is arranged at a position higher than the bottom (12).
  • each flow path adjustment plate (60) of the treatment tank (11) of each lane (27a, 27b) On the upstream side (left side in FIG. 9) of each flow path adjustment plate (60) of the treatment tank (11) of each lane (27a, 27b), the spray nozzle (42) of the spray device (40) and the spray nozzle The reflector (43) which reflects the water sprayed from (42) is provided.
  • the discharge part (30) is provided in the water of the downstream of each flow-path adjustment board (60) (right side of FIG. 9).
  • the outflow part (50) of each lane (27a, 27b) is formed with an outflow port (17) for discharging the water flowing into the outflow part (50) to the lower second discharge treatment unit (22). ing.
  • Each outflow port (17) is formed by forming an opening in the bottom (12) of the water tank (28).
  • the 1st and 2nd slope (51,52) is provided in the outflow part (50) of each lane (27a, 27b).
  • Each of the first and second slopes (51, 52) is formed to be curved in a J shape.
  • Each first slope (51) is attached to the upper end of each dam plate (19), and is configured to cause the water overflowing from each dam plate (19) to flow downward diagonally and to jump upward diagonally upward at the curved portion.
  • each 2nd slope (52) is attached to a short wall part (14) below each 1st slope (51), and is in the position which receives the water splashed up by each 1st slope (51). Is provided.
  • Each of the second slopes (52) is configured to cause water to flow down obliquely downward on the side opposite to the first slope (51) and to jump up obliquely upward at the curved portion.
  • each outflow portion (50) constitutes an insulating portion (80) according to the present invention.
  • the spraying device (40) is connected to the water pipe (3), sprays water introduced from the inflow pipe (3a) of the water pipe (3), and supplies it to the first discharge treatment unit (21). It is.
  • the spray device (40) includes a nozzle header (41), a number (16 in this embodiment) of spray nozzles (42) corresponding to each lane (27a, 27b), and each spray nozzle (42). And a plurality of reflectors (43) provided in correspondence. Although details will be described later, the spray device (40) constitutes the insulating portion (80) according to the present invention.
  • the nozzle header (41) is formed in an elongated tubular shape and is connected to the inflow water pump (5a) via the inflow pipe (3a).
  • the plurality of spray nozzles (42) are provided at predetermined intervals in the longitudinal direction of the nozzle header (41).
  • the spray nozzle (42) is provided corresponding to each lane (27a, 27b), and is provided at an obliquely upward angle so as to spray water obliquely upward.
  • Each said reflector (43) is comprised by the columnar body of a triangular prism shape, and is higher than a corresponding spray nozzle (42) in the surface upstream of each flow-path adjustment plate (60) of each lane (27a, 27b). Fixed in position. Each reflector (43) is provided so as to reflect water sprayed obliquely upward from each spray nozzle (42). Each reflector (43) may have any shape as long as it is configured to reflect water sprayed obliquely upward from each spray nozzle (42), not a columnar body, You may be comprised by the curved board.
  • each discharge section (30) is provided one by one in each flow path (27), and purifies the water in each flow path (27).
  • Each discharge part (30) is formed in an electrode pair (32a, 32b), a high voltage generating part (33) for applying a predetermined voltage to the electrode pair (32a, 32b), and the partition plate (15) described above.
  • a discharge member (34) provided in the formed hole (16).
  • the electrode pair (32a, 32b) is for generating discharge in water, and is composed of two hot first electrodes (32a) and two neutral second electrodes (32b). Yes.
  • Each first electrode (32a) is formed of a flat rectangular net-like conductive member, and is arranged in parallel with the flow path adjusting plate (60) in the first lane (27a).
  • the two first electrodes (32a) are connected to a high voltage generator (33) that generates a high voltage.
  • Each second electrode (32b) is formed of a rectangular net-like conductive member, and is arranged in parallel with the flow path adjusting plate (60) in the second lane (27b).
  • the two second electrodes (32b) are connected to a high voltage generator (33) that generates a high voltage.
  • the first and second electrodes (32a, 32b) are disposed at corresponding positions in the lanes (27a, 27b). These electrodes (32a, 32b) are made of, for example, a metal material having high corrosion resistance
  • the high voltage generator (33) includes a power source that applies a predetermined voltage to the electrode pair (32a, 32b).
  • the high voltage generator (33) applies an alternating square wave high voltage that switches between positive and negative to the electrode pair (32a, 32b).
  • the duty of the square wave is adjusted so that the ratios of the positive electrode side and the negative electrode side are equal.
  • the voltage applied to each electrode pair (32a, 32b) is an illustration, and as long as it is an alternating voltage, it is not limited to a square wave but may be a sine wave or the like.
  • the discharge member (34) is a plate-like insulating member.
  • the discharge member (34) is made of an electrically insulating material such as ceramics.
  • the discharge member (34) is disposed so as to block the hole (16) formed in the partition plate (15) that partitions the first lane (27a) and the second lane (27b).
  • the discharge member (34) is formed with a discharge hole (35) consisting of a minute through hole at substantially the center thereof.
  • the discharge hole (35) is designed, for example, to have an electric resistance of several M ⁇ .
  • the discharge hole (35) constitutes a current path between the first electrode (32a) and the second electrode (32b) and serves as a current density concentrating portion for increasing the current density of the current path.
  • the second to sixth discharge treatment units (22 to 26) include a water tank (28) and a plurality of discharge parts (30).
  • the second to sixth discharge processing units (22 to 26) are configured in substantially the same manner, and are arranged vertically in a state where they are inverted in the horizontal direction with respect to the upper discharge processing units (21 to 25), respectively. Yes.
  • the second to fifth discharge treatment units (22 to 25) purify the water flowing from the upper discharge treatment units (21 to 24) in each flow path (27), and lower discharge treatment units (23 to 26).
  • the sixth discharge processing unit (26) purifies the water flowing in from the upper fifth discharge processing unit (25) in each flow path (27), and further passes through the storage tank (29) provided below. It is configured to flow out to the outflow pipe (3b).
  • the second to sixth discharge treatment units (22 to 26) are provided with a storage tank (29) connected to the outflow pipe (3b) below the outlet (17) of the sixth discharge treatment units (22 to 26). Since the configuration is substantially the same except for the above points, only the second discharge processing unit (22) will be described below as a representative.
  • the water tank (28) has a bottom (12) similar to the first discharge processing unit (21), two long walls (13, 13), and two short walls (14, 14). ) And are formed.
  • the long wall part (13, 13) on the near side is shown through.
  • the water tank (28) Inside the water tank (28), as in the first discharge treatment unit (21), seven partition plates (18,..., 18) are arranged at predetermined intervals in the width direction, and the water tank (28) The inside is divided into eight flow paths (27). Further, partition plates (15,..., 15) configured in the same manner as the first discharge processing unit (21) are arranged in the center in the width direction of the eight flow paths (27), respectively. With such a configuration, the water tank (28) has 16 lanes (27a, 27b, ..., 27a, 27b) by the partition plates (18, ..., 18) and the partition plates (15, ..., 15). Is formed.
  • Each lane (27a, 27b) is provided with a weir plate (19) configured similarly to the first discharge processing unit (21), and each lane (27a, 27b) is connected to the upstream processing tank (11). It is divided into the outflow part (50) on the downstream side.
  • first to third flow path adjusting plates (61, 62, 63) are provided in order from the upstream side to the downstream side.
  • the first flow path adjustment plate (61) and the third flow path adjustment plate (63) are formed in the same shape as the flow path adjustment plate (60) of the first discharge processing unit (21). That is, the first flow path adjustment plate (61) and the third flow path adjustment plate (63) have the same width as the width of each lane (27a, 27b), and the vertical length is a short wall. It is formed of a flat plate shorter than the vertical length of the parts (14, 14).
  • the first flow path adjustment plate (61) and the third flow path adjustment plate (63) are arranged such that the upper end is higher than the upper end of the weir plate (19) and the lower end is higher than the bottom (12). It is provided to be arranged.
  • the second flow path adjusting plate (62) has the same width as each lane (27a, 27b), and the vertical length is shorter than the vertical length of the dam plate (19). It is formed in a flat plate and is provided so that the lower end is in contact with the bottom (12).
  • each lane (27a, 27b) is formed with an outlet (17), and the first and second slopes (51, 52) are provided in the same manner as the first discharge processing unit (21). It has been.
  • Each discharge section (30) is configured in the same manner as the first discharge processing unit (21), and in each flow path (27), a first flow path adjustment plate (61) and a second flow path adjustment plate (62), respectively. Between.
  • the second discharge processing unit (22) is configured as described above.
  • the third discharge processing unit (23) configured in the same manner is installed below the second discharge processing unit (22) in a state where the second discharge processing unit (22) is reversed in the left-right direction.
  • the inflow portion on the upstream side of the one flow path adjusting plate (61) corresponds to the outlet (17) of the second discharge processing unit (22).
  • the fourth discharge processing unit (24) is installed below the third discharge processing unit (23) in a state where the third discharge processing unit (23) is reversed in the left-right direction, and the first flow path adjusting plate.
  • the upstream inflow portion of (61) corresponds to the outlet (17) of the third discharge processing unit (23).
  • the fifth discharge processing unit (25) is installed below the fourth discharge processing unit (24) in a state where the fourth discharge processing unit (24) is reversed in the left-right direction, and the first flow path adjusting plate.
  • the upstream inflow portion of (61) corresponds to the outlet (17) of the fourth discharge processing unit (24).
  • the sixth discharge processing unit (26) is installed below the fifth discharge processing unit (25) in a state where the fifth discharge processing unit (25) is reversed in the left-right direction, and the first flow path adjustment plate.
  • the inflow portion on the upstream side of (61) corresponds to the outlet (17) of the fifth discharge processing unit (25).
  • the first discharge treatment unit (21) at the uppermost stage of the six discharge treatment units (21 to 26) is supplied with water by the pump (5a).
  • the water in the pipe (3) is conveyed, the water flows back in order from the uppermost first discharge processing unit (21) to the lowermost sixth discharge processing unit (26).
  • the water tanks (28) of the first to sixth discharge treatment units (21 to 26) arranged in the upper and lower directions flow in such a manner that water is folded in order from the upper flow path (27) to the lower flow path (27). It is comprised so that it may communicate.
  • the water tanks (28) of the first to sixth discharge treatment units (21 to 26) arranged in the vertical direction communicate with the flow paths (27) on the inflow side and the outflow side of the respective flow paths (27).
  • Insulating part (80) which electrically insulates the water to perform and each channel (27) is provided.
  • the spray device (40) becomes the insulating part (80)
  • the outflow part (50) becomes the insulating part (80)
  • the outflow portion (50) of the upper first to fifth discharge processing units (21 to 25) becomes the insulating portion (80) and flows out.
  • each outflow part (50) becomes an insulating part (80).
  • the water treatment unit (10) purifies the water flowing through the water pipe (3).
  • the two pumps (5a, 5b) are driven, and from the high voltage generator (33) to the electrode pair (32a, 32b) of each discharge unit (30) of each discharge processing unit (21-26).
  • a square wave voltage having the same polarity ratio is applied.
  • the open / close valves (4, 4) of the water circulation circuit (1) are opened before the operation of the water treatment section (10) is started.
  • the water flowing into the inflow pipe (3a) from the water pipe (3) is first transported to the spray device (40) of the first discharge treatment unit (21). Specifically, the water in the water pipe (3) flows into the nozzle header (41) via the inflow pipe (3a), and flows from each spray nozzle (42) to each lane (27a 27b), water is sprayed obliquely upward. The water sprayed from each spray nozzle (42) collides with each reflector (43), is reflected, and falls toward the water accommodated in each treatment tank (11).
  • the electrical resistance between the water of the inflow pipe (3a) of the water pipe (3) and the water of the treatment tank (11) is increased.
  • the electrical resistance between the water in the inflow pipe (3a) of the water pipe (3) and the water in the treatment tank (11) is several hundred M ⁇ or more.
  • the spray device (40) constitutes the insulating part (80) according to the present invention.
  • each processing tank (11 below) from each spray nozzle (42) since water is sprayed diagonally upward from each spray nozzle (42), compared with the case where it sprays downward, each processing tank (11 below) from each spray nozzle (42) The water path to the water surface becomes longer, and the electrical resistance between each spray nozzle (42) and each treatment tank (11) becomes higher. Thereby, the insulation of the spraying device (40) which comprises an insulation part (80) improves.
  • each spray nozzle (42) is refined when it collides with the reflector (43). Therefore, compared with the case where the reflector (43) is not provided, the interval between each tub (each droplet) falling to each processing tank (11) is increased, and each spray nozzle (42) and each processing tank (11) The electrical resistance between becomes higher.
  • the reflector (43) constitutes a finer means for refining each soot that falls from each spray nozzle (42) to each treatment tank (11), and the finer means also constitutes the insulating part (80). This improves the insulation of the spraying device (40).
  • This bubble (C) will be in the state which covers the whole region of the discharge hole (35), as shown in FIG.
  • the bubble (C) functions as a resistance that prevents conduction through water between the first electrode (32a) and the second electrode (32b).
  • an electrode (32a, 32b) and water become the same electric potential, and the interface of a bubble (C) and water becomes an electrode.
  • dielectric breakdown occurs at the interface between the bubble (C) and water, and discharge occurs.
  • a bactericidal factor (such as a hydroxyl radical) is generated in the water of each treatment tank (11).
  • each treatment tank (11) the water flowing downstream through the gap between the flow path adjusting plate (60) and the bottom (12) has a flow velocity when passing through the gap. Ascend and collide with the weir plate (19). Part of the water that has collided with the weir plate (19) is bounced back to the weir plate (19) to generate a vortex, while the rest passes over the weir plate (19) and flows out to the outflow part (50). In this manner, in each treatment tank (11), the flow rate adjusting plate (60) increases the flow rate of water to generate vortices, thereby stirring the water. That is, the flow path adjusting plate (60) constitutes the stirring member according to the present invention. When the water in each treatment tank (11) is stirred by such a stirring member, the sterilizing factor generated in the water in each treatment tank (11) is diffused, and purification is promoted.
  • each treatment tank (11) overflows from each treatment tank (11) and flows out to the outflow part (50).
  • the water that flows out to the outflow part (50) flows down obliquely downward along the first slope (51), jumps up obliquely upward in the curved portion, and becomes a fine bowl (droplet).
  • the water colliding with the short wall portion (14) is turned in the left-right direction (left-right direction in FIG. 9), flows down along the second slope (52), and further splashes upward obliquely in the curved portion. Refined.
  • the splashed water collides with the weir plate (19), then falls downward, passes through the outlet (17), and flows into each treatment tank (11) of the second discharge treatment unit (22).
  • each outflow part (50) comprises the insulation part (80) which concerns on this invention.
  • the first and second slopes (51, 52) are provided. Compared to the case where water is simply dropped, the fine wrinkles (droplets) are formed. As a result, compared with the case where the first and second slopes (51, 52) are not provided, each drop (each droplet) that falls between each treatment tank (11) and the second discharge treatment unit (22). The distance between the two becomes larger, and the electrical resistance between the two becomes higher. That is, the first and second slopes (51, 52) constitute a refining means for refining each soot that falls from each processing tank (11) to the second discharge processing unit (22) in the lower stage.
  • the insulating property of each outflow part (50) which comprises an insulating part (80) improves by the refinement
  • each treatment tank (11) of the second discharge treatment unit (22) meanders in each treatment tank (11) by the three flow path adjustment plates (61 to 63) and flows to the weir plate (19). .
  • the water flowing into each treatment tank (11) first passes through the gap between the first flow path adjusting plate (61) and the bottom (12) as shown in FIGS. Flows downstream. When the water passes through the gap, the flow velocity increases, and the water flows vigorously through the two net-like electrodes (32a, 32a) (32b, 32b) and collides with the second flow path adjusting plate (62).
  • a part of the water that has collided with the second flow path adjustment plate (62) is bounced back to the second flow path adjustment plate (62) to form a vortex, while the remaining water flows through the second flow path adjustment plate (62). Get over and flow downstream.
  • the water that has passed over the second flow path adjustment plate (62) collides with the third flow path adjustment plate (63).
  • the water that has collided with the third flow path adjusting plate (63) is partly bounced back to the third flow path adjusting plate (63) to produce a vortex, while the rest is the third flow path adjusting plate (63) and the bottom ( 12) Flows downstream through the gap. As the water passes through the gap, the flow velocity rises and collides with the weir plate (19).
  • the first to third flow path adjusting plates (61 to 63) meander the water flow and increase the flow rate of the water to generate vortices. Is stirred. That is, the first to third flow path adjusting plates (61 to 63) constitute the stirring member according to the present invention.
  • each treatment tank (11) of the second discharge treatment unit (22) the first discharge treatment unit (21) is disposed between the first flow passage adjustment plate (61) and the second flow passage adjustment plate (62). ), A discharge is generated and a sterilizing factor is generated.
  • the generated sterilizing factor diffuses in each treatment tank (11) by the stirring of the water by the stirring member, so that the purification of water is also promoted in the second discharge processing unit (22).
  • each treatment tank (11) of the second discharge treatment unit (22) overflows from each treatment tank (11) and flows out to the outflow part (50).
  • the water overflowing from each processing tank (11) becomes a bowl (droplet) in each outflow portion (50)
  • the lower third discharge processing unit (23 ) The electrical resistance between each treatment tank (11) and each treatment tank (11) of the lower third discharge treatment unit (23) is increased, and the two are electrically insulated.
  • the water overflowing from each treatment tank (11) is splashed by the first and second slopes (51, 52), so that the first and second slopes ( Compared with the case where water is simply dropped without providing 51, 52), fine mists (droplets) are formed. Therefore, compared with the case where the first and second slopes (51, 52) are not provided, the insulating property of each outflow portion (50) constituting the insulating portion (80) is improved.
  • the water treatment section (10) in the six discharge treatment units (21 to 26) arranged in the vertical direction, the water treatment section (10) is connected to the flow path (27) of the uppermost first discharge treatment unit (21).
  • the lower sixth flow treatment unit (26) flows in a folded manner to each flow path (27).
  • the discharge part (30) causes discharge in each flow path (27) of each stage to generate a sterilizing factor.
  • the water treatment section (10) is provided with a plurality of water tanks (28) each having a flow path (27) partitioned and arranged vertically, and a bactericidal factor in the water of each flow path (27). And a discharge section (30) for generating discharge so as to be generated, and a plurality of water tanks (28) communicate with each other so that water is folded and flowed in order from the upper stage to the lower stage, while the inflow side of each flow path (27) And an insulating part (80) is provided on the outflow side.
  • the planar shape of this water treatment part (10) can be reduced in size, ensuring the water flow path long in a water treatment part (10). That is, since the contact time between the sterilizing factor and water is ensured for a long time, the sterilization performance can be prevented from being lowered, and the planar area can be reduced, so that the installation area can be reduced.
  • water is dropped in the form of a bowl (droplet) between each flow path (27) of each discharge treatment unit (21-26) and water communicating therewith. It was. Therefore, it is possible to interpose air between the intercostals (between droplets) of water in the form of soot (droplets). Therefore, since the electrical resistance between each flow path (27) of each discharge processing unit (21 to 26) and the water communicating therewith becomes high, electrical insulation between the two can be easily performed. As a result, it is possible to reliably cause discharge in the water of the water treatment unit (10), and thus it is possible to efficiently use the input power.
  • each water tank (28) was provided with the several flow path (27), according to the number of flow paths (27), the amount of water which a water treatment apparatus processes can be adjusted. it can.
  • the current density is increased in the discharge hole (35) formed in the insulating partition plate (15) that partitions the electrode pair (32a, 32b) to generate bubbles (C). And discharging in the bubbles (C).
  • a discharge electrode can be formed in the interface of a bubble (C) and water. That is, in this discharge, both electrodes (32a, 32b) do not become discharge electrodes, so that deterioration of the electrodes (32a, 32b) due to discharge can be suppressed.
  • the high voltage generator (33) is an alternating type, the positive / negative of the voltage applied to each electrode pair (32a, 32b) is alternately switched every predetermined time. Therefore, it is possible to cause spark discharge without causing glow discharge in the discharge hole (35). That is, in the case of a direct current, the discharge mode changes from a spark discharge to a glow discharge as the current increases.
  • the electrode pair (32a, 32b) is transferred before the discharge mode changes to a glow discharge. Since the polarity of the applied voltage is switched, it is possible to continue to generate spark discharge without generating glow discharge in the discharge hole (35). Thereby, the thermal destruction by the glow discharge of the discharge hole (35) can be suppressed, and the hole diameter of the discharge hole (35) can be suppressed from expanding. Therefore, stable discharge can be performed.
  • the oxidation reaction and the reduction reaction can be performed equally in both electrodes (32a, 32b). Therefore, elution due to the oxidation reaction of the electrode pair (32a, 32b) can be suppressed, and the metal voltage from the electrode pair (32a, 32b) can be reduced by the alternating voltage waveform generated by the high voltage generator (33). And the like can be prevented, and as a result, stable discharge can be performed.
  • the voltage waveform is a square wave, for example, compared to a sine wave or the like, a discharge can be caused without depending on the conductivity of water. Therefore, it is possible to discharge stably.
  • each flow path adjustment plate (60, 61, 62, 63), which is a stirring member for stirring water in each treatment tank (11), is provided in each treatment tank (11), each treatment tank (11)
  • the sterilizing factor generated in the water of the tank (11) can be uniformly diffused in the water of each treatment tank (11).
  • the water treatment unit (10) it is possible to easily configure the water treatment unit (10) by using the same-shaped water tank (28) and inverting and stacking alternately in the horizontal direction from top to bottom. it can.
  • each water tank (28) is configured to be slidable in the horizontal direction, it can be easily attached and detached when performing maintenance or the like.
  • the water storage tank (2) is a hot water storage tank for storing hot water
  • the water circulation circuit (1) is a hot water circulation circuit for circulating the hot water in the hot water storage tank.
  • the water temperature in the hot water storage tank (2) in which hot water for hot water supply is stored needs to be kept at a high temperature in order to suppress the growth of bacteria, and hot water having a temperature higher than necessary is supplied on the use side.
  • the running cost was high.
  • the water treatment unit (10) is connected to the hot water storage tank (2) in which hot water for hot water supply is stored and in the circulation pipe for circulating the hot water in the hot water storage tank (2). Is done. Therefore, since the warm water purified by the sterilizing factor in the water treatment unit (10) is returned to the hot water storage tank (2), the propagation of bacteria in the hot water storage tank (2) can be suppressed. Thereby, since it is not necessary to keep the temperature in the hot water storage tank (2) at a high temperature, there is no possibility that hot water having a temperature higher than necessary may be supplied to the user side, and the running cost can be reduced. .
  • Embodiment 3 of the Invention In the third embodiment, the configuration of the stirring member (in the second embodiment, the flow path adjusting plate (60 to 63)) provided in each treatment tank (11) of each discharge treatment unit (21 to 26) in the second embodiment. It has been changed.
  • each treatment tank (11) of each discharge treatment unit (21 to 26) has the same first and second as in the second embodiment.
  • the flow path adjustment plate (61, 62) there are a lower flow path adjustment plate (71) and an upper flow path adjustment plate (72) between the flow path adjustment plates (61, 62) in order from the lower side to the upper side.
  • the lower flow path adjustment plate (71) and the upper flow path adjustment plate (72) are each formed in a flat plate and are arranged in parallel to the bottom portion (12).
  • the lower flow path adjustment plate (71) and the upper flow path adjustment plate (72) are shorter in the left-right direction than the distance between the first and second flow path adjustment plates (61, 62).
  • the lower flow path adjustment plate (71) has one end in contact with the first flow path adjustment plate (61), and a gap is formed between the other end and the second flow path adjustment plate (62). Is provided.
  • the upper flow path adjustment plate (72) has one end in contact with the second flow path adjustment plate (62), and a gap is formed between the other end and the first flow path adjustment plate (61). It is provided as follows. Although not shown, the lower flow path adjustment plate (71) and the upper flow path adjustment plate (72) are formed by forming holes through which the electrodes (32a, 32b) pass, for example. It is configured to avoid the electrodes (32a, 32b).
  • the water flowing into each treatment tank (11) flows from the gap between the first flow path adjustment plate (61) and the bottom (12).
  • the flow meanders As shown in FIG. 19, the water flowing between the first flow path adjustment plate (61) and the second flow path adjustment plate (62) flows into the lower flow path adjustment plate (71).
  • the lower side flows toward the outflow side of each processing tank (11) and collides with the second flow path adjustment plate (62).
  • each treatment tank (11) is interposed between the lower flow path adjustment plate (71) and the upper flow path adjustment plate (72). )
  • the water that has collided with the first flow path adjustment plate (61) has its flow direction reversed, and flows on the upper side of the upper flow path adjustment plate (72) toward the outflow side of each treatment tank (11).
  • the water flow path in each treatment tank (11) is lengthened by meandering the flow of water in the region between the first flow path adjustment plate (61) and the second flow path adjustment plate (62).
  • a vortex is generated when the flow of water collides with the first flow path adjustment plate (61) and the second flow path adjustment plate (62).
  • the water of each processing tank (11) is stirred by the four flow path adjustment plates (61, 62, 71, 72). That is, the four flow path adjusting plates (61, 62, 71, 72) constitute the stirring member according to the present invention.
  • the sterilization factor generated in the water of each treatment tank (11) by the discharge is uniformly diffused in the water of each treatment tank (11), and the purification can be promoted.
  • the first flow path is provided in each treatment tank (11) of each discharge treatment unit (21 to 26) as in the second embodiment.
  • the adjustment plate (61) and the second flow path adjustment plate (62) are provided, but in the fourth embodiment, no gap is formed between each first flow path adjustment plate (61) and the bottom (12).
  • Each of the second flow path adjustment plates (62) is configured such that the vertical length is longer than the vertical length of the dam plate (19).
  • An inflow port (61a) is formed at the lower end of the first flow path adjusting plate (61) and at one end in the width direction.
  • an outlet (62a) is located at the same height as the upper end of the weir plate (19) of the second flow path adjusting plate (62) and at the end opposite to the inlet (61a) in the width direction. Is formed.
  • the inner and outer flow path adjusting plates (81, 82) are each formed in a flat plate and are arranged in parallel to the partition plate (15).
  • the inner and outer flow path adjusting plates (81, 82) are each longer in the vertical direction than the vertical length of the weir plate (19) and the same as the vertical length of the short wall portion (14) on the inflow side.
  • the length in the left-right direction is formed to be shorter than the distance between the first and second flow path adjustment plates (61, 62).
  • the inner flow path adjustment plate (81) has one end in contact with the first flow path adjustment plate (61), and a gap is formed between the other end and the second flow path adjustment plate (62). It is provided as follows.
  • the outer flow path adjustment plate (82) has one end in contact with the second flow path adjustment plate (62), and a gap is formed between the other end and the first flow path adjustment plate (61). It is provided as follows.
  • the inner flow path adjusting plate (81) and the outer flow path adjusting plate (82) are formed by forming holes through which the electrodes (32a, 32b) pass, for example. (32a, 32b) is configured to be avoided.
  • each treatment tank (11) is allowed to flow into the inlet (61a) formed in the first flow path adjustment plate (61).
  • the water flowing between the first flow path adjustment plate (61) and the second flow path adjustment plate (62) is separated from the inner flow path adjustment plate (81). It flows toward the outflow side of each processing tank (11) between the plates (15) and collides with the second flow path adjusting plate (62).
  • each treatment tank (11) is interposed between the outer flow path adjustment plate (82) and the inner flow path adjustment plate (81). Flows toward the inflow side of the gas and collides with the first flow path adjusting plate (61).
  • the water that has collided with the first flow path adjustment plate (61) has its flow direction reversed, and the space between the outer flow path adjustment plate (82) and the partition plate (18) is on the outflow side of each treatment tank (11). It flows toward the downstream side from the outlet (62a) formed in the second flow path adjustment plate (62).
  • the water flow path in each treatment tank (11) is lengthened by meandering the flow of water in the region between the first flow path adjustment plate (61) and the second flow path adjustment plate (62).
  • a vortex is generated when the flow of water collides with the first flow path adjustment plate (61) and the second flow path adjustment plate (62).
  • the water of each processing tank (11) is stirred by the four flow path adjustment plates (61, 62, 81, 82). That is, the four flow path adjusting plates (61, 62, 81, 82) constitute the stirring member according to the present invention.
  • the sterilization factor generated in the water of each treatment tank (11) by the discharge is uniformly diffused in the water of each treatment tank (11), and the purification can be promoted.
  • each treatment tank (11) of each discharge treatment unit (21 to 26) includes a first flow path adjustment plate (61) similar to that of the second embodiment and a plurality of A water wheel (91) having blades (91a) is provided.
  • the water turbine (91) is provided immediately downstream of the first flow path adjustment plate (61), and is arranged such that the rotation shaft extends in the width direction of each treatment tank (11).
  • each treatment tank (11) flows downstream through the gap between the first flow path adjustment plate (61) and the bottom (12).
  • the flow velocity increases, collides with the blade (91a) of the water turbine (91), and rotates the water wheel (91). Thereby, the water of each processing tank (11) is stirred.
  • the water in each treatment tank (11) is agitated by the first flow path adjustment plate (61) and the water wheel (91). That is, the first flow path adjusting plate (61) and the water wheel (91) constitute the stirring member according to the present invention. Also with such a stirring member, the sterilization factor generated in the water of each treatment tank (11) by the discharge is uniformly diffused in the water of each treatment tank (11), and the purification can be promoted.
  • each processing tank (11) of each discharge processing unit (21 to 26) is provided with a first flow path adjusting plate (61) as in the second embodiment.
  • each 1st flow path adjustment board (61) is comprised so that a clearance gap may not be formed between bottom parts (12).
  • a plurality (three in the present embodiment) of slits (61c) are formed at the lower end of the first flow path adjusting plate (61). Each slit (61c) is inclined upward as it goes from the inflow side to the outflow side of each treatment tank (11).
  • each treatment tank (11) flows downstream through the plurality of slits (61c) of each first flow path adjustment plate (61).
  • each slit (61c) By passing through each slit (61c), the water flows obliquely upward, and a vortex is generated by this flow. Further, when the water passes through each slit (61c), the flow velocity increases and collides with the weir plate (19). Part of the water that has collided with the weir plate (19) is bounced back to the weir plate (19) to generate a vortex, while the rest passes over the weir plate (19) and flows out to the outflow part (50).
  • the water in each treatment tank (11) is agitated by the first flow path adjustment plate (61) in which a plurality of slits (61c) are formed. That is, the first flow path adjustment plate (61) in which the plurality of slits (61c) are formed constitutes the stirring member according to the present invention. Also with such a stirring member, the sterilization factor generated in the water of each treatment tank (11) by the discharge is uniformly diffused in the water of each treatment tank (11), and the purification can be promoted.
  • each treatment tank (11) of each discharge treatment unit (21-26) has a first flow path adjustment plate (61) similar to that in Embodiment 2 and a water flow.
  • a rotating member (101) that rotates is provided.
  • the rotating member (101) is provided immediately downstream of the first flow path adjusting plate (61), and is formed in a spiral shape or a fishtail shape of a fishing gear (only those formed in a spiral shape in FIG. 26). (Illustrated).
  • each treatment tank (11) flows downstream through the gap between the first flow path adjustment plate (61) and the bottom (12).
  • the flow velocity rises, collides with the rotating member (101), and rotates the rotating member (101). Thereby, the water of each processing tank (11) is stirred.
  • the water in each treatment tank (11) is agitated by the first flow path adjustment plate (61) and the rotating member (101). That is, the first flow path adjusting plate (61) and the rotating member (101) constitute the stirring member according to the present invention. Also with such a stirring member, the sterilization factor generated in the water of each treatment tank (11) by the discharge is uniformly diffused in the water of each treatment tank (11), and the purification can be promoted.
  • the rotating member (101) may be any member as long as it rotates around the rotation axis by a water flow in addition to the above.
  • each processing tank (11) of each discharge processing unit (21 to 26) is provided with a first flow path adjusting plate (61) as in the second embodiment.
  • each first flow path adjustment plate (61) is formed with a larger gap than the second embodiment between the bottom portion (12).
  • an electric louver (102) that rotates alternately up and down is provided in the gap between the first flow path adjusting plate (61) and the bottom (12).
  • each treatment tank (11) passes through the gap between the first flow path adjusting plate (61) and the bottom (12), the flow velocity increases and the louver (102) 102) the flow is deflected in the extending direction. Since the louver (102) rotates alternately up and down, the direction of the water flowing out from the gap between the first flow path adjusting plate (61) and the bottom (12) is the direction of the louver (102). It is changed each time according to the movement, and the water in each treatment tank (11) is stirred.
  • the water in each treatment tank (11) is agitated by the first flow path adjustment plate (61) and the louver (102). That is, the first flow path adjusting plate (61) and the louver (102) constitute the stirring member according to the present invention. Also with such a stirring member, the sterilization factor generated in the water of each treatment tank (11) by the discharge is uniformly diffused in the water of each treatment tank (11), and the purification can be promoted.
  • the processing tanks (11) of the respective discharge processing units (21 to 26) are not provided with the flow path adjusting plate as in the second embodiment, and the shaft portion (121a ) And a spiral blade (121b), an electric screw rotor (121) is provided.
  • the water flowing into each treatment tank (11) is agitated as the screw rotor (121) rotates. That is, in Embodiment 9, the screw rotor (121) constitutes the stirring member according to the present invention. Also with such a stirring member, the sterilization factor generated in the water of each treatment tank (11) by the discharge is uniformly diffused in the water of each treatment tank (11), and the purification can be promoted.
  • Embodiment 10 of the Invention the configuration of the spray device (40) as the inflow side insulating portion (80) of the first discharge processing unit (21) in the second embodiment is changed. Specifically, in Embodiment 10, the spraying device (40) does not include the reflector (43). Moreover, the installation angle of each spray nozzle (42) is different from that of the second embodiment.
  • each spray nozzle (42) sprays water from the water pipe (3) so that the center line A of the spray is in a direction other than the vertically downward direction, for example, the tip of the nozzle is It is provided so as to face diagonally downward to the right in the figure.
  • each spray nozzle (42) causes water from the water pipe (3) to collide with the wall surface in each treatment tank (11), for example, the flow path adjusting plate (60), and to each treatment tank (11). It is configured to drop.
  • the water sprayed from each spray nozzle (42) collides with the surface of the flow path adjusting plate (60), and the soot (droplet) becomes smaller, so Air is interposed between each droplet), and the electrical resistance increases.
  • the water which flows in from the inflow pipe (3a) of a water piping (3) and the water which flows through each processing tank (11) are electrically insulated.
  • each spray nozzle (42) is more spray nozzle than the vertical distance (La) from the tip of each spray nozzle (42) to the water surface of each treatment tank (11). Since it is configured to increase the water movement distance (Lb) from the tip of (42) to the water surface of each treatment tank (11), the water in the water pipe (3) is lowered vertically from the spray nozzle (42). Electrical insulation at the insulating part (80) on the inflow side is improved as compared with the case of being supplied in the direction. This improves the electrical insulation between each treatment tank (11) and the water in the inflow pipe (3a), as in the second embodiment, so that the water in particular on the inflow side of each treatment tank (11) Electricity from the processing unit (10) can be prevented from flowing.
  • the refinement means (53) of the eleventh embodiment includes a slope (51) extending from the upper end of the weir plate (19) of the treatment tank (11) to the lower right in FIG. 30 and dropping water, and the slope (51 ) In FIG. 30 and a diffusion plate (54) provided on the inner surface of the short wall portion (14) on the lower right side.
  • the diffusion plate (54) is formed such that a plurality of concave stripes each having a semicircular cross section are adjacent to each other on the surface, and the slope (51) is dropped. The water collided and diffused in the horizontal direction (the direction in which the grooves extend).
  • Each surface of the slope (51) and the diffusion plate (54) has water repellency by, for example, Teflon (registered trademark) processing. Therefore, in the outflow part (50), when the water treated in the treatment tank (11) exceeds the upper end of the weir plate (19), the treated water is transferred to the slope (51) as shown in FIG. After falling in a bowl shape on the surface, it falls to the outlet (17) while being diffused on the surface of the diffusion plate (54).
  • Teflon registered trademark
  • the outflow part (50) having the above-described configuration, when the water overflowing from the treatment tank (11) falls to the surface of the weir plate (19) or the stored water surface, it forms a bowl through the slope (51). Since the grains are reduced on the surface of the diffusion plate (54), air is interposed between the intercostals (between the droplets), and the electrical resistance is increased. Thereby, the water which flows through a processing tank (11) and the water of a lower processing tank (11) are electrically insulated.
  • the finer means (53) of the outflow part (50) is treated in the treatment tank (11) as in the above embodiments. Since the water is refined while it falls to the surface of the lower treatment tank (11), air is interposed between each grain of the refined water (between each droplet). Will do. As a result, the electrical insulation between the upper processing tank (11) and the lower processing tank (11) is improved, so that the discharge processing units (21 to 26) are connected to each discharge processing unit (21-26). It is possible to prevent electricity from flowing out from 21 to 26).
  • the diffusing plate (54) allows the micronization means (53) of the outflow portion (50) to diffuse and drop the water dropped from the treatment tank (11). ),
  • the water dropped from the treatment tank (11) can collide with the surface of the diffusion plate (54) to be refined.
  • the size of the bowl-shaped water particles is reduced, and air is interposed between the gaps (between the droplets), so that the electrical resistance can be increased.
  • the refining means (53) of the outflow portion (50) extends obliquely downward from the upper end of the weir plate (19) to drop water ( 51), the water dropped from the treatment tank (11) can reliably collide with the surface of the diffusion plate (54).
  • the surface of the slope (51) has water repellency, it becomes difficult to form a water film on the surface of the slope (51).
  • the water treated in 11) can be effectively cocoon-like on the surface of the slope (51).
  • the surface of the diffusion plate (54) since the surface of the diffusion plate (54) has water repellency, it becomes difficult to form a water film on the surface of the diffusion plate (54).
  • the water in which (51) is dropped can be effectively made into a bowl shape on the surface of the diffusion plate (54).
  • Embodiment 12 of the Invention >> In the twelfth embodiment, in the outflow part (50) as the insulating part (80) on the outflow side of each discharge processing unit (21 to 26), each of the dropping from each processing tank (11) to the lower processing tank (11) This is a modification of the structure of the refining means for refining the ridges.
  • the refinement means (53) of the outflow portion (50) of the twelfth embodiment includes an outflow port portion (19a) provided at the upper end of the dam plate (19) in the drawing, and a dam plate (19 ) And a reflector (55) provided on the lower side in the figure.
  • the outlet section (19a) has a U-shaped cross section as shown in FIG.
  • the reflector (55) is formed in a semicircular shape when viewed from the front, and its surface has water repellency by, for example, Teflon (registered trademark) processing.
  • Teflon registered trademark
  • the reflector (55) repels the falling water by causing the water dropped from the outlet (19a) to collide with the surface and vibrate vertically. Configured to hatch.
  • the finer means (53) of the outflow part (50) is treated in the treatment tank (11) as in the above embodiments. Since the water is refined while it is dropped to the surface of the lower treatment tank (11), air is interposed between each space between the refined water (between each droplet). Become. Thereby, the electrical insulation between the water which flows through a process tank (11) and the water of a lower process tank (11) can be improved.
  • the water refined (53) of the insulating part (80) on the outflow side is dropped from the outlet (19a) of the treatment tank (11). Since the reflector (55) is made to collide and drop into the water pipe (3), the water dropped from the outlet (19a) of the treatment tank (11) collides with the surface of the reflector (55). It can be miniaturized. As a result, the water droplets become small, and air is interposed between the spaces (between the droplets), so that the electrical resistance can be increased.
  • Embodiment 13 of the Invention In the thirteenth embodiment, in the outflow part (50) as the insulating part (80) on the outflow side of each discharge processing unit (21 to 26), each of the dropping from each processing tank (11) to the lower processing tank (11) This is a modification of the structure of the refining means for refining the ridges.
  • the finer means (53) of the thirteenth embodiment includes an outlet portion (19a) provided at the upper end of the barrier plate (19) in the drawing, and the lower side of the barrier plate (19) in the drawing. And a pair of reflectors (55) provided on the lower side in the figure on both sides of the diffusion plate (54).
  • the finer means (53) of the outflow part (50) is treated in the treatment tank (11) as in the above embodiments. Since the water is refined while it falls to the surface of the lower treatment tank (11), air is interposed between each grain of the refined water (between each droplet). Will do. As a result, the electrical insulation between the upper processing tank (11) and the lower processing tank (11) is improved, so that the discharge processing units (21 to 26) are connected to each discharge processing unit (21-26). It is possible to prevent electricity from flowing out from 21 to 26).
  • Embodiment 14 of the Invention In the fourteenth embodiment, in the outflow part (50) as the insulating part (80) on the outflow side of each discharge processing unit (21 to 26), each of the processing tanks (11) dropped from the processing tank (11) to the lower processing tank (11). This is a modification of the structure of the refining means for refining the ridges.
  • the finer means (53) of the fourteenth embodiment includes a protruding wall portion (19c) provided at the upper end of the barrier plate (19) in the drawing, and a lower portion of the protruding wall portion (19c) in the drawing. And a water wheel (56) which is provided on the side and is rotatable about the rotation shaft (S).
  • the finer means (53) of the outflow part (50) is treated in the treatment tank (11) as in the above embodiments. Since the water is refined while it falls to the surface of the lower treatment tank (11), air is interposed between each grain of the refined water (between each droplet). Will do. As a result, the electrical insulation between the upper processing tank (11) and the lower processing tank (11) is improved, so that the discharge processing units (21 to 26) are connected to each discharge processing unit (21-26). It is possible to prevent electricity from flowing out from 21 to 26).
  • the electrical resistance can be increased.
  • Embodiment 15 of the Invention In the fifteenth embodiment, in the outflow part (50) as the insulating part (80) on the outflow side of each discharge processing unit (21 to 26), each of the dropping from each processing tank (11) to the lower processing tank (11) This is a modification of the structure of the refining means for refining the ridges.
  • the finer means (53) of the fifteenth embodiment includes a protruding wall portion (19c) provided at the upper end of the barrier plate (19) in the drawing, and a protruding wall portion (19c).
  • a hook-shaped pendulum member (57) that is provided on the lower side in the figure and is rotatable like a pendulum around the rotation axis (S) is provided.
  • the pendulum member (57) is provided with a rod-shaped suspension portion (57a) having a rotation shaft (S) provided at the intermediate portion and an arc shape in plan view.
  • 57a) is provided with a water reservoir (57b) fixed to the lower end of the figure.
  • the pendulum member (57) allows water supplied from the outlet of the protruding wall portion (19c) of the treatment tank (11) to the left of the water reservoir portion (57b) in the figure. , It rotates counterclockwise, and then, as shown in FIG. 37 (b), it repels water at the upper part of the hanging part (57a) in the figure and drops the accumulated water.
  • the finer means (53) of the outflow part (50) is treated in the treatment tank (11) as in the above embodiments. Since the water is refined while it falls to the surface of the lower treatment tank (11), air is interposed between each grain of the refined water (between each droplet). Will do. As a result, the electrical insulation between the upper processing tank (11) and the lower processing tank (11) is improved, so that the discharge processing units (21 to 26) are connected to each discharge processing unit (21-26). It is possible to prevent electricity from flowing out from 21 to 26).
  • the pendulum member (57) that collides the water dropped by the outflow part (50) since the pendulum member (57) that collides the water dropped by the outflow part (50) is provided, the water particles become smaller, Since air is interposed between the gaps (between each droplet), the electrical resistance can be increased.
  • Embodiment 16 of the Invention In the sixteenth embodiment, in the outflow part (50) as the insulating part (80) on the outflow side of each discharge processing unit (21 to 26), each of the dropping from each processing tank (11) to the lower processing tank (11) This is a modification of the structure of the refining means for refining the ridges.
  • the finer means (53) of the sixteenth embodiment includes a protruding wall portion (19d) provided at the upper end in FIG. 38 of the barrier plate (19), and a protruding wall portion (19d).
  • 38 is provided on the right side of FIG. 38, and includes a gate portion (58a) that can rotate around the rotation axis (S).
  • the gate portion (58a) rotates counterclockwise around the rotation axis (S). It is open
  • water is intermittently dropped from the outlet of the protruding wall part (19d) of the treatment tank (11) in a slanting downward direction like a waterfall, so that the treatment tank ( The water flowing through 11) and the water in the lower treatment tank (11) are electrically insulated.
  • the finer means (53) of the outflow part (50) is treated in the treatment tank (11) as in the above embodiments. Since the water is refined while it is dropped to the surface of the lower treatment tank (11), air is interposed between each space between the refined water (between each droplet). Become. Thereby, the electrical insulation between the water which flows through a process tank (11) and the water of a lower process tank (11) can be improved.
  • Embodiment 17 of the Invention In the seventeenth embodiment, in the outflow part (50) as the insulating part (80) on the outflow side of each discharge processing unit (21-26), each of the dropping from each processing tank (11) to the lower processing tank (11) This is a modification of the structure of the refining means for refining the ridges.
  • the finer means (53) of the outflow portion (50) of the seventeenth embodiment includes a protruding wall portion (19d) provided at the upper end in FIG. 41 of the barrier plate (19),
  • the right side in FIG. 41 of the protruding wall part (19d) is provided at the gate part (58b) rotatable around the rotation axis (S) and at the tip of the protruding wall part (19d), and the protruding wall part (19d ) And a seal portion (19e) for preventing water leakage between the gate portion (58b).
  • the gate portion (58b) rotates clockwise around the rotation axis (S) when a predetermined amount of water accumulates on the protruding wall portion (19d). And is configured to discharge water obliquely downward from its tip.
  • water is intermittently dropped from the outlet of the protruding wall part (19d) of the treatment tank (11) in a slanting downward direction like a waterfall, so that the treatment tank ( The water flowing through 11) and the water in the lower treatment tank (11) are electrically insulated.
  • the finer means (53) of the outflow part (50) is treated in the treatment tank (11) as in the above embodiments. Since the water is refined while it is dropped to the surface of the lower treatment tank (11), air is interposed between each space between the refined water (between each droplet). Become. Thereby, the electrical insulation between the water which flows through a process tank (11) and the water of a lower process tank (11) can be improved.
  • Embodiment 18 of the Invention In the eighteenth embodiment, in the outflow part (50) as the insulating part (80) on the outflow side of each discharge processing unit (21 to 26), each of the processing tanks (11) dropped from the processing tank (11) to the lower processing tank (11). This is a modification of the structure of the refining means for refining the ridges.
  • the finer means (53) of the eighteenth embodiment has a slope (19f) extending from the upper end of the barrier plate (19) in the diagonally downward direction in FIG. And a cylindrical water reservoir member (59) which is provided on the lower side of the slope (19f) in the drawing and can rotate like a deer around the rotation shaft (S).
  • slope (19f) On the surface of the slope (19f), as shown in FIG. 45, a plurality of concave stripes each having a semicircular arc-shaped cross section are formed. And the slope (19f) is comprised so that water may flow into the bottom part of each groove formed in the surface, as shown in FIG.
  • the water reservoir member (59) is provided with a rotating shaft (S) in the middle thereof.
  • the water reservoir member (59) rotates clockwise around the rotation axis (S) when water accumulates therein and the center of gravity moves upward, thereby After discharging the water, it rotates counterclockwise around the rotation axis (S), swings to return to its original state, and repels water that has fallen during the swing motion Has been.
  • the finer means (53) of the outflow part (50) is treated in the treatment tank (11) as in the above embodiments. Since the water is refined while it is dropped to the surface of the lower treatment tank (11), air is interposed between each space between the refined water (between each droplet). Become. Thereby, the electrical insulation between the water which flows through a process tank (11) and the water of a lower process tank (11) can be improved.
  • the outflow part (50) includes the water reservoir member (59)
  • the water that has dropped the slope (19f) is rebounded by the water reservoir member (59). Will be.
  • the size of the bowl-shaped water particles is reduced, and air is interposed between the gaps (between the droplets), so that the electrical resistance can be increased.
  • the configuration of the water pipe (3) to which the water treatment unit (10) of the second embodiment is connected is changed.
  • the water pipe (3) is a use side pipe of a hot water supply circuit (8) to which a hot water storage tank (2) in which hot water for hot water supply is stored is connected. It is constituted by. That is, the water treatment part (10) is connected to the use side piping of the hot water supply circuit (8).
  • the water treatment unit (10) is connected between the inflow water pump (5a) and the outflow water pump (5b) connected to the use side piping.
  • the water temperature in the hot water storage tank (2) in which hot water for hot water supply is stored needs to be kept at a high temperature in order to suppress the growth of bacteria.
  • hot water for hot water supply is stored.
  • a water treatment unit (10) is connected in the middle of the use side piping of the hot water supply circuit (8) to which the hot water storage tank (2) is connected. Therefore, the hot water flowing out from the hot water storage tank (2) can be sterilized by a sterilizing factor in the water treatment unit (10) connected in the middle of the use side piping. Therefore, the purified hot water can be supplied to the hot water storage tank (2) without keeping the water temperature in the hot water storage tank (2) at a high temperature. Thereby, the possibility that hot water having a temperature higher than necessary may be supplied to the user side can be eliminated, and the running cost can be reduced.
  • the heater for heating the hot water in the hot water storage tank (2), and the hot water heated by the heater are used as the hot water storage tank.
  • a circulation circuit for stirring is provided, but these can be omitted.
  • the present invention may be configured as follows with respect to the above embodiment.
  • the water treatment unit (10, 210) causes discharge in the treated water.
  • the water treatment unit (10, 210) may cause electrolysis in the treated water. .
  • the insulative part on the inflow side is configured by the spray device (40,240), it may be configured by a nozzle that drops the treated water flowing from the water passage (3,203) to the water treatment unit (10,210).
  • the water treatment device (1a, 201a) of the above embodiment includes the water circulation circuit (1, 201). However, in the first invention, the water may not circulate.
  • the present invention is useful for a water treatment apparatus that electrically purifies treated water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Electrochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

 水処理装置(201a)は、処理水が流れる水通路(203)の途中に設けられ、放電によって処理水中に殺菌因子を生ずる水処理部(210)と、水処理部(210)の流入側と流出側とに設けられ、水処理部(210)に連通する処理水と水処理部(210)とを電気的に絶縁する絶縁部(240,250)とを備えている。流入側の絶縁部(240)は、処理水を噴霧させて絶縁し、流出側の絶縁部(250)は、処理水を水処理部(210)から落下させて絶縁する。

Description

水処理装置
  本発明は、水処理装置に関し、特に、絶縁構造に係るものである。
  従来、水処理装置には、処理槽の水中で放電を行うことにより水を浄化するものが知られている。特許文献1には、水中に正電極と負電極とが配置された水処理装置が開示されている。そして、正電極に高電圧パルスを印加し、両電極間を流れる水を処理している。
特開2000-093972号公報
  しかしながら、上述した水処理装置においては、両電極が水の流れの途中に配置されている。このため、両電極が設けられる処理槽の上流側および下流側の水に電気が流れてしまうという問題があった。
  本発明は、斯かる点に鑑みてなされたものであり、水処理部より電気が流れないようにすることを目的とする。
  第1の発明は、水を電気的に処理する水処理部(210)と、該水処理部(210)に連通する水と上記水処理部(210)とを電気的に絶縁する絶縁部(240,250)とを備えていることを特徴としている。
  上記第1の発明では、絶縁部(240,250)を備えているので、水処理部(210)から該水処理部(210)に連通する水に電気が流れることがなく、投入した電力が効率よく使用される。
  第2の発明は、上記第1の発明において、上記水処理部(210)は、水が流れる水通路(203)の途中に設けられ、上記絶縁部(240,250)は、上記水処理部(210)の流入側と流出側とに設けられていることを特徴としている。
  上記第2の発明では、絶縁部(240,250)が水処理部(210)の流入側と流出側とに設けられているので、水処理部(210)から該水処理部(210)の上流側と下流側との水に電気が流れることがなく、投入した電力が効率よく使用される。
  第3の発明は、上記第2の発明において、上記水処理部(210)は、処理槽(211)内の水中で放電を生起し、水中に殺菌因子を生ずるように構成されていることを特徴としている。
  上記第3の発明では、水処理部(210)の放電によって、水中に殺菌因子を生成する。この殺菌因子によって水が浄化される。
  第4の発明は、上記第3の発明において、上記流入側の絶縁部(240)は、上記水通路(203)から水処理部(210)に流れる水を滴下させるノズルによって構成されていることを特徴としている。
  上記第4の発明では、水通路(203)から水処理部(210)に流れる水を滴状にし、水処理部(210)と該水処理部(210)に連通する水との間のインピーダンスを大きくし、水処理部(210)と該水処理部(210)に連通する水との間を絶縁する。
  第5の発明は、上記第3の発明において、上記流入側の絶縁部(240)は、上記水通路(203)から水処理部(210)に流れる水を噴霧させる噴霧部(240)によって構成されていることを特徴としている。
  上記第5の発明では、水通路(203)から水処理部(210)に流れる水を噴霧状にし、水処理部(210)と該水処理部(210)に連通する水との間のインピーダンスを大きくし、水処理部(210)と該水処理部(210)に連通する水との間を絶縁する。
  第6の発明は、上記第3~第5の発明の何れかにおいて、上記流出側の絶縁部(250)は、上記水処理部(210)から水通路(203)に流れる水を水処理部(210)から雫状にして落下させるように構成されていることを特徴としている。
  上記第6の発明では、水処理部(210)から水通路(203)に流れる水を雫状にして落下させ、いわゆる滝状にし、水処理部(210)と該水処理部(210)に連通する水との間のインピーダンスを大きくし、水処理部(210)と該水処理部(210)に連通する水との間を絶縁する。
  本発明によれば、水処理部(210)と該水処理部(210)に連通する水との間に絶縁部(240,250)を備えているので、水処理部(210)から該水処理部(210)に連通する水に電気が流れることを確実に抑制することができることから、投入した電力を効率よく使用することができる。
  また、第2の発明によれば、絶縁部(240,250)が水処理部(210)の流入側と流出側とに設けられているので、水処理部(210)から該水処理部(210)の上流側と下流側との水に電気が流れることを確実に抑制することができることから、投入した電力をより効率よく使用することができる。
  また、第3の発明によれば、水処理部(210)の放電によって、処理水中に殺菌因子を生成するので、この殺菌因子によって水を確実に浄化することができる。
  また、第4の発明によれば、水通路(203)から水処理部(210)に流れる水を滴状にするので、水処理部(210)と該水処理部(210)に連通する水との間のインピーダンスを大きくすることができることから、水処理部(210)と該水処理部(210)に連通する水との間を確実に絶縁することができる。
  また、第5の発明によれば、水通路(203)から水処理部(210)に流れる水を噴霧状にするので、水処理部(210)と該水処理部(210)に連通する水との間のインピーダンスを大きくすることができることから、水処理部(210)と該水処理部(210)に連通する水との間を確実に絶縁することができる。
  また、第6の発明によれば、水処理部(210)から水通路(203)に流れる水を雫状にして落下させ、いわゆる滝状にするので、水処理部(210)と該水処理部(210)に連通する水との間のインピーダンスを大きくすることができることから、水処理部(210)と該水処理部(210)に連通する水との間を確実に絶縁することができる。
図1は、実施形態1に係る水処理装置を示す配管系統図である。 図2は、実施形態1に係る水処理部を示す図である。 図3は、実施形態1に係る水処理部を模式的に示す図である。 図4は、実施形態1に係る放電ユニットを示す概略の断面図である。 図5は、実施形態1に係る高電圧発生部で発生させる電圧波形を示す図である。 図6は、実施形態1に係る放電ユニットの一部を拡大して示す図である。 図7は、実施形態2に係る水処理装置を示す配管系統図である。 図8は、実施形態2に係る水処理部を模式的に示す斜視図である。 図9は、実施形態2に係る第1放電処理ユニットを模式的に示す斜視図である。 図10は、実施形態2に係る放電部の概略構成図である。 図11は、実施形態2に係る電源で発生させる電圧波形を示すグラフである。 図12は、実施形態2に係る放電部の一部を拡大して示す図である。 図13は、実施形態2に係る第2放電処理ユニットを模式的に示す斜視図である。 図14は、実施形態2に係る放電処理ユニットの概略構成図である。 図15は、実施形態2に係る第2放電処理ユニットの処理槽を模式的に示す平面図である。 図16は、実施形態2に係る第2放電処理ユニットの処理槽を模式的に示す側面図である。 図17は、図16の一部拡大図である。 図18は、実施形態3に係る第2放電処理ユニットの処理槽を模式的に示す平面図である。 図19は、実施形態3に係る第2放電処理ユニットの処理槽を模式的に示す側面図である。 図20は、実施形態4に係る第2放電処理ユニットの処理槽を模式的に示す平面図である。 図21は、実施形態4に係る第2放電処理ユニットの処理槽を模式的に示す側面図である。 図22は、実施形態4に係る第1流路調整板を模式的に示す正面図である。 図23は、実施形態4に係る第2流路調整板を模式的に示す背面図である。 図24は、実施形態5に係る水処理部を模式的に示す側面図である。 図25は、実施形態6に係る水処理部を模式的に示す側面図である。 図26は、実施形態7に係る水処理部を模式的に示す側面図である。 図27は、実施形態8に係る水処理部を模式的に示す側面図である。 図28は、実施形態9に係る水処理部を模式的に示す側面図である。 図29は、実施形態10に係る噴霧ノズル周辺を示す模式図である。 図30は、実施形態11に係る第1放電処理ユニットを模式的に示す斜視図である。 図31は、実施形態11に係る拡散板の斜視図である。 図32は、実施形態12に係る微細化手段の斜視図である。 図33は、実施形態13に係る微細化手段の斜視図である。 図34は、実施形態14に係る微細化手段の断面図である。 図35は、実施形態15に係る微細化手段の断面図である。 図36は、実施形態15に係る微細化手段の正面図である。 図37は、実施形態15に係る微細化手段の動作を示す図である。 図38は、実施形態16に係る微細化手段の第1の断面図である。 図39は、実施形態16に係る微細化手段の第2の断面図である。 図40は、実施形態16に係る微細化手段の正面図である。 図41は、実施形態17に係る微細化手段の第1の断面図である。 図42は、実施形態17に係る微細化手段の第2の断面図である。 図43は、実施形態17に係る微細化手段の正面図である。 図44は、実施形態18に係る微細化手段の断面図である。 図45は、実施形態18に係る微細化手段の正面図である。 図46は、実施形態19に係る水処理装置を示す配管系統図である。
  以下、本発明の実施形態を図面に基づいて詳細に説明する。
  〈発明の実施形態1〉
  図1に示すように、本発明の実施形態1に係る水処理装置(201a)は、水循環回路(201)と貯水タンク(202)とを備えている。
  上記貯水タンク(202)は、水(湯水を含む、以下同様とする。)が貯留されている。貯水タンク(202)には、水循環回路(201)と、第1流路管(206)と第2流路管(207)とが接続されている。
  上記水循環回路(201)は、貯水タンク(202)内の水を循環させて攪拌させるものである。水循環回路(201)には、水配管(203)と2つの開閉バルブ(204,204)と2つのポンプ(205,205)と水処理部(210)とが接続されている。尚、水処理部(210)の詳細な構成は後述する。
  上記水配管(203)は、内部を水が流通可能な管である。水配管(203)は、その一端が貯水タンク(202)の外側面に接続される一方、その他端が貯水タンク(202)の外側面の反対側に接続されている。水配管(203)の途中には、上述した2つのポンプ(205,205)と2つの開閉バルブ(204,204)と水処理部(210)とが接続されている。
  上記開閉バルブ(204,204)は、水配管(203)の流路を開閉可能な弁に構成されている。2つの開閉バルブ(204,204)のうち、一つは水処理部(210)の水の流入側に設けられ、残りの一つは水処理部(210)の水の流出側に設けられている。2つのポンプ(205,205)のうち、一つは水処理部(210)の流入側に設けられた開閉バルブ(204)と貯水タンク(202)との間に設けられ、残りの一つは水処理部(210)とその流出側に設けられた開閉バルブ(204)との間に設けられている。各開閉バルブ(204,204)は、開けると水配管(203)の内部を水が流通する一方、閉じると水配管(203)の内部の水の流通が停止する。
    -水処理部の構成-
  図2および図3に示すように、水処理部(210)は、水配管(203)の流入部(203a)から流入させた水を浄化して水配管(203)の流出部(203b)から流出させるものである。
  上記水処理部(210)は、噴霧装置(240)を介して水配管(203)の流入部(203a)に連通し、下流槽(250)を介して水配管(203)の流出部(203b)に連通している。そして、この水処理部(210)は、処理槽(211)と、複数の放電ユニット(230a,230b)を備えている。水処理部(210)は、水配管(203)から流入させた水を噴霧装置(240)から処理槽(211)に供給し、該処理槽(211)において放電ユニット(230a,230b)で発生させた殺菌因子により上記水を浄化している。浄化された水は、下流槽(250)を流れ、下流槽(250)から再び水配管(203)に流出している。
  上記処理槽(211)は、平面視で略長方形状に形成され、箱体状の水槽である。具体的には、処理槽(211)は、平面視で略長方形の平板に形成された底部(212)と、横長の略長方形の平板に形成され、且つ底部(212)の両長辺からそれぞれ上方に延びる長壁部(213,213)と、縦長の略長方形状の平板に形成され、且つ底部(212)の両短辺からそれぞれ上方に延びる短壁部(214a,214b)とで形成されている。処理槽(211)の長手方向の他端側(すなわち、水の流出側)の短壁部(214b)は、その高さが処理槽(211)の長手方向の一端側(すなわち、水の流入側)の短壁部(214a)および長壁部(213,213)よりも低く形成されて流出口部(217)が形成されている。
  上記処理槽(211)の内部には、その幅方向に所定間隔を置いて複数の仕切板(215)が配置されている。各仕切板(215)は、横長の略長方形状の平板に形成され、処理槽(211)の長手方向に沿って配置されて該処理槽(211)の内部を複数のレーン(221a~222b)に仕切っている。各仕切板(215)は、電気絶縁性を有する材料で形成されている。また、後述する第1流路(221)および第2流路(222)に配置される仕切板(215,215)には、それぞれに厚さ方向に貫通する孔部(216)が形成されている。上記処理槽(211)には、各仕切板(215)によって、図2における手前側から順に第1~第4レーン(221a~222b)が形成されている。尚、処理槽(211)に形成されるレーン(221a~222b)の数は、例示であり、水処理部(210)が浄化する水量に応じて自由に変更することができる。尚、仕切板(215)は、本発明に係る仕切部材を構成している。
  また、各レーン(221a~222b)は、第1および第2レーン(221a,221b)が一対となって第1流路(221)を形成し、第3および第4レーン(222a,222b)が一対となって第2流路(222)を形成している。
  図4に示すように、上記複数の放電ユニット(230a,230b)は、第1放電ユニット(230a)と第2放電ユニット(230b)とで構成されている。各放電ユニット(230a,230b)は、上述した一対のレーン(221a,221b,222a,222b)ごとに一つずつ設けられる。
  上記第1放電ユニット(230a)は、第1流路(221)の水を浄化するものである。第1放電ユニット(230a)は、電極対(231,232)と、この電極対(231,232)に接続され、該電極対(231,232)に所定の電圧を印加する高電圧発生部(233)と、上述した孔部(216)が形成された仕切板(215)とを備えている。仕切板(215)には、放電部材(234)が設けられている。尚、第2放電ユニット(230b)は、第2流路(222)の水を浄化するものである。第2放電ユニット(230b)の具体的な構成は、上記第1放電ユニット(230a)と同様であるため、説明は省略する。
  上記電極対(231,232)は、水中で放電を生起するためのものであり、ホット側の電極(231)とニュートラル側の電極(232)とで構成されている。電極(231)は、扁平な板状に形成され、第1レーン(221a)に配置されている。電極(231)は、高電圧発生部(233)に接続されている。上記電極(232)は、扁平な板状に形成され、第2レーン(221b)に配置されている。電極(232)は、高電圧発生部(233)に接続されている。また、電極(231)と電極(232)とは互いに略平行となるように配設されている。尚、これらの電極(231,232)は、例えば耐腐食性の高い金属材料で構成される。
  上記高電圧発生部(233)は、電極対(231,232)に所定の電圧を印加する電源で構成されている。本実施形態1では、高電圧発生部(233)は、例示として、図5に示すように、電極対(231,232)に対して、正負が入れ替わる交番波形の電圧を印加するように構成されている。この交番形波(方形波)のDutyは、正極側と負極側の割合が等しくなるように調節されている。尚、電極対(231,232)に印加される電圧は、例示であって、交番型の電圧であれば、方形波に限らず、正弦波などでもよい。
  上記放電部材(234)は、板状の絶縁部材である。放電部材(234)は、例えばセラミックス等の電気絶縁材料で構成されている。放電部材(234)は、第1レーン(221a)と第2レーン(221b)とを仕切る仕切板(215)に形成された孔部(216)を塞ぐように配置されている。放電部材(234)には、その略中央に微小な放電孔(235)が形成されている。放電孔(235)は、例えば、電気抵抗が数MΩとなるように設計されている。この放電孔(235)は、電極(231)と電極(232)との間の電流経路を構成している。以上のような放電孔(235)は、電極対(231,232)の間の電流経路の電流密度を上昇させる電流密度集中部となる。図6に示すように、電極(231)および電極(232)に電圧が付与されると、放電部材(234)の放電孔(235)内では、電流経路の電流密度が上昇することで、水がジュール熱によって気化して気泡(C)が形成される。そして、気泡(C)内では、気泡(C)と水との界面が電極となって放電(スパーク放電)が発生する。すなわち、この放電では、上記電極(231)および電極(232)が放電電極とならないため、放電によって電極(231,232)が劣化するのを抑制できる。
  上記噴霧装置(240)は、水配管(203)に接続され、該水配管(203)の流入部(203a)から流入させた水を噴霧して処理槽(211)に供給するものであって、本発明に係る絶縁部を構成している。噴霧装置(240)は、ノズルヘッダ(241)と、各レーン(221a~222b)に対応した複数の噴霧ノズル(242)とを備えている。
  上記ノズルヘッダ(241)は、細長い管状に形成され、水配管(203)に対して直交するように設けられ、側面に水配管(203)が接続され、水配管(203)から流入する水を各噴霧ノズル(242)に分けるように設けられている。
  上記噴霧ノズル(242)は、ノズルヘッダ(241)の長手方向に所定の間隔を置いて複数個設けられている。噴霧ノズル(242)は、各レーン(221a~222b)に対応して設けられている。水配管(203)を流れる水は、流入部(203a)からノズルヘッダ(241)に流入し、噴霧ノズル(242)から粒状(液滴)となって対応するレーン(221a~222b)に向かって噴霧される。このとき、噴霧ノズル(242)から噴霧された水が粒状(液滴)となることで各粒間(各液滴間)に空気が介在して電気抵抗が高くなる。こうすることで、水配管(203)の流入部(203a)から流入する水と、処理槽(211)を流れる水とが電気的に絶縁されることになる。尚、噴霧ノズル(242)によって噴霧させることによって、水配管(203)の流入部(203a)の水と、処理槽(211)の水との間の電気抵抗は、数百MΩ以上となる。
  上記下流槽(250)は、上記処理槽(211)の水の流出側に設けられ、該処理槽(211)から流れ落ちて雫状になった水を流入させる水槽である。下流槽(250)は、平面視で略長方形状の箱体に形成され、側面が外壁部(251)によって囲まれて形成されている。下流槽(250)の外壁部(251)の高さは、処理槽(211)の長壁部(213)および流入側の短壁部(214a)の高さと同じである。下流槽(250)には、水配管(203)の流出部(203b)が接続されている。下流槽(250)と処理槽(211)との間は、処理槽(211)の流出側の短壁部(214b)によって仕切られている。この短壁部(214b)は、流出口部(217)が設けられているため、処理槽(211)に貯留された水は、処理槽(211)が一杯となる前に流出口部(217)から下流槽(250)の底に向かって堰を切って滝のように流れ落ちる。この際、流出口部(217)から下流槽(250)の底部又は下流槽(250)に貯留された水の液面までの間は、所定の高さを有している。このため、処理槽(211)の水は、流出口部(217)から下流槽(250)に流れ落ちる際に雫となる。下流槽(250)に流れ落ちる水が雫(粒状又は液滴)となることで各粒間(液滴間)に空気が介在して電気抵抗が高くなる。こうすることで、処理槽(211)に貯留された水と下流槽(250)を流れる水とが電気的に絶縁される。尚、処理槽(211)と下流槽(250)との間の電気抵抗は、数百MΩ以上になる。その後、下流槽(250)を流れる水は、水配管(203)の流出部(203b)から流出する。尚、上記流出口部(217)から粒状となって流れ落ちる水が流入する下流槽(250)は、本発明に係る絶縁部を構成している。
    -運転動作-
  本実施形態1に係る水処理装置(201a)では、水処理部(210)において、水配管(203)を流れる水処理がなされる。
  水処理部(210)の運転開始前には、水循環回路(201)の開閉バルブ(204,204)が開かれ、貯水タンク(202)の水が水配管(203)内を流れる。そして、水配管(203)を流れる水は、ポンプ(205)を介して流入部(203a)からノズルヘッダ(241)内に流入し、噴霧ノズル(242)から各レーン(221a~222b)に噴霧され、処理槽(211)内に水が貯留される。このとき、噴霧された水は、粒状(液滴)となっているため、各液滴間に空気が介在して電気抵抗が高くなる。このため、水配管(203)の流入部(203a)から流入する水と、処理槽(211)を流れる水とが電気的に絶縁される。
  水処理部(210)の運転開始時には、処理槽(211)内が浸水した状態となっている。高電圧発生部(233)から電極対(231,232)に対して極性の割合が等しい方形波の電圧が印加されると、放電部材(234)の放電孔(235)の電流経路の電流密度が上昇する。
  放電孔(235)内の電流経路の電流密度が上昇すると、放電孔(235)内のジュール熱が大きくなる。その結果、放電部材(234)では、放電孔(235)の内部および出入口の近傍において、水の気化が促進されて気体相としての気泡(C)が形成される。この気泡(C)は、図6に示すように、放電孔(235)の全域を覆う状態となる。この状態では、気泡(C)が電極(231)と電極(232)との間で水を介した導電を阻止する抵抗として機能する。これにより、電極(231,232)と水との間に電位差がほぼなくなり、気泡(C)と水との界面が電極となる。すると、気泡(C)内において、絶縁破壊が起こり、放電(スパーク放電)が発生する。
  以上のようにして、気泡(C)内で放電が行われると、処理槽(211)の水中では、殺菌因子(水酸ラジカル等の活性種)が発生する。尚、水酸ラジカルは、本発明に係る殺菌因子を構成している。
  その後、処理槽(211)の各レーン(221a~222b)を流れる水は、流出口部(217)から下流槽(250)に向かって流れ落ちる。このとき、流出口部(217)から下流槽(250)に流れ落ちる水は雫となるため、各粒間(液滴間)に空気が介在して電気抵抗が高くなる。こうすることで、処理槽(211)に貯留された水と下流槽(250)を流れる水とが電気的に絶縁される。
    -実施形態1の効果-
  本実施形態1によれば、水処理部(210)と該水処理部(210)に連通する処理水との間に絶縁部(240,250)を備えているので、水処理部(210)から該水処理部(210)に連通する処理水に電気が流れることを確実に抑制することができることから、水処理部(210)の水中で確実に放電を生起させることができるし、投入した電力を効率よく使用することができる。
  また、上記絶縁部(240,250)が水処理部(210)の流入側と流出側とに設けられているので、水処理部(210)から該水処理部(210)の上流側と下流側との処理水に電気が流れることを確実に抑制することができることから、水処理部(210)の水中でより確実に放電を生起させることができるし、投入した電力をより効率よく使用することができる。
  また、上記水処理部(210)の放電によって、処理水中に殺菌因子を生成するので、この殺菌因子によって処理水を確実に浄化することができる。
  また、上記水通路(203)から水処理部(210)に流れる処理水を噴霧状にするので、水処理部(210)と該水処理部(210)に連通する処理水との間のインピーダンスを大きくすることができることから、水処理部(210)と該水処理部(210)に連通する処理水との間を確実に絶縁することができる。
  また、上記水処理部(210)から水通路(203)に流れる処理水を雫状にして落下させ、いわゆる滝状にするので、水処理部(210)と該水処理部(210)に連通する処理水との間のインピーダンスを大きくすることができることから、水処理部(210)と該水処理部(210)に連通する処理水との間を確実に絶縁することができる。
  また、電極対(231,232)間に設けられた放電孔(235)において気泡(C)を発生させ、この気泡(C)内で放電させたため、気泡(C)と水との界面に放電電極を形成することができる。これにより、電極対(231,232)から金属などが析出するのを防止することができる。
  最後に、第1~第4レーン(221a~222b)を設けたため、レーン(221a~222b)の数に応じて水処理装置(201a)で処理する水量を調節することができる。
  また、上記高電圧発生部(233)を交番型としたため、電極対(231,232)に印加される電圧の正負が所定時間おきに交互に入れ替わる。そのため、放電孔(235)においてはグロー放電を生起させることなくスパーク放電を生起させることができる。つまり、放電形態は、直流の場合は、電流の増加に伴ってスパーク放電からグロー放電に移行するところ、本実施形態1では、放電形態がグロー放電に移行するまでに電極対(231,232)に印加される電圧の正負が入れ替わるので、放電孔(235)内においてグロー放電を発生させずにスパーク放電を発生し続けることができる。これにより、放電孔(235)のグロー放電による熱的破壊を抑制でき、放電孔(235)の孔径が拡大するのを抑制することが可能になる。よって、安定して放電を行うことができる。
  また、上記電圧波形において正極側と負極側の割合を等しくしたので、両電極(231,232)において酸化反応と還元反応とを同等に行わせることができる。よって、電極対(231,232)の酸化反応による溶出を抑制することができ、また、上記高電圧発生部(233)で発生させる交番型の電圧波形により、各電極(231,232)から金属などが析出することを抑制することができるので、安定して放電を行うことができる。
  また、上記電圧波形を方形波としたので、例えば、正弦波等と比べて、水の導電率に依存せずに放電を生起させることができる。よって、安定して放電を行うことが可能である。
  〈発明の実施形態2〉
  図7に示すように、本発明の実施形態2に係る水処理装置(1a)は、実施形態1と同様に、水循環回路(1)と貯水タンク(2)とを備えている。
  上記貯水タンク(2)は、水(温水を含む、以下同様とする。)が貯留されている。貯水タンク(2)には、水循環回路(1)と、第1流路管(6)と第2流路管(7)とが接続されている。
  上記水循環回路(1)は、貯水タンク(2)内の水を循環させて攪拌させるものである。水循環回路(1)には、水配管(水通路)(3)と、2つの開閉バルブ(4,4)と、2つのポンプ(5a,5b)と、複数の放電処理ユニットを有する水処理部(10)とが接続されている。なお、水処理部(10)の詳細な構成は後述する。
  上記水配管(3)は、内部を水が流通可能な管である。水配管(3)は、その一端が貯水タンク(2)の側面に接続される一方、その他端が貯水タンク(2)の側面の反対側に接続されている。水配管(3)の途中には、上述した2つのポンプ(5a,5b)と2つの開閉バルブ(4,4)と水処理部(10)とが接続されている。
  上記開閉バルブ(4,4)は、水配管(3)の流路を開閉可能な弁に構成されている。2つの開閉バルブ(4,4)のうち、一つは水処理部(10)の水の流入側に設けられ、残りの一つは流出水ポンプ(5b)の水の流出側に設けられている。各開閉バルブ(4,4)は、開けると水配管(3)の内部を水が流通する一方、閉じると水配管(3)の内部の水の流通が停止する。
  -水処理部の構成-
  図8及び図9に示すように、水処理部(10)は、水配管(3)の一部を構成する流入管(3a)と流出管(3b)とが接続され、流入管(3a)から流入させた水を浄化して流出管(3b)から流出させるものである。この水処理部(10)は、上述した2つのポンプ(5a,5b)と共にケーシング(10a)に収容されている。なお、流入管(3a)には流入水ポンプ(5a)が設けられ、流出管(3b)には流出水ポンプ(5b)が設けられている。
  水処理部(10)は、第1~第6放電処理ユニット(21~26)を有している。これら6つの放電処理ユニット(21~26)は、それぞれ内部に流路(27)が区画された水槽(28)を有し、各水槽(28)は上下に配列されている。6つの放電処理ユニット(21~26)は、上から下へ第1放電処理ユニット(21)、第2放電処理ユニット(22)、第3放電処理ユニット(23)、第4放電処理ユニット(24)、第5放電処理ユニット(25)、第6放電処理ユニット(26)の順に積み重ねられて水処理部(10)を構成している。6つの放電処理ユニット(21~26)は、例えば、ガイドレールを介して所定の水平方向にスライド自在に構成され、放電処理ユニット(21~26)毎に着脱可能に構成されている。
  ≪第1放電処理ユニット≫
  図9に示すように、第1放電処理ユニット(21)は、水槽(28)と、噴霧装置(40)と、複数の放電部(30)とを備えている。第1放電処理ユニット(21)は、水配管(3)から流入させた水を各流路(27)において浄化して下段の第2放電処理ユニット(22)へ流出させるように構成されている。なお、以下の説明では、水処理部(10)の流路(27)が延びる方向、即ち、図9における左右方向を「左右方向」とし、流路(27)の幅方向、即ち、図9における奥行き方向を「前後方向」として説明する。
  水槽(28)は、平面視で矩形の箱体状に形成されている。具体的には、水槽(28)は、底部(12)と、2つの長壁部(13,13)と、2つの短壁部(14,14)とで構成されている。底部(12)は、平面視で平板に形成されている。2つの長壁部(13,13)は、それぞれ略長方形の平板に形成され、底部(12)の前後方向の両端部のそれぞれから上方に延び、互いに対向している。一方、2つの短壁部(14,14)は、それぞれ略長方形の平板に形成され、底部(12)の左右方向の両端部のそれぞれから上方に延び、互いに対向している。なお、図9では、手前側の長壁部(13)を透過させて示している。
  上記水槽(28)の内部には、その幅方向に所定間隔を置いて複数の区画板(18,…,18)が配置されている。本実施形態では、区画板(18,…,18)は、長壁部(13,13)と同形状の7枚の平板によって形成されている。7枚の区画板(18,…,18)は、長壁部(13,13)に平行に配列され、水槽(28)の内部を8つの流路(27)に区画している。各区画板(18,…,18)は、電気絶縁性を有する材料で形成されている。
  上記区画板(18,…,18)によって区画された8つの流路(27)の幅方向の中央には、仕切板(15,…,15)がそれぞれ配置されている。8つの仕切板(15,…,15)は、長壁部(13,13)と同形状の8枚の平板によって形成されている。8枚の仕切板(15,…,15)は、区画板(18,…,18)に平行に配列され、各流路(27)の内部を幅方向に並ぶ2つのレーン(27a,27b)に仕切っている。即ち、各流路(27)は、各仕切板(15)によって、第1レーン(27a)と第2レーン(27b)とに仕切られている。各仕切板(15,…,15)は、電気絶縁性を有する材料で形成され、それぞれに厚さ方向に貫通する孔部(16)が形成されている。
  このような構成により、水槽(28)には、7枚の区画板(18,…,18)によって8つの流路(27)が区画され、該8つの流路(27)は、各仕切板(15,…,15)によって2つのレーン(27a,27b)に仕切られている。つまり、水槽(28)には、区画板(18,…,18)と仕切板(15,…,15)とによって16本のレーン(27a,27b,…,27a,27b)が形成されている。なお、水槽(28)に区画される流路(27)の数は、例示であり、水処理部(10)が浄化する水量に応じて任意に変更することができる。
  各レーン(27a,27b)には、堰板(19)が設けられている。該各堰板(19)は、平板に形成され、各レーン(27a,27b)の下流側(図9の左右方向の右側)に設けられている。各堰板(19)は、上下方向長さが短壁部(14,14)の上下方向長さよりも短い平板によって形成され、下端が底部(12)に接するように設けられている。また、各堰板(19)は、各レーン(27a,27b)において、各堰板(19)の上流側に一時的に水が収容される処理槽(11)を区画する一方、下流側に該処理槽(11)から溢れた水が流出する流出部(50)を区画するように設けられている。このような構成により、各レーン(27a,27b)に流入した水は、処理槽(11)に収容され、その水位が堰板(19)の上端に達すると、堰板(19)を乗り越えて滝のように流出部(50)へ流れ落ちることとなる。
  各レーン(27a,27b)の処理槽(11)には、水の流れを調整する流路調整板(60)が設けられている。該各流路調整板(60)は、幅長さが各レーン(27a,27b)の幅長さと同程度であり、上下方向長さが短壁部(14,14)の上下方向長さよりも短い平板によって形成されている。また、各流路調整板(60)は、各処理槽(11)の上流側(図9の左右方向の左側)において、上端が堰板(19)の上端よりも高い位置に配置され、下端が底部(12)より高い位置に配置されるように設けられている。
  各レーン(27a,27b)の処理槽(11)の各流路調整板(60)の上流側(図9の左側)には、噴霧装置(40)の噴霧ノズル(42)と、該噴霧ノズル(42)から噴霧された水を反射させるリフレクター(43)とが設けられている。一方、各流路調整板(60)の下流側(図9の右側)の水中には、放電部(30)が設けられている。
  各レーン(27a,27b)の流出部(50)には、該流出部(50)に流入した水を下段の第2放電処理ユニット(22)へ排出するための流出口(17)が形成されている。該各流出口(17)は、水槽(28)の底部(12)に開口を形成することによって形成されている。また、各レーン(27a,27b)の流出部(50)には、第1及び第2スロープ(51,52)が設けられている。各第1及び第2スロープ(51,52)は、それぞれJ字形状に湾曲するように形成されている。各第1スロープ(51)は、各堰板(19)の上端に取り付けられ、各堰板(19)から溢れた水を斜め下方に流下させ、湾曲部分において斜め上方へ跳ね上げるように構成されている。一方、各第2スロープ(52)は、各第1スロープ(51)よりも下方において、短壁部(14)に取り付けられ、各第1スロープ(51)によって跳ね上げられた水を受ける位置に設けられている。また、各第2スロープ(52)は、水を各第1スロープ(51)とは逆側の斜め下方に流下させ、湾曲部分において斜め上方へ跳ね上げるように構成されている。詳細については後述するが、各流出部(50)は、本発明に係る絶縁部(80)を構成する。
  上記噴霧装置(40)は、水配管(3)に接続され、該水配管(3)の流入管(3a)から流入させた水を噴霧して第1放電処理ユニット(21)に供給するものである。噴霧装置(40)は、ノズルヘッダ(41)と、各レーン(27a,27b)に対応した数(本実施形態では、16本)の噴霧ノズル(42)と、該各噴霧ノズル(42)に対応するように設けられた複数のリフレクター(43)とを備えている。詳細については後述するが、噴霧装置(40)は、本発明に係る絶縁部(80)を構成する。
  上記ノズルヘッダ(41)は、細長い管状に形成され、流入管(3a)を介して流入水ポンプ(5a)に接続されている。
  上記複数の噴霧ノズル(42)は、ノズルヘッダ(41)の長手方向に所定の間隔を置いて設けられている。噴霧ノズル(42)は、各レーン(27a,27b)に対応して設けられ、斜め上方に向かって水を噴霧するように斜め上方向きの角度で設けられている。
  上記各リフレクター(43)は、三角柱形状の柱状体によって構成され、各レーン(27a,27b)の各流路調整板(60)の上流側の面において、対応する噴霧ノズル(42)よりも高い位置に固定されている。各リフレクター(43)は、各噴霧ノズル(42)から斜め上方向きに噴霧された水を反射させるように設けられている。なお、各リフレクター(43)は、各噴霧ノズル(42)から斜め上方向きに噴霧された水を反射させるように構成されていれば、いかなる形状であってもよく、柱状体でなく、平板や湾曲板によって構成されていてもよい。
  図10に示すように、上記各放電部(30)は、各流路(27)に一つずつ設けられ、各流路(27)の水を浄化するものである。各放電部(30)は、電極対(32a,32b)と、該電極対(32a,32b)に所定の電圧を印加する高電圧発生部(33)と、上述した仕切板(15)に形成された孔部(16)に設けられた放電部材(34)とを有している。
  上記電極対(32a,32b)は、水中で放電を生起するためのものであり、ホット側の2つの第1電極(32a)とニュートラル側の2つの第2電極(32b)とで構成されている。各第1電極(32a)は、扁平な矩形の網状の導電性部材によって構成され、第1レーン(27a)において流路調整板(60)に平行に配置されている。2つの第1電極(32a)は、高電圧を発生させる高電圧発生部(33)に接続されている。各第2電極(32b)は、矩形の網状の導電性部材によって構成され、第2レーン(27b)において流路調整板(60)に平行に配置されている。2つの第2電極(32b)は、高電圧を発生させる高電圧発生部(33)に接続されている。また、各第1及び第2電極(32a,32b)は、各レーン(27a,27b)において対応する位置に配設されている。なお、これらの電極(32a,32b)は、例えば耐腐食性の高い金属材料で構成される。
  上記高電圧発生部(33)は、電極対(32a,32b)に所定の電圧を印加する電源で構成されている。本実施形態では、高電圧発生部(33)は、例えば、図11に示すように、電極対(32a,32b)に対して、正負に切り換わる交番方形波の高電圧を印加する。この方形波のDutyは、正極側と負極側の割合が等しくなるように調節されている。なお、各電極対(32a,32b)に印加される電圧は、例示であって、交番型の電圧であれば、方形波に限らず、正弦波等でもよい。
  上記放電部材(34)は、板状の絶縁部材である。放電部材(34)は、例えばセラミックス等の電気絶縁材料で構成されている。放電部材(34)は、第1レーン(27a)と第2レーン(27b)とを仕切る仕切板(15)に形成された孔部(16)を塞ぐように配置されている。放電部材(34)には、その略中央に微小な貫通孔からなる放電孔(35)が形成されている。放電孔(35)は、例えば、電気抵抗が数MΩとなるように設計されている。この放電孔(35)は、第1電極(32a)と第2電極(32b)との間の電流経路を構成すると共に、該電流経路の電流密度を上昇させる電流密度集中部となる。第1電極(32a)及び第2電極(32b)に電圧が付与されると、放電部材(34)の放電孔(35)内では、電流経路の電流密度が上昇することで、水がジュール熱によって気化して気泡(C)が形成される(図12参照)。これにより、各電極(32a,32b)と水とが同電位になり、気泡(C)と水との界面が電極となるので、気泡(C)内において絶縁破壊が起こり、放電が発生する。なお、この放電では、上記第1電極(32a)及び第2電極(32b)が放電電極とならないため、放電による電極(32a,32b)の劣化が抑制される。
  ≪第2~第6放電処理ユニット≫
  図8に示すように、第2~第6放電処理ユニット(22~26)は、水槽(28)と、複数の放電部(30)とを備えている。また、第2~第6放電処理ユニット(22~26)は、ほぼ同様に構成され、それぞれ上段の放電処理ユニット(21~25)に対して左右方向に反転させた状態で上下に配列されている。第2~第5放電処理ユニット(22~25)は、上段の放電処理ユニット(21~24)から流入した水を各流路(27)において浄化し、下方の放電処理ユニット(23~26)へ流出させるように構成されている。一方、第6放電処理ユニット(26)は、上段の第5放電処理ユニット(25)から流入した水を各流路(27)において浄化し、さらに下方に設けられた貯留槽(29)を介して流出管(3b)へ流出させるように構成されている。第2~第6放電処理ユニット(22~26)は、第6放電処理ユニット(22~26)の流出口(17)の下方に流出管(3b)が接続された貯留槽(29)が設けられる点以外はほぼ同様に構成されているため、以下では、代表して第2放電処理ユニット(22)についてのみ説明する。
  図13に示すように、水槽(28)は、第1放電処理ユニット(21)と同様の底部(12)と、2つの長壁部(13,13)と、2つの短壁部(14,14)とで形成されている。なお、図13では、手前側の長壁部(13,13)を透過させて示している。
  水槽(28)の内部には、第1放電処理ユニット(21)と同様に、幅方向に所定間隔を置いて7枚の区画板(18,…,18)が配置され、水槽(28)の内部を8つの流路(27)に区画している。さらに、8つの流路(27)の幅方向の中央には、第1放電処理ユニット(21)と同様に構成された仕切板(15,…,15)がそれぞれ配置されている。このような構成により、水槽(28)には、区画板(18,…,18)と仕切板(15,…,15)とによって16本のレーン(27a,27b,…,27a,27b)が形成されている。
  各レーン(27a,27b)には、第1放電処理ユニット(21)と同様に構成された堰板(19)が設けられ、各レーン(27a,27b)を上流側の処理槽(11)と下流側の流出部(50)とに区切っている。
  各レーン(27a,27b)の処理槽(11)には、上段の第1放電処理ユニット(21)の流出口(17)と堰板(19)との間に、水の流れを調整する第1~第3流路調整板(61,62,63)が、上流側から下流側に向かって順に設けられている。第1流路調整板(61)及び第3流路調整板(63)は、第1放電処理ユニット(21)の流路調整板(60)と同形状に形成されている。即ち、第1流路調整板(61)及び第3流路調整板(63)は、幅長さが各レーン(27a,27b)の幅長さと同程度であり、上下方向長さが短壁部(14,14)の上下方向長さよりも短い平板によって形成されている。そして、第1流路調整板(61)及び第3流路調整板(63)は、上端が堰板(19)の上端よりも高い位置に配置され、下端が底部(12)より高い位置に配置されるように設けられている。一方、第2流路調整板(62)は、幅長さが各レーン(27a,27b)の幅長さと同程度であり、上下方向長さが堰板(19)の上下方向長さよりも短い平板に形成され、下端が底部(12)に接するように設けられている。
  各レーン(27a,27b)の流出部(50)には、第1放電処理ユニット(21)と同様に、流出口(17)が形成され、第1及び第2スロープ(51,52)が設けられている。
  各放電部(30)は、第1放電処理ユニット(21)と同様に構成され、各流路(27)において、それぞれ第1流路調整板(61)と第2流路調整板(62)との間に設けられている。
  第2放電処理ユニット(22)は、以上のように構成されている。そして、同様に構成された第3放電処理ユニット(23)は、第2放電処理ユニット(22)を左右方向に反転させた状態で該第2放電処理ユニット(22)の下方に設置され、第1流路調整板(61)の上流側の流入部が第2放電処理ユニット(22)の流出口(17)に対応している。また、第4放電処理ユニット(24)は、第3放電処理ユニット(23)を左右方向に反転させた状態で該第3放電処理ユニット(23)の下方に設置され、第1流路調整板(61)の上流側の流入部が第3放電処理ユニット(23)の流出口(17)に対応している。また、第5放電処理ユニット(25)は、第4放電処理ユニット(24)を左右方向に反転させた状態で該第4放電処理ユニット(24)の下方に設置され、第1流路調整板(61)の上流側の流入部が第4放電処理ユニット(24)の流出口(17)に対応している。また、第6放電処理ユニット(26)は、第5放電処理ユニット(25)を左右方向に反転させた状態で該第5放電処理ユニット(25)の下方に設置され、第1流路調整板(61)の上流側の流入部が第5放電処理ユニット(25)の流出口(17)に対応している。
  このような構成により、水処理部(10)では、図14に示すように、6つの放電処理ユニット(21~26)の最上段の第1放電処理ユニット(21)にポンプ(5a)によって水配管(3)の水が搬送されると、最上層の第1放電処理ユニット(21)から最下層の第6放電処理ユニット(26)へ順に水が折り返されて流れる。つまり、上下に配列された第1~第6放電処理ユニット(21~26)の水槽(28)は、水が上段の流路(27)から下段の流路(27)へ順に折り返されて流れるように連通するように構成されている。また、上下に配列された第1~第6放電処理ユニット(21~26)の水槽(28)は、各流路(27)の流入側と流出側とに該各流路(27)に連通する水と該各流路(27)とを電気的に絶縁する絶縁部(80)が設けられるように構成されている。具体的には、第1放電処理ユニット(21)の流入側では噴霧装置(40)が絶縁部(80)となり、流出側では流出部(50)が絶縁部(80)となる。また、第2~第6放電処理ユニット(21~26)の流入側では、上段の第1~第5放電処理ユニット(21~25)の流出部(50)が絶縁部(80)となり、流出側ではそれぞれの流出部(50)が絶縁部(80)となる。
  -運転動作-
  本実施形態に係る水処理装置(1a)では、水処理部(10)において、水配管(3)を流れる水の浄化処理がなされる。
  まず、2つのポンプ(5a,5b)が駆動されると共に、高電圧発生部(33)から各放電処理ユニット(21~26)の各放電部(30)の電極対(32a,32b)に対して極性の割合が等しい方形波の電圧が印加される。なお、水循環回路(1)の開閉バルブ(4,4)は、水処理部(10)の運転が開始されるまでに開かれる。
  2つのポンプ(5a,5b)が駆動されると、水配管(3)の水が、流入管(3a)を介して第1放電処理ユニット(21)に搬送されると共に、第6放電処理ユニット(26)の下方の貯留槽(29)の水が流出管(3b)を介して水配管(3)へ排出される。
  水配管(3)から流入管(3a)に流入した水は、まず、第1放電処理ユニット(21)の噴霧装置(40)に搬送される。具体的には、水配管(3)の水は、流入管(3a)を介してノズルヘッダ(41)内に流入し、各噴霧ノズル(42)から各流路(27)の各レーン(27a,27b)において斜め上方に向かって水が噴霧される。各噴霧ノズル(42)から噴霧された水は、各リフレクター(43)に衝突して反射し、各処理槽(11)に収容された水に向かって落下する。
  ところで、各噴霧ノズル(42)から噴霧された水は、雫状(液滴)となるため、各雫(液滴)間には空気が介在する。そのため、水配管(3)の流入管(3a)の水と処理槽(11)の水との間の電気抵抗が高くなる。本実施形態では、水配管(3)の流入管(3a)の水と処理槽(11)の水との間の電気抵抗は、数百MΩ以上となる。これにより、水配管(3)の流入管(3a)から流入する水と処理槽(11)を流れる水とが電気的に絶縁される。つまり、噴霧装置(40)は、本発明に係る絶縁部(80)を構成する。
  また、本実施形態では、各噴霧ノズル(42)から斜め上方に水が噴霧されるため、下方に向かって噴霧される場合に比べて、各噴霧ノズル(42)から下方の各処理槽(11)の水面に至るまでの水の経路が長くなり、各噴霧ノズル(42)と各処理槽(11)との間における電気抵抗が高くなる。これにより、絶縁部(80)を構成する噴霧装置(40)の絶縁性が向上する。
  さらに、各噴霧ノズル(42)から噴霧された水は、リフレクター(43)に衝突する際に微細化される。そのため、リフレクター(43)を設けない場合に比べて、各処理槽(11)へ落下する各雫(各液滴)の間隔が大きくなり、各噴霧ノズル(42)と各処理槽(11)との間の電気抵抗が高くなる。つまり、リフレクター(43)は、各噴霧ノズル(42)から各処理槽(11)へ落下する各雫を微細化する微細化手段を構成し、この微細化手段によっても絶縁部(80)を構成する噴霧装置(40)の絶縁性が向上する。
  そして、各噴霧ノズル(42)から噴霧されて各処理槽(11)に流入した水は、流路調整板(60)と底部(12)との隙間を通過して下流側へ流れる。このとき、水は、隙間を通過する際に流速が上昇し、2つの網状の電極(32a,32a)(32b,32b)を勢いよく通過する。
  一方、各放電部(30)の電極対(32a,32b)には、高電圧発生部(33)から極性の割合が等しい方形波の電圧が印加されている。そのため、各流路(27)の2つの処理槽(11)(第1レーン(27a)の処理槽(11)と第2レーン(27b)の処理槽(11)と)の間に設けられた放電部材(34)の放電孔(35)の電流経路の電流密度が上昇する。放電孔(35)内の電流経路の電流密度が上昇すると、放電孔(35)内のジュール熱が大きくなり、該放電孔(35)の内部及び出入口の近傍において、水の気化が促進されて気体相としての気泡(C)が形成される。この気泡(C)は、図12に示すように、放電孔(35)の全域を覆う状態となる。この状態では、気泡(C)が第1電極(32a)と第2電極(32b)との間で水を介した導電を阻止する抵抗として機能する。これにより、電極(32a,32b)と水が同電位となり、気泡(C)と水との界面が電極となる。すると、気泡(C)内では、気泡(C)と水との界面で絶縁破壊が起こり、放電が発生する。
  以上のようにして、気泡(C)内で放電が行われると、各処理槽(11)の水中では、殺菌因子(水酸ラジカル等)が発生する。
  また、上述のように、各処理槽(11)において、流路調整板(60)と底部(12)との隙間を通過して下流側へ流れる水は、該隙間を通過する際に流速が上昇し、堰板(19)に衝突する。堰板(19)に衝突した水は、一部が該堰板(19)に跳ね返されて渦を生じる一方、残りは該堰板(19)を乗り越えて流出部(50)へ流出する。このようにして、各処理槽(11)では、流路調整板(60)によって水の流速を上昇させて渦を生成することにより、水が攪拌される。つまり、流路調整板(60)は、本発明に係る攪拌部材を構成する。このような攪拌部材によって各処理槽(11)の水が攪拌されることにより、該各処理槽(11)の水中において生成された殺菌因子が拡散し、浄化が促進される。
  各処理槽(11)において浄化された水は、各処理槽(11)から溢れて流出部(50)に流出する。流出部(50)に流出した水は、第1スロープ(51)に沿って斜め下方に流下し、湾曲部分において斜め上方へ跳ね上げられて微細な雫状(液滴)となり、短壁部(14)に衝突する。短壁部(14)に衝突した水は、左右方向(図9の左右方向)に方向転換され、第2スロープ(52)に沿って流下し、湾曲部分において斜め上方へ跳ね上げられる際にさらに微細化される。跳ね上げられた水は、堰板(19)に衝突した後、下方へ落下し、流出口(17)を通過して第2放電処理ユニット(22)の各処理槽(11)に流入する。
  このように、各処理槽(11)から溢れた水が、各流出部(50)において雫状(液滴)となって下段の第2放電処理ユニット(22)へ落下することにより、各雫間(各液滴間)に介在する空気によって、各処理槽(11)と第2放電処理ユニット(22)との間の電気抵抗が高くなる。本実施形態では、各流出部(50)における電気抵抗は、数百MΩ以上になる。これにより、各処理槽(11)と第2放電処理ユニット(22)との間が電気的に絶縁される。つまり、各流出部(50)は、本発明に係る絶縁部(80)を構成する。
  また、本実施形態では、各処理槽(11)から溢れた水は、第1及び第2スロープ(51,52)によって跳ね上げられるために、第1及び第2スロープ(51,52)を設けずに水を単に落下させる場合に比べて、微細な雫(液滴)となる。その結果、第1及び第2スロープ(51,52)を設けない場合に比べて、各処理槽(11)と第2放電処理ユニット(22)との間において落下する各雫(各液滴)の間隔が大きくなり、両者の間の電気抵抗が高くなる。つまり、第1及び第2スロープ(51,52)は、各処理槽(11)から下段の第2放電処理ユニット(22)へ落下する各雫を微細化する微細化手段を構成し、このような微細化手段によって絶縁部(80)を構成する各流出部(50)の絶縁性が向上する。
  第2放電処理ユニット(22)の各処理槽(11)に流入した水は、3つの流路調整板(61~63)によって各処理槽(11)において蛇行して堰板(19)まで流れる。具体的には、各処理槽(11)に流入した水は、図15~図17に示すように、まず、第1流路調整板(61)と底部(12)との隙間を通過して下流側へ流れる。水は、該隙間を通過する際に流速が上昇し、2つの網状の電極(32a,32a)(32b,32b)を勢いよく通過して、第2流路調整板(62)に衝突する。第2流路調整板(62)に衝突した水は、一部が該第2流路調整板(62)に跳ね返されて渦を生じる一方、残りは該第2流路調整板(62)を乗り越えて下流側へ流れる。該第2流路調整板(62)を乗り越えた水は、第3流路調整板(63)に衝突する。第3流路調整板(63)衝突した水は、一部が該第3流路調整板(63)に跳ね返されて渦を生じる一方、残りは第3流路調整板(63)と底部(12)との隙間を通過して下流側へ流れる。水は、該隙間を通過する際に流速が上昇し、堰板(19)に衝突する。堰板(19)に衝突した水は、一部が該堰板(19)に跳ね返されて渦を生じる一方、残りは該堰板(19)を乗り越えて流出部(50)へ流出する。このようにして、各処理槽(11)では、第1~第3流路調整板(61~63)によって水の流れを蛇行させると共に水の流速を上昇させて渦を生成することにより、水が攪拌される。つまり、第1~第3流路調整板(61~63)は、本発明に係る攪拌部材を構成する。
  また、第2放電処理ユニット(22)の各処理槽(11)では、第1流路調整板(61)と第2流路調整板(62)との間において、第1放電処理ユニット(21)と同様にして放電が生起されて殺菌因子が発生する。発生した殺菌因子は、上記攪拌部材による水の攪拌により、各処理槽(11)内において拡散するため、第2放電処理ユニット(22)においても水の浄化が促進される。
  第2放電処理ユニット(22)の各処理槽(11)において浄化された水は、各処理槽(11)から溢れて流出部(50)に流出する。そして、第2放電処理ユニット(22)においても、各処理槽(11)から溢れた水が、各流出部(50)において雫状(液滴)となって下段の第3放電処理ユニット(23)へ落下することにより、各処理槽(11)と下段の第3放電処理ユニット(23)の各処理槽(11)との間の電気抵抗が高くなり、両者の間が電気的に絶縁される。また、第2放電処理ユニット(22)においても、各処理槽(11)から溢れた水が、第1及び第2スロープ(51,52)によって跳ね上げられるために、第1及び第2スロープ(51,52)を設けずに水を単に落下させる場合に比べて、微細な雫(液滴)となる。そのため、第1及び第2スロープ(51,52)を設けない場合に比べて、絶縁部(80)を構成する各流出部(50)の絶縁性が向上する。
  以下、第2放電処理ユニット(22)と同様に第3~第6放電処理ユニット(23~26)において水が流れて浄化される。そして、第6放電処理ユニット(26)の流出部(50)の下方の貯留槽(29)まで落下した水は、流出水ポンプ(5b)により、流出管(3b)を介して水配管(3)へ排出される。
  以上のように、水処理部(10)では、上下に配列された6つの放電処理ユニット(21~26)において、最上段の第1放電処理ユニット(21)の各流路(27)から最下段の第6放電処理ユニット(26)の各流路(27)へ順に折り返されて流れる。また、その際、放電部(30)により、各段の各流路(27)において放電が生起されて殺菌因子が生成される。
    -実施形態2の効果-
  本実施形態によれば、水処理部(10)に、流路(27)がそれぞれ区画されて上下に配列された複数の水槽(28)と、各流路(27)の水中において殺菌因子を生ずるように放電を生起する放電部(30)とを設け、複数の水槽(28)を、水が上段から下段へ順に折り返されて流れるように連通させる一方、各流路(27)の流入側と流出側とに絶縁部(80)が設けられるように構成することとした。これにより、水処理部(10)において水の流路を長く確保しつつ該水処理部(10)の平面形状を小型化することができる。つまり、殺菌因子と水との接触時間が長く確保されることから除菌性能の低下を防止することができると共に、平面形状が小型化されることから設置面積を低減することができる。
  また、本実施形態によれば、各放電処理ユニット(21~26)の各流路(27)とこれに連通する水との間において、水を雫状(液滴状)にして落下させることとした。そのため、雫(液滴)状となった水の各雫間(液滴間)に空気を介在させることができる。よって、各放電処理ユニット(21~26)の各流路(27)とこれに連通する水との間における電気抵抗が高くなるため、両者の間における電気的絶縁を容易に行うことができる。その結果、水処理部(10)の水中で確実に放電を生起させることができることから、投入した電力を効率よく使用することができる。
  また、本実施形態によれば、各水槽(28)に、複数の流路(27)を設けたため、流路(27)の数に応じて、水処理装置の処理する水量を調節することができる。
  また、本実施形態によれば、電極対(32a,32b)間を仕切る絶縁性の仕切板(15)に形成された放電孔(35)において電流密度を上昇させて気泡(C)を発生させ、該気泡(C)内で放電させることとした。これにより、気泡(C)と水との界面に放電電極を形成することができる。つまり、この放電では、両電極(32a,32b)が放電電極とならないため、放電による電極(32a,32b)の劣化を抑制することができる。
  また、本実施形態によれば、上記高電圧発生部(33)を交番型としたため、各電極対(32a,32b)に印加される電圧の正負が所定時間おきに交互に入れ替わる。そのため、放電孔(35)においてグロー放電を生起させることなくスパーク放電を生起させることができる。つまり、放電形態は、直流の場合は、電流の増加に伴ってスパーク放電からグロー放電に移行するところ、本実施形態では、放電形態がグロー放電に移行するまでに電極対(32a,32b)に印加される電圧の正負が入れ替わるので、放電孔(35)内においてグロー放電を発生させずにスパーク放電を発生し続けることができる。これにより、放電孔(35)のグロー放電による熱的破壊を抑制でき、放電孔(35)の孔径が拡大するのを抑制することが可能になる。よって、安定して放電を行うことができる。
  また、本実施形態によれば、上記電圧波形において正極側と負極側の割合を等しくしたので、両電極(32a,32b)において酸化反応と還元反応とを同等に行わせることができる。よって、電極対(32a,32b)の酸化反応による溶出を抑制することが可能となり、また、高電圧発生部(33)で発生させる交番型の電圧波形により、電極対(32a,32b)から金属などが析出するのを防止することができ、その結果、安定して放電を行うことができる。
  また、本実施形態によれば、上記電圧波形を方形波としたので、例えば、正弦波等と比べて、水の導電率に依存せずに放電を生起させることができる。よって、安定して放電を行うことが可能である。
  また、本実施形態によれば、各処理槽(11)の水を攪拌する攪拌部材である流路調整板(60,61,62,63)を各処理槽(11)に設けたため、各処理槽(11)の水中において生成された殺菌因子を各処理槽(11)の水中に均一に拡散させることができる。
  また、本実施形態によれば、同一形状の水槽(28)を用いて、上から下へ向かって交互に水平方向に反転させて積み重ねるだけで容易に水処理部(10)を構成することができる。
  また、本実施形態によれば、各水槽(28)を水平方向にスライド可能に構成したため、メンテナンス等を行う際に、容易に着脱することができる。
  また、本実施形態において、上記貯水タンク(2)が、温水を貯留する貯湯タンクであり、水循環回路(1)が貯湯タンクの温水を循環させる温水循環回路である場合には、水配管(3)は、貯湯タンク(2)内の温水を循環させる循環用配管となる。つまり、このような場合、水処理部(10)が、貯湯タンク(2)内の温水を循環させる循環用配管の途中に接続されることとなる。
  ところで、給湯用の温水が貯留される貯湯タンク(2)内の水温は、菌の繁殖を抑制するため、高温に保つ必要があり、利用側において必要以上に高い温度の温水が供給されるために、ランニングコストが嵩んでいた。
  しかしながら、上述の場合、給湯用の温水が貯留される貯湯タンク(2)に接続されて該貯湯タンク(2)内の温水を循環させる循環用配管の途中に、水処理部(10)が接続される。そのため、水処理部(10)において殺菌因子によって浄化された温水が貯湯タンク(2)内に戻されるため、貯湯タンク(2)内における菌の繁殖を抑制することができる。これにより、貯湯タンク(2)内の温度を高温に保たなくてよいため、必要以上に高い温度の温水が利用側に供給されるおそれをなくすことができ、ランニングコストを低減することができる。
  〈発明の実施形態3〉
  実施形態3は、実施形態2において各放電処理ユニット(21~26)の各処理槽(11)に設けられた攪拌部材(実施形態2では、流路調整板(60~63))の構成を変更したものである。
  具体的には、実施形態3では、図18及び図19に示すように、各放電処理ユニット(21~26)の各処理槽(11)には、実施形態2と同様の第1及び第2流路調整板(61,62)の他、両流路調整板(61,62)の間に下側から上側へ順に下側流路調整板(71)及び上側流路調整板(72)が設けられている。下側流路調整板(71)及び上側流路調整板(72)は、それぞれ平板に形成され、底部(12)に平行に配置されている。また、下側流路調整板(71)及び上側流路調整板(72)は、左右方向の長さが第1及び第2流路調整板(61,62)の間隔よりも短く、前後方向の長さが各処理槽(11)の幅長さと同等の長さとなるように形成されている。下側流路調整板(71)は、一端部が第1流路調整板(61)に接する一方、他端部と第2流路調整板(62)との間に隙間が形成されるように設けられている。一方、上側流路調整板(72)は、一端部が第2流路調整板(62)に接する一方、他端部と第1流路調整板(61)との間に隙間が形成されるように設けられている。なお、図示を省略するが、下側流路調整板(71)及び上側流路調整板(72)は、例えば、上記各電極(32a,32b)が貫通する孔を形成する等して該各電極(32a,32b)を避けるように構成されている。
  このような4つの流路調整板(61,62,71,72)により、各処理槽(11)に流入した水は、第1流路調整板(61)と底部(12)との隙間から第1流路調整板(61)と第2流路調整板(62)との間の領域に流入し、該領域において下方から上方へ向かって流れる際に、その流れが蛇行する。具体的には、図19に示すように、第1流路調整板(61)と第2流路調整板(62)との間に流入した水は、下側流路調整板(71)の下側を各処理槽(11)の流出側に向かって流れ、第2流路調整板(62)に衝突する。該第2流路調整板(62)に衝突した水は、流通方向が反転され、下側流路調整板(71)と上側流路調整板(72)との間を、各処理槽(11)の流入側に向かって流れ、第1流路調整板(61)に衝突する。該第1流路調整板(61)に衝突した水は、流通方向が反転され、上側流路調整板(72)の上側を各処理槽(11)の流出側に向かって流れる。
  このように第1流路調整板(61)と第2流路調整板(62)との間の領域において水の流れを蛇行させることにより、各処理槽(11)における水の流通経路が長くなり、また、水の流れが第1流路調整板(61)及び第2流路調整板(62)に衝突することにより、渦が発生する。これにより、実施形態3においても、4つの流路調整板(61,62,71,72)によって各処理槽(11)の水が攪拌される。つまり、4つの流路調整板(61,62,71,72)が本発明に係る攪拌部材を構成する。このような攪拌部材によっても、放電によって各処理槽(11)の水中において生成された殺菌因子が各処理槽(11)の水中に均一に拡散され、浄化を促進させることができる。
  〈発明の実施形態4〉
  実施形態4は、実施形態2において各放電処理ユニット(21~26)の各処理槽(11)に設けられた攪拌部材(実施形態2では、流路調整板(60~63))の構成を変更したものである。
  具体的には、実施形態4では、図20~図23に示すように、各放電処理ユニット(21~26)の各処理槽(11)には、実施形態2と同様に、第1流路調整板(61)と第2流路調整板(62)とが設けられるが、実施形態4では、各第1流路調整板(61)は、底部(12)との間に隙間が形成されないように構成され、各第2流路調整板(62)は、上下方向長さが堰板(19)の上下方向長さよりも長く形成されている。また、第1流路調整板(61)の下端部であって幅方向の一端部には、流入口(61a)が形成されている。一方、第2流路調整板(62)の堰板(19)の上端と同じ高さ位置であって幅方向の上記流入口(61a)と逆側の端部には、流出口(62a)が形成されている。
  第1及び第2流路調整板(61,62)の間には、仕切板(15)側から区画板(18)側へ順に、内側流路調整板(81)及び外側流路調整板(82)が配置されている。内側及び外側流路調整板(81,82)は、それぞれ平板に形成され、仕切板(15)に平行に配置されている。内側及び外側流路調整板(81,82)は、それぞれ上下方向長さが堰板(19)の上下方向長さより長く且つ流入側の短壁部(14)の上下方向長さと同じ長さに形成され、左右方向の長さが第1及び第2流路調整板(61,62)の間隔よりも短くなるように形成されている。また、内側流路調整板(81)は、一端部が第1流路調整板(61)に接する一方、他端部と第2流路調整板(62)との間に隙間が形成されるように設けられている。一方、外側流路調整板(82)は、一端部が第2流路調整板(62)に接する一方、他端部と第1流路調整板(61)との間に隙間が形成されるように設けられている。なお、図示を省略するが、内側流路調整板(81)及び外側流路調整板(82)は、例えば、上記各電極(32a,32b)が貫通する孔を形成する等して該各電極(32a,32b)を避けるように構成されている。
  このような4つの流路調整板(61,62,81,82)により、各処理槽(11)に流入した水は、第1流路調整板(61)に形成された流入口(61a)から第1流路調整板(61)と第2流路調整板(62)との間の領域に流入し、該領域において仕切板(15)側から区画板(18)側へ流れる際に、その流れが蛇行する。具体的には、図20に示すように、第1流路調整板(61)と第2流路調整板(62)との間に流入した水は、内側流路調整板(81)と仕切板(15)との間を各処理槽(11)の流出側に向かって流れ、第2流路調整板(62)に衝突する。該第2流路調整板(62)に衝突した水は、流通方向が反転され、外側流路調整板(82)と内側流路調整板(81)との間を、各処理槽(11)の流入側に向かって流れ、第1流路調整板(61)に衝突する。該第1流路調整板(61)に衝突した水は、流通方向が反転され、外側流路調整板(82)と区画板(18)との間を各処理槽(11)の流出側に向かって流れ、第2流路調整板(62)に形成された流出口(62a)から下流側へ流出する。
  このように第1流路調整板(61)と第2流路調整板(62)との間の領域において水の流れを蛇行させることにより、各処理槽(11)における水の流通経路が長くなり、また、水の流れが第1流路調整板(61)及び第2流路調整板(62)に衝突することにより、渦が発生する。これにより、実施形態4においても、4つの流路調整板(61,62,81,82)によって各処理槽(11)の水が攪拌される。つまり、4つの流路調整板(61,62,81,82)が本発明に係る攪拌部材を構成する。このような攪拌部材によっても、放電によって各処理槽(11)の水中において生成された殺菌因子が各処理槽(11)の水中に均一に拡散され、浄化を促進させることができる。
  〈発明の実施形態5〉
  実施形態5は、実施形態2において各放電処理ユニット(21~26)の各処理槽(11)に設けられた攪拌部材(実施形態2では、流路調整板(60~63))の構成を変更したものである。
  図24に示すように、実施形態5では、各放電処理ユニット(21~26)の各処理槽(11)には、実施形態2と同様の第1流路調整板(61)と、複数の羽根(91a)を有する水車(91)とが設けられている。該水車(91)は、第1流路調整板(61)のすぐ下流側に設けられ、回転軸が各処理槽(11)の幅方向に延びるように配置されている。
  各処理槽(11)に流入した水は、第1流路調整板(61)と底部(12)との隙間を通過して下流側へ流れる。水は、隙間を通過する際に流速が上昇し、水車(91)の羽根(91a)に衝突し、水車(91)を回転させる。これにより、各処理槽(11)の水が攪拌される。
  このように実施形態5においても、第1流路調整板(61)と水車(91)とによって各処理槽(11)の水が攪拌される。つまり、第1流路調整板(61)と水車(91)とが本発明に係る攪拌部材を構成する。このような攪拌部材によっても、放電によって各処理槽(11)の水中において生成された殺菌因子が各処理槽(11)の水中に均一に拡散され、浄化を促進させることができる。
  〈発明の実施形態6〉
  実施形態6は、実施形態2において各放電処理ユニット(21~26)の各処理槽(11)に設けられた攪拌部材(実施形態2では、流路調整板(60~63))の構成を変更したものである。
  図25に示すように、実施形態6では、各放電処理ユニット(21~26)の各処理槽(11)には、実施形態2と同様に、第1流路調整板(61)が設けられるが、実施形態6では、各第1流路調整板(61)は、底部(12)との間に隙間が形成されないように構成されている。また、第1流路調整板(61)の下端部には、複数(本実施形態では3つ)のスリット(61c)が形成されている。各スリット(61c)は、各処理槽(11)の流入側から流出側へ向かう程、上側に傾斜している。
  各処理槽(11)に流入した水は、各第1流路調整板(61)の複数のスリット(61c)を通過して下流側へ流れる。水は、各スリット(61c)を通過することで、斜め上方に向かう流れとなり、この流れによって渦が発生する。また、水は、各スリット(61c)を通過する際に流速が上昇し、堰板(19)に衝突する。堰板(19)に衝突した水は、一部が該堰板(19)に跳ね返されて渦を生じる一方、残りは該堰板(19)を乗り越えて流出部(50)へ流出する。
  このように実施形態6においても、複数のスリット(61c)が形成された第1流路調整板(61)によって各処理槽(11)の水が攪拌される。つまり、複数のスリット(61c)が形成された第1流路調整板(61)が本発明に係る攪拌部材を構成する。このような攪拌部材によっても、放電によって各処理槽(11)の水中において生成された殺菌因子が各処理槽(11)の水中に均一に拡散され、浄化を促進させることができる。
  〈発明の実施形態7〉
  実施形態7は、実施形態2において各放電処理ユニット(21~26)の各処理槽(11)に設けられた攪拌部材(実施形態2では、流路調整板(60~63))の構成を変更したものである。
  図26に示すように、実施形態7では、各放電処理ユニット(21~26)の各処理槽(11)には、実施形態2と同様の第1流路調整板(61)と、水流によって回転する回転部材(101)とが設けられている。該回転部材(101)は、第1流路調整板(61)のすぐ下流側に設けられ、らせん状又は釣具のフィッシュテール状に形成されている(図26ではらせん状に形成されたもののみ図示)。
  各処理槽(11)に流入した水は、第1流路調整板(61)と底部(12)との隙間を通過して下流側へ流れる。水は、隙間を通過する際に流速が上昇し、回転部材(101)に衝突し、該回転部材(101)を回転させる。これにより、各処理槽(11)の水が攪拌される。
  このように実施形態7においても、第1流路調整板(61)と回転部材(101)とによって各処理槽(11)の水が攪拌される。つまり、第1流路調整板(61)と回転部材(101)とが本発明に係る攪拌部材を構成する。このような攪拌部材によっても、放電によって各処理槽(11)の水中において生成された殺菌因子が各処理槽(11)の水中に均一に拡散され、浄化を促進させることができる。
  なお、回転部材(101)は、上述のものの他、水流によって回転軸回りに回転するものであればいかなるものでもよい。
  〈発明の実施形態8〉
  実施形態8は、実施形態2において各放電処理ユニット(21~26)の各処理槽(11)に設けられた攪拌部材(実施形態2では、流路調整板(60~63))の構成を変更したものである。
  図27に示すように、実施形態8では、各放電処理ユニット(21~26)の各処理槽(11)には、実施形態2と同様に、第1流路調整板(61)が設けられるが、実施形態8では、各第1流路調整板(61)は、底部(12)との間に実施形態2よりも大きな隙間が形成されている。また、第1流路調整板(61)と底部(12)との隙間に、上下に交互に回動する電動のルーバ-(102)が設けられている。
  各処理槽(11)に流入した水は、第1流路調整板(61)と底部(12)との隙間を通過する際に、流速が上昇すると共に、ルーバ-(102)によって該ルーバー(102)の延びる方向に流れが偏向される。ルーバ-(102)は上下に交互に回動するため、第1流路調整板(61)と底部(12)との隙間から下流側へ流出する水の流れの方向がルーバー(102)の回動に応じてその都度変更され、各処理槽(11)の水が攪拌される。
  このように実施形態8おいても、第1流路調整板(61)とルーバ-(102)とによって各処理槽(11)の水が攪拌される。つまり、第1流路調整板(61)とルーバ-(102)とが本発明に係る攪拌部材を構成する。このような攪拌部材によっても、放電によって各処理槽(11)の水中において生成された殺菌因子が各処理槽(11)の水中に均一に拡散され、浄化を促進させることができる。
  〈発明の実施形態9〉
  実施形態9は、実施形態2において各放電処理ユニット(21~26)の各処理槽(11)に設けられた攪拌部材(実施形態2では、流路調整板(60~63))の構成を変更したものである。
  図28に示すように、実施形態7では、各放電処理ユニット(21~26)の各処理槽(11)には、実施形態2のような流路調整板は設けられず、軸部(121a)とらせん状の羽根(121b)とを有する電動のスクリューロータ(121)が設けられている。各処理槽(11)に流入した水は、スクリューロータ(121)が回転することによって攪拌される。つまり、実施形態9では、スクリューロータ(121)が本発明に係る攪拌部材を構成する。このような攪拌部材によっても、放電によって各処理槽(11)の水中において生成された殺菌因子が各処理槽(11)の水中に均一に拡散され、浄化を促進させることができる。
  〈発明の実施形態10〉
  実施形態10は、実施形態2において第1放電処理ユニット(21)の流入側の絶縁部(80)としての噴霧装置(40)の構成を変更したものである。具体的には、実施形態10では、噴霧装置(40)はリフレクター(43)を備えていない。また、各噴霧ノズル(42)の設置角度が実施形態2と異なる。
  図29に示すように、各噴霧ノズル(42)は、水配管(3)からの水を噴霧して、噴霧の中心線Aが鉛直下方向以外の方向となるように、例えば、ノズル先端が図中右斜め下方向を向くように設けられている。また、各噴霧ノズル(42)は、水配管(3)からの水を各処理槽(11)内の壁面、例えば、流路調整板(60)に衝突させて、各処理槽(11)に落下させるように構成されている。
  上記噴霧装置(40)では、各噴霧ノズル(42)から噴霧された水が流路調整板(60)の表面に衝突して、雫(液滴)がより小さくなることにより、各雫間(各液滴間)に空気が介在して電気抵抗が高くなる。これにより、水配管(3)の流入管(3a)から流入する水と、各処理槽(11)を流れる水とが電気的に絶縁されることになる。
  以上説明したように、本実施形態によれば、各噴霧ノズル(42)が、該各噴霧ノズル(42)の先端から各処理槽(11)の水面までの鉛直距離(La)よりも噴霧ノズル(42)の先端から各処理槽(11)の水面までの水の移動距離(Lb)を長くするように構成されているので、水配管(3)の水が噴霧ノズル(42)から鉛直下方向に供給される場合よりも流入側の絶縁部(80)での電気絶縁性が向上する。これにより、上記実施形態2と同様に、各処理槽(11)と流入管(3a)の水との間の電気絶縁性が向上するので、特に各処理槽(11)の流入側において、水処理部(10)からの電気が流れないようにすることができる。
  〈発明の実施形態11〉
  実施形態11は、各放電処理ユニット(21~26)の流出側の絶縁部(80)としての流出部(50)において、各処理槽(11)から下段の処理槽(11)へ落下する各雫を微細化する微細化手段の構成を変更したものである。
  実施形態11の微細化手段(53)は、処理槽(11)の堰板(19)の上端から図30中右斜め下方向に延びて水を落下させるスロープ(51)と、該スロープ(51)の図30中右斜め下側の短壁部(14)の内面に設けられた拡散板(54)とを備えている。ここで、拡散板(54)は、図31に示すように、その表面に、各々、半円弧状の横断面を有する複数の凹条が互いに隣り合うように形成され、スロープ(51)を落下した水が衝突して、水平方向(凹条が延びる方向)に拡散するように構成されている。また、スロープ(51)及び拡散板(54)の各表面は、例えば、テフロン(登録商標)加工により、撥水性を有している。そのため、流出部(50)では、処理槽(11)で処理された水が堰板(19)の上端を超えると、その処理された水が、図30に示すように、スロープ(51)の表面を雫状となって落下した後に、拡散板(54)の表面で拡散した状態で流出口(17)へ落下することになる。
  上記構成の流出部(50)では、処理槽(11)から溢れた水が堰板(19)の表面又は貯留された水面に落下する際に、スロープ(51)を介して雫状になると共に、その粒が拡散板(54)の表面で小さくなることにより、各雫間(各液滴間)に空気が介在して電気抵抗が高くなる。これにより、処理槽(11)を流れる水と、下段の処理槽(11)の水とが電気的に絶縁されることになる。
  以上説明したように、本実施形態の水処理装置(1a)によれば、上記各実施形態と同様に、流出部(50)の微細化手段(53)が、処理槽(11)で処理された水が下段の処理槽(11)の水面まで落下する間にこの水を微細化するように構成されているので、微細化された水の各粒間(各液滴間)に空気が介在することになる。これにより、上段の処理槽(11)と下段の処理槽(11)との間の電気絶縁性が向上するので、特に各放電処理ユニット(21~26)の流出側において、各放電処理ユニット(21~26)から電気が流れ出ないようにすることができる。
  また、本実施形態の水処理装置(1a)によれば、流出部(50)の微細化手段(53)が、処理槽(11)から落下させた水を拡散させて落下させる拡散板(54)を備えているので、処理槽(11)から落下させた水を拡散板(54)の表面に衝突させて微細化することができる。これにより、雫状の水の粒が小さくなって、各雫間(各液滴間)に空気が介在することになるので、電気抵抗を高くすることができる。
  また、本実施形態の水処理装置(1a)によれば、流出部(50)の微細化手段(53)が、堰板(19)の上端から斜め下方向に延びて水を落下させるスロープ(51)を備えているので、処理槽(11)から落下させた水を拡散板(54)の表面に確実に衝突させることができる。
  また、本実施形態の水処理装置(1a)によれば、スロープ(51)の表面が撥水性を有しているので、スロープ(51)の表面に水膜が形成され難くなり、処理槽(11)で処理された水をスロープ(51)の表面で効果的に雫状にすることができる。
  また、本実施形態の水処理装置(1a)によれば、拡散板(54)の表面が撥水性を有しているので、拡散板(54)の表面に水膜が形成され難くなり、スロープ(51)を落下させた水を拡散板(54)の表面で効果的に雫状にすることができる。
  《発明の実施形態12》
  実施形態12は、各放電処理ユニット(21~26)の流出側の絶縁部(80)としての流出部(50)において、各処理槽(11)から下段の処理槽(11)へ落下する各雫を微細化する微細化手段の構成を変更したものである。
  実施形態12の流出部(50)の微細化手段(53)は、図32に示すように、堰板(19)の図中上端に設けられた流出口部(19a)と、堰板(19)の図中下側に設けられたリフレクター(55)とを備えている。
  流出口部(19a)は、図32に示すように、その横断面がU字状に形成されている。
  リフレクター(55)は、図32に示すように、正面視で半円状に形成され、その表面が、例えば、テフロン(登録商標)加工により、撥水性を有している。ここで、リフレクター(55)は、図32に示すように、流出口部(19a)から落下した水が表面に衝突して図中上下方向に振動することにより、落下してきた水を弾いて微雫化するように構成されている。
  上記構成の流出部(50)では、処理槽(11)の流出口部(19a)から供給された水が斜め下方向に落下する際に、リフレクター(55)の表面でその粒が小さくなることにより、各雫間(各液滴間)に空気が介在して電気抵抗が高くなる。これにより、処理槽(11)を流れる水と、下段の処理槽(11)の水とが電気的に絶縁されることになる。
  以上説明したように、本実施形態の水処理装置(1a)によれば、上記各実施形態と同様に、流出部(50)の微細化手段(53)が、処理槽(11)で処理された水を下段の処理槽(11)の水面まで落下させる間に微細化するように構成されているので、微細化された水の各雫間(各液滴間)に空気が介在することになる。これにより、処理槽(11)を流れる水と下段の処理槽(11)の水との間の電気絶縁性を向上させることができる。
  また、本実施形態の水処理装置(1a)によれば、流出側の絶縁部(80)の微細化手段(53)が、処理槽(11)の流出口部(19a)から落下させた水を衝突させて水配管(3)に落下させるリフレクター(55)を備えているので、処理槽(11)の流出口部(19a)から落下させた水をリフレクター(55)の表面に衝突させて微細化することができる。これにより、水の粒が小さくなって、各雫間(各液滴間)に空気が介在することになるので、電気抵抗を高くすることができる。
  《発明の実施形態13》
  実施形態13は、各放電処理ユニット(21~26)の流出側の絶縁部(80)としての流出部(50)において、各処理槽(11)から下段の処理槽(11)へ落下する各雫を微細化する微細化手段の構成を変更したものである。
  実施形態13の微細化手段(53)は、図33に示すように、堰板(19)の図中上端に設けられた流出口部(19a)と、堰板(19)の図中下側に設けられた拡散板(54)と、拡散板(54)の両側方の図中下側に設けられた一対のリフレクター(55)とを備えている。
  上記構成の流出部(50)では、処理槽(11)から溢れた水が斜め下方向に落下する際に、拡散板(54)及びリフレクター(55)の表面でその粒が小さくなることにより、各雫間(各液滴間)に空気が介在して電気抵抗が高くなる。これにより、処理槽(11)を流れる水と、下段の処理槽(11)の水とが電気的に絶縁されることになる。
  以上説明したように、本実施形態の水処理装置(1a)によれば、上記各実施形態と同様に、流出部(50)の微細化手段(53)が、処理槽(11)で処理された水が下段の処理槽(11)の水面まで落下する間にこの水を微細化するように構成されているので、微細化された水の各粒間(各液滴間)に空気が介在することになる。これにより、上段の処理槽(11)と下段の処理槽(11)との間の電気絶縁性が向上するので、特に各放電処理ユニット(21~26)の流出側において、各放電処理ユニット(21~26)から電気が流れ出ないようにすることができる。
  また、本実施形態の水処理装置(1a)によれば、流出部(50)の微細化手段(53)が、拡散板(54)で拡散させた水を衝突させて落下させるリフレクター(55)を備えているので、拡散板(54)の表面で微細化した水をリフレクター(55)の表面でさらに微細化することができる。これにより、水の粒が小さくなって、各雫間(各液滴間)に空気が介在することになるので、電気抵抗を高くすることができる。
  《発明の実施形態14》
  実施形態14は、各放電処理ユニット(21~26)の流出側の絶縁部(80)としての流出部(50)において、各処理槽(11)から下段の処理槽(11)へ落下する各雫を微細化する微細化手段の構成を変更したものである。
  実施形態14の微細化手段(53)は、図34に示すように、堰板(19)の図中上端に設けられた突出壁部(19c)と、突出壁部(19c)の図中下側に設けられ、回転軸(S)を中心に回転可能な水車(56)とを備えている。
  上記構成の流出部(50)では、処理槽(11)の突出壁部(19c)の出口から供給された水が斜め下方向に落下する際に、水車(56)の羽根に水が衝突することにより、水車(56)が回転すると共に、落下してきた水を水車(56)の羽根で弾いて微細化することにより、各雫間(各液滴間)に空気が介在して電気抵抗が高くなる。これにより、処理槽(11)を流れる水と、下段の処理槽(11)の水とが電気的に絶縁されることになる。
  以上説明したように、本実施形態の水処理装置(1a)によれば、上記各実施形態と同様に、流出部(50)の微細化手段(53)が、処理槽(11)で処理された水が下段の処理槽(11)の水面まで落下する間にこの水を微細化するように構成されているので、微細化された水の各粒間(各液滴間)に空気が介在することになる。これにより、上段の処理槽(11)と下段の処理槽(11)との間の電気絶縁性が向上するので、特に各放電処理ユニット(21~26)の流出側において、各放電処理ユニット(21~26)から電気が流れ出ないようにすることができる。
  また、本実施形態の水処理装置(1a)によれば、流出部(50)が落下させた水を羽根に衝突させる水車(56)を備えているので、水の粒が小さくなって、各雫間(各液滴間)に空気が介在することになるので、電気抵抗を高くすることができる。
  《発明の実施形態15》
  実施形態15は、各放電処理ユニット(21~26)の流出側の絶縁部(80)としての流出部(50)において、各処理槽(11)から下段の処理槽(11)へ落下する各雫を微細化する微細化手段の構成を変更したものである。
  実施形態15の微細化手段(53)は、図35及び図36に示すように、堰板(19)の図中上端に設けられた突出壁部(19c)と、突出壁部(19c)の図中下側に設けられ、回転軸(S)を中心に振り子のように回転可能な碇状の振子部材(57)とを備えている。
  振子部材(57)は、図35及び図36に示すように、回転軸(S)が中間部に設けられた棒状の吊り部(57a)と、平面視で円弧状に設けられ、吊り部(57a)の図中下端に固定された水溜め部(57b)とを備えている。ここで、振子部材(57)は、図37(a)に示すように、処理槽(11)の突出壁部(19c)の出口から供給された水を水溜め部(57b)の図中左側で受けることにより、反時計回りに回転し、続いて、図37(b)に示すように、吊り部(57a)の図中上部で水を弾くと共に、溜まった水を落下させ、そして、図37(c)に示すように、弾いた水を水溜め部(57b)の図中右側で受けることにより、時計回りに回転し、さらに、図37(d)に示すように、溜まった水を落下させながら、処理槽(11)の突出壁部(19c)の出口から供給された水を水溜め部(57b)の図中左側で受けることにより、反時計回りに回転して、図37(a)の状態に戻るように構成されている。
  上記構成の流出部(50)では、処理槽(11)の突出壁部(19c)の出口から供給された水が鉛直下方向に落下する際に、振子部材(57)に水が衝突することにより、振子部材(57)が回転すると共に、落下してきた水を振子部材(57)で弾いて微細化することにより、各雫間(各液滴間)に空気が介在して電気抵抗が高くなる。これにより、処理槽(11)を流れる水と、下段の処理槽(11)の水とが電気的に絶縁されることになる。
  以上説明したように、本実施形態の水処理装置(1a)によれば、上記各実施形態と同様に、流出部(50)の微細化手段(53)が、処理槽(11)で処理された水が下段の処理槽(11)の水面まで落下する間にこの水を微細化するように構成されているので、微細化された水の各粒間(各液滴間)に空気が介在することになる。これにより、上段の処理槽(11)と下段の処理槽(11)との間の電気絶縁性が向上するので、特に各放電処理ユニット(21~26)の流出側において、各放電処理ユニット(21~26)から電気が流れ出ないようにすることができる。
  また、本実施形態の水処理装置(1a)によれば、流出部(50)が落下させた水を衝突させる振子部材(57)を備えているので、水の粒が小さくなって、各雫間(各液滴間)に空気が介在することになるので、電気抵抗を高くすることができる。
  《発明の実施形態16》
  実施形態16は、各放電処理ユニット(21~26)の流出側の絶縁部(80)としての流出部(50)において、各処理槽(11)から下段の処理槽(11)へ落下する各雫を微細化する微細化手段の構成を変更したものである。
  実施形態16の微細化手段(53)は、図38~図40に示すように、堰板(19)の図38中上端に設けられた突出壁部(19d)と、突出壁部(19d)の図38中右側に設けられ、回転軸(S)を中心に回転可能なゲート部(58a)とを備えている。ここで、ゲート部(58a)は、図38~図40に示すように、突出壁部(19d)上に所定量の水が溜まると、回転軸(S)を中心に反時計回りに回転することにより開放されて、その先端から斜め下方向に水を排出するように構成されている。
  上記構成の流出部(50)では、処理槽(11)の突出壁部(19d)の出口から水が断続的に斜め下方向に滝のように落下することにより、微細化され、処理槽(11)を流れる水と、下段の処理槽(11)の水とが電気的に絶縁されることになる。
  以上説明したように、本実施形態の水処理装置(1a)によれば、上記各実施形態と同様に、流出部(50)の微細化手段(53)が、処理槽(11)で処理された水を下段の処理槽(11)の水面まで落下させる間に微細化するように構成されているので、微細化された水の各雫間(各液滴間)に空気が介在することになる。これにより、処理槽(11)を流れる水と下段の処理槽(11)の水との間の電気絶縁性を向上させることができる。
  《発明の実施形態17》
  実施形態17は、各放電処理ユニット(21~26)の流出側の絶縁部(80)としての流出部(50)において、各処理槽(11)から下段の処理槽(11)へ落下する各雫を微細化する微細化手段の構成を変更したものである。
  実施形態17の流出部(50)の微細化手段(53)は、図41~図43に示すように、堰板(19)の図41中上端に設けられた突出壁部(19d)と、突出壁部(19d)の図41中右側に設けられ、回転軸(S)を中心に回転可能なゲート部(58b)と、突出壁部(19d)の先端に設けられ、突出壁部(19d)及びゲート部(58b)の間での水漏れを防ぐシール部(19e)とを備えている。ここで、ゲート部(58b)は、図41~図43に示すように、突出壁部(19d)上に所定量の水が溜まると、回転軸(S)を中心に時計回りに回転することにより開放されて、その先端から斜め下方向に水を排出するように構成されている。
  上記構成の流出部(50)では、処理槽(11)の突出壁部(19d)の出口から水が断続的に斜め下方向に滝のように落下することにより、微細化され、処理槽(11)を流れる水と、下段の処理槽(11)の水とが電気的に絶縁されることになる。
  以上説明したように、本実施形態の水処理装置(1a)によれば、上記各実施形態と同様に、流出部(50)の微細化手段(53)が、処理槽(11)で処理された水を下段の処理槽(11)の水面まで落下させる間に微細化するように構成されているので、微細化された水の各雫間(各液滴間)に空気が介在することになる。これにより、処理槽(11)を流れる水と下段の処理槽(11)の水との間の電気絶縁性を向上させることができる。
  《発明の実施形態18》
  実施形態18は、各放電処理ユニット(21~26)の流出側の絶縁部(80)としての流出部(50)において、各処理槽(11)から下段の処理槽(11)へ落下する各雫を微細化する微細化手段の構成を変更したものである。
  実施形態18の微細化手段(53)は、図44及び図45に示すように、堰板(19)の図中上端から図44中右斜め下方向に延びて水を落下させるスロープ(19f)と、スロープ(19f)の図中下側に設けられ、回転軸(S)を中心に鹿威しのように回転可能な筒状の水溜部材(59)とを備えている。
  スロープ(19f)の表面には、図45に示すように、各々、半円弧状の横断面を有する複数の凹条が形成されている。そして、スロープ(19f)は、図45に示すように、その表面に形成された各凹条の底部に水が流れるように構成されている。
  水溜部材(59)は、図44及び図45に示すように、その中間部に回転軸(S)が設けられている。ここで、水溜部材(59)は、図45に示すように、内部に水が溜まって重心が上方に移動することにより、回転軸(S)を中心に時計回りに回転して、内部の水を排出した後に、回転軸(S)を中心に反時計回りに回転して、元の状態に戻るように首振り運動を行い、その首振り運動の際に落下してきた水を弾くように構成されている。
  上記構成の流出部(50)では、処理槽(11)から溢れた水が落下する際に、スロープ(19f)を介して雫状になると共に、その雫が水溜部材(59)の首振り運動で小さくなることにより、各雫間(各液滴間)に空気が介在して電気抵抗が高くなる。これにより、処理槽(11)を流れる水と、下段の処理槽(11)の水とが電気的に絶縁されることになる。
  以上説明したように、本実施形態の水処理装置(1a)によれば、上記各実施形態と同様に、流出部(50)の微細化手段(53)が、処理槽(11)で処理された水を下段の処理槽(11)の水面まで落下させる間に微細化するように構成されているので、微細化された水の各雫間(各液滴間)に空気が介在することになる。これにより、処理槽(11)を流れる水と下段の処理槽(11)の水との間の電気絶縁性を向上させることができる。
  また、本実施形態の水処理装置(1a)によれば、流出部(50)が水溜部材(59)を備えているので、スロープ(19f)を落下させた水が水溜部材(59)で弾かれることになる。これにより、雫状の水の粒が小さくなって、各雫間(各液滴間)に空気が介在することになるので、電気抵抗を高くすることができる。
  〈発明の実施形態19〉
  実施形態19は、実施形態2の水処理部(10)が接続される水配管(3)の構成を変更したものである。具体的には、図46に示すように、実施形態19では、水配管(3)は、給湯用の温水が貯留される貯湯タンク(2)が接続された給湯回路(8)の利用側配管によって構成されている。つまり、水処理部(10)が、給湯回路(8)の利用側配管に接続されている。水処理部(10)は、利用側配管に接続された流入水ポンプ(5a)と流出水ポンプ(5b)との間に接続されている。
  上述したように、給湯用の温水が貯留される貯湯タンク(2)内の水温は、菌の繁殖を抑制するため、高温に保つ必要がある一方、本実施形態では、給湯用の温水が貯留される貯湯タンク(2)が接続された給湯回路(8)の利用側配管の途中に、水処理部(10)を接続している。そのため、貯湯タンク(2)から流出した温水は、利用側配管の途中に接続された水処理部(10)において殺菌因子によって除菌することができる。よって、貯湯タンク(2)内の水温を高温に保たなくとも、貯湯タンク(2)に浄化された温水を供給することができる。これにより、必要以上に高い温度の温水が利用側に供給されるおそれをなくすことができ、ランニングコストを低減することができる。
  また、本実施形態によれば、従来、貯湯タンク(2)内の温水を高温に保つために、貯湯タンク(2)内の温水を加熱するヒータと、該ヒータによって加熱された温水を貯湯タンク内(2)において攪拌するための循環用回路とが設けられていたが、これらを省略することができる。
  〈その他の実施形態〉
  本発明は、上記実施形態について、以下のような構成としてもよい。
  上記実施形態では、水処理部(10,210)が処理水中で放電を生起するようにしたが、第1の発明では、水処理部(10,210)が処理水中で電気分解を生起するようにしてもよい。
  また、上記流入側の絶縁部は、噴霧装置(40,240)で構成したが、上記水通路(3,203)から水処理部(10,210)に流れる処理水を滴下させるノズルによって構成してもよい。
  また、上記実施形態の水処理装置(1a,201a)は、水循環回路(1,201)を備えているが、第1の発明においては、水が循環するものでなくともよい。
  尚、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
  以上説明したように、本発明は、電気的に処理水の浄化を行う水処理装置について有用である。
203      水配管
210     水処理部
211     処理槽
215     仕切板
216     放電孔
221a    第1レーン
221b    第2レーン
222a    第3レーン
222b    第4レーン
231     電極(ホット側)
232     電極(ニュートラル側)
233     高電圧発生部
240     噴霧装置
250     下流槽

Claims (6)

  1.   水を電気的に処理する水処理部(210)と、
      該水処理部(210)に連通する水と上記水処理部(210)とを電気的に絶縁する絶縁部(240,250)とを備えている
    ことを特徴とする水処理装置。
  2.   請求項1において、
      上記水処理部(210)は、水が流れる水通路(203)の途中に設けられ、
      上記絶縁部(240,250)は、上記水処理部(210)の流入側と流出側とに設けられている
    ことを特徴とする水処理装置。
  3.   請求項2において、
      上記水処理部(210)は、処理槽(211)内の水中で放電を生起し、水中に殺菌因子を生ずるように構成されている
    ことを特徴とする水処理装置。
  4.   請求項3において、
      上記流入側の絶縁部(240)は、上記水通路(203)から水処理部(210)に流れる水を滴下させるノズルによって構成されている
    ことを特徴とする水処理装置。
  5.   請求項3において、
      上記流入側の絶縁部(240)は、上記水通路(203)から水処理部(210)に流れる水を噴霧させる噴霧部(240)によって構成されている
    ことを特徴とする水処理装置。
  6.   請求項3~5の何れか1つにおいて、
      上記流出側の絶縁部(250)は、上記水処理部(210)から水通路(203)に流れる水を水処理部(210)から雫状にして落下させるように構成されている
    ことを特徴とする水処理装置。
PCT/JP2013/005644 2012-09-28 2013-09-24 水処理装置 WO2014050079A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380049729.1A CN104661967B (zh) 2012-09-28 2013-09-24 水处理装置
US14/430,999 US9334179B2 (en) 2012-09-28 2013-09-24 Water treatment device
AU2013321956A AU2013321956C1 (en) 2012-09-28 2013-09-24 Water treatment device
EP13842784.4A EP2902370B1 (en) 2012-09-28 2013-09-24 Water treatment device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012218378 2012-09-28
JP2012-218378 2012-09-28
JP2012218400 2012-09-28
JP2012-218400 2012-09-28
JP2012289120A JP5585644B2 (ja) 2012-09-28 2012-12-28 水処理装置
JP2012289125A JP5585645B2 (ja) 2012-09-28 2012-12-28 水処理装置
JP2012-289120 2012-12-28
JP2012-289125 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014050079A1 true WO2014050079A1 (ja) 2014-04-03

Family

ID=53008965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005644 WO2014050079A1 (ja) 2012-09-28 2013-09-24 水処理装置

Country Status (5)

Country Link
US (1) US9334179B2 (ja)
EP (1) EP2902370B1 (ja)
CN (1) CN104661967B (ja)
AU (1) AU2013321956C1 (ja)
WO (1) WO2014050079A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5915725B1 (ja) * 2014-12-26 2016-05-11 ダイキン工業株式会社 水処理装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11091376B2 (en) * 2017-10-27 2021-08-17 Samsung Electronics Co., Ltd. Plasma generator and home appliance having the same
JP6787382B2 (ja) * 2018-11-28 2020-11-18 ダイキン工業株式会社 水処理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864182A (ja) * 1981-10-14 1983-04-16 Tatsuo Okazaki 連続式水電解装置における水量制御機構
JP2000093972A (ja) 1998-09-25 2000-04-04 Masayuki Sato 液体処理方法及び液体処理装置
JP2005349314A (ja) * 2004-06-10 2005-12-22 Ino Tadayuki 荷電したイオン化液の製造装置
JP2007307486A (ja) * 2006-05-18 2007-11-29 Toshiba Corp ラジカル処理システム
JP2012075975A (ja) * 2010-09-30 2012-04-19 Daikin Industries Ltd イオン水生成装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151770A (ja) 1974-03-30 1975-12-05
US6309532B1 (en) 1994-05-20 2001-10-30 Regents Of The University Of California Method and apparatus for capacitive deionization and electrochemical purification and regeneration of electrodes
EP0844906B1 (en) * 1995-07-27 2004-09-15 Ion Physics Corporation Apparatus for the disinfection of liquids
US6270650B1 (en) 1996-03-15 2001-08-07 Abdullah Kazi Electrolytic cell with porous surface active anode for removal of organic contaminants from water and its use to purify contaminated water
DE19614018A1 (de) * 1996-04-09 1997-10-16 Degussa Verfahren und Elektrolysezelle zur Reinigung von Gasen
JP2001058179A (ja) * 1999-08-24 2001-03-06 Kobe Steel Ltd 水処理法及び水処理装置
JP2001293478A (ja) * 2000-04-17 2001-10-23 Mitsubishi Heavy Ind Ltd 排水処理装置
JP2003062573A (ja) * 2001-08-29 2003-03-04 Mikuni Corp 電解水生成器
AUPS220302A0 (en) 2002-05-08 2002-06-06 Chang, Chak Man Thomas A plasma formed within bubbles in an aqueous medium and uses therefore
JP2005058886A (ja) 2003-08-11 2005-03-10 Mitsubishi Heavy Ind Ltd 高電圧パルスを利用した廃水処理装置及び該方法、並びに該処理装置用電源回路
JP5295485B2 (ja) 2006-02-01 2013-09-18 株式会社栗田製作所 液中プラズマ型被処理液浄化方法及び液中プラズマ型被処理液浄化装置
JP4023512B1 (ja) 2006-06-15 2007-12-19 ダイキン工業株式会社 液処理装置、空気調和装置、及び加湿器
JP2008057937A (ja) * 2006-09-04 2008-03-13 Sanyo Electric Co Ltd 熱交換器の浄化装置
CN100480192C (zh) * 2007-06-11 2009-04-22 大连海事大学 一种无极放电液体处理方法及处理装置
CZ301074B6 (cs) * 2007-09-12 2009-10-29 Ústav fyziky plazmatu AV CR, v.v.i. Zarízení pro dekontaminaci a dezinfekci vodných roztoku
US7639931B2 (en) * 2007-09-19 2009-12-29 Hua-Hsin Tsai Vertical water heater
CN102216225B (zh) * 2008-11-12 2013-07-17 积水化学工业株式会社 水处理装置
KR101347405B1 (ko) * 2009-05-12 2014-01-02 다이킨 고교 가부시키가이샤 액 처리용 방전유닛, 조습장치, 및 급탕기
JP2011161362A (ja) * 2010-02-09 2011-08-25 Sekisui Chem Co Ltd 水処理装置および水処理用モジュール
JP2012077918A (ja) 2010-09-30 2012-04-19 Daikin Industries Ltd 給湯システム
CN102642913B (zh) * 2012-04-28 2013-07-03 清华大学 常压液膜式气泡放电等离子体反应装置
JP5238899B1 (ja) * 2012-07-13 2013-07-17 稔 菅野 殺菌水生成装置および殺菌洗浄方法
JP5522247B2 (ja) * 2012-09-28 2014-06-18 ダイキン工業株式会社 放電ユニット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864182A (ja) * 1981-10-14 1983-04-16 Tatsuo Okazaki 連続式水電解装置における水量制御機構
JP2000093972A (ja) 1998-09-25 2000-04-04 Masayuki Sato 液体処理方法及び液体処理装置
JP2005349314A (ja) * 2004-06-10 2005-12-22 Ino Tadayuki 荷電したイオン化液の製造装置
JP2007307486A (ja) * 2006-05-18 2007-11-29 Toshiba Corp ラジカル処理システム
JP2012075975A (ja) * 2010-09-30 2012-04-19 Daikin Industries Ltd イオン水生成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2902370A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5915725B1 (ja) * 2014-12-26 2016-05-11 ダイキン工業株式会社 水処理装置
WO2016103723A1 (ja) * 2014-12-26 2016-06-30 ダイキン工業株式会社 水処理装置
US10189724B2 (en) 2014-12-26 2019-01-29 Daikin Industries, Ltd. Water treatment device

Also Published As

Publication number Publication date
EP2902370A4 (en) 2016-03-30
EP2902370A1 (en) 2015-08-05
CN104661967B (zh) 2016-10-26
US9334179B2 (en) 2016-05-10
CN104661967A (zh) 2015-05-27
EP2902370B1 (en) 2020-10-21
AU2013321956B2 (en) 2016-05-12
AU2013321956A1 (en) 2015-05-07
US20150251935A1 (en) 2015-09-10
AU2013321956C1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
WO2014050079A1 (ja) 水処理装置
JP5522247B2 (ja) 放電ユニット
CN104556318A (zh) 液体处理装置以及液体处理方法
JP5585645B2 (ja) 水処理装置
JP6048140B2 (ja) 水処理装置
CN106133453B (zh) 加湿装置
JP6048141B2 (ja) 放電ユニット
JP6446809B2 (ja) 放電装置
JP5812141B2 (ja) 液中放電装置
JP6427914B2 (ja) 水処理ユニット
JP6121081B1 (ja) 水処理装置及び水処理方法
JP6052350B2 (ja) 加湿装置
JP6787382B2 (ja) 水処理装置
JP6364871B2 (ja) 放電ユニット
KR101689009B1 (ko) 폐가스 정화시스템
US20210130194A1 (en) Saturator and water treating apparatus including the same
JP2015188839A (ja) 水処理装置
US1145862A (en) Apparatus for electrolytic purification of liquids.
JP2015054277A (ja) 水処理装置
RU60683U1 (ru) Увлажнитель воздуха (варианты)
JP2014159003A (ja) 放電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842784

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14430999

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013842784

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013321956

Country of ref document: AU

Date of ref document: 20130924

Kind code of ref document: A