WO2014049836A1 - 流路制御弁 - Google Patents

流路制御弁 Download PDF

Info

Publication number
WO2014049836A1
WO2014049836A1 PCT/JP2012/075099 JP2012075099W WO2014049836A1 WO 2014049836 A1 WO2014049836 A1 WO 2014049836A1 JP 2012075099 W JP2012075099 W JP 2012075099W WO 2014049836 A1 WO2014049836 A1 WO 2014049836A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
water
opening
regeneration
drain
Prior art date
Application number
PCT/JP2012/075099
Other languages
English (en)
French (fr)
Inventor
信也 山岡
元 安部
Original Assignee
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三浦工業株式会社 filed Critical 三浦工業株式会社
Priority to CN201280075328.9A priority Critical patent/CN104583133B/zh
Priority to JP2013529504A priority patent/JP5397842B1/ja
Priority to KR1020157036059A priority patent/KR101846980B1/ko
Priority to PCT/JP2012/075099 priority patent/WO2014049836A1/ja
Priority to KR1020157001701A priority patent/KR101603960B1/ko
Priority to US14/422,662 priority patent/US9260324B2/en
Publication of WO2014049836A1 publication Critical patent/WO2014049836A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/006Water distributors either inside a treatment tank or directing the water to several treatment tanks; Water treatment plants incorporating these distributors, with or without chemical or biological tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/75Regeneration or reactivation of ion-exchangers; Apparatus therefor of water softeners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/14Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by one actuating member, e.g. a handle
    • F16K11/16Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by one actuating member, e.g. a handle which only slides, or only turns, or only swings in one plane
    • F16K11/163Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by one actuating member, e.g. a handle which only slides, or only turns, or only swings in one plane only turns
    • F16K11/166Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by one actuating member, e.g. a handle which only slides, or only turns, or only swings in one plane only turns with the rotating spindles at right angles to the closure members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/14Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by one actuating member, e.g. a handle
    • F16K11/18Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by one actuating member, e.g. a handle with separate operating movements for separate closure members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/52Mechanical actuating means with crank, eccentric, or cam
    • F16K31/524Mechanical actuating means with crank, eccentric, or cam with a cam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/52Mechanical actuating means with crank, eccentric, or cam
    • F16K31/524Mechanical actuating means with crank, eccentric, or cam with a cam
    • F16K31/52408Mechanical actuating means with crank, eccentric, or cam with a cam comprising a lift valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/80Automatic regeneration
    • B01J49/85Controlling or regulating devices therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/427Treatment of water, waste water, or sewage by ion-exchange using mixed beds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/005Valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • C02F2209/055Hardness
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/043Treatment of partial or bypass streams
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/877With flow control means for branched passages
    • Y10T137/87708With common valve operator
    • Y10T137/87732With gearing

Definitions

  • the present invention relates to a flow path control valve used for opening / closing or switching a flow path, and more particularly to a flow path control valve of an ion exchange apparatus provided with an ion exchange resin bed.
  • Patent Document 1 a water softening device including an ion exchange resin bed is known.
  • hardness components that is, calcium ions and magnesium ions contained in the raw water are exchanged with sodium ions in the ion exchange resin bed.
  • the raw water can be softened by the hardness component in the raw water being adsorbed and removed by the ion exchange resin bed.
  • the water softening device is for exchanging sodium ions bonded to the ion exchange resin bed with the hardness component in the raw water, there is a limit to the removal of the hardness component. Therefore, before the limit is reached, a regenerative agent (salt water in the case of a water softening device) is passed through the ion exchange resin bed to restore the exchange capacity. This is called regeneration of the ion exchange resin bed.
  • a regenerative agent salt water in the case of a water softening device
  • the flow path is changed according to each process such as a water flow process for softening raw water and a regeneration process for regenerating the ion exchange resin bed.
  • a flow path control valve is provided in the upper part of the pressure tank that accommodates the ion exchange resin bed, and the flow path according to each process is defined by this flow path control valve.
  • Such a configuration is not limited to the water softening device, but is the same in other ion exchange devices including an ion exchange resin bed. That is, the flow path control valve is also used in an ion exchange apparatus that treats raw water through an ion exchange resin bed and regenerates the ion exchange resin bed through a regenerant.
  • the valve (1) includes a fluid passage (7) and a valve housing (4) in which a first port (5) and a second port (6) serving as an entrance to the fluid passage (7) are formed.
  • the valve seat (8) is formed in the middle part.
  • the valve element (11) that opens and closes the valve hole (9) of the valve seat (8) is urged to the valve seat (8) by the spring (30), while against the urging force, the valve shaft (16). Can be pushed back.
  • a diaphragm-shaped pressure receiving body (22) is held by a retainer (21) below the valve body (11), and a spring (30) is provided below the retainer (21).
  • a back pressure chamber (28) partitioned from the fluid flow path (7) by the pressure receiving body (22) is formed in the lower part of the housing (4). This back pressure chamber (28) is always connected to the first port (5) by a pressure transmission path (32) formed in the valve body (11) and a through path (33) formed in the retainer (21). Communicate.
  • the flow path control valve changes the flow path according to the process, it is necessary to arrange the valve in consideration of the ease of the flow path in each process. Also, in the water flow process for treating raw water, in order to increase the water flow capacity, it is necessary to increase the diameter of the flow path used in the water flow process, but the space required for each valve is different accordingly, It is necessary to arrange the valves in consideration of this.
  • valve described in Patent Document 2 requires a diaphragm-shaped pressure receiving body, and it takes time and effort to install it. Therefore, there is room for improvement in the structure, assembly and maintenance of the valve.
  • the problem to be solved by the present invention is to provide a flow path control valve that can easily take a flow path in each process and can have a large water flow capacity. It is another object of the present invention to provide a flow path control valve that has a simple configuration and is easy to assemble and maintain.
  • the first invention is a flow path control valve connected to a pressure tank that stores an ion exchange resin bed and a regenerant tank that stores the regenerant of the ion exchange resin bed,
  • a valve housing in which a passage is formed is provided with a plurality of valves, and a camshaft for operating each valve is provided in the left-right direction at an upper portion of the valve housing.
  • the valve is divided into a first valve group and a second valve group, and the first valve group includes a first water valve provided in a first water passage from the raw water inlet to the pressure tank, A second water valve provided in a second water passage from the pressure tank to the treated water outlet and a bypass valve provided in a bypass passage connecting the first water passage and the second water passage are arranged side by side.
  • a regenerative agent arranged and passed through the regenerant of the ion exchange resin bed
  • the regenerative valve provided in the second valve group is included in either the first valve group or the second valve group, and the remaining valves not included in the first valve group are arranged side by side on the second valve group. It is a flow path control valve characterized by being performed.
  • the first valve group and the second valve group are divided with the camshaft as a boundary, and the first valve group includes a first water valve, a second water valve, and a bypass valve.
  • the other valve of the regeneration system was disposed in the second valve group, and the regeneration valve was included in any of the valve groups.
  • the pressure tank includes an upper water inlet, a lower water outlet, and a central water outlet
  • the valve housing includes the raw water inlet, the treated water outlet, the drain outlet, and the regenerant.
  • a regenerant port connected to the tank, and an ejector for sucking the regenerant from the regenerant tank is provided in the valve housing, and a flow path on the outlet side of the ejector is a first channel to the upper water flow port.
  • the bypass valve provided in the bypass passage to be connected, the backwash drainage valve provided in the backwash drainage channel from the upper water passage to the drainage port, and the washing drainage channel from the lower water passage to the drainage port
  • a cleaning drain valve provided, a regeneration drain valve provided in a regeneration drainage channel from the central water inlet to the drainage port, and a regeneration valve provided in a regeneration agent channel from the regeneration agent port to the suction port of the ejector;
  • a distribution valve provided in the second regeneration path, wherein the first valve group includes the first water valve, the second water valve, and the bypass valve, and the second valve group includes the reverse valve
  • a flow path control comprising
  • the pressure tank includes the upper water inlet, the lower water outlet and the central water outlet, so that the regenerant is supplied from the upper water outlet and the lower water outlet, and the regenerated waste water after the ion exchange is finished is sent to the central water outlet.
  • the first valve group is provided with a water flow system valve such as a first water flow valve, a second water flow valve and a bypass valve
  • the second valve group is provided with a backwash drain valve, a wash drain valve, and a regeneration valve.
  • the first valve group has a smaller number of valves than the second valve group, even if a relatively large caliber valve is used as a water flow valve or a bypass valve, the entire flow control valve can be accommodated. Thereby, the diameter of a water flow system can be enlarged and water flow capacity can be taken large.
  • the bypass valve is provided between the first water valve and the second water valve.
  • the backwash drain valve and the flush drain valve are disposed adjacent to each other, the regeneration drain valve is disposed adjacent thereto, and the regeneration valve and the distribution valve are disposed adjacent to each other or face each other.
  • the raw water inlet and the treated water outlet are provided on the first valve group side, and the drain port is provided on the second valve group side.
  • the third aspect of the present invention it is easy to take a bypass passage between the first water passage and the second water passage by disposing the bypass valve between the first water passage valve and the second water passage valve. Moreover, by providing the raw water inlet and the treated water outlet on the first valve group side, the water flow system can be completely integrated. Moreover, it is easy to take the flow path of the drainage system by collecting the backwash drain valve, the flush drain valve, and the regeneration drain valve. Moreover, the regeneration system can be completely integrated by providing the drain outlet on the second valve group side. Furthermore, it is easy to take the flow path of the regenerant by combining the regenerative valve and the distribution valve.
  • each of the valves is provided with a valve piston in a valve housing hole formed in the valve housing so that the valve piston can advance and retreat.
  • a first opening and a second opening serving as a fluid inlet / outlet with respect to the valve housing hole are formed at positions spaced apart from each other, and a valve seat portion is provided between the first opening and the second opening.
  • a first sealing material and a second sealing material are provided at spaced positions, the first sealing material is in contact with the valve seat portion, and the first opening on the distal end side and the second opening on the proximal end side In this state, the second sealing material forms a chamber at the base end portion of the valve housing hole, and the chamber communicates with the first opening through the communication hole of the valve piston.
  • Flow path control characterized by It is.
  • a chamber is formed at the proximal end portion of the valve housing hole, and this chamber communicates with the first opening on the distal end side through the communication hole of the valve piston.
  • the valve housing hole is provided horizontally so as to open to the outside in the front-rear direction of the valve housing, and the first opening and the second opening are provided at a lower portion of the peripheral side wall.
  • the valve housing hole includes a valve frame, the valve piston, and a spring in that order, and an opening is sealed with a detachable valve cap.
  • the valve frame has an opening formed on a peripheral side wall. It is cylindrical and communicates the first opening and the second opening only through its inner hole, an annular valve seat is provided in the middle in the axial direction, and the valve shaft advances and retracts in a watertight state at the tip.
  • the valve piston is urged to the distal end side by the spring, and can be pushed back to the proximal end side by the valve shaft against the urging force.
  • Serial valve shaft is a flow path control valve, characterized in that it is moved back and forth by a cam provided on the camshaft.
  • the valve housing hole is provided horizontally so as to open outward in the front-rear direction of the valve housing, and the first opening and the second opening are provided in the lower portion of the peripheral side wall.
  • a cam and a camshaft can be arranged between the front and rear valve groups.
  • a sixth invention is the fourth invention, wherein the valve housing hole is provided vertically so as to open upward of the valve housing, and the first opening is formed in a peripheral side wall or a lower wall below the valve seat portion.
  • the second opening is formed in the peripheral side wall above the valve seat portion, and the valve housing hole incorporates the valve piston, and the opening portion is sealed with a removable valve cap.
  • the upper end portion of the valve piston is passed in a watertight state, and the valve piston is provided with the first sealing material at the lower end portion, and the second sealing material is provided in the middle in the vertical direction,
  • the second seal material slides on a cylinder portion of the valve cap, and the valve piston is moved forward and backward by a cam provided on the cam shaft. That.
  • the valve housing hole is provided vertically so as to open upward of the valve housing, and the first opening and the second opening are provided in the peripheral side wall or the lower wall thereof, so that the upper portion of the valve housing is provided.
  • a cam and a camshaft can be arranged between the front and rear valve groups.
  • a lever shaft is provided in the upper part of the valve housing in front of and behind the camshaft and in parallel with the camshaft, and each lever shaft has a plurality of levers. One end of each lever is held by the upper end of the valve piston, and the other end engages with a pin groove on the side surface of the cam. Accordingly, the flow path control valve is characterized in that the one end is moved up and down accordingly.
  • the valve piston is pulled up to open the valve or pushed in to close the valve by the lever. Thereby, the spring for valve closing becomes unnecessary.
  • the valve housing includes an ejector that sucks the regenerant from the regenerant tank, and the ejector includes an ejector body and a nozzle to the ejector.
  • the water supply path is provided with a strainer and a constant flow valve, and an ejector receiving hole formed in the valve housing is incorporated with the ejector body, the nozzle, the strainer, and the constant flow valve, and is a removable cover member.
  • the flow path control valve is characterized in that the opening is sealed at
  • the ejector main body, the nozzle, the strainer, and the constant flow valve are incorporated into the ejector accommodating hole, and the opening is sealed with the lid member, so that the regenerant introduction mechanism can be easily assembled and maintained.
  • the flow path control valve of the present invention it is easy to take a flow path in each step, and the water flow capacity can be increased. In addition, assembly and maintenance are facilitated with a simple configuration.
  • FIG. 1 is a schematic perspective view of a flow path control valve according to Embodiment 1.
  • FIG. 2 is an exploded perspective view of a valve of a first valve group of the flow path control valve of Embodiment 1.
  • FIG. It is a schematic longitudinal cross-sectional view of the assembly state of the valve
  • FIG. 2 It is the schematic which shows an example of an ion exchange apparatus provided with Example 2 of the flow-path control valve of this invention. It is a schematic perspective view of the flow-path control valve of Example 2. It is a disassembled perspective view of the valve
  • FIG. 4 is a component diagram of an ejector body of a flow path control valve of Example 2, showing a longitudinal sectional view and an XX sectional view thereof.
  • FIG. 1 is a schematic view showing an example of an ion exchange device 2 including Example 1 of the flow path control valve 1 of the present invention.
  • the ion exchange apparatus 2 of a present Example is a water softening apparatus which removes the hardness component in raw
  • the regenerant for the ion exchange resin bed is salt water (sodium chloride aqueous solution).
  • the ion exchange device 2 includes a pressure tank 3 and a regenerant tank 4 in addition to the flow path control valve 1.
  • the flow path control valve 1 includes a plurality of valves 6 to 13 in a valve housing 5 in which a set flow path is formed.
  • the pressure tank 3 is a bottomed cylindrical hollow container and accommodates an ion exchange resin bed made of cation exchange resin beads.
  • the regenerant tank 4 stores the regenerant of the ion exchange resin bed in the pressure tank 3.
  • the flow path control valve 1 is attached to the upper part of the pressure tank 3. Thereby, the upper opening of the pressure tank 3 is closed by the valve housing 5 of the flow path control valve 1. At the lower part of the valve housing 5, end portions of the first water passage 14, the second water passage 15 and the regeneration drainage passage 16 are opened at positions corresponding to the upper opening of the pressure tank 3.
  • the first water passage 14 opens to the upper water passage 17 in the pressure tank 3.
  • the second water passage 15 opens to the lower water passage 19 in the pressure tank 3 through the inner pipe 18.
  • the regeneration drainage channel 16 opens to the central water inlet 21 in the pressure tank 3 through the outer pipe 20.
  • the inner pipe 18 and the outer pipe 20 are held at the upper ends by the valve housing 5, extend downward from the valve housing 5, and are inserted into the pressure tank 3. At this time, a double tube structure in which the inner tube 18 is inserted into the hollow hole of the outer tube 20 is formed.
  • the inner pipe 18 extends to the lower part of the pressure tank 3, and the outer pipe 20 extends to the central part in the vertical direction of the pressure tank 3.
  • a lower water inlet 19 is provided at the lower part of the inner pipe 18, and a central water outlet 21 is provided at the lower part of the outer pipe 20.
  • a first water passage 14 for sending raw water from the raw water inlet 22 to the upper water inlet 17 and treated water (here, soft water) from the lower water inlet 19 are treated water outlet 23.
  • a second water passage 15 to be sent to is provided with the first water passage valve 6, and the second water passage 15 is provided with the second water passage valve 7.
  • the first water flow path 14 closer to the raw water inlet 22 than the first water flow valve 6 and the second water flow path 15 closer to the treated water outlet 23 than the second water flow valve 7 are connected by a bypass 24.
  • a bypass valve 8 is provided in the bypass path 24.
  • a backwash drain 26 to the drain 25 is connected to the upper water inlet 17, and a backwash drain valve 9 is provided in the backwash drain 26.
  • the first water passage 14 and the backwash drainage 26 are shown as common pipes on the pressure tank 3 side.
  • a cleaning drainage channel 27 to the drainage port 25 is also connected to the lower water inlet 19, and the cleaning drainage valve 10 is provided in the cleaning drainage channel 27.
  • the second water passage 15 and the washing drainage passage 27 are shown as a common conduit on the pressure tank 3 side.
  • the downstream of the backwash drain 26 and the wash drain 27 opens to the drain 25 via a constant flow valve (rubber orifice) 28.
  • the central drain 21 is connected to the regeneration drainage channel 16 to the drainage port 25, and the regeneration drainage valve 11 is provided in the regeneration drainage channel 16.
  • the downstream of the backwash drain 26, the wash drain 27, and the regeneration drain 16 is collected and opened to the drain 25.
  • the valve housing 5 is further provided with a drive water passage 31 for sending drive water (raw water) from the drive water inlet 29 to the ejector 30.
  • a strainer 32 In the drive water channel 31, a strainer 32, a constant flow valve (rubber orifice) 33, and an ejector 30 are provided in order from the drive water inlet 29.
  • the raw water to the raw water inlet 22 and the driving water to the driving water inlet 29 can branch and use the water from the same water supply source.
  • the raw water inlet 22 and the driving water inlet 29 may be unified and branched into the first water passage 14 and the driving water passage 31 in the valve housing 5.
  • the ejector 30 includes an ejector body 34 and a nozzle 35, which will be described later in detail (FIG. 8 and FIG. 9), and the ejector body 34 includes a throat portion 36 and a diffuser portion 37.
  • the regenerant is sucked from the suction port 38 of the ejector body 34, mixed with the driving water, and discharged. That is, the drive water from the drive water passage 31 is supplied to the nozzle 35, and the regenerant from the regenerant passage 39 is supplied to the 34 suction port 38 of the ejector body.
  • the regenerant path 39 connects the regenerant port 40 of the valve housing 5 and the suction port 38 of the ejector body 34, and the regenerative valve 12 is provided.
  • a regenerant tank 4 is connected to the regenerant port 40 of the valve housing 5 via a regenerant pipe 41, and a regenerant flow meter 42 is provided in the regenerant pipe 41.
  • a first regeneration path 43 and a second regeneration path 44 that are bifurcated are provided on the exit side of the ejector body 34.
  • the first regeneration path 43 is connected to the upper water inlet 17 through the first orifice 45.
  • the second regeneration path 44 is connected to the lower water inlet 19 through the second orifice 46 and the distribution valve 13.
  • the first water flow path 14, the backwash drainage path 26, and the first regeneration path 43 are shown as common pipe lines on the pressure tank 3 side.
  • the second water passage 15, the washing drainage passage 27 and the second regeneration passage 44 are shown as common pipes on the pressure tank 3 side.
  • FIG. 2 is a schematic diagram showing the operation steps of the ion exchange device 2 of the present embodiment in order and the open / close states of the valves 6 to 13 in each step.
  • each of the valves 6 to 13 has a shaded portion in an open state and a plain portion in a closed state. During the transition of each process, the valves 6 to 13 may be gradually closed or gradually opened.
  • the ion exchange device 2 can be used alone or in two units. In the latter case, a raw water supply path from the water supply source is connected to the raw water inlet 22 of the first ion exchange apparatus 2, and a treated water supply path to the treated water use facility is connected to the treated water outlet 23 of the second ion exchange apparatus 2. And the treated water outlet 23 of the first ion exchange device 2 and the raw water inlet 22 of the second ion exchange device 2 may be connected by a bypass supply path. In this case, while the raw water is being treated by one ion exchange device 2, the ion exchange resin bed can be regenerated by the other ion exchange device 2.
  • the ion exchange device 2 sequentially executes a water flow process, a regeneration standby process, a backwash process, a regeneration process, an extrusion process, a cleaning process, a water replenishment process, and a water flow standby process. These steps are performed by controlling the opening and closing of the valves 6 to 13 as shown in FIG.
  • raw water is supplied from the raw water inlet 22 to the upper water inlet 17 of the pressure tank 3 through the first water passage 14.
  • the water passes through the ion exchange resin bed from the upper part to the lower part of the pressure tank 3 to become treated water (here, soft water).
  • the treated water is led out from the lower water inlet 19 of the pressure tank 3 to the treated water outlet 23 via the inner pipe 18 and the second water passage 15.
  • the regeneration standby process is a standby process to the backwash process
  • the water flow standby process is a standby process to the water flow process.
  • the raw water is sent to the second ion exchange device 2 via the bypass path 24.
  • the raw water is supplied from the raw water inlet 22 to the lower water inlet 19 of the pressure tank 3 through the bypass passage 24, the second water passage 15 and the inner pipe 18.
  • the water is passed from the lower part to the upper part of the pressure tank 3 while developing the ion exchange resin bed.
  • the drainage is led out to the drainage port 25 from the upper water flow port 17 of the pressure tank 3 through the backwash drainage channel 26.
  • driving water (raw water) is supplied from the driving water inlet 29 to the ejector 30 via the driving water channel 31.
  • the regenerant in the regenerant tank 4 is sucked into the suction port 38 of the ejector 30 via the regenerant pipe 41 and the regenerant path 39, Mix and discharge.
  • the regenerant is supplied to the upper water inlet 17 of the pressure tank 3 through the first regeneration path 43 and to the lower water outlet 19 of the pressure tank 3 through the second regeneration path 44 and the inner pipe 18.
  • the regenerant from the upper water inlet 17 and the lower water inlet 19 of the pressure tank 3 circulates toward the center in the vertical direction of the pressure tank 3 to regenerate the ion exchange resin bed.
  • the drainage is led out from the central water inlet 21 of the pressure tank 3 to the drain 25 via the outer pipe 20 and the regeneration drainage channel 16. According to such split flow regeneration, it is possible to stably regenerate the ion exchange resin bed while maintaining high regeneration efficiency.
  • the extrusion process is different from the regeneration process in that the supply of the regenerant to the suction port 38 of the ejector 30 is stopped, but is otherwise the same as the regeneration process.
  • the regenerant remaining in the pressure tank 3 after the regeneration process is discharged by the extrusion process.
  • raw water is supplied from the raw water inlet 22 to the upper water inlet 17 of the pressure tank 3 through the first water passage 14.
  • the water is passed through the ion exchange resin bed from the upper part to the lower part of the pressure tank 3 to rinse the ion exchange resin bed.
  • the drainage is led out from the lower water inlet 19 of the pressure tank 3 to the water outlet 25 through the inner pipe 18 and the cleaning drainage channel 27.
  • raw water is supplied from the drive water inlet 29 to the ejector 30 through the drive water channel 31.
  • the water is supplied from the suction port 38 of the ejector 30 to the regenerant tank 4 through the regenerant path 39 and the regenerant pipe 41. In this way, water can be supplied to the regenerant tank 4 in preparation for the next regeneration step.
  • FIG. 3 is a schematic perspective view of the flow path control valve 1 of the present embodiment.
  • the flow path control valve 1 includes the valves 6 to 13 and the ejector 30 in the valve housing 5 in which the flow paths 14, 15, 16, 24, 26, 27, 31, 39, 43, and 44 are formed. It is provided. That is, in the valve housing 5, each flow path 14, 15, 16, 24, 26, 27, 31, 39, 43, 44 is formed so as to form the circuit shown in FIG. Valves 6 to 13 and an ejector 30 are provided.
  • Each valve 6 to 13 is opened and closed by a cam 47, and a camshaft 48 for rotating the cam 47 is provided in the center in the front-rear direction at the top of the valve housing 5 along the left-right direction. Then, with the camshaft 48 as a boundary, the valves 6 to 13 are arranged separately in the front and rear in a first valve group 49 and a second valve group 50. At this time, the regeneration valve 12 may be included in either the first valve group 49 or the second valve group 50, but is included in the second valve group 50 in the present embodiment.
  • the first valve group 49 includes a first water valve 6, a second water valve 7, and a bypass valve 8.
  • the bypass valve 8 is preferably arranged between the first water valve 6 and the second water valve 7.
  • the first valve group 49 is disposed in front of the valve housing 5, and the first water valve 6, the bypass valve 8, and the second water valve 7 are disposed side by side in order from the left. Further, an ejector accommodating portion 51 is provided on the left side of the first water flow valve 6.
  • the second valve group 50 includes a backwash drain valve 9, a wash drain valve 10, a regeneration drain valve 11, a distribution valve 13, and a regeneration valve 12. At this time, it is preferable that the backwash drain valve 9 and the flush drain valve 10 are disposed adjacent to each other, and the regeneration drain valve 11 is disposed adjacent thereto.
  • the regeneration valve 12 and the distribution valve 13 are preferably arranged adjacent to each other. In FIG. 3, in the second valve group 50, the regeneration valve 12, the distribution valve 13, the regeneration drain valve 11, the backwash drain valve 9, and the rinse drain valve 10 are arranged side by side in order from the left.
  • valve housing 5 is provided with the raw water inlet 22, the treated water outlet 23, the drainage port 25, the driving water inlet 29, and the regenerant port 40 as fluid inlets and outlets.
  • the raw water inlet 22 and the treated water outlet 23 are preferably provided on the first valve group 49 side.
  • the raw water inlet 22 is provided at the lower part of the first water valve 6, and the treated water outlet 23 is provided at the lower part of the second water valve 7.
  • the pipe which comprises the edge part of the 1st water flow path 14 is extended and provided in the lower part of the 1st water flow valve 6, The front-end opening is made into the raw
  • tube which comprises the edge part of the 2nd water flow path 15 is extended and provided in the lower part of the 2nd water flow valve 7, The front-end opening is made into the treated water outlet 23.
  • the drain port 25 is preferably provided on the second valve group 50 side.
  • the drainage port 25 is provided below the regeneration drainage valve 11, the backwash drainage valve 9, and the washing drainage valve 10. More specifically, a pipe that collects the ends of the regeneration drainage channel 16, the backwashing drainage channel 26, and the cleaning drainage channel 27 extends from the lower part of these valves 9 to 11 to the right side, and the right end thereof is provided.
  • the opening is a drain port 25.
  • the driving water inlet 29 is preferably provided close to the ejector 30.
  • the driving water inlet 29 is provided in the upper part of the ejector accommodating portion 51. More specifically, a pipe that constitutes an end portion of the drive water channel 31 is provided on the upper portion of the ejector accommodating portion 51 so as to extend upward, and the end opening serves as the drive water inlet 29.
  • the regenerant port 40 is preferably provided close to the regeneration valve 12.
  • the regenerant port 40 is provided at the lower part of the regeneration valve 12 (FIG. 9). More specifically, a regenerant port 40 is provided below the regenerative valve 12, and a regenerant flow meter 42 is provided in the regenerant port 40.
  • FIG. 4 is an exploded perspective view of the valves of the first valve group 49.
  • the second water valve 7 is shown, but the same applies to the first water valve 6 and the bypass valve 8.
  • 5 and 6 are schematic longitudinal sectional views of the assembled state of the valve (7) of the first valve group 49.
  • FIG. 5 shows a closed state and
  • FIG. 6 shows a opened state.
  • FIG. 7 is an exploded perspective view of the valves of the second valve group 50 and shows a state viewed from the rear of the valve housing 5.
  • the regeneration valve 12 is shown here, the same applies to the distribution valve 13, the regeneration drain valve 11, the backwash drain valve 9, and the wash drain valve 10.
  • FIG. 9 shows a longitudinal section of the regenerative valve 12 in an assembled state.
  • Each of the valves 6 to 13 of the first valve group 49 and the second valve group 50 is provided with a valve piston 53 (53A) in a valve housing hole 52 (52A) formed in the valve housing 5 so as to be able to advance and retract.
  • the valve housing hole 52 (52A) is provided horizontally so as to open outward in the front-rear direction of the valve housing 5.
  • the valve accommodation holes 52 of the valves 6 to 8 constituting the first valve group 49 are provided so as to open forward, and the valve accommodation holes of the valves 9 to 13 constituting the second valve group 50 are provided.
  • 52A is provided to open rearward.
  • Each valve (the 1st water flow valve 6, the 2nd water flow valve 7, and the bypass valve 8) which comprises the 1st valve group 49 is the mutually same structure. Specifically, this will be described below with reference to FIGS.
  • the valve housing hole 52 opens to the outside in the front-rear direction of the valve housing 5 as described above.
  • the opening side is referred to as a base end side, and the opposite side is referred to as a distal end side.
  • the valve housing hole 52 is a circular hole having a tapered tip, and includes a truncated cone portion 54 on the distal end side and a cylindrical portion 55 on the proximal end side.
  • the valve housing hole 52 is formed with a first opening 56 and a second opening 57 serving as a fluid inlet / outlet for the valve housing hole 52 at positions separated from each other in the axial direction.
  • the first opening 56 is provided in the lower part of the peripheral side wall of the truncated cone part 54, and the second opening 57 is provided in the lower part of the peripheral side wall of the cylindrical part 55.
  • the first water flow valve 6 has a first opening 56 that communicates with the upper water flow port 17 and a second opening 57 that communicates with the raw water inlet 22.
  • the first opening 56 communicates with the lower water flow port 19, and the second opening 57 communicates with the treated water outlet 23.
  • the bypass valve 8 the first opening 56 communicates with the treated water outlet 23, and the second opening 57 communicates with the raw water inlet 22.
  • a valve frame 58 is attached to the valve housing hole 52, and a valve piston 53 is provided in the valve frame 58 so as to be able to advance and retract.
  • the valve frame 58 has a substantially cylindrical shape with a tapered tip, and is formed substantially corresponding to the shape of the valve housing hole 52.
  • the valve frame 58 includes a truncated cone portion 59 on the distal end side and a cylindrical portion 60 on the proximal end side.
  • a small cylindrical portion 61 is formed at the distal end portion of the truncated cone portion 59 so as to protrude toward the distal end side and open toward the distal end side.
  • a flange portion 62 is formed, and a short cylinder 63 is formed protruding toward the base end side.
  • Large openings 64 and 65 are formed in the peripheral side wall of the truncated cone portion 59 and the cylindrical portion 60 of the valve frame 58. Thereby, the frustoconical portion 59 and the cylindrical portion 60 remain in a frame shape in the valve frame 58. That is, the connecting portion between the truncated cone portion 59 and the cylindrical portion 60, the distal end portion of the truncated cone portion 59, and the proximal end portion of the cylindrical portion 60 are left in an annular shape, and they are mutually connected by a plurality of ribs. It is a connected shape.
  • the annular portion 66 that connects the truncated cone portion 59 and the cylindrical portion 60 is formed as an inclined surface whose diameter decreases toward the distal end side, and this inclined surface is a valve seat. It functions as the part 67.
  • An annular groove is formed on the outer peripheral portion of the annular portion 66, and an O-ring 68 is attached.
  • An annular groove is also formed in the outer peripheral portion of the base end portion of the small cylindrical portion 61, and an O-ring 69 is attached.
  • valve shaft 70 is provided in the small cylindrical portion 61 and the short cylinder 63 so as to be able to advance and retreat.
  • a gap between the valve shaft 70 and the valve frame 58 is sealed by an annular packing 71 having a substantially V-shaped cross section provided in the short cylinder 63.
  • a roller guide 72 is provided at the tip of the valve shaft 70, and a roller 73 is rotatably held by the roller guide 72.
  • the roller guide 72 is fitted into the small cylindrical portion 61 of the valve frame 58. Since the inner hole of the small cylindrical portion 61 and the outer shape of the roller guide 72 are formed in a predetermined manner, the roller guide 72 can advance and retreat with respect to the small cylindrical portion 61 along the axis of the valve frame 58. It is provided so that it cannot rotate relative to the portion 61.
  • the valve frame 58 is fitted into the valve housing hole 52.
  • a through hole 74 is formed at the tip of the valve housing hole 52, and the small cylindrical portion 61 of the valve frame 58 is fitted into the through hole 74.
  • the flange portion 62 of the small cylindrical portion 61 is fitted so as to contact the wall surface around the through hole 74.
  • the gap between the small cylindrical portion 61 and the valve housing 5 is sealed by the O-ring 69 at the base end portion of the small cylindrical portion 61.
  • the gap between the annular portion 66 and the valve housing 5 is sealed by the O-ring 68 of the annular portion 66.
  • the valve piston 53 is provided in the inner hole of the valve frame 58 so as to be able to advance and retract.
  • the valve piston 53 has a cylindrical shape, and an end wall 75 is formed at the tip.
  • a plurality of communication holes 76 are formed in the end wall 75. These communication holes 76 are provided at equal intervals in the circumferential direction of the valve piston 53, and are formed through the end wall 75 along the axial direction of the valve piston 53.
  • the valve piston 53 is provided with a first seal material 77 and a second seal material 78 at positions separated in the axial direction.
  • the first seal material 77 is annular and is provided at the tip of the valve piston 53.
  • the first seal material 77 is attached to the tip surface of the valve piston 53 and is fixed by a disc-shaped presser plate 79.
  • the holding plate 79 is fixed to the end wall 75 with screws (not shown), and is larger than the inner diameter of the first sealing material 77 and smaller than the outer diameter of the first sealing material 77. Therefore, the first sealing material 77 is exposed on the outer peripheral portion of the presser plate 79 with the presser plate 79 attached.
  • the second seal material 78 is an annular X-ring having an X-shaped cross section, and is attached to an annular groove formed on the outer peripheral surface of the proximal end portion of the valve piston 53.
  • the presser plate 79 has a through hole 80 corresponding to the communication hole 76. Further, a hole is formed in the center of the presser plate 79, and the protruding tip 81 of the valve piston 53 is passed through the hole. A bearing hole is formed in the protruding tip 81 of the valve piston 53 so as to open only to the tip, and the end of the valve shaft 70 is fitted into this bearing hole.
  • the valve housing hole 52 incorporates a valve frame 58, a valve piston 53, and a spring 82 in this order, and the opening is sealed with a valve cap 83.
  • the valve cap 83 is detachably screwed and attached to the proximal end portion of the valve accommodation hole 52.
  • the valve cap 83 is configured by combining a cap body 84 and a tubular material 85.
  • the cylindrical member 85 has a stepped cylindrical shape, a small-diameter portion 86 on the distal end side is formed to have an outer diameter corresponding to the inner diameter of the cylindrical portion 60 of the valve frame 58, and a large-diameter portion 87 on the proximal end side.
  • the outer diameter corresponding to the inner diameter of the cylindrical portion 55 of the valve housing hole 52 is formed.
  • the tubular member 85 has a small diameter portion 86 on the distal end side fitted into the proximal end portion of the valve frame 58 and a large diameter portion 87 on the proximal end side fitted into the proximal end portion of the valve accommodating hole 52.
  • an O-ring 88 is disposed between the base end portion of the valve frame 58 and the stepped portion of the tubular material 85, and the gap between the valve frame 58 and the tubular material 85 and the valve housing 5 is sealed.
  • a partition wall 89 is formed in the middle in the axial direction, and the hollow hole is closed.
  • a cylindrical spring receiver 90 is provided at the center of the partition wall 89 so as to protrude toward the tip side.
  • the spring 82 has a proximal end fitted into the spring receiver 90 and a distal end fitted into the inner hole of the valve piston 53.
  • the cap body 84 is attached to the base end portion of the valve housing hole 52 in a state where the valve frame 58, the valve piston 53, the spring 82, and the tubular material 85 are incorporated in the valve housing hole 52. That is, the base end portion of the cylindrical portion 55 of the valve accommodating hole 52 has an outer peripheral surface as a screw portion 91, while the cap body 84 has a substantially cylindrical shape opened only to the distal end side, and has a screw hole in the inner peripheral surface. 92 is formed. Therefore, the cap main body 84 can be detachably attached to the screw portion 91 of the valve accommodating hole 52. When the cap body 84 is attached to the proximal end portion of the valve housing hole 52, the gap between the valve housing 5 and the valve cap 83 is sealed by the O-ring 93.
  • valve cap 83 is configured with the cap body 84 and the tubular member 85 as separate bodies to increase the strength. However, when the diameter of the valve housing hole is small, both may be formed integrally.
  • Each of the valves 9 to 13 of the second valve group 50 to be described later has a cap body 84 and a cylindrical material 85 formed integrally.
  • the base end portion of the valve piston 53 is fitted into the cylindrical portion of the valve cap 83 (in this embodiment, the cylindrical material 85), and slides in the cylindrical material 85.
  • a chamber 94 is formed between the valve piston 53 and the tubular member 85 of the valve cap 83.
  • the chamber 94 communicates with the first opening 56 side through the communication hole 76 of the valve piston 53. Accordingly, in the valve closed state, the chamber 94 communicates with the first opening 56 on the distal end side through the communication hole 76 of the valve piston 53, and part of the fluid pressure in the valve opening direction and the valve closing direction applied to the valve piston 53. Or balance everything. Thereby, even when the first opening 56 is used as the fluid inlet side (high pressure side), it is not necessary to increase the urging force of the spring 82, and the driving force necessary for opening the valve can be reduced.
  • valves constituting the second valve group 50 are the valves 6 to 8 constituting the first valve group 49.
  • each of the valves 6 to 8 constituting the first valve group 49 is basically the same configuration (FIGS. 7 and 9). Therefore, the following description will be focused on the different points, and corresponding portions will be described with the same reference numerals.
  • the subscript “A” is attached to the latter configuration so that the configuration of the valves 6 to 8 of the first valve group 49 and the configuration of the valves 9 to 13 of the second valve group 50 can be distinguished for the time being. is doing.
  • the valve piston of the first valve group 49 is shown as “valve piston 53”
  • valve piston of the second valve group 50 is shown as “valve piston 53A”.
  • each valve accommodating hole 52A of each valve constituting the second valve group 50 is formed to open rearward. Therefore, each valve accommodating hole 52A has a truncated cone portion 54A disposed at the front and a cylindrical portion 55A disposed at the rear. In addition, a first opening 56A is formed in the lower part of the truncated cone part 54A, and a second opening 57A is formed in the lower part of the cylindrical part 55A.
  • the regeneration valve 12 has a first opening 56 ⁇ / b> A communicating with the suction port 38 of the ejector 30 and a second opening 57 ⁇ / b> A communicating with the regenerant port 40.
  • the first opening 56 ⁇ / b> A communicates with the outlet of the ejector 30, and the second opening 57 ⁇ / b> A communicates with the lower water inlet 19.
  • the regeneration drain valve 11 has a first opening 56 ⁇ / b> A communicating with the central water inlet 21 and a second opening 57 ⁇ / b> A communicating with the drain outlet 25.
  • the first opening 56 ⁇ / b> A communicates with the upper water inlet 17, and the second opening 57 ⁇ / b> A communicates with the drain outlet 25.
  • the cleaning drain valve 10 has a first opening 56 ⁇ / b> A communicating with the lower water inlet 19 and a second opening 57 ⁇ / b> A communicating with the drain 25.
  • valve cap 83 is composed of the cap body 84 and the tubular material 85, but in the case of the second valve group 50, the valve cap 83 ⁇ / b> A is an integral body of the cap body 84 and the tubular material 85. Is formed. That is, as shown in FIG. 9, at the base end portion of the cylinder portion 85A, the valve cap 83A is fixed in advance to the cylinder portion 85A.
  • valves of the first valve group 49 and the second valve group 50 are slightly different, but there is no fundamental difference, and thus the description thereof is omitted.
  • FIG. 8 is an exploded perspective view of the ejector 30 and its peripheral components.
  • FIG. 9 is a schematic longitudinal sectional view of the assembled state of the ejector 30 and its peripheral parts, and is shown together with the regeneration valve 12.
  • the ejector accommodating portion 51 includes an ejector accommodating hole 95 that is provided adjacent to the first water flow valve 6 and opens to the outside in the front-rear direction of the valve housing 5 in parallel with the valve accommodating hole 52 of the first water flow valve 6. .
  • the ejector main body 34, the nozzle 35, the constant flow valve 33, and the strainer 32 are sequentially incorporated in the ejector accommodation hole 95, and the opening is sealed with the lid material 98. At this time, the lid 98 is detachably screwed into the base end portion of the ejector receiving hole 95 and attached.
  • the ejector body 34 includes a first cylindrical portion 99 that opens to the proximal end side, a diffuser portion 37 that increases in diameter from the central portion of the distal end wall of the first cylindrical portion 99 toward the distal end side, and a distal end portion of the diffuser portion 37.
  • the 2nd cylindrical part 100 extended to the front end side is provided.
  • the first cylindrical portion 99 has a suction port 38 (FIG. 8) formed on the peripheral side wall thereof, and a throat portion 36 formed of a small hole extending in the axial direction at the center of the distal end wall.
  • the 1st cylindrical part 99 and the diffuser part 37 are connected.
  • the nozzle 35 is formed in a cylindrical shape whose tip is formed in a tapered conical shape, and includes a cylindrical part 101 at the base end and a conical part 102 at the tip.
  • a nozzle hole 103 is formed at the tip of the conical portion 102. The tips of the constant flow valve 33 and the strainer 32 are fitted into the hollow hole of the cylindrical portion 101.
  • the constant flow valve 33 is a rubber orifice having a through hole formed in the center of the disc.
  • the strainer 32 is cylindrical and has a large number of slits 104 formed on the peripheral side wall.
  • the ejector accommodating hole 95 is opened to the proximal end side, and the ejector body 34, the nozzle 35, the constant flow valve 33, and the strainer 32 are sequentially incorporated, and the opening is sealed with the lid 98.
  • the gap between the second cylindrical portion 100 of the ejector body 34 and the ejector receiving hole 95 of the valve housing 5 is sealed with the O-ring 105.
  • the gap between the ejector body 34 and the nozzle 35 and the gap between these and the ejector receiving hole 95 are sealed with an O-ring 106.
  • a gap between the valve housing 5 and the lid member 98 is sealed with an O-ring 107 at the base end portion of the ejector accommodation hole 95.
  • the drive water channel 31 opens at a position corresponding to the strainer 32 and corresponds to the suction port 38 of the ejector body 34, as shown in FIG.
  • the regenerative agent passage 39 from the regenerative valve 12 opens at the position. Further, as described with reference to FIG. 1, the first regeneration path 43 and the second regeneration path 44 are branched from the tip of the ejector body 34.
  • the water when water is supplied from the drive water inlet 29 in the regeneration process, the water enters the inside from the outer periphery of the strainer 32 and is ejected from the nozzle 35 to the tip side of the ejector 30.
  • the regenerative agent is drawn into the suction port 38 from the regenerant port 40, and the mixed water of the regenerant and driving water is discharged from the ejector 30.
  • the mixed water branches into the first regeneration path 43 and the second regeneration path 44 and is supplied to the pressure tank 3.
  • the valves 6 to 13 of the first valve group 49 and the second valve group 50 are operated to be opened and closed by cams 47.
  • a camshaft 48 is provided between the first valve group 49 and the second valve group 50 in the left-right direction, and the valves 6 to 13 are provided on the camshaft 48.
  • a cam 47 is provided.
  • the outer peripheral surface of the cam 47 is a contact portion with a roller 73 (73A) provided on the valve shaft 70 (70A).
  • the rotation shaft of the roller 73 (73A) is disposed along the left-right direction, and the outer peripheral surface of the roller 73 (73A) contacts the outer peripheral surface of the cam 47.
  • the roller 73 (73A) is urged against the outer peripheral surface of the cam 47 by the spring 82 (82A). Therefore, when the cam 47 rotates, the valve shaft 70 (70A) moves forward and backward with respect to the valve accommodating hole 52 (52A) while the roller 73 (73A) rotates.
  • valve piston 53 (53A) When the cam 47 pushes the valve shaft 70 (70A) outward in the front-rear direction of the valve housing 5 with the rotation of the camshaft 48, the valve piston 53 (53A) is separated from the valve seat 67 (67A) and is opened. (FIG. 6). Conversely, when the pushing of the valve shaft 70 (70A) is released along with the rotation of the camshaft 48, the valve piston 53 (53A) is moved inward in the front-rear direction of the valve housing 5 by the biasing force of the spring 82 (82A). It moves and becomes a valve closing state (FIG. 5).
  • the open / close state as shown in FIG. 2 can be controlled by changing the shape of the cam 47 corresponding to each valve 6-13.
  • the cam 47 is rotated by rotating the camshaft 48 with the motor 108. Specifically, when the motor 108 is rotated, the rotational force is transmitted to the camshaft 48 via the reduction gear train 109, and the cam 47 can be rotated.
  • the cam 47 is intermittently rotated for each process.
  • An inner cylinder 111 and an outer cylinder 112 are concentrically formed on the side surface of the cam gear 110 which constitutes the reduction gear train 109 and is provided at the end of the camshaft 48 so as to protrude in a short cylindrical shape.
  • the inner cylinder 111 is formed with a notch 113 for detecting the origin at one place in the circumferential direction
  • the outer cylinder 112 is formed with a notch 114 for process detection corresponding to each process position.
  • the notches 113 and 114 of the inner cylinder 111 and the outer cylinder 112 can be read by a photo sensor (not shown) such as a photo interrupter. Therefore, the origin position and the current position of the cam 47 (in other words, which process is being executed) can be confirmed by the sensor. Further, a process position indicating plate (not shown) may be provided at the shaft end of the cam gear 110 so that such a process position can be visually confirmed.
  • the first valve group 49 is provided with valves of the water flow system of the first water valve 6, the second water valve 7 and the bypass valve 8, and the second valve group 50 has Regeneration system valves such as a regeneration valve 12, a distribution valve 13, a regeneration drain valve 11, a backwash drain valve 9, and a wash drain valve 10 are arranged.
  • Regeneration system valves such as a regeneration valve 12, a distribution valve 13, a regeneration drain valve 11, a backwash drain valve 9, and a wash drain valve 10 are arranged.
  • the bypass valve 8 between the first water passage valve 6 and the second water passage valve 7, it is easy to take the bypass passage 24 between the first water passage 14 and the second water passage 15.
  • the water flow system can be completely integrated.
  • the regeneration system can be completely integrated. Further, by combining the regeneration valve 12 and the distribution valve 13, it is easy to take a flow path for the regenerant.
  • each of the valves 6 to 13 has a chamber 94 (94A) formed at the base end portion of the valve housing hole 52 (52A).
  • the chamber 94 (94A) communicates with the valve piston 53 (53A). It communicates with the first opening 56 (56A) on the distal end side through the hole 76 (76A).
  • valve frame 58 (58A), the valve piston 53 (53A) and the spring 82 (82A) are sequentially incorporated in the valve housing hole 52 (52A), and the opening is sealed with the valve cap 83 (83A). Easy to assemble and maintain. Moreover, since the valve frame 58 (58A) is provided in the valve housing hole 52 (52A), and the valve piston 53 (53A) is provided in the valve frame 58 (58A) so as to be able to advance and retract, the sliding area of the valve piston 53 (53A) is provided. Can be reduced. In addition, since the large openings 64 (64A) and 65 (65A) are formed in the peripheral side wall of the valve frame 58 (58A), it is possible to secure a water passage and reduce pressure loss.
  • the ejector body 34, the nozzle 35, the constant flow valve 33 and the strainer 32 are incorporated into the ejector receiving hole 95 and the opening is sealed with the lid 98, assembly and maintenance of the regenerant introduction mechanism is easy. .
  • FIG. 10 is a schematic view showing an example of an ion exchange device 2 including Example 2 of the flow path control valve 1 of the present invention.
  • FIG. 11 is a schematic perspective view of the flow path control valve 1 of the second embodiment.
  • the flow path control valve 1 of the second embodiment is smaller than the first embodiment and partially different in configuration, but is basically the same as the first embodiment. Therefore, the following description will be focused on the different points, and corresponding portions will be described with the same reference numerals.
  • each of the valves 6 to 13 is divided into the first valve group 49 and the second valve group 50 at the front and rear sides with the camshaft 48 as a boundary.
  • the regeneration valve 12 may be included in either the first valve group 49 or the second valve group 50, but is included in the first valve group 49 in the present embodiment.
  • the first valve group 49 includes a first water valve 6, a second water valve 7, a bypass valve 8, and a regeneration valve 12.
  • the bypass valve 8 is preferably arranged between the first water valve 6 and the second water valve 7.
  • the first valve group 49 is disposed in front of the valve housing 5, and the second water valve 7, the bypass valve 8, the first water valve 6, and the regeneration valve 12 are arranged side by side in order from the left. Has been.
  • the second valve group 50 includes a backwash drain valve 9, a wash drain valve 10, a regeneration drain valve 11, and a distribution valve 13. At this time, it is preferable that the backwash drain valve 9 and the flush drain valve 10 are disposed adjacent to each other, and the regeneration drain valve 11 is disposed adjacent thereto.
  • the second valve group 50 includes a regeneration drain valve 11, a backwash drain valve 9, a wash drain valve 10, and a distribution valve 13 arranged side by side in order from the left.
  • the regeneration valve 12 of the first valve group 49 and the distribution valve 13 of the second valve group 50 are arranged facing each other in the front-rear direction.
  • valve housing 5 is provided with the raw water inlet 22, the treated water outlet 23, the drainage port 25, the driving water inlet 29, and the regenerant port 40 as fluid inlets and outlets.
  • the raw water inlet 22 and the treated water outlet 23 are preferably provided on the first valve group 49 side.
  • the raw water inlet 22 is provided in the middle between the first water flow valve 6 and the bypass valve 8 so as to open forward, and the treated water outlet 23 is formed of the second water flow valve 7 and the bypass valve 8. Is provided in the middle part with an opening forward. More specifically, an end portion of the first water passage 14 is provided to extend forward in an intermediate portion between the first water passage valve 6 and the bypass valve 8 of the valve housing 5, and a front end opening thereof is provided.
  • the raw water inlet 22 is used. Further, an end portion of the second water passage 15 is provided at an intermediate portion between the second water passage valve 7 and the bypass valve 8 of the valve housing 5, and a front end opening thereof is treated water outlet 23. It is said.
  • the drain port 25 is preferably provided on the second valve group 50 side.
  • the drain port 25 is provided on the side portion of the regeneration drain valve 11 (FIG. 12). More specifically, a pipe that collects the ends of the regeneration drainage channel 16, the backwash drainage channel 26, and the cleaning drainage channel 27 extends from the side of the regeneration drainage valve 11, and its end opening is The drain port 25 is used.
  • the driving water inlet 29 is preferably provided close to the ejector 30.
  • the ejector 30 is accommodated in the lower right portion of the central portion in the front-rear direction of the valve housing 5, but the drive water inlet 29 is provided on the right side surface thereof.
  • the pipe constituting the end portion of the drive water channel 31 is provided on the side portion of the ejector accommodating portion 51 so as to extend to the right side and then extend downward, and the end opening is driven.
  • the water inlet 29 is used.
  • the regenerant port 40 is preferably provided close to the regeneration valve 12.
  • the regenerant port 40 is provided at the front portion of the regeneration valve 12. More specifically, a regeneration agent port 40 is provided at the front of the regeneration valve 12, and a regeneration agent flow meter 42 is provided at the regeneration agent port 40 (FIG. 15).
  • FIG. 12 is an exploded perspective view of the valves 6 to 13 of the first valve group 49 and the second valve group 50 and shows a state viewed from the rear of the valve housing 5.
  • the second water valve 7 in the first valve group 49 is shown disassembled, but the same applies to the first water valve 6 and the bypass valve 8.
  • the regeneration drainage valve 11 is disassembled and shown in the second valve group 50, the same applies to the backwashing drainage valve 9, the cleaning drainage valve 10, and the distribution valve 13.
  • FIG. 13 and FIG. 14 are schematic longitudinal sectional views of the flow path control valve 1 of the present embodiment as viewed from the left side, and the second water flow valve 7 of the first valve group 49 and the regenerative drainage of the second valve group 50.
  • a valve 11 is shown.
  • FIG. 13 shows a water flow process, in which the second water flow valve 7 is in an open state and the regeneration drainage valve 11 is in a closed state.
  • FIG. 14 shows the regeneration process and the extrusion process, in which the second water valve 7 is closed and the regeneration drain valve 11 is open.
  • FIG. 15 is a schematic longitudinal sectional view of the flow path control valve 1 of the present embodiment as viewed from the right side, showing the regeneration valve 12 of the first valve group 49 and the distribution valve 13 of the second valve group 50. Yes. Here, the regeneration process is shown, in which the regeneration valve 12 is open and the distribution valve 13 is also open. In addition, in FIG. 15, the shape of the cam 47 and its pin groove 130 is shown in a simplified manner and is different from the actual one.
  • Each of the valves 6 to 13 of the first valve group 49 and the second valve group 50 is provided with a valve piston 53 (53A) in a valve housing hole 52 (52A) formed in the valve housing 5 so as to be able to advance and retract.
  • the valve housing hole 52 (52A) is provided vertically so as to open upward of the valve housing 5.
  • valves constituting the first valve group 49 the valves (the first water valve 6, the second water valve 7 and the bypass valve 8) excluding the regeneration valve 12 have the same configuration. Specifically, this will be described below with reference to FIGS.
  • the valve housing hole 52 opens to the upper side of the valve housing 5 as described above, and the side of the opening (that is, the upper side) may be referred to as the proximal end side, and the opposite side (that is, the lower side) may be referred to as the distal end side. .
  • the valve housing hole 52 is formed as a stepped hole, and a large diameter hole 115 is disposed above and a small diameter hole 116 is disposed below.
  • the upper part in the small diameter hole 116 of the valve accommodating hole 52 functions as the valve seat portion 67.
  • a stepped portion of the valve accommodating hole 52 may be used as the valve seat portion 67 depending on circumstances.
  • a plurality of ribs 117 are provided at equal intervals in the circumferential direction below the large-diameter hole 115 of the valve housing hole 52, and each rib 117 protrudes radially inward from the peripheral side wall of the large-diameter hole 115. It is formed along the axial direction of the diameter hole 115. Thereby, the lower end portion of the valve piston 53 is guided by the leading end portion of each rib 117 protruding inward in the radial direction, and can be moved along the axis of the valve accommodating hole 52.
  • the valve housing hole 52 is formed with a first opening 56 and a second opening 57 serving as a fluid inlet / outlet for the valve housing hole 52 at positions separated from each other in the axial direction.
  • the first opening 56 is provided below (the peripheral side wall or the lower wall) of the small diameter hole 116, and the second opening 57 is provided on the peripheral side wall of the large diameter hole 115.
  • the first opening 56 communicates with the upper water passage 17 and the second opening 57 communicates with the raw water inlet 22.
  • the first opening 56 communicates with the lower water flow port 19, and the second opening 57 communicates with the treated water outlet 23.
  • the bypass valve 8 the first opening 56 communicates with the treated water outlet 23, and the second opening 57 communicates with the raw water inlet 22.
  • a valve piston 53 is provided in the valve housing hole 52 so as to be able to advance and retract.
  • the valve piston 53 has a stepped columnar shape, and includes a lower large-diameter portion 118 and an upper small-diameter portion 119. Both end portions in the axial direction of the large-diameter portion 118 are further enlarged-diameter portions 120 and 121, and an annular groove is formed on the outer peripheral portion thereof.
  • a first sealing material 77 is provided in the lower annular groove, and a second sealing material 78 is provided in the upper annular groove.
  • Each of the sealing materials 77 and 78 is, for example, an annular X ring having an X-shaped cross section.
  • a first seal member 77 is attached to the diameter-enlarged portion 121 below the valve piston 53, and is moved up and down by being guided by the ribs 117 below the large-diameter hole 115 of the valve accommodation hole 52, and the small-diameter hole 116. It is possible to fit in the upper part.
  • the enlarged diameter portion 120 above the valve piston 53 is fitted with the second seal material 78 and slides on the cylindrical portion 85 of the valve cap 83.
  • a screw hole 122 is formed in the upper end surface of the small diameter portion 119 of the valve piston 53 so as to open only upward.
  • a piston hook 123 can be attached to the screw hole 122.
  • a communication hole 76 is formed in the large diameter portion 118 of the valve piston 53 so as to penetrate vertically. The communication hole 76 opens to the lower end surface of the large diameter portion 118 and opens at a plurality of locations in the circumferential direction on the stepped surface of the large diameter portion 118 and the small diameter portion 119.
  • a valve piston 53 is incorporated in the valve housing hole 52 and the opening is sealed with a valve cap 83.
  • the valve cap 83 includes a substantially rectangular upper plate 124, and a cylindrical tube portion 85 is integrally formed on the lower surface thereof so as to extend downward.
  • the valve cap 83 is attached by fitting the cylindrical portion 85 into the upper opening of the valve accommodating hole 52 (the upper portion of the large-diameter hole 115). At that time, the lower surface of the upper plate 124 of the valve cap 83 is brought into contact with the upper surface of the peripheral side wall of the valve accommodating hole 52. Further, by screwing the screw 125 into the valve housing 5 through the upper plate 124, both are integrated. At this time, the gap between the valve housing 5 and the valve cap 83 is sealed by the O-ring 88. In this way, the valve cap 83 is detachably attached to the upper end portion of the valve accommodation hole 52.
  • the small diameter part 119 of the valve piston 53 is passed through the valve cap 83 in a watertight state. That is, the upper plate 124 of the valve cap 83 has a through hole at the center, and the small diameter portion 119 of the valve piston 53 is passed through the through hole. A gap between the valve piston 53 and the valve cap 83 is sealed by the O-ring 126 held by the valve cap 83.
  • the O-ring 126 is mounted from below the valve cap 83 and is held by a seal retainer 127 attached to the lower surface of the upper plate 124 of the valve cap 83.
  • a screw hole 122 is formed in the small diameter portion 119 of the valve piston 53 so as to open upward, and a piston hook 123 is attached to the screw hole 122.
  • the valve piston 53 can be moved up and down by the lever 128 via the piston hook 123.
  • a lever shaft 129 is provided in the upper part of the valve housing 5 in front of and behind the cam shaft 48 in parallel with the cam shaft 48, and a plurality of levers 128 swing on each lever shaft 129. It is provided as possible. One end of each lever 128 is swingably held by the piston hook 123 at the upper end of the valve piston 53, and the pin at the other end is engaged with the pin groove 130 on the side surface of the cam 47. Accordingly, the valve piston 53 can be moved up and down by the lever 128 moving around the lever shaft 129 in accordance with the shape of the pin groove 130 on the side surface of the cam 47.
  • levers 128 for operating the valves of the first valve group 49 are engaged with one end surface thereof, and the other end surface thereof is engaged with each other.
  • Lever 128 that operates each valve of the second valve group 50 is engaged.
  • the enlarged diameter portion 120 (second sealing material 78) above the valve piston 53 is fitted into the cylindrical portion 85 of the valve cap 83 and slides inside the cylindrical portion 85.
  • a chamber 94 is formed between the valve piston 53 and the cylindrical portion 85 of the valve cap 83 (FIG. 14).
  • the chamber 94 communicates with the first opening 56 side through a communication hole 76 (FIG. 12) of the valve piston 53. Accordingly, in the valve closed state, the chamber 94 communicates with the first opening 56 on the distal end side through the communication hole 76 of the valve piston 53, and part of the fluid pressure in the valve opening direction and the valve closing direction applied to the valve piston 53. Or balance everything. Thereby, even when the 1st opening 56 is used as a fluid inlet side (high pressure side), the driving force required for opening and closing can be reduced.
  • the regeneration valve 12 of the first valve group 49 includes the first valve group 49.
  • These valves are smaller than the valves other than the regeneration valve 12 (the first water valve 6, the second water valve 7 and the bypass valve 8), but basically have the same structure as the valves 6 to 8. . Therefore, the following description will be focused on the different points, and corresponding portions will be described with the same reference numerals. However, the latter so that the configuration of each valve of the first valve group 49 excluding the regeneration valve 12 and the configuration of each valve of the second valve group 50 (and the regeneration valve 12 of the first valve group 49) can be distinguished for the time being.
  • the subscript “A” is attached to the configuration of For example, the valve piston of the first valve group 49 is shown as “valve piston 53”, while the valve piston of the second valve group 50 is shown as “valve piston 53A”.
  • the first opening 56 ⁇ / b> A communicates with the suction port 38 of the ejector 30, and the second opening 57 ⁇ / b> A communicates with the regenerant port 40.
  • the first opening 56 ⁇ / b> A communicates with the outlet of the ejector 30, and the second opening 57 ⁇ / b> A communicates with the lower water inlet 19.
  • the regeneration drain valve 11 has a first opening 56 ⁇ / b> A communicating with the central water inlet 21 and a second opening 57 ⁇ / b> A communicating with the drain outlet 25.
  • the first opening 56 ⁇ / b> A communicates with the upper water inlet 17, and the second opening 57 ⁇ / b> A communicates with the drain outlet 25.
  • the cleaning drain valve 10 has a first opening 56 ⁇ / b> A communicating with the lower water inlet 19 and a second opening 57 ⁇ / b> A communicating with the drain 25.
  • the communication hole 76 of the valve piston 53 opens to the lower end surface and the stepped surface of the large diameter portion 118.
  • the communication hole 76A of the valve piston 53A has a lower diameter and a small diameter of the large diameter portion 118A.
  • An opening is formed in the peripheral side surface of the portion 119A. That is, openings are formed at a plurality of locations in the circumferential direction at the lower portion of the peripheral side wall of the small diameter portion 119A, and each opening is an upper opening of the communication hole 76A.
  • the communication hole 76A also opens to the lower end surface of the valve piston 53A. Further, in each of the valves 9, 10, 11, 13 of the second valve group 50 and the regeneration valve 12 of the first valve group 49, the large diameter portion 118A and the small diameter portion 119A of the valve piston 53A have substantially the same diameter.
  • valves 6 to 13 of the first valve group 49 and the second valve group 50 are slightly different, but there is no basic difference. Description is omitted.
  • FIG. 16 is an exploded perspective view showing a state where a part of the gear 131 is removed in addition to the ejector 30 and its peripheral parts.
  • FIG. 17 is a component diagram of the ejector main body 34, showing a longitudinal sectional view and an XX sectional view thereof.
  • FIG. 18 is a component diagram of the nozzle 35, and shows a longitudinal sectional view and a right side view thereof.
  • the ejector accommodating portion 51 is provided between the regeneration valve 12 and the distributing valve 13, in other words, in the lower right portion of the central portion in the front-rear direction of the valve housing 5 in FIG. 11 or FIG.
  • an ejector receiving hole 95 is formed to open to the right side of the valve housing 5, and the ejector main body 34, the nozzle 35, the constant flow valve 33, the strainer 32, and the like are incorporated in the ejector receiving hole 95, The opening is sealed with a lid material 98.
  • the ejector accommodation hole 95 includes an ejector body accommodation hole 95a and a strainer accommodation hole 95b.
  • the ejector body accommodation hole 95a and the strainer accommodation hole 95b are arranged in parallel adjacent to each other in the front-rear direction, and are provided from the right side portion of the valve housing 5 toward the left side.
  • tip part of the strainer accommodation hole 95b is obstruct
  • the ejector main body accommodation hole 95a and the strainer accommodation hole 95b communicate with each other only at the base end (on the side of the opening that is opened and closed by the lid member 98).
  • the ejector body 34, the nozzle 35, and the constant flow valve 33 are sequentially incorporated in the ejector body housing hole 95a.
  • a distribution plate 132 is also disposed on the distal end side of the ejector body 34.
  • the distribution plate 132 is a component for evenly distributing the regenerant from the ejector 30 to the first regeneration path 43 and the second regeneration path 44.
  • the strainer 32 is incorporated into the strainer accommodation hole 95b via the O-ring 133.
  • the ejector body accommodation hole 95a and the strainer accommodation hole 95b are sealed at the opening by a common cover material 98.
  • the screw member 134 is screwed into the valve housing 5 via the cover member 98, so that the cover member 98 is detachably provided on the valve housing 5.
  • a gap between the ejector body 34 and the ejector body accommodation hole 95 a of the valve housing 5 is sealed with an O-ring 105.
  • the gap between the ejector body 34 and the nozzle 35 and the gap between these and the ejector body housing hole 95a are sealed with the O-ring 106.
  • the gap between the valve housing 5 and the lid member 98 is also sealed with an O-ring 107.
  • the ejector body 34 has a substantially cylindrical shape, and the hollow hole has a cylindrical portion 135 that opens to the proximal end side, and a tapered portion 136 that is tapered at the distal end portion of the cylindrical portion 135.
  • the throat portion 36 formed in the central portion of the taper portion 136 along the axial direction, and the diffuser portion 37 having a diameter increasing toward the distal end side at the distal end portion of the throat portion 36 are provided.
  • the cylindrical portion 135 has a suction port 38 formed on the peripheral side wall thereof.
  • the nozzle 35 is formed in a stepped cylindrical shape, and a large diameter portion 137, a small diameter portion 138, and a truncated cone portion 139 are formed in this order from the proximal end side to the distal end side.
  • the inner hole of the nozzle 35 is also formed with a reduced diameter in order toward the distal end side, and a nozzle hole 140 is formed at the distal end portion.
  • leg portions 141 are formed to extend toward the base end side at equal intervals in the circumferential direction.
  • the leg portion 141 positions the ejector 30 (the ejector body 34 and the nozzle 35) in the ejector body housing hole 95a, and secures an inflow space for driving water from the strainer 32 at the proximal end of the ejector body housing hole 95a.
  • the constant flow valve 33 is fitted in the large diameter portion 137 of the nozzle 35.
  • the constant flow valve 33 is a rubber orifice in which a through hole is formed at the center of the disk.
  • the strainer 32 is cylindrical and the peripheral side wall is formed in a net shape.
  • the lid 98 of the ejector housing 51 is provided with a driving water inlet pipe 142, and the driving water is supplied to the inside of the strainer 32.
  • the water passes from the inside of the strainer 32 to the outside, proceeds from the proximal end portion of the ejector main body accommodation hole 95 a to the distal end side, and is ejected from the nozzle 35.
  • the regenerative agent is drawn into the suction port 38 from the regenerant port 40, and the mixed water of the regenerant and driving water is discharged from the ejector 30.
  • the valves 6 to 13 of the first valve group 49 and the second valve group 50 are opened and closed by the cam 47 via the lever 128. That is, the cam shaft 48 is provided with a cam 47 corresponding to each of the valves 6 to 13, and a pin groove 130 is formed on the side surface of the cam 47.
  • the lever 128 is held at one end by the piston hook 123 (123A) at the upper end of the valve piston 53 (53A), while the pin at the other end engages with the pin groove 130 on the side surface of the cam 47. Yes. Therefore, in the second embodiment, the valve piston 53 (53A) can be directly moved up and down by the lever 128 without using a spring.
  • the open / close state as shown in FIG. 2 can be controlled by changing the shape of the pin groove 130 corresponding to each valve 6-13.
  • the cam 47 is rotated by rotating the cam shaft 48 with a motor. Specifically, when the motor is rotated, the rotational force is transmitted to the camshaft 48 via the reduction gear train 109, and the cam 47 can be rotated.
  • the cam 47 is intermittently rotated for each process.
  • the camshaft 48 is provided with two sensor plates 143 and 144 as shown in FIG.
  • the first sensor plate 143 is formed with a notch 113 for detecting the origin at one place in the circumferential direction
  • the second sensor plate 144 is formed with a notch 114 for process detection corresponding to each process position.
  • the notches 113 and 114 of the sensor plates 143 and 144 can be read by a photo sensor (not shown) such as a photo interrupter. Therefore, the origin position and the current position of the cam 47 (in other words, which process is being executed) can be confirmed by the sensor.
  • a process instruction plate 145 is provided at the end of the camshaft 48 so that such a process position can be visually confirmed.
  • the valve housing 5, the valve frame 58 (58A), the valve piston 53 (53A), the valve cap 83 (83A), etc. of the flow path control valve 1 are resin molded parts.
  • a seal ring such as an O-ring or an X-ring is attached, and there is a portion that seals a gap with another member.
  • the valve piston 53 (53A) is fitted with a first seal material 77 (77A) or a second seal material 78 (78A) to seal the gap between the valve seat portion 67 and the cylinder portion 85.
  • the plastic of the resin molded part 146 and the rubber of the seal ring 147 may be intermolecularly bonded.
  • the resin molded component 146 is set in a rubber molding die, and the resin and rubber are bonded using a rubber vulcanization reaction, thereby sealing ring 147 is formed.
  • the rubber and the resin have almost no interface with each other, and therefore, there is no need to devise a method for preventing the resin-side molding groove or the like from falling off.
  • Such a joining method can be applied to each seal portion of each of the embodiments.
  • the flow path control valve 1 of the present invention is not limited to the configuration of each of the above embodiments, and can be changed as appropriate.
  • the ion exchange device 2 is a water softening device that removes hardness components in raw water using a cation exchange resin.
  • the ion exchange device 2 is not limited to a water softening device, for example, Alternatively, a nitrate nitrogen removing device using an anion exchange resin may be used.
  • the ion exchange apparatus 2 may be a pure water production apparatus such as a two-bed two-column type or a mixed bed type using a cation exchange resin and an anion exchange resin.
  • the flow path control valve 1 includes eight valves, but the number of valves can be changed according to the configuration of the ion exchange device 2.
  • the first valve group 49 includes the first water valve 6, the second water valve 7, and the bypass valve 8, and the regeneration valve 12 is the first valve group 49 or the second valve group 50. It is preferable that the second valve group 50 is included in any of the remaining valves not included in the first valve group 49.
  • the regeneration valve 12 and the distribution valve 13 are disposed adjacent to each other in the first embodiment and are opposed to each other in the second embodiment. However, the regeneration valve 12 and the distribution valve 13 are disposed to face each other in the first embodiment. In Example 2, they may be arranged adjacent to each other.
  • each of the valves 6 to 13 is not limited to the above embodiments. Even in this case, each of the valves 6 to 13 is preferably provided in the valve housing hole 52 formed in the valve housing 5 so that the valve piston 53 can be advanced and retracted.
  • the valve piston 53 abuts the first seal material 77 against the valve seat 67 (which may be a valve hole as in the second embodiment) to block communication between the first opening 56 and the second opening 57.
  • the second sealing material 78 forms a chamber 94 at the base end portion of the valve housing hole 52, and the chamber 94 is preferably communicated with the first opening 56 through the communication hole 76 of the valve piston 53. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Valve Housings (AREA)
  • Mechanically-Actuated Valves (AREA)

Abstract

設定流路が形成されたバルブハウジング5に、複数の弁6~13が設けられた流路制御弁1である。バルブハウジング5の上部に、前記各弁6~13を操作するカムシャフト48が左右方向へ沿って設けられる。カムシャフト48を境に、前記各弁6~13は第一弁群49と第二弁群50とに前後に分かれて配置される。第一弁群49には、原水入口22から圧力タンク3への第一通水路14に設けた第一通水弁6と、圧力タンク3から処理水出口23への第二通水路15に設けた第二通水弁7と、第一通水路14と第二通水路15とを接続するバイパス路24に設けたバイパス弁8とが含まれる。第二弁群50には、第一弁群49に含まれない残りの弁が含まれる。通水系統の弁と再生系統の弁とを分けることで、各工程における流路が取り易く、また通水容量を大きくとることができる。

Description

流路制御弁
 本発明は、流路の開閉や切替えに用いられる流路制御弁に関し、特に、イオン交換樹脂床を備えたイオン交換装置の流路制御弁に関するものである。
 従来、下記特許文献1に開示されるように、イオン交換樹脂床を備えた硬水軟化装置が知られている。この種の硬水軟化装置では、原水がイオン交換樹脂床に通されると、原水中に含まれる硬度成分(すなわち、カルシウムイオンおよびマグネシウムイオン)が、イオン交換樹脂床のナトリウムイオンと交換される。このようにして、原水中の硬度成分がイオン交換樹脂床に吸着され除去されることで、原水を軟化させることができる。
 硬水軟化装置は、イオン交換樹脂床に結合していたナトリウムイオンを、原水中の硬度成分と交換するものであるから、硬度成分の除去には限界がある。そこで、その限界に達する前に、イオン交換樹脂床に再生剤(硬水軟化装置の場合は塩水)を通して、交換能力の回復が図られる。これは、イオン交換樹脂床の再生と呼ばれる。
 硬水軟化装置は、原水を軟化させる通水工程や、イオン交換樹脂床を再生する再生工程など、各工程に応じて流路が変更される。そのために、イオン交換樹脂床を収容する圧力タンクの上部に流路制御弁が設けられ、この流路制御弁により各工程に応じた流路が規定される。なお、このような構成は、硬水軟化装置に限らず、イオン交換樹脂床を備えたその他のイオン交換装置においても同様である。つまり、イオン交換樹脂床に原水を通して処理する一方、イオン交換樹脂床に再生剤を通して再生するイオン交換装置においても、流路制御弁が用いられる。
 このような流路制御弁として、従来、下記特許文献2に開示されるバルブが知られている。このバルブ(1)は、流体流路(7)とこれへの出入口となる第一ポート(5)および第二ポート(6)が形成されたバルブハウジング(4)を備え、流体流路(7)の中途部には弁座(8)が形成されている。弁座(8)の弁孔(9)を開閉する弁体(11)は、スプリング(30)により弁座(8)へ付勢される一方、この付勢力に対抗して弁軸(16)により押し戻し可能とされている。
 弁体(11)の下部には、ダイアフラム状の受圧体(22)がリテーナ(21)で保持されており、このリテーナ(21)の下部にスプリング(30)が設けられている。ハウジング(4)の下部には、受圧体(22)で流体流路(7)から仕切られた背圧室(28)が形成されている。この背圧室(28)は、弁体(11)に形成された圧力伝達路(32)と、リテーナ(21)に形成された貫通路(33)とにより、第一ポート(5)と常時連通する。
 弁座(8)に弁体(11)が当接した閉弁状態において、第一ポート(5)側の圧力が背圧室(28)に伝達され、弁体(11)にかかる開弁方向と閉弁方向の流体圧力をバランスさせている。これにより、スプリング(30)の付勢力を大きくする必要がなく、開弁に必要な駆動力を低減することができる。
特開2008-55392号公報 特開2007-78092号公報
 流路制御弁は、工程に応じて流路を変えるので、各工程における流路の取り易さを考慮した弁の配置が必要となる。また、原水を処理する通水工程において、通水容量を大きくとるには、通水工程で使用される流路の口径を大きくとる必要があるが、それに伴い各弁に要するスペースが異なるので、これを考慮した弁の配置が必要となる。
 さらに、前記特許文献2に記載のバルブでは、ダイアフラム状の受圧体が必要であり、その取付けにも手間を要する。従って、バルブの構造、組立ておよびメンテナンスに改善の余地がある。
 本発明が解決しようとする課題は、各工程における流路が取り易く、また通水容量を大きくとることができる流路制御弁を提供することにある。また、簡易な構成で、組立てやメンテナンスも容易な流路制御弁を提供することを課題とする。
 本発明の内、第1発明は、イオン交換樹脂床を収容する圧力タンクと、前記イオン交換樹脂床の再生剤を貯留する再生剤タンクとに接続される流路制御弁であって、設定流路が形成されたバルブハウジングに、複数の弁が設けられ、前記バルブハウジングの上部に、前記各弁を操作するカムシャフトが左右方向へ沿って設けられ、前記カムシャフトを境に、前記複数の弁は第一弁群と第二弁群とに前後に分かれて配置され、前記第一弁群には、原水入口から前記圧力タンクへの第一通水路に設けた第一通水弁と、前記圧力タンクから処理水出口への第二通水路に設けた第二通水弁と、前記第一通水路と前記第二通水路とを接続するバイパス路に設けたバイパス弁とが左右に並べて配置され、前記イオン交換樹脂床の再生剤が通される再生剤路に設けた再生弁は、前記第一弁群または前記第二弁群のいずれかに含まれ、前記第二弁群には、前記第一弁群に含まれない残りの弁が左右に並べて配置されることを特徴とする流路制御弁である。
 第1発明によれば、カムシャフトを境に第一弁群と第二弁群とに分け、第一弁群には、第一通水弁、第二通水弁およびバイパス弁という通水系統の弁を配置し、第二弁群には、これ以外の再生系統の弁を配置し、そして、再生弁はいずれかの弁群に含ませた。通水系統と再生系統とを分けることで、各工程における流路を取り易い。また、通水系統の口径を大きくして、通水容量を大きくとることができる。
 第2発明は、第1発明において、前記圧力タンクは、上部通水口、下部通水口および中央通水口を備え、前記バルブハウジングは、前記原水入口、前記処理水出口および排水口の他、前記再生剤タンクと接続される再生剤口を備え、前記バルブハウジングには、前記再生剤タンクから再生剤を吸引するエゼクタが設けられ、前記エゼクタの出口側の流路は、前記上部通水口への第一再生路と、前記下部通水口への第二再生路とに分岐しており、前記原水入口から前記上部通水口への前記第一通水路に設けられる前記第一通水弁と、前記下部通水口から前記処理水出口への前記第二通水路に設けられる前記第二通水弁と、前記第一通水弁よりも前記原水入口側の前記第一通水路と、前記第二通水弁よりも前記処理水出口側の前記第二通水路とを接続する前記バイパス路に設けられる前記バイパス弁と、前記上部通水口から前記排水口への逆洗排水路に設けられる逆洗排水弁と、前記下部通水口から前記排水口への洗浄排水路に設けられる洗浄排水弁と、前記中央通水口から前記排水口への再生排水路に設けられる再生排水弁と、前記再生剤口から前記エゼクタの吸引口への再生剤路に設けられる前記再生弁と、前記第二再生路に設けられる分配弁とを備え、前記第一弁群は、前記第一通水弁、前記第二通水弁および前記バイパス弁を備え、前記第二弁群は、前記逆洗排水弁、前記洗浄排水弁、前記再生排水弁、前記分配弁を備え、前記再生弁は、前記第一弁群または前記第二弁群のいずれかに含まれることを特徴とする流路制御弁である。
 第2発明によれば、圧力タンクは、上部通水口、下部通水口および中央通水口を備えるので、上部通水口と下部通水口とから再生剤を供給し、イオン交換を終えた再生排水を中央通水口から排出するというスプリットフロー再生(split-flow regeneration)が可能である。また、第一弁群には、第一通水弁、第二通水弁およびバイパス弁という通水系統の弁を配置し、第二弁群には、逆洗排水弁、洗浄排水弁、再生排水弁および分配弁という再生系統の弁を配置し、そして、再生弁はいずれかの弁群に含ませた。通水系統と再生系統とを分けることで、各工程における流路を取り易い。また、第一弁群は、第二弁群よりも弁数が少ないため、通水弁やバイパス弁として比較的大きな口径の弁を用いても、流路制御弁の全体の収まりがよい。これにより、通水系統の口径を大きくして、通水容量を大きくとることができる。
 第3発明は、第2発明において、前記第一弁群および前記第二弁群における各弁の配置として、前記バイパス弁は、前記第一通水弁と前記第二通水弁との間に配置され、前記逆洗排水弁と前記洗浄排水弁とが隣接して配置され、これと隣接して前記再生排水弁が配置され、前記再生弁と前記分配弁とが隣接するか向かい合うよう配置され、前記原水入口および前記処理水出口は、前記第一弁群の側に設けられ、前記排水口は、前記第二弁群の側に設けられることを特徴とする流路制御弁である。
 第3発明によれば、第一通水弁と第二通水弁との間にバイパス弁を配置することで、第一通水路と第二通水路との間にバイパス路を取り易い。しかも、原水入口および処理水出口を第一弁群の側に設けることで、通水系統を完全にまとめることができる。また、逆洗排水弁、洗浄排水弁および再生排水弁をまとめることで、排水系統の流路を取り易い。しかも、排水口を第二弁群の側に設けることで、再生系統を完全にまとめることができる。さらに、再生弁と分配弁とをまとめることで、再生剤の流路も取り易い。
 第4発明は、第1~3発明において、前記各弁は、前記バルブハウジングに形成されたバルブ収容穴に、バルブピストンが進退可能に設けられてなり、前記バルブ収容穴には、その軸方向に離隔した位置に、そのバルブ収容穴に対する流体の出入口となる第一開口と第二開口とが形成されると共に、その間に、弁座部が設けられ、前記バルブピストンには、その軸方向に離隔した位置に、第一シール材と第二シール材とが設けられ、前記弁座部に前記第一シール材を当接して、先端側の前記第一開口と基端側の前記第二開口との連通を遮断し、その状態では、前記第二シール材が前記バルブ収容穴の基端部においてチャンバを形成し、このチャンバは前記バルブピストンの連通穴を介して前記第一開口と連通することを特徴とする流路制御弁である。
 第4発明によれば、閉弁状態において、バルブ収容穴の基端部にチャンバが形成され、このチャンバはバルブピストンの連通穴を介して先端側の第一開口と連通する。これにより、バルブピストンにかかる開弁方向と閉弁方向の流体圧力の一部または全部をバランスさせることができる。
 第5発明は、第4発明において、前記バルブ収容穴は、前記バルブハウジングの前後方向外側へ開口するよう水平に設けられると共に、その周側壁下部に、前記第一開口と前記第二開口とが設けられ、前記バルブ収容穴は、バルブフレーム、前記バルブピストンおよびスプリングが順に組み入れられて、着脱可能なバルブキャップで開口部を封止され、前記バルブフレームは、周側壁に開口が形成された略筒状で、その内穴を介してのみ前記第一開口と前記第二開口とを連通させ、軸方向中途部に円環状の弁座部が設けられ、先端部にバルブシャフトが水密状態で進退可能に設けられ、前記バルブピストンは、前記スプリングにより先端側へ付勢される一方、この付勢力に対抗して前記バルブシャフトにより基端側へ押し戻し可能とされ、前記バルブシャフトは、前記カムシャフトに設けたカムにより進退操作されることを特徴とする流路制御弁である。
 第5発明によれば、バルブ収容穴は、バルブハウジングの前後方向外側へ開口するよう水平に設けられると共に、その周側壁下部に第一開口と第二開口とが設けられるので、バルブハウジングの上部において前後の弁群の間にカムおよびカムシャフトを配置することができる。また、バルブ収容穴に、バルブフレーム、バルブピストンおよびスプリングを順に組み入れて、バルブキャップで開口部を封止するので、組立ておよびメンテナンスが容易である。また、バルブ収容穴にバルブフレームを設け、そのバルブフレームにバルブピストンを進退可能に設けるので、バルブピストンの摺動面積を減少させることができる。しかも、バルブフレームの周側壁には開口が形成されているので、通水流路を確保して圧力損失を低減することができる。
 第6発明は、第4発明において、前記バルブ収容穴は、前記バルブハウジングの上方へ開口するよう垂直に設けられると共に、前記弁座部より下方の周側壁または下壁に前記第一開口が形成される一方、前記弁座部より上方の周側壁に前記第二開口が形成され、前記バルブ収容穴は、前記バルブピストンが組み入れられて、着脱可能なバルブキャップで開口部を封止され、このバルブキャップには、前記バルブピストンの上端部が水密状態で通され、前記バルブピストンは、下端部に前記第一シール材が設けられる一方、上下方向中途部に前記第二シール材が設けられ、この第二シール材は、前記バルブキャップの筒部を摺動し、前記バルブピストンは、前記カムシャフトに設けたカムにより進退操作されることを特徴とする流路制御弁である。
 第6発明によれば、バルブ収容穴は、バルブハウジングの上方へ開口するよう垂直に設けられると共に、その周側壁または下壁に第一開口と第二開口とが設けられるので、バルブハウジングの上部において前後の弁群の間にカムおよびカムシャフトを配置することができる。また、バルブ収容穴に、バルブピストンを組み入れて、バルブキャップで開口部を封止するので、組立ておよびメンテナンスが容易である。さらに、第二シール材はバルブキャップの筒部を摺動するので、バルブ収容穴の基端部においてチャンバが容易で確実に形成される。
 第7発明は、第6発明において、前記バルブハウジングの上部には、前記カムシャフトの前後に、前記カムシャフトと平行に、レバーシャフトが設けられ、前記各レバーシャフトには、複数のレバーが揺動可能に設けられ、前記各レバーは、一端部が前記バルブピストンの上端部に保持される一方、他端部が前記カムの側面のピン溝に係合しており、このピン溝の形状に応じて前記一端部を上下動させることを特徴とする流路制御弁である。
 第7発明によれば、バルブピストンは、レバーによって、開弁のために引き上げられたり、閉弁のために押し込まれたりする。これにより、閉弁用のスプリングが不要となる。
 さらに、第8発明は、第4発明において、前記バルブハウジングは、前記再生剤タンクから再生剤を吸引するエゼクタを備え、このエゼクタは、エゼクタ本体とこれへのノズルとを備え、前記ノズルへの給水路には、ストレーナおよび定流量弁が設けられ、前記バルブハウジングに形成されたエゼクタ収容穴は、前記エゼクタ本体、前記ノズル、前記ストレーナおよび前記定流量弁が組み入れられて、着脱可能な蓋材で開口部を封止されることを特徴とする流路制御弁である。
 第8発明によれば、エゼクタ収容穴に、エゼクタ本体、ノズル、ストレーナおよび定流量弁を組み入れて、蓋材で開口部を封止するので、再生剤導入機構の組立ておよびメンテナンスが容易である。
 本発明の流路制御弁によれば、各工程における流路が取り易く、また通水容量を大きくとることができる。また、簡易な構成で、組立てやメンテナンスも容易となる。
本発明の流路制御弁の実施例1を備えるイオン交換装置の一例を示す概略図である。 実施例1のイオン交換装置の運転工程を順に示すと共に、その各工程における各弁の開閉状態を示す概略図である。 実施例1の流路制御弁の概略斜視図である。 実施例1の流路制御弁の第一弁群の弁の分解斜視図である。 実施例1の流路制御弁の第一弁群の弁の組立状態の概略縦断面図であり、閉弁状態を示している。 実施例1の流路制御弁の第一弁群の弁の組立状態の概略縦断面図であり、開弁状態を示している。 実施例1の流路制御弁の第二弁群の弁の分解斜視図であり、バルブハウジングの後方から見た状態を示している。 実施例1の流路制御弁のエゼクタとその周辺部品の分解斜視図である。 実施例1の流路制御弁のエゼクタとその周辺部品の組立状態の概略縦断面図であり、再生弁と共に示している。 本発明の流路制御弁の実施例2を備えるイオン交換装置の一例を示す概略図である。 実施例2の流路制御弁の概略斜視図である。 実施例2の流路制御弁の第一弁群および第二弁群の弁の分解斜視図であり、バルブハウジングの後方から見た状態を示している。 実施例2の流路制御弁の左側面視の概略縦断面図であり、第一弁群の第二通水弁と、第二弁群の再生排水弁とが示されており、通水工程を示している。 実施例2の流路制御弁の左側面視の概略縦断面図であり、第一弁群の第二通水弁と、第二弁群の再生排水弁とが示されており、再生工程および押出工程を示している。 実施例2の流路制御弁の右側面視の概略縦断面図であり、第一弁群の再生弁と、第二弁群の分配弁とが示されており、再生工程を示している。 実施例2の流路制御弁のエゼクタとその周辺部品の他、一部のギアを取り外した状態の分解斜視図である。 実施例2の流路制御弁のエゼクタ本体の部品図であり、その縦断面図とX-X断面図とを示している。 実施例2の流路制御弁のノズルの部品図であり、その縦断面図と右側面図とを示している。 樹脂成形部品のプラスチックと、シールリングのゴムとを分子間結合させた一例を示す概略断面図である。 樹脂成形部品のプラスチックと、シールリングのゴムとを分子間結合させた一例を示す概略断面図である。 樹脂成形部品のプラスチックと、シールリングのゴムとを分子間結合させた一例を示す概略断面図である。 樹脂成形部品のプラスチックと、シールリングのゴムとを分子間結合させた一例を示す概略断面図である。 樹脂成形部品のプラスチックと、シールリングのゴムとを分子間結合させた一例を示す概略断面図である。 樹脂成形部品のプラスチックと、シールリングのゴムとを分子間結合させた一例を示す概略断面図である。
 以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
 図1は、本発明の流路制御弁1の実施例1を備えるイオン交換装置2の一例を示す概略図である。本実施例のイオン交換装置2は、陽イオン交換樹脂を用いて原水中の硬度成分を除去する硬水軟化装置である。この場合、イオン交換樹脂床の再生剤は、塩水(塩化ナトリウム水溶液)である。
 以下、まずはイオン交換装置2の全体構成と運転方法とを順に説明し、その後、本実施例の流路制御弁1の具体的構成について説明する。
《イオン交換装置2の全体構成》
 イオン交換装置2は、流路制御弁1の他、圧力タンク3および再生剤タンク4を備える。
 流路制御弁1は、設定された流路が形成されたバルブハウジング5に、複数の弁6~13が設けられてなる。圧力タンク3は、有底円筒状の中空容器であり、陽イオン交換樹脂ビーズからなるイオン交換樹脂床を収容する。再生剤タンク4は、圧力タンク3内のイオン交換樹脂床の再生剤を貯留する。
 流路制御弁1は、圧力タンク3の上部に取り付けられる。これにより、圧力タンク3の上部開口は、流路制御弁1のバルブハウジング5で閉じられる。バルブハウジング5の下部には、圧力タンク3の上部開口と対応する位置に、第一通水路14、第二通水路15および再生排水路16の各端部が開口している。
 第一通水路14は、圧力タンク3内の上部通水口17に開口する。第二通水路15は、内管18を介して、圧力タンク3内の下部通水口19に開口する。再生排水路16は、外管20を介して、圧力タンク3内の中央通水口21に開口する。
 内管18と外管20とは、バルブハウジング5に上端部を保持され、バルブハウジング5から下方へ延出し、圧力タンク3内に差し込まれる。この際、外管20の中空穴に内管18が差し込まれた二重管構造とされる。また、内管18は、圧力タンク3の下部まで延出し、外管20は、圧力タンク3の上下方向中央部まで延出する。そして、内管18の下部に、下部通水口19が設けられ、外管20の下部に、中央通水口21が設けられる。
 流路制御弁1のバルブハウジング5には、原水入口22からの原水を上部通水口17へ送る第一通水路14と、下部通水口19からの処理水(ここでは軟水)を処理水出口23へ送る第二通水路15とが設けられている。第一通水路14には第一通水弁6が設けられ、第二通水路15には第二通水弁7が設けられる。
 第一通水弁6よりも原水入口22側の第一通水路14と、第二通水弁7よりも処理水出口23側の第二通水路15とは、バイパス路24で接続される。このバイパス路24には、バイパス弁8が設けられる。
 上部通水口17には、排水口25への逆洗排水路26も接続され、この逆洗排水路26には、逆洗排水弁9が設けられる。図1では、第一通水路14と逆洗排水路26とは、圧力タンク3の側において共通管路として示している。
 下部通水口19には、排水口25への洗浄排水路27も接続され、この洗浄排水路27には、洗浄排水弁10が設けられる。図1では、第二通水路15と洗浄排水路27とは、圧力タンク3の側において共通管路として示している。なお、逆洗排水路26および洗浄排水路27の下流は、定流量弁(ゴムオリフィス)28を介して、排水口25へ開口する。
 中央通水口21には、排水口25への再生排水路16が接続され、この再生排水路16には、再生排水弁11が設けられる。逆洗排水路26、洗浄排水路27および再生排水路16の下流は、まとめられ、排水口25へ開口する。
 バルブハウジング5には、さらに、駆動水入口29からの駆動水(原水)をエゼクタ30へ送る駆動水路31が設けられる。駆動水路31には、駆動水入口29から順に、ストレーナ32、定流量弁(ゴムオリフィス)33およびエゼクタ30が設けられる。なお、原水入口22への原水と、駆動水入口29への駆動水とは、同一給水源からの水を分岐して用いることができる。あるいは、原水入口22と駆動水入口29とを統一して、バルブハウジング5内で、第一通水路14と駆動水路31とに分岐させてもよい。
 エゼクタ30は、詳細は後述するが(図8,図9)、エゼクタ本体34とノズル35とを備え、エゼクタ本体34は、スロート部36とディフューザ部37とを備える。駆動水をノズル35からエゼクタ本体34の先端側へ噴出させることで、エゼクタ本体34の吸引口38から再生剤を吸引し、駆動水と混合して吐出する。つまり、ノズル35には駆動水路31からの駆動水が供給され、エゼクタ本体の34吸引口38には再生剤路39からの再生剤が供給される。再生剤路39は、バルブハウジング5の再生剤口40とエゼクタ本体34の吸引口38とを接続し、再生弁12が設けられる。なお、バルブハウジング5の再生剤口40には、再生剤配管41を介して再生剤タンク4が接続され、その再生剤配管41には再生剤流量計42が設けられる。
 エゼクタ本体34の出口側には、二股に分岐した第一再生路43と第二再生路44とが設けられる。第一再生路43は、第一オリフィス45を介して、上部通水口17に接続される。第二再生路44は、第二オリフィス46および分配弁13を介して、下部通水口19に接続される。なお、図1では、第一通水路14、逆洗排水路26および第一再生路43は、圧力タンク3の側において共通管路として示している。また、第二通水路15、洗浄排水路27および第二再生路44は、圧力タンク3の側において共通管路として示している。
《イオン交換装置2の運転方法》
 図2は、本実施例のイオン交換装置2の運転工程を順に示すと共に、その各工程における各弁6~13の開閉状態を示す概略図である。この図において、各弁6~13は、網掛部が開放状態を示しており、無地部が閉鎖状態を示している。各工程の移行時、各弁6~13は、徐々に閉められたり、徐々に開かれたりしてもよい。
 イオン交換装置2は、単独で用いることもできるし、二台で用いることもできる。後者の場合、第一イオン交換装置2の原水入口22に、給水源からの原水供給路を接続し、第二イオン交換装置2の処理水出口23に、処理水使用設備への処理水供給路を接続し、第一イオン交換装置2の処理水出口23と第二イオン交換装置2の原水入口22とを、バイパス供給路で接続すればよい。この場合、一方のイオン交換装置2で原水を処理中には、他方のイオン交換装置2でイオン交換樹脂床の再生を図ることができる。
 イオン交換装置2は、通水工程、再生待機工程、逆洗工程、再生工程、押出工程、洗浄工程、補水工程および通水待機工程を順に実行する。これら各工程は、前述した各弁6~13の開閉を図2に示すように制御して行われる。
 通水工程では、原水は、原水入口22から第一通水路14を介して、圧力タンク3の上部通水口17へ供給される。その水は、圧力タンク3の上部から下部へ、イオン交換樹脂床を通されて処理水(ここでは軟水)となる。その処理水は、圧力タンク3の下部通水口19から内管18および第二通水路15を介して、処理水出口23へ導出される。
 再生待機工程は、逆洗工程への待機工程であり、また、通水待機工程は、通水工程への待機工程である。再生待機工程以降の各工程では、原水は、バイパス路24を介して、第二イオン交換装置2へ送られる。
 逆洗工程では、原水は、原水入口22からバイパス路24、第二通水路15および内管18を介して、圧力タンク3の下部通水口19へ供給される。その水は、圧力タンク3の下部から上部へ、イオン交換樹脂床を展開しながら通される。その排水は、圧力タンク3の上部通水口17から逆洗排水路26を介して、排水口25へ導出される。
 再生工程では、駆動水(原水)は、駆動水入口29から駆動水路31を介して、エゼクタ30へ供給される。エゼクタ30において、ノズル35から水が噴出されると、再生剤タンク4内の再生剤が、再生剤配管41および再生剤路39を介して、エゼクタ30の吸引口38へ吸引され、駆動水と混合して吐出する。その再生剤は、第一再生路43を介して圧力タンク3の上部通水口17へ供給されると共に、第二再生路44および内管18を介して圧力タンク3の下部通水口19へ供給される。圧力タンク3の上部通水口17と下部通水口19とからの再生剤は、圧力タンク3の上下方向中央部へ向けて流通し、イオン交換樹脂床を再生する。その排水は、圧力タンク3の中央通水口21から外管20および再生排水路16を介して、排水口25へ導出される。このようなスプリットフロー再生によれば、高い再生効率を維持しながら、安定して、イオン交換樹脂床の再生を図ることができる。
 押出工程では、エゼクタ30の吸引口38への再生剤の供給が停止される点が再生工程と異なるが、それ以外は再生工程と同じである。再生工程後に圧力タンク3内に残る再生剤は、押出工程により排出される。
 洗浄工程では、原水は、原水入口22から第一通水路14を介して、圧力タンク3の上部通水口17へ供給される。その水は、圧力タンク3の上部から下部へ、イオン交換樹脂床を通され、イオン交換樹脂床の濯ぎを行う。その排水は、圧力タンク3の下部通水口19から内管18および洗浄排水路27を介して、排水口25へ導出される。
 補水工程では、原水は、駆動水入口29から駆動水路31を介して、エゼクタ30へ供給される。その水は、エゼクタ30の吸引口38から再生剤路39および再生剤配管41を介して、再生剤タンク4へ供給される。このようにして、次回の再生工程に備えて、再生剤タンク4へ水を供給することができる。
《流路制御弁1の具体的構成》
 以下、本実施例の流路制御弁1の具体的構成について説明する。
 図3は、本実施例の流路制御弁1の概略斜視図である。流路制御弁1は、前記各流路14,15,16,24,26,27,31,39,43,44が形成されたバルブハウジング5に、前記各弁6~13やエゼクタ30などが設けられてなる。つまり、バルブハウジング5には、図1に示される回路を形成するように、各流路14,15,16,24,26,27,31,39,43,44が形成されると共に、前記各弁6~13やエゼクタ30などが設けられている。
 各弁6~13は、カム47により開閉操作されるが、そのカム47を回転させるカムシャフト48は、バルブハウジング5の上部の前後方向中央部に、左右方向へ沿って設けられる。そして、このカムシャフト48を境に、各弁6~13は、第一弁群49と第二弁群50とに前後に分かれて配置される。この際、再生弁12は、第一弁群49または第二弁群50のいずれに含めてもよいが、本実施例では第二弁群50に含まれる。
 第一弁群49は、第一通水弁6、第二通水弁7およびバイパス弁8を備える。この際、バイパス弁8は、第一通水弁6と第二通水弁7との間に配置されるのがよい。図3では、第一弁群49は、バルブハウジング5の前方に配置され、左から順に、第一通水弁6、バイパス弁8および第二通水弁7が左右に並べて配置されている。また、第一通水弁6の左隣には、エゼクタ収容部51が設けられる。
 第二弁群50は、逆洗排水弁9、洗浄排水弁10、再生排水弁11、分配弁13および再生弁12を備える。この際、逆洗排水弁9と洗浄排水弁10とが隣接して配置され、これと隣接して再生排水弁11が配置されるのがよい。また、再生弁12と分配弁13とは、隣接して配置されるのがよい。図3では、第二弁群50は、左から順に、再生弁12、分配弁13、再生排水弁11、逆洗排水弁9および洗浄排水弁10が左右に並べて配置されている。
 バルブハウジング5には、流体の出入口として、前述したように、原水入口22、処理水出口23、排水口25、駆動水入口29および再生剤口40が設けられている。
 原水入口22および処理水出口23は、第一弁群49の側に設けられるのが好ましい。本実施例では、原水入口22は、第一通水弁6の下部に設けられ、処理水出口23は、第二通水弁7の下部に設けられる。より具体的には、第一通水路14の端部を構成する管が、第一通水弁6の下部に、前方へ延出して設けられており、その前端開口が原水入口22とされる。また、第二通水路15の端部を構成する管が、第二通水弁7の下部に、前方へ延出して設けられており、その前端開口が処理水出口23とされる。
 排水口25は、第二弁群50の側に設けられるのが好ましい。本実施例では、排水口25は、再生排水弁11、逆洗排水弁9および洗浄排水弁10の下部に設けられる。より具体的には、再生排水路16、逆洗排水路26および洗浄排水路27の端部をまとめる管が、これら弁9~11の下部付近から右側へ延出して設けられており、その右端開口が排水口25とされる。
 駆動水入口29は、エゼクタ30に近接して設けられるのが好ましい。本実施例では、駆動水入口29は、エゼクタ収容部51の上部に設けられる。より具体的には、駆動水路31の端部を構成する管が、エゼクタ収容部51の上部に、上方へ延出して設けられており、その端部開口が駆動水入口29とされる。
 再生剤口40は、再生弁12に近接して設けられるのが好ましい。本実施例では、再生剤口40は、再生弁12の下部に設けられる(図9)。より具体的には、再生弁12の下部には、再生剤口40が設けられており、その再生剤口40には再生剤流量計42が設けられる。
 図4は、第一弁群49の弁の分解斜視図である。ここでは、第二通水弁7を示しているが、第一通水弁6およびバイパス弁8についても同様である。また、図5および図6は、第一弁群49の弁(7)の組立状態の概略縦断面図であり、図5は閉弁状態、図6は開弁状態を示している。さらに、図7は、第二弁群50の弁の分解斜視図であり、バルブハウジング5の後方から見た状態を示している。ここでは、再生弁12を示しているが、分配弁13、再生排水弁11、逆洗排水弁9および洗浄排水弁10についても同様である。なお、図9には、再生弁12の組立状態の縦断面が示される。
 第一弁群49および第二弁群50の各弁6~13は、バルブハウジング5に形成されたバルブ収容穴52(52A)に、バルブピストン53(53A)が進退可能に設けられてなる。バルブ収容穴52(52A)は、バルブハウジング5の前後方向外側へ開口するよう水平に設けられている。具体的には、第一弁群49を構成する各弁6~8のバルブ収容穴52は、前方へ開口するよう設けられ、第二弁群50を構成する各弁9~13のバルブ収容穴52Aは、後方へ開口するよう設けられている。
 第一弁群49を構成する各弁(第一通水弁6、第二通水弁7およびバイパス弁8)は、互いに同一の構成である。具体的には、図4~図6に基づき、以下に説明する。なお、バルブ収容穴52は、前述したとおりバルブハウジング5の前後方向外側へ開口するが、その開口部の側を基端側、これと反対側を先端側という。
 バルブ収容穴52は、先端部が先細りに形成された円形穴であり、先端側の円錐台状部54と、基端側の円筒状部55とを備える。バルブ収容穴52には、その軸方向に離隔した位置に、そのバルブ収容穴52に対する流体の出入口となる第一開口56と第二開口57とが形成されている。第一開口56は、円錐台状部54の周側壁の下部に設けられ、第二開口57は、円筒状部55の周側壁の下部に設けられている。
 図1を参照して、第一通水弁6は、第一開口56が上部通水口17と連通し、第二開口57が原水入口22と連通する。第二通水弁7は、第一開口56が下部通水口19と連通し、第二開口57が処理水出口23と連通する。バイパス弁8は、第一開口56が処理水出口23と連通し、第二開口57が原水入口22と連通する。
 バルブ収容穴52にはバルブフレーム58が取り付けられ、そのバルブフレーム58にはバルブピストン53が進退可能に設けられる。バルブフレーム58は、先端部が先細りに形成された略円筒状であり、バルブ収容穴52の形状とほぼ対応して形成されている。具体的には、バルブフレーム58は、先端側の円錐台状部59と、基端側の円筒状部60とを備える。円錐台状部59の先端部には、先端側へ突出すると共に先端側へ開口して、小円筒部61が形成されている。小円筒部61の基端部には、ツバ部62が形成されると共に、基端側へ突出して短筒63が形成されている。
 バルブフレーム58の円錐台状部59および円筒状部60には、周側壁に大きく開口64,65が形成されている。これにより、バルブフレーム58は、円錐台状部59と円筒状部60とが枠状に残ることになる。つまり、円錐台状部59と円筒状部60との連接部、円錐台状部59の先端部、および円筒状部60の基端部が円環状に残されると共に、それらが互いに複数のリブで接続された形状とされる。
 円錐台状部59と円筒状部60とを連接する円環状部66は、その基端側内周面が先端側へ行くに従って縮径する傾斜面に形成されており、この傾斜面が弁座部67として機能する。円環状部66の外周部には、円環状溝が形成されており、Oリング68が装着される。また、小円筒部61の基端部の外周部にも、円環状溝が形成されており、Oリング69が装着される。
 バルブフレーム58の軸線に沿って、小円筒部61および短筒63には、バルブシャフト70が進退可能に設けられる。短筒63内に設けられた断面略V字状の環状パッキン71により、バルブシャフト70とバルブフレーム58との隙間が封止される。
 バルブシャフト70の先端部には、ローラガイド72が設けられ、そのローラガイド72にはローラ73が回転自在に保持される。ローラガイド72は、バルブフレーム58の小円筒部61にはめ込まれる。小円筒部61の内穴とローラガイド72の外形は所定に形成されているので、ローラガイド72は、バルブフレーム58の軸線に沿って、小円筒部61に対し進退可能であるが、小円筒部61に対し相対回転不能に設けられる。
 バルブフレーム58は、バルブ収容穴52にはめ込まれる。バルブ収容穴52の先端部には、貫通穴74が形成されており、その貫通穴74にバルブフレーム58の小円筒部61がはめ込まれる。その際、小円筒部61のツバ部62が、貫通穴74の周囲の壁面に当接するようはめ込まれる。そして、小円筒部61の基端部のOリング69により、小円筒部61とバルブハウジング5との隙間が封止される。また、円環状部66のOリング68により、円環状部66とバルブハウジング5との隙間が封止される。これにより、バルブフレーム58の内穴を介してのみ、第一開口56と第二開口57とが連通する。
 バルブフレーム58の内穴には、バルブピストン53が進退可能に設けられる。バルブピストン53は、円筒状であり、先端部には端壁75が形成されている。この端壁75には、複数の連通穴76が形成されている。これら連通穴76は、バルブピストン53の周方向に等間隔に設けられ、それぞれバルブピストン53の軸方向に沿って端壁75を貫通して形成されている。
 バルブピストン53には、その軸方向に離隔した位置に、第一シール材77と第二シール材78とが設けられる。第一シール材77は、円環状で、バルブピストン53の先端部に設けられる。具体的には、第一シール材77は、バルブピストン53の先端面に装着され、円板状の押え板79により固定される。押え板79は、端壁75にネジ(図示省略)により固定され、第一シール材77の内径より大きく、第一シール材77の外径よりも小さい。そのため、押え板79を取り付けた状態で、押え板79の外周部には、第一シール材77が露出する。一方、第二シール材78は、断面X字形状の円環状のXリングであり、バルブピストン53の基端部の外周面に形成された円環状溝に装着される。
 押え板79には、前記連通穴76と対応して、貫通穴80が形成されている。また、押え板79の中央には穴が形成されており、その穴にはバルブピストン53の突出先端部81が通される。バルブピストン53の突出先端部81には、軸受穴が先端側へのみ開口して形成されており、この軸受穴にはバルブシャフト70の端部がはめ込まれる。
 バルブ収容穴52には、バルブフレーム58、バルブピストン53およびスプリング82が順に組み入れられて、バルブキャップ83で開口部を封止される。この際、バルブキャップ83は、バルブ収容穴52の基端部に着脱可能にねじ込まれて取り付けられる。
 バルブキャップ83は、本実施例では、キャップ本体84と筒材85とを組み合わせて構成される。筒材85は、段付き円筒状であり、先端側の小径部86が、バルブフレーム58の円筒状部60の内径と対応した外径に形成されており、基端側の大径部87が、バルブ収容穴52の円筒状部55の内径と対応した外径に形成されている。従って、筒材85は、先端側の小径部86がバルブフレーム58の基端部にはめ込まれ、基端側の大径部87がバルブ収容穴52の基端部にはめ込まれる。この際、バルブフレーム58の基端部と筒材85の段付き部との間にOリング88が配置され、バルブフレーム58と筒材85およびバルブハウジング5との隙間が封止される。
 筒材85の中空穴内には、軸方向中途部に隔壁89が形成されており、中空穴が閉じられている。隔壁89の中央部には、筒状のバネ受け90が先端側へ突出して設けられている。スプリング82は、基端部がバネ受け90にはめ込まれ、先端部がバルブピストン53の内穴にはめ込まれる。
 バルブ収容穴52に、バルブフレーム58、バルブピストン53、スプリング82および筒材85を組み入れた状態で、バルブ収容穴52の基端部にキャップ本体84が取り付けられる。つまり、バルブ収容穴52の円筒状部55の基端部は、外周面がネジ部91とされる一方、キャップ本体84は、先端側へのみ開口した略筒状で、内周面にネジ穴92が形成されている。従って、バルブ収容穴52のネジ部91に、キャップ本体84を着脱可能に取り付けることができる。バルブ収容穴52の基端部にキャップ本体84を取り付ける際、バルブハウジング5とバルブキャップ83との隙間は、Oリング93より封止される。
 なお、バルブキャップ83は、強度アップのため、キャップ本体84と筒材85とを別体として構成したが、バルブ収容穴の口径が小さい場合には、両者を一体に形成してもよい。後述する第二弁群50の各弁9~13は、キャップ本体84と筒材85とが一体に形成されている。
 バルブ収容穴52に、バルブフレーム58、バルブピストン53およびスプリング82などを組み付けた状態では、前述したように、第一開口56と第二開口57とは、バルブフレーム58の内穴を介してのみ連通する。また、バルブピストン53は、スプリング82の付勢力により、先端側へ付勢される。そして、図5に示すように、バルブフレーム58の弁座部67にバルブピストン53の第一シール材77が押し付けられた状態では、第一開口56と第二開口57との連通が遮断される。逆に、図6に示すように、スプリング82の付勢力に対抗して、バルブシャフト70が基端側へ押し込まれ、バルブピストン53が基端側へ押し戻されると、第一開口56と第二開口57との連通が確保される。
 バルブピストン53の基端部は、バルブキャップ83の筒部(本実施例では筒材85)にはめ込まれ、筒材85内を摺動する。バルブピストン53とバルブキャップ83の筒材85との間に、チャンバ94が形成される。このチャンバ94は、バルブピストン53の連通穴76を介して第一開口56の側と連通する。従って、閉弁状態において、チャンバ94は、バルブピストン53の連通穴76を介して先端側の第一開口56と連通し、バルブピストン53にかかる開弁方向と閉弁方向の流体圧力の一部または全部をバランスさせる。これにより、第一開口56が流体入口側(高圧側)として使用された場合でも、スプリング82の付勢力を大きくする必要がなく、開弁に必要な駆動力を低減することができる。
 第二弁群50を構成する各弁(再生弁12、分配弁13、再生排水弁11、逆洗排水弁9および洗浄排水弁10)は、第一弁群49を構成する各弁6~8よりも小さいが、第一弁群49を構成する各弁6~8と基本的には同様の構成である(図7、図9)。そこで、以下では両者の異なる点を中心に説明し、対応する箇所には同一の符号を付して説明する。但し、第一弁群49の各弁6~8の構成と、第二弁群50の各弁9~13の構成とを一応区別できるように、後者の構成には添え字「A」を付している。たとえば、第一弁群49のバルブピストンは「バルブピストン53」として示すが、第二弁群50のバルブピストンは「バルブピストン53A」として示している。
 第二弁群50を構成する各弁のバルブ収容穴52Aは、後方へ開口して形成されている。それ故、各バルブ収容穴52Aは、前方に円錐台状部54Aが配置され、後方に円筒状部55Aが配置される。また、円錐台状部54Aの下部に第一開口56Aが形成され、円筒状部55Aの下部に第二開口57Aが形成されている。
 図1を参照して、再生弁12は、第一開口56Aがエゼクタ30の吸引口38と連通し、第二開口57Aが再生剤口40と連通する。分配弁13は、第一開口56Aがエゼクタ30の出口と連通し、第二開口57Aが下部通水口19と連通する。再生排水弁11は、第一開口56Aが中央通水口21と連通し、第二開口57Aが排水口25と連通する。逆洗排水弁9は、第一開口56Aが上部通水口17と連通し、第二開口57Aが排水口25と連通する。洗浄排水弁10は、第一開口56Aが下部通水口19と連通し、第二開口57Aが排水口25と連通する。
 第一弁群49の場合、バルブキャップ83は、キャップ本体84と筒材85とから構成されたが、第二弁群50の場合、バルブキャップ83Aは、キャップ本体84と筒材85とが一体形成されている。つまり、図9に示すように、筒部85Aの基端部において、筒部85Aにバルブキャップ83Aが予め固定された一部品とされる。
 その他、バルブキャップ83Aやバルブピストン53Aのデザインなどにおいて、第一弁群49と第二弁群50の各弁は若干異なるものの、基本的な相違はないので、説明は省略する。
 図8は、エゼクタ30とその周辺部品の分解斜視図である。また、図9は、エゼクタ30とその周辺部品の組立状態の概略縦断面図であり、再生弁12と共に示している。
 エゼクタ収容部51は、第一通水弁6と隣接して設けられ、第一通水弁6のバルブ収容穴52と平行に、バルブハウジング5の前後方向外側へ開口したエゼクタ収容穴95を備える。エゼクタ収容穴95には、エゼクタ本体34、ノズル35、定流量弁33およびストレーナ32が順に組み入れられて、蓋材98で開口部を封止される。この際、蓋材98は、エゼクタ収容穴95の基端部に着脱可能にねじ込まれて取り付けられる。
 エゼクタ本体34は、基端側へ開口する第一円筒部99、この第一円筒部99の先端壁の中央部から先端側へ行くに従って拡径するディフューザ部37、およびこのディフューザ部37の先端部から先端側へ延出する第二円筒部100を備える。第一円筒部99には、その周側壁に吸引口38(図8)が形成される一方、先端壁の中央に軸方向へ沿う小穴からなるスロート部36が形成されており、このスロート部36が、第一円筒部99とディフューザ部37とを連通させる。
 ノズル35は、先端部が先細りの円錐状に形成された筒状に形成され、基端部に円筒状部101、先端部に円錐状部102を備える。円錐状部102の先端部には、ノズル孔103が形成されている。円筒状部101の中空穴には、定流量弁33とストレーナ32の先端部がはめ込まれる。
 定流量弁33は、円板の中央部に貫通孔を形成したゴムオリフィスである。一方、ストレーナ32は、円筒状で、周側壁に多数のスリット104が形成されている。
 エゼクタ収容穴95は、基端側へ開口しており、エゼクタ本体34、ノズル35、定流量弁33、ストレーナ32が順に組み入れられて、蓋材98で開口部を封止される。その際、エゼクタ本体34の第二円筒部100とバルブハウジング5のエゼクタ収容穴95との隙間が、Oリング105で封止される。また、エゼクタ本体34とノズル35との隙間、およびこれらとエゼクタ収容穴95との隙間が、Oリング106で封止される。さらに、エゼクタ収容穴95の基端部には、バルブハウジング5と蓋材98との隙間が、Oリング107で封止される。
 エゼクタ収容穴95にエゼクタ30(34,35)などを組み付けた状態では、図9に示すように、ストレーナ32と対応した位置に、駆動水路31が開口し、エゼクタ本体34の吸引口38と対応した位置に、再生弁12からの再生剤路39が開口する。さらに、図1で説明したように、エゼクタ本体34の先端部には、第一再生路43と第二再生路44とが分岐して設けられる。
 このような構成であるから、再生工程において、駆動水入口29から水を供給すると、その水は、ストレーナ32の外周から内側へ入り、ノズル35からエゼクタ30の先端側へ噴出される。これに伴い、再生剤口40から再生剤が吸引口38に引き込まれ、再生剤と駆動水との混合水がエゼクタ30から吐出される。そして、その混合水は、第一再生路43および第二再生路44とに分岐して、圧力タンク3へ供給される。
 第一弁群49および第二弁群50の各弁6~13は、カム47により開閉を操作される。図3に示すように、第一弁群49と第二弁群50との間には、左右方向へ沿ってカムシャフト48が設けられており、このカムシャフト48に、前記各弁6~13と対応してカム47が設けられている。
 カム47の外周面は、バルブシャフト70(70A)に設けたローラ73(73A)への当接部とされる。ローラ73(73A)の回転軸は左右方向へ沿って配置され、ローラ73(73A)の外周面がカム47の外周面に当接する。また、ローラ73(73A)は、スプリング82(82A)により、カム47の外周面に付勢される。従って、カム47が回転すると、ローラ73(73A)が回転しつつ、バルブ収容穴52(52A)に対しバルブシャフト70(70A)が進退される。
 カムシャフト48の回転に伴い、カム47がバルブシャフト70(70A)を、バルブハウジング5の前後方向外側へ押し込めば、バルブピストン53(53A)が弁座部67(67A)から離れて開弁状態となる(図6)。逆に、カムシャフト48の回転に伴い、バルブシャフト70(70A)の前記押し込みが解かれると、スプリング82(82A)の付勢力により、バルブピストン53(53A)がバルブハウジング5の前後方向内側へ移動し、閉弁状態となる(図5)。
 各弁6~13に対応するカム47の形状を変えることで、図2に示すような開閉状態に制御することができる。カム47の回転は、カムシャフト48をモータ108で回転させることで行われる。具体的には、モータ108を回転させると、その回転力は減速歯車列109を介してカムシャフト48に伝達され、カム47を回転させることができる。なお、カム47は、工程ごとに間欠的に回転される。
 減速歯車列109を構成すると共にカムシャフト48の端部に設けられるカムギア110の側面には、短円筒状に突出して、内筒111と外筒112とが同心円状に形成されている。内筒111には、周方向一箇所に原点検出用の切欠き113が形成され、外筒112には、各工程位置と対応して工程検出用の切欠き114が形成されている。そして、内筒111および外筒112の各切欠き113,114は、フォトインタラプタのようなフォトセンサ(図示省略)で読取可能とされている。従って、カム47の原点位置や現在位置(言い換えればどの工程を実行中か)をセンサで確認可能である。また、このような工程位置を目視で確認できるように、カムギア110の軸端に、工程位置の指示板(図示省略)を設けてもよい。
 本実施例によれば、第一弁群49には、第一通水弁6、第二通水弁7およびバイパス弁8という通水系統の弁を配置し、第二弁群50には、再生弁12、分配弁13、再生排水弁11、逆洗排水弁9および洗浄排水弁10という再生系統の弁を配置した。通水系統と再生系統とを分けることで、各工程における流路を取り易い。また、第一弁群49は、第二弁群50よりも弁数が少ないため、通水弁6,7やバイパス弁8として比較的大きな口径の弁を用いても、流路制御弁1の全体の収まりがよい。これにより、通水系統の口径を大きくして、通水容量を大きくとることができる。
 また、第一通水弁6と第二通水弁7との間にバイパス弁8を配置することで、第一通水路14と第二通水路15との間にバイパス路24を取り易い。しかも、原水入口22および処理水出口23を第一弁群49の側に設けることで、通水系統を完全にまとめることができる。
 一方、逆洗排水弁9、洗浄排水弁10および再生排水弁11をまとめることで、排水系統の流路を取り易い。しかも、排水口25を第二弁群50の側に設けることで、再生系統を完全にまとめることができる。また、再生弁12と分配弁13とをまとめることで、再生剤の流路も取り易い。
 また、各弁6~13は、閉弁状態において、バルブ収容穴52(52A)の基端部にチャンバ94(94A)が形成され、このチャンバ94(94A)はバルブピストン53(53A)の連通穴76(76A)を介して先端側の第一開口56(56A)と連通する。これにより、バルブピストン53(53A)にかかる開弁方向と閉弁方向の流体圧力の一部または全部をバランスさせることができる。
 また、バルブ収容穴52(52A)に、バルブフレーム58(58A)、バルブピストン53(53A)およびスプリング82(82A)を順に組み入れて、バルブキャップ83(83A)で開口部を封止するので、組立ておよびメンテナンスが容易である。しかも、バルブ収容穴52(52A)にバルブフレーム58(58A)を設け、そのバルブフレーム58(58A)にバルブピストン53(53A)を進退可能に設けるので、バルブピストン53(53A)の摺動面積を減少させることができる。その上、バルブフレーム58(58A)の周側壁には大きな開口64(64A),65(65A)が形成されているので、通水流路を確保して圧力損失を低減することができる。
 さらに、エゼクタ収容穴95に、エゼクタ本体34、ノズル35、定流量弁33およびストレーナ32を組み入れて、蓋材98で開口部を封止するので、再生剤導入機構の組立ておよびメンテナンスが容易である。
 図10は、本発明の流路制御弁1の実施例2を備えるイオン交換装置2の一例を示す概略図である。また、図11は、本実施例2の流路制御弁1の概略斜視図である。
 本実施例2の流路制御弁1は、前記実施例1より小さく、一部構成が異なるが、基本的には前記実施例1と同様である。そこで、以下では両者の異なる点を中心に説明し、対応する箇所には同一の符号を付して説明する。
 本実施例2でも、各弁6~13は、カムシャフト48を境に、第一弁群49と第二弁群50とに前後に分かれて配置される。この際、再生弁12は、第一弁群49または第二弁群50のいずれに含めてもよいが、本実施例では第一弁群49に含まれる。
 第一弁群49は、第一通水弁6、第二通水弁7、バイパス弁8および再生弁12を備える。この際、バイパス弁8は、第一通水弁6と第二通水弁7との間に配置されるのがよい。図11では、第一弁群49は、バルブハウジング5の前方に配置され、左から順に、第二通水弁7、バイパス弁8、第一通水弁6および再生弁12が左右に並べて配置されている。
 第二弁群50は、逆洗排水弁9、洗浄排水弁10、再生排水弁11および分配弁13を備える。この際、逆洗排水弁9と洗浄排水弁10とが隣接して配置され、これと隣接して再生排水弁11が配置されるのがよい。図11では、第二弁群50は、左から順に、再生排水弁11、逆洗排水弁9、洗浄排水弁10および分配弁13が左右に並べて配置されている。また、第一弁群49の再生弁12と、第二弁群50の分配弁13とは、前後に対向して配置されている。
 バルブハウジング5には、流体の出入口として、前述したように、原水入口22、処理水出口23、排水口25、駆動水入口29および再生剤口40が設けられている。
 原水入口22および処理水出口23は、第一弁群49の側に設けられるのが好ましい。本実施例では、原水入口22は、第一通水弁6とバイパス弁8との中間部に、前方へ開口して設けられ、処理水出口23は、第二通水弁7とバイパス弁8との中間部に、前方へ開口して設けられる。より具体的には、第一通水路14の端部が、バルブハウジング5の第一通水弁6とバイパス弁8との中間部に、前方へ延出して設けられており、その前端開口が原水入口22とされる。また、第二通水路15の端部が、バルブハウジング5の第二通水弁7とバイパス弁8との中間部に、前方へ延出して設けられており、その前端開口が処理水出口23とされる。
 排水口25は、第二弁群50の側に設けられるのが好ましい。本実施例では、排水口25は、再生排水弁11の側部に設けられる(図12)。より具体的には、再生排水路16、逆洗排水路26および洗浄排水路27の端部をまとめる管が、再生排水弁11の側部から延出して設けられており、その端部開口が排水口25とされる。
 駆動水入口29は、エゼクタ30に近接して設けられるのが好ましい。本実施例では、図11において、バルブハウジング5の前後方向中央部の右側下部にエゼクタ30が収容されるが、その右側面に駆動水入口29が設けられる。より具体的には、駆動水路31の端部を構成する管が、エゼクタ収容部51の側部に、右側へ延出した後、下方へ延出して設けられており、その端部開口が駆動水入口29とされる。
 再生剤口40は、再生弁12に近接して設けられるのが好ましい。本実施例では、再生剤口40は、再生弁12の前部に設けられる。より具体的には、再生弁12の前部には、再生剤口40が設けられており、その再生剤口40には再生剤流量計42が設けられる(図15)。
 図12は、第一弁群49および第二弁群50の弁6~13の分解斜視図であり、バルブハウジング5の後方から見た状態を示している。ここでは、第一弁群49の内、第二通水弁7を分解して示しているが、第一通水弁6およびバイパス弁8についても同様である。また、第二弁群50の内、再生排水弁11を分解して示しているが、逆洗排水弁9、洗浄排水弁10および分配弁13についても同様であり、さらに、第一弁群49の再生弁12についても同様である。つまり、本実施例では、再生弁12は、第一弁群49に含まれるが、その構成は、第二弁群50の各弁9,10,11,13と等しい。
 図13および図14は、本実施例の流路制御弁1の左側面視の概略縦断面図であり、第一弁群49の第二通水弁7と、第二弁群50の再生排水弁11とが示されている。図13では、通水工程を示しており、第二通水弁7が開弁状態、再生排水弁11が閉弁状態である。また、図14では、再生工程および押出工程を示しており、第二通水弁7が閉弁状態、再生排水弁11が開弁状態である。
 図15は、本実施例の流路制御弁1の右側面視の概略縦断面図であり、第一弁群49の再生弁12と、第二弁群50の分配弁13とが示されている。ここでは、再生工程を示しており、再生弁12が開弁状態、分配弁13も開弁状態である。なお、図15では、カム47やそのピン溝130の形状は、簡略化して示しており、実際とは異なる。
 第一弁群49および第二弁群50の各弁6~13は、バルブハウジング5に形成されたバルブ収容穴52(52A)に、バルブピストン53(53A)が進退可能に設けられてなる。バルブ収容穴52(52A)は、バルブハウジング5の上方へ開口するよう垂直に設けられている。
 第一弁群49を構成する各弁の内、再生弁12を除いた各弁(第一通水弁6、第二通水弁7およびバイパス弁8)は、互いに同一の構成である。具体的には、図11~図14に基づき、以下に説明する。なお、バルブ収容穴52は、前述したとおりバルブハウジング5の上方へ開口するが、その開口部の側(つまり上方)を基端側、これと反対側(つまり下方)を先端側ということがある。
 バルブ収容穴52は、段付き穴に形成されており、上方に大径穴115、下方に小径穴116が配置される。バルブ収容穴52の小径穴116内の上部は、弁座部67として機能する。但し、弁座部67として、場合により、バルブ収容穴52の段付き部を利用してもよい。
 バルブ収容穴52の大径穴115の下部には、周方向等間隔に複数のリブ117が設けられており、各リブ117は大径穴115の周側壁から径方向内側へ突出すると共に、大径穴115の軸方向へ沿って形成されている。これにより、バルブピストン53の下端部は、各リブ117の径方向内側への突出先端部に案内されて、バルブ収容穴52の軸線に沿って移動可能とされる。
 バルブ収容穴52には、その軸方向に離隔した位置に、そのバルブ収容穴52に対する流体の出入口となる第一開口56と第二開口57とが形成されている。第一開口56は、小径穴116の下方(周側壁または下壁)に設けられ、第二開口57は、大径穴115の周側壁に設けられている。
 図10を参照して、第一通水弁6は、第一開口56が上部通水口17と連通し、第二開口57が原水入口22と連通する。第二通水弁7は、第一開口56が下部通水口19と連通し、第二開口57が処理水出口23と連通する。バイパス弁8は、第一開口56が処理水出口23と連通し、第二開口57が原水入口22と連通する。
 バルブ収容穴52には、バルブピストン53が進退可能に設けられる。バルブピストン53は、段付き円柱状とされ、下方の大径部118と、上方の小径部119とを備える。大径部118の軸方向両端部は、さらに大径の拡径部120,121とされており、その外周部には円環状溝が形成されている。そして、下方の円環状溝に第一シール材77が設けられ、上方の円環状溝に第二シール材78が設けられる。各シール材77,78は、たとえば、断面X字形状の円環状のXリングである。
 バルブピストン53の下方の拡径部121は、第一シール材77が装着されており、バルブ収容穴52の大径穴115の下部において各リブ117に案内されて上下動すると共に、小径穴116の上部にはめ込み可能とされている。一方、バルブピストン53の上方の拡径部120は、第二シール材78が装着されており、バルブキャップ83の筒部85を摺動する。
 バルブピストン53の小径部119の上端面には、上方へのみ開口してネジ穴122が形成されている。このネジ穴122には、後述するように、ピストンフック123が取付可能とされる。一方、バルブピストン53の大径部118には、上下に貫通して連通穴76が形成されている。この連通穴76は、大径部118の下端面へ開口すると共に、大径部118と小径部119との段付き面において周方向複数箇所に開口する。
 バルブ収容穴52には、バルブピストン53が組み入れられて、バルブキャップ83で開口部を封止される。バルブキャップ83は、略矩形の上板124を備え、その下面には、下方へ延出して円筒状の筒部85が一体形成されている。バルブキャップ83は、バルブ収容穴52の上部開口(大径穴115の上部)に筒部85をはめ込んで取り付けられる。その際、バルブキャップ83の上板124の下面が、バルブ収容穴52の周側壁の上面に当接される。また、上板124を介してバルブハウジング5にネジ125をねじ込むことで、両者は一体化される。この際、バルブハウジング5とバルブキャップ83との隙間は、Oリング88により封止される。このようにして、バルブキャップ83は、バルブ収容穴52の上端部に着脱可能に取り付けられる。
 バルブキャップ83には、バルブピストン53の小径部119が水密状態で通される。つまり、バルブキャップ83の上板124は、中央部に貫通穴を有し、その貫通穴にバルブピストン53の小径部119が通される。バルブキャップ83に保持されたOリング126により、バルブピストン53とバルブキャップ83との隙間が封止される。なお、このOリング126は、バルブキャップ83の下方から装着され、バルブキャップ83の上板124の下面に取り付けられるシール押え127にて保持される。
 バルブピストン53の小径部119には、前述したとおり、上方へ開口してネジ穴122が形成されており、このネジ穴122には、ピストンフック123が取り付けられる。このピストンフック123を介して、バルブピストン53をレバー128により上下動させることができる。
 具体的には、バルブハウジング5の上部には、カムシャフト48の前後に、カムシャフト48と平行に、レバーシャフト129が設けられており、各レバーシャフト129には、複数のレバー128が揺動可能に設けられている。そして、各レバー128は、一端部がバルブピストン53の上端部のピストンフック123に揺動可能に保持される一方、他端部のピンがカム47の側面のピン溝130に係合される。これにより、カム47の側面のピン溝130の形状に応じて、レバー128がレバーシャフト129まわりに動くことで、バルブピストン53を上下動させることができる。
 図11に示されるように、本実施例では、四つのカム47が配置されており、その一端面に、第一弁群49の各弁を操作するレバー128が係合され、他端面に、第二弁群50の各弁を操作するレバー128が係合される。
 図14の右側に示すように、バルブピストン53を下方へ押し込んで、バルブ収容穴52の小径穴116にバルブピストン53の下方の拡径部121(第一シール材77)をはめ込んだ状態では、第一開口56と第二開口57との連通が遮断される。逆に、図13の右側に示すように、バルブピストン53を上方へ引き上げて、バルブ収容穴52の小径穴116からバルブピストン53の下方の拡径部121を引き抜いた状態では、第一開口56と第二開口57との連通が確保される。
 バルブピストン53の上方の拡径部120(第二シール材78)は、バルブキャップ83の筒部85にはめ込まれ、筒部85内を摺動する。バルブピストン53とバルブキャップ83の筒部85との間に、チャンバ94が形成される(図14)。このチャンバ94は、バルブピストン53の連通穴76(図12)を介して第一開口56の側と連通する。従って、閉弁状態において、チャンバ94は、バルブピストン53の連通穴76を介して先端側の第一開口56と連通し、バルブピストン53にかかる開弁方向と閉弁方向の流体圧力の一部または全部をバランスさせる。これにより、第一開口56が流体入口側(高圧側)として使用された場合でも、開閉に必要な駆動力を低減することができる。
 第二弁群50を構成する各弁(再生排水弁11、逆洗排水弁9、洗浄排水弁10および分配弁13)の他、第一弁群49の再生弁12は、第一弁群49を構成する再生弁12以外の各弁(第一通水弁6、第二通水弁7およびバイパス弁8)よりも小さいが、それら各弁6~8と基本的には同様の構成である。そこで、以下では両者の異なる点を中心に説明し、対応する箇所には同一の符号を付して説明する。但し、再生弁12を除く第一弁群49の各弁の構成と、第二弁群50の各弁(および第一弁群49の再生弁12)の構成とを一応区別できるように、後者の構成には添え字「A」を付している。たとえば、第一弁群49のバルブピストンは「バルブピストン53」として示すが、第二弁群50のバルブピストンは「バルブピストン53A」として示している。
 図10を参照して、再生弁12は、第一開口56Aがエゼクタ30の吸引口38と連通し、第二開口57Aが再生剤口40と連通する。分配弁13は、第一開口56Aがエゼクタ30の出口と連通し、第二開口57Aが下部通水口19と連通する。再生排水弁11は、第一開口56Aが中央通水口21と連通し、第二開口57Aが排水口25と連通する。逆洗排水弁9は、第一開口56Aが上部通水口17と連通し、第二開口57Aが排水口25と連通する。洗浄排水弁10は、第一開口56Aが下部通水口19と連通し、第二開口57Aが排水口25と連通する。
 図12に示すように、再生弁12を除く第一弁群49の各弁6~8では、バルブピストン53の連通穴76は、大径部118の下端面と段付き面とに開口して形成されたが、第二弁群50の各弁9,10,11,13と第一弁群49の再生弁12では、バルブピストン53Aの連通穴76Aは、大径部118Aの下端面と小径部119Aの周側面に開口して形成される。つまり、小径部119Aの周側壁の下部には、周方向複数箇所に開口が形成されており、各開口が連通穴76Aの上部開口となる。そして、その連通穴76Aは、バルブピストン53Aの下端面へも開口する。また、第二弁群50の各弁9,10,11,13と第一弁群49の再生弁12では、バルブピストン53Aの大径部118Aと小径部119Aとは、ほぼ同一の直径とされる。
 その他、バルブキャップ83(83A)やバルブピストン53(53A)のデザインなどにおいて、第一弁群49と第二弁群50の各弁6~13は若干異なるものの、基本的な相違はないので、説明は省略する。
 図16は、エゼクタ30とその周辺部品の他、一部のギア131を取り外した状態の分解斜視図である。また、図17は、エゼクタ本体34の部品図であり、その縦断面図とX-X断面図とを示している。さらに、図18は、ノズル35の部品図であり、その縦断面図と右側面図とを示している。
 エゼクタ収容部51は、再生弁12と分配弁13との間、言い換えれば、図11または図16において、バルブハウジング5の前後方向中央部の右側下部に設けられる、この箇所には、図16に示すように、バルブハウジング5の右側へ開口してエゼクタ収容穴95が形成されており、このエゼクタ収容穴95に、エゼクタ本体34、ノズル35、定流量弁33およびストレーナ32などが組み入れられて、蓋材98で開口部を封止される。
 本実施例2では、エゼクタ収容穴95は、エゼクタ本体収容穴95aとストレーナ収容穴95bとからなる。エゼクタ本体収容穴95aとストレーナ収容穴95bとは、前後に隣接して平行に配置され、バルブハウジング5の右側部から左側へ向けて設けられる。なお、ストレーナ収容穴95bの先端部は、閉塞されている。また、エゼクタ本体収容穴95aとストレーナ収容穴95bとは、基端部(蓋材98で開閉される開口部の側)においてのみ、連通している。
 エゼクタ本体収容穴95aには、エゼクタ本体34、ノズル35および定流量弁33が順に組み入れられる。また、エゼクタ本体34の先端側には、分配プレート132も配置される。この分配プレート132は、エゼクタ30からの再生剤を、第一再生路43と第二再生路44とに均等に分配するための部品である。
 一方、ストレーナ収容穴95bには、Oリング133を介して、ストレーナ32が組み入れられる。そして、エゼクタ本体収容穴95aとストレーナ収容穴95bとは、共通の蓋材98で開口部を封止される。この際、蓋材98を介してバルブハウジング5にネジ134をねじ込むことで、蓋材98はバルブハウジング5に着脱可能に設けられる。また、エゼクタ本体34とバルブハウジング5のエゼクタ本体収容穴95aとの隙間が、Oリング105で封止される。同様に、エゼクタ本体34とノズル35との隙間、およびこれらとエゼクタ本体収容穴95aとの隙間が、Oリング106で封止される。さらに、バルブハウジング5と蓋材98との隙間も、Oリング107で封止される。
 図17に示すように、エゼクタ本体34は、略円筒状で、その中空穴は、基端側へ開口する円筒部135と、この円筒部135の先端部に先細りに形成されるテーパ部136と、このテーパ部136の中央部に軸方向へ沿って形成されるスロート部36と、このスロート部36の先端部に先端側へ行くに従って拡径するディフューザ部37とを備える。また、円筒部135には、その周側壁に吸引口38が形成されている。
 図18に示すように、ノズル35は、段付き円筒状に形成され、基端側から先端側へ向けて順に、大径部137、小径部138および円錐台状部139が形成されている。ノズル35の内穴も、先端側へ行くに従って順次縮径して形成されており、先端部にノズル孔140が形成されている。
 ノズル35の大径部137の基端部には、周方向等間隔に、基端側へ延出して脚部141が形成されている。この脚部141は、エゼクタ本体収容穴95aにおけるエゼクタ30(エゼクタ本体34とノズル35)の位置決めを図ると共に、エゼクタ本体収容穴95aの基端部にストレーナ32からの駆動水の流入空間を確保する。
 ノズル35の大径部137内には、定流量弁33がはめ込まれる。定流量弁33は、円板の中央部に貫通孔を形成したゴムオリフィスである。一方、ストレーナ32は、円筒状で、周側壁が網状に形成されている。
 エゼクタ収容部51の蓋材98には、駆動水入口配管142が設けられ、駆動水は、ストレーナ32の内側へ供給される。その水は、ストレーナ32の内側から外側へ抜け、エゼクタ本体収容穴95aの基端部から先端側へ進み、ノズル35から噴出される。これに伴い、再生剤口40から再生剤が吸引口38に引き込まれ、再生剤と駆動水との混合水がエゼクタ30から吐出される。
 前述したように、第一弁群49および第二弁群50の各弁6~13は、カム47によりレバー128を介して開閉を操作される。つまり、カムシャフト48には、各弁6~13と対応してカム47が設けられており、そのカム47の側面にはピン溝130が形成されている。一方、レバー128は、一端部がバルブピストン53(53A)の上端部のピストンフック123(123A)に保持される一方、他端部のピンがカム47の側面のピン溝130に係合している。従って、本実施例2では、スプリングを用いることなく、レバー128により、バルブピストン53(53A)を直接に上下動させることができる。
 カムシャフト48の回転に伴い、レバー128がバルブピストン53(53A)を下方へ押し込めば、小径穴116(116A)にバルブピストン53(53A)の下端部がはめ込まれて、閉弁状態となる。逆に、カムシャフト48の回転に伴い、レバー128がバルブピストン53(53A)を上方へ引き上げれば、小径穴116(116A)からバルブピストン53(53A)の下端部が抜かれて、開弁状態となる。
 各弁6~13に対応するピン溝130の形状を変えることで、図2に示すような開閉状態に制御することができる。カム47の回転は、カムシャフト48をモータで回転させることで行われる。具体的には、モータを回転させると、その回転力は減速歯車列109を介してカムシャフト48に伝達され、カム47を回転させることができる。なお、カム47は、工程ごとに間欠的に回転される。
 カムシャフト48には、図11に示すように、二枚のセンサ板143,144が設けられている。第一のセンサ板143には、周方向一箇所に原点検出用の切欠き113が形成され、第二のセンサ板144には、各工程位置と対応して工程検出用の切欠き114が形成されている。そして、これらセンサ板143,144の各切欠き113,114は、フォトインタラプタのようなフォトセンサ(図示省略)で読取可能とされている。従って、カム47の原点位置や現在位置(言い換えればどの工程を実行中か)をセンサで確認可能である。また、このような工程位置を目視で確認できるように、カムシャフト48の端部に、工程指示板145を設けている。
 ところで、前記各実施例において、流路制御弁1のバルブハウジング5、バルブフレーム58(58A)、バルブピストン53(53A)およびバルブキャップ83(83A)などは、樹脂成形部品である。これら部品には、OリングやXリングのようなシールリングが装着されて、他の部材との隙間を封止する箇所がある。たとえば、バルブピストン53(53A)には、第一シール材77(77A)や第二シール材78(78A)が装着されて、弁座部67や筒部85との隙間を封止される。
 従来、樹脂成形部品での流体シール構造は、樹脂成形部品に円環状溝を形成しておき、そこにシールリングをはめ込んでいる。但し、この方法では、摺動する二部材間にシールリングが挟み込まれていることが条件となり、そうでない場合には、流体の流速による負圧のため、円環状溝からシールリングが外れるおそれがある。これを防止するには、シールリングは、樹脂成形部品に取り付けられる内径側を大きく形成して、円環状溝に引っ掛けられる必要があった。
 これに対し、樹脂成形部品146のプラスチックと、シールリング147のゴムとを分子間結合させてもよい。具体的には、たとえば図19から図24に示す各種形状で、樹脂成形部品146をゴム成形金型にセットし、ゴムの加硫反応を用いて樹脂とゴムとを接合することで、シールリング147を形成する。この方法では、ゴムと樹脂とはお互いの界面がほとんど存在しないので、樹脂側の成形溝などに脱落防止用の工夫は不要である。このような接合方法は、前記各実施例の各シール部に適用することができる。
 本発明の流路制御弁1は、前記各実施例の構成に限らず適宜変更可能である。たとえば、前記各実施例では、イオン交換装置2は、陽イオン交換樹脂を用いて原水中の硬度成分を除去する硬水軟化装置としたが、イオン交換装置2は、硬水軟化装置に限らず、たとえば、陰イオン交換樹脂を用いた硝酸性窒素除去装置でもよい。また、イオン交換装置2は、たとえば、陽イオン交換樹脂および陰イオン交換樹脂を用いた2床2塔式や混床塔式などの純水製造装置でもよい。
 また、前記各実施例では、流路制御弁1は八つの弁を備えたが、イオン交換装置2の構成に応じて、弁の数は変更可能である。その場合でも、第一弁群49には、第一通水弁6、第二通水弁7およびバイパス弁8が含まれ、再生弁12は、第一弁群49または第二弁群50のいずれかに含まれ、第二弁群50には、第一弁群49に含まれない残りの弁が含まれるのがよい。
 また、再生弁12と分配弁13とは、前記実施例1では隣接して配置され、前記実施例2では対向して配置されたが、前記実施例1において対向して配置したり、前記実施例2において隣接して配置したりしてもよい。
 また、各弁6~13の構成は、前記各実施例に限定されない。その場合でも、各弁6~13は、バルブハウジング5に形成されたバルブ収容穴52に、バルブピストン53が進退可能に設けられてなるのがよい。そして、バルブピストン53は、弁座部67(前記実施例2のように弁穴でもよい)に第一シール材77を当接して、第一開口56と第二開口57との連通を遮断し、その状態では、第二シール材78がバルブ収容穴52の基端部においてチャンバ94を形成し、このチャンバ94はバルブピストン53の連通穴76を介して第一開口56と連通するのがよい。
 本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上記の実施形態若しくは実施例は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は、請求の範囲によって示すものであって、明細書本文には何ら拘束されない。更に、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
   1 流路制御弁
   2 イオン交換装置
   3 圧力タンク
   4 再生剤タンク
   5 バルブハウジング
   6 第一通水弁
   7 第二通水弁
   8 バイパス弁
   9 逆洗排水弁
  10 洗浄排水弁
  11 再生排水弁
  12 再生弁
  13 分配弁
  14 第一通水路
  15 第二通水路
  16 再生排水路
  17 上部通水口
  18 内管
  19 下部通水口
  20 外管
  21 中央通水口
  22 原水入口
  23 処理水出口
  24 バイパス路
  25 排水口
  26 逆洗排水路
  27 洗浄排水路
  28 定流量弁
  29 駆動水入口
  30 エゼクタ
  31 駆動水路
  32 ストレーナ
  33 定流量弁
  34 エゼクタ本体
  35 ノズル
  36 スロート部
  37 ディフューザ部
  38 吸引口
  39 再生剤路
  40 再生剤口
  41 再生剤配管
  42 再生剤流量計
  43 第一再生路
  44 第二再生路
  45 第一オリフィス
  46 第二オリフィス
  47 カム
  48 カムシャフト
  49 第一弁群
  50 第二弁群
  51 エゼクタ収容部
  52 バルブ収容穴
  53 バルブピストン
  56 第一開口
  57 第二開口
  58 バルブフレーム
  64,65 開口
  66 円環状部
  67 弁座部
  70 バルブシャフト
  76 連通穴
  77 第一シール材
  78 第二シール材
  82 スプリング
  83 バルブキャップ
  84 キャップ本体
  85 筒部(筒材)
  94 チャンバ
  95 エゼクタ収容穴
  98 蓋材
 108 モータ
 109 減速歯車列
 110 カムギア
 115 (バルブ収容穴の)大径穴
 116 (バルブ収容穴の)小径穴
 128 レバー
 129 レバーシャフト
 130 ピン溝

Claims (8)

  1.  イオン交換樹脂床を収容する圧力タンクと、前記イオン交換樹脂床の再生剤を貯留する再生剤タンクとに接続される流路制御弁であって、
     設定流路が形成されたバルブハウジングに、複数の弁が設けられ、
     前記バルブハウジングの上部に、前記各弁を操作するカムシャフトが左右方向へ沿って設けられ、
     前記カムシャフトを境に、前記複数の弁は第一弁群と第二弁群とに前後に分かれて配置され、
     前記第一弁群には、原水入口から前記圧力タンクへの第一通水路に設けた第一通水弁と、前記圧力タンクから処理水出口への第二通水路に設けた第二通水弁と、前記第一通水路と前記第二通水路とを接続するバイパス路に設けたバイパス弁とが左右に並べて配置され、
     前記イオン交換樹脂床の再生剤が通される再生剤路に設けた再生弁は、前記第一弁群または前記第二弁群のいずれかに含まれ、
     前記第二弁群には、前記第一弁群に含まれない残りの弁が左右に並べて配置される
     ことを特徴とする流路制御弁。
  2.  前記圧力タンクは、上部通水口、下部通水口および中央通水口を備え、
     前記バルブハウジングは、前記原水入口、前記処理水出口および排水口の他、前記再生剤タンクと接続される再生剤口を備え、
     前記バルブハウジングには、前記再生剤タンクから再生剤を吸引するエゼクタが設けられ、
     前記エゼクタの出口側の流路は、前記上部通水口への第一再生路と、前記下部通水口への第二再生路とに分岐しており、
     前記原水入口から前記上部通水口への前記第一通水路に設けられる前記第一通水弁と、
     前記下部通水口から前記処理水出口への前記第二通水路に設けられる前記第二通水弁と、
     前記第一通水弁よりも前記原水入口側の前記第一通水路と、前記第二通水弁よりも前記処理水出口側の前記第二通水路とを接続する前記バイパス路に設けられる前記バイパス弁と、
     前記上部通水口から前記排水口への逆洗排水路に設けられる逆洗排水弁と、
     前記下部通水口から前記排水口への洗浄排水路に設けられる洗浄排水弁と、
     前記中央通水口から前記排水口への再生排水路に設けられる再生排水弁と、
     前記再生剤口から前記エゼクタの吸引口への再生剤路に設けられる前記再生弁と、
     前記第二再生路に設けられる分配弁とを備え、
     前記第一弁群は、前記第一通水弁、前記第二通水弁および前記バイパス弁を備え、
     前記第二弁群は、前記逆洗排水弁、前記洗浄排水弁、前記再生排水弁、前記分配弁を備え、
     前記再生弁は、前記第一弁群または前記第二弁群のいずれかに含まれる
     ことを特徴とする請求項1に記載の流路制御弁。
  3.  前記第一弁群および前記第二弁群における各弁の配置として、
     前記バイパス弁は、前記第一通水弁と前記第二通水弁との間に配置され、
     前記逆洗排水弁と前記洗浄排水弁とが隣接して配置され、これと隣接して前記再生排水弁が配置され、
     前記再生弁と前記分配弁とが隣接するか向かい合うよう配置され、
     前記原水入口および前記処理水出口は、前記第一弁群の側に設けられ、
     前記排水口は、前記第二弁群の側に設けられる
     ことを特徴とする請求項2に記載の流路制御弁。
  4.  前記各弁は、前記バルブハウジングに形成されたバルブ収容穴に、バルブピストンが進退可能に設けられてなり、
     前記バルブ収容穴には、その軸方向に離隔した位置に、そのバルブ収容穴に対する流体の出入口となる第一開口と第二開口とが形成されると共に、その間に、弁座部が設けられ、
     前記バルブピストンには、その軸方向に離隔した位置に、第一シール材と第二シール材とが設けられ、
     前記弁座部に前記第一シール材を当接して、先端側の前記第一開口と基端側の前記第二開口との連通を遮断し、その状態では、前記第二シール材が前記バルブ収容穴の基端部においてチャンバを形成し、このチャンバは前記バルブピストンの連通穴を介して前記第一開口と連通する
     ことを特徴とする請求項1~3のいずれか1項に記載の流路制御弁。
  5.  前記バルブ収容穴は、前記バルブハウジングの前後方向外側へ開口するよう水平に設けられると共に、その周側壁下部に、前記第一開口と前記第二開口とが設けられ、
     前記バルブ収容穴は、バルブフレーム、前記バルブピストンおよびスプリングが順に組み入れられて、着脱可能なバルブキャップで開口部を封止され、
     前記バルブフレームは、周側壁に開口が形成された略筒状で、その内穴を介してのみ前記第一開口と前記第二開口とを連通させ、軸方向中途部に円環状の弁座部が設けられ、先端部にバルブシャフトが水密状態で進退可能に設けられ、
     前記バルブピストンは、前記スプリングにより先端側へ付勢される一方、この付勢力に対抗して前記バルブシャフトにより基端側へ押し戻し可能とされ、
     前記バルブシャフトは、前記カムシャフトに設けたカムにより進退操作される
     ことを特徴とする請求項4に記載の流路制御弁。
  6.  前記バルブ収容穴は、前記バルブハウジングの上方へ開口するよう垂直に設けられると共に、前記弁座部より下方の周側壁または下壁に前記第一開口が形成される一方、前記弁座部より上方の周側壁に前記第二開口が形成され、
     前記バルブ収容穴は、前記バルブピストンが組み入れられて、着脱可能なバルブキャップで開口部を封止され、
     このバルブキャップには、前記バルブピストンの上端部が水密状態で通され、
     前記バルブピストンは、下端部に前記第一シール材が設けられる一方、上下方向中途部に前記第二シール材が設けられ、この第二シール材は、前記バルブキャップの筒部を摺動し、
     前記バルブピストンは、前記カムシャフトに設けたカムにより進退操作される
     ことを特徴とする請求項4に記載の流路制御弁。
  7.  前記バルブハウジングの上部には、前記カムシャフトの前後に、前記カムシャフトと平行に、レバーシャフトが設けられ、
     前記各レバーシャフトには、複数のレバーが揺動可能に設けられ、
     前記各レバーは、一端部が前記バルブピストンの上端部に保持される一方、他端部が前記カムの側面のピン溝に係合しており、このピン溝の形状に応じて前記一端部を上下動させる
     ことを特徴とする請求項6に記載の流路制御弁。
  8.  前記バルブハウジングは、前記再生剤タンクから再生剤を吸引するエゼクタを備え、
     このエゼクタは、エゼクタ本体とこれへのノズルとを備え、
     前記ノズルへの給水路には、ストレーナおよび定流量弁が設けられ、
     前記バルブハウジングに形成されたエゼクタ収容穴は、前記エゼクタ本体、前記ノズル、前記ストレーナおよび前記定流量弁が組み入れられて、着脱可能な蓋材で開口部を封止される
     ことを特徴とする請求項4に記載の流路制御弁。
PCT/JP2012/075099 2012-09-28 2012-09-28 流路制御弁 WO2014049836A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280075328.9A CN104583133B (zh) 2012-09-28 2012-09-28 流路控制阀
JP2013529504A JP5397842B1 (ja) 2012-09-28 2012-09-28 流路制御弁
KR1020157036059A KR101846980B1 (ko) 2012-09-28 2012-09-28 유로 제어 밸브
PCT/JP2012/075099 WO2014049836A1 (ja) 2012-09-28 2012-09-28 流路制御弁
KR1020157001701A KR101603960B1 (ko) 2012-09-28 2012-09-28 유로 제어 밸브
US14/422,662 US9260324B2 (en) 2012-09-28 2012-09-28 Flow passage control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/075099 WO2014049836A1 (ja) 2012-09-28 2012-09-28 流路制御弁

Publications (1)

Publication Number Publication Date
WO2014049836A1 true WO2014049836A1 (ja) 2014-04-03

Family

ID=50112358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075099 WO2014049836A1 (ja) 2012-09-28 2012-09-28 流路制御弁

Country Status (5)

Country Link
US (1) US9260324B2 (ja)
JP (1) JP5397842B1 (ja)
KR (2) KR101603960B1 (ja)
CN (1) CN104583133B (ja)
WO (1) WO2014049836A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062605A (ja) * 2012-09-21 2014-04-10 Miura Co Ltd 流路制御弁
JP2014062606A (ja) * 2012-09-21 2014-04-10 Miura Co Ltd 流路制御弁

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081033B (zh) * 2012-02-13 2017-05-17 现代重工业株式会社 气体注入用单向阀驱动装置
FR3032134B1 (fr) * 2015-02-03 2017-05-19 Exel Ind Dispositif de distribution pour un pulverisateur agricole
CN105728065B (zh) * 2016-01-08 2018-07-10 美的集团股份有限公司 软水树脂的再生方法
WO2017140849A1 (de) * 2016-02-19 2017-08-24 Fresenius Kabi Deutschland Gmbh Ventileinheit für eine anlage zur herstellung einer medizinischen zubereitung
US11673092B2 (en) 2016-06-16 2023-06-13 Topper Manufacturing Corporation Reverse osmosis system control valves
US11000807B2 (en) * 2016-06-16 2021-05-11 Topper Manufacturing Corporation Reverse osmosis system control valves
JP2018030082A (ja) * 2016-08-24 2018-03-01 トヨタ紡織株式会社 イオン交換器
CN108105423B (zh) * 2017-12-11 2020-07-07 卡川尔流体科技(上海)有限公司 一种星型缸筒式混液阀
CN109052739B (zh) * 2018-10-09 2024-03-29 南京福碧源环境技术有限公司 一种过滤除垢分流控制阀
US10788143B2 (en) * 2018-10-15 2020-09-29 Schaeffler Technologies AG & Co. KG Cam actuated coolant control valve
KR20210026945A (ko) * 2019-09-02 2021-03-10 삼성전자주식회사 정수기 및 정수기용 필터
JP7176752B2 (ja) * 2019-10-29 2022-11-22 株式会社不二工機 電動弁
WO2023159473A1 (zh) * 2022-02-25 2023-08-31 广东美的白色家电技术创新中心有限公司 软水阀和软水机
CN114658896B (zh) * 2022-03-23 2023-07-18 浙江迦南科技股份有限公司 一种清洗泵站用带有防堵塞结构的组合式阀门

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794061A (en) * 1971-11-08 1974-02-26 Aqua Chem Inc Water softener valve
JPS5058050U (ja) * 1973-10-01 1975-05-30
JPS5939382A (ja) * 1982-08-27 1984-03-03 オート トロール コーポレーシヨン 硬水軟化装置の制御方法及び装置
JPS6467294A (en) * 1987-09-07 1989-03-13 Miura Kogyo Kk Passage-controlling valve mechanism of piston type for water softener or the like
JPH09297150A (ja) * 1996-04-30 1997-11-18 Miura Co Ltd 位置検出装置及び水処理装置
JPH09296879A (ja) * 1996-05-01 1997-11-18 Miura Co Ltd 軟水器のバルブ構造
JP2002028646A (ja) * 2000-07-13 2002-01-29 Maruyama Seisakusho:Kk 硬水軟化装置における自動再生バルブ
JP2009525864A (ja) * 2006-02-08 2009-07-16 ジーイー・オズモニクス・インコーポレイテッド 水処理システム用二分割型弁体
JP2009172461A (ja) * 2008-01-21 2009-08-06 Miura Co Ltd 位置検出装置
JP2010060130A (ja) * 2008-08-05 2010-03-18 Miura Co Ltd 弁とこれを用いた流体処理装置
JP2012157793A (ja) * 2011-01-28 2012-08-23 Miura Co Ltd イオン交換装置
JP2012166132A (ja) * 2011-02-10 2012-09-06 Miura Co Ltd イオン交換装置
JP2012170932A (ja) * 2011-02-23 2012-09-10 Miura Co Ltd イオン交換装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2012194A (en) * 1927-06-06 1935-08-20 Permutit Co Water softening apparatus
US2616446A (en) * 1948-08-06 1952-11-04 Boles B Ivanek Valve for liquid treating apparatus
US2662549A (en) * 1949-05-02 1953-12-15 Belco Ind Equipment Division I Multiport valve
JPS6231781A (ja) 1985-08-02 1987-02-10 Showa Mfg Co Ltd 流路切換弁
US5162080A (en) 1991-10-16 1992-11-10 Ecowater Systems, Inc. Rotary flow control valve
CA2249978C (en) * 1996-01-26 2002-03-12 Autotrol Corporation Adaptable control valve for fluid treatment system
JP3525900B2 (ja) 2001-02-13 2004-05-10 三浦工業株式会社 家庭用軟水装置の再生制御方法
JP2007078092A (ja) 2005-09-15 2007-03-29 Miura Co Ltd バルブ
US7735805B2 (en) * 2006-03-03 2010-06-15 Boyd Cornell Water control valve
JP4844724B2 (ja) * 2006-03-29 2011-12-28 三浦工業株式会社 イオン交換装置の制御方法
JP4807193B2 (ja) 2006-09-04 2011-11-02 三浦工業株式会社 軟水装置
CA2639981C (en) 2007-10-02 2012-11-27 Culligan International Company Electronic bypass system for a fluid treatment system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794061A (en) * 1971-11-08 1974-02-26 Aqua Chem Inc Water softener valve
JPS5058050U (ja) * 1973-10-01 1975-05-30
JPS5939382A (ja) * 1982-08-27 1984-03-03 オート トロール コーポレーシヨン 硬水軟化装置の制御方法及び装置
JPS6467294A (en) * 1987-09-07 1989-03-13 Miura Kogyo Kk Passage-controlling valve mechanism of piston type for water softener or the like
JPH09297150A (ja) * 1996-04-30 1997-11-18 Miura Co Ltd 位置検出装置及び水処理装置
JPH09296879A (ja) * 1996-05-01 1997-11-18 Miura Co Ltd 軟水器のバルブ構造
JP2002028646A (ja) * 2000-07-13 2002-01-29 Maruyama Seisakusho:Kk 硬水軟化装置における自動再生バルブ
JP2009525864A (ja) * 2006-02-08 2009-07-16 ジーイー・オズモニクス・インコーポレイテッド 水処理システム用二分割型弁体
JP2009172461A (ja) * 2008-01-21 2009-08-06 Miura Co Ltd 位置検出装置
JP2010060130A (ja) * 2008-08-05 2010-03-18 Miura Co Ltd 弁とこれを用いた流体処理装置
JP2012157793A (ja) * 2011-01-28 2012-08-23 Miura Co Ltd イオン交換装置
JP2012166132A (ja) * 2011-02-10 2012-09-06 Miura Co Ltd イオン交換装置
JP2012170932A (ja) * 2011-02-23 2012-09-10 Miura Co Ltd イオン交換装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062605A (ja) * 2012-09-21 2014-04-10 Miura Co Ltd 流路制御弁
JP2014062606A (ja) * 2012-09-21 2014-04-10 Miura Co Ltd 流路制御弁

Also Published As

Publication number Publication date
US20150225259A1 (en) 2015-08-13
KR20160005374A (ko) 2016-01-14
KR20150015050A (ko) 2015-02-09
KR101603960B1 (ko) 2016-03-16
KR101846980B1 (ko) 2018-04-09
JPWO2014049836A1 (ja) 2016-08-22
CN104583133B (zh) 2016-05-04
US9260324B2 (en) 2016-02-16
JP5397842B1 (ja) 2014-01-22
CN104583133A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
JP5397842B1 (ja) 流路制御弁
JP5984007B2 (ja) 流路制御弁
WO2014015783A1 (zh) 控流器及具有该控流器的水处理系统
MX2007000110A (es) Valvula de control de flujo multifuncional para sistemas de tratamiento de agua.
WO2014204000A1 (ja) 浄水カートリッジ及び浄水器
WO2007023796A1 (ja) イオン交換装置
KR100210722B1 (ko) 회전식 유동제어밸브
JP6066044B2 (ja) 流路制御弁
CN106955748B (zh) 水处理系统
KR100630372B1 (ko) 여과장치
JP2014231040A (ja) イオン交換装置及び純水製造装置
JP2014231039A (ja) イオン交換装置及び純水製造装置
CN201162848Y (zh) 水处理用全自动液压控制多路集成阀
JP6123483B2 (ja) 濾過装置
JP5369932B2 (ja) 弁とこれを用いた流体処理装置
CN105731595B (zh) 离子交换装置
CN110862166A (zh) 多功能水处理机
JP6123482B2 (ja) 流路制御弁
CN214495813U (zh) 软水系统
RU2556923C2 (ru) Устройство для очистки жидкости
US11192797B1 (en) Piston valve with annular passages
JP5754157B2 (ja) イオン交換装置
US11807564B1 (en) Piston valve with annular passages
CN216092473U (zh) 过滤器及用水系统
JP3098758B2 (ja) 浄水器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280075328.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013529504

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157001701

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201500898

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 14422662

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885806

Country of ref document: EP

Kind code of ref document: A1