WO2014047752A1 - 一种不饱和化合物选择加氢催化剂 - Google Patents

一种不饱和化合物选择加氢催化剂 Download PDF

Info

Publication number
WO2014047752A1
WO2014047752A1 PCT/CN2012/001507 CN2012001507W WO2014047752A1 WO 2014047752 A1 WO2014047752 A1 WO 2014047752A1 CN 2012001507 W CN2012001507 W CN 2012001507W WO 2014047752 A1 WO2014047752 A1 WO 2014047752A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
acid
group viii
group
compound
Prior art date
Application number
PCT/CN2012/001507
Other languages
English (en)
French (fr)
Inventor
张学军
马安
袁晓亮
侯远东
孙洪磊
吴平易
张茵
朴佳锐
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210367401.1A external-priority patent/CN103143366B/zh
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Priority to US14/432,144 priority Critical patent/US9422486B2/en
Publication of WO2014047752A1 publication Critical patent/WO2014047752A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • C10G45/36Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/38Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • B01J35/613
    • B01J35/615
    • B01J35/633
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used

Definitions

  • This invention relates to a selective hydrogenation catalyst for unsaturated compounds.
  • the raw materials may contain a certain amount of sulfides in addition to the unsaturated compounds, all or part of which are light sulfides, which may be under the action of the hydrogenation catalyst and the raw materials.
  • the polyunsaturated compounds react to form heavy sulfides which can be removed by fractional distillation.
  • the polyunsaturated compounds in the above materials are very unstable in nature and are easily polymerized during storage and subsequent processing. This portion of the polyunsaturated compound can be selectively hydrogenated to a monounsaturated compound by the action of a hydrogenation catalyst.
  • the polyunsaturated compound is hydrogenated to a monounsaturated compound
  • a small amount of the polyunsaturated compound or the monounsaturated compound is hydrogenated to a saturated compound, and the optimization of the catalyst can minimize the occurrence of the reaction.
  • CN03815240 A method of selectively hydrogenating a polyunsaturated compound to a monounsaturated compound using a homogeneous catalyst is proposed. This method uses at least one salt selected from the group consisting of transition metal elements of Groups ⁇ , ⁇ , VB, VIB, VIIB and VIII of the Periodic Table of the Elements, at least one ligand and at least one organometallic reducing agent.
  • a selective hydrogenation process for a catalyst having controlled porosity employs a supported catalyst comprising at least one Group VIB metal and at least one Group VIII non-noble metal used in a sulfided form, deposited on a support, having controlled porosity, wherein:
  • the weight content of the oxide of the group VIB element is strictly higher than 12% by weight, the weight content of the oxide of the element of the group VIII is less than 15% by weight, the metal component of the catalyst has a degree of vulcanization of at least 60%, and the diameter is greater than 0.
  • the pore volume of the catalyst of 05 microns is 10 to 40% of the total pore volume.
  • a selective hydrogenation process using a sulfurization catalyst employs a catalyst comprising at least one Group VIB metal and at least one Group VIII non-noble metal deposited on a support, wherein: the Group VIB element has an oxide content strictly above 12% by weight, a Group VIII element 5 ⁇ / ⁇ The molar ratio of the metal component is 0. 2 ⁇ 0. 5mol / mol.
  • CN200610064397. 6 respectively, a selective hydrogenation process using a catalyst of a specific support, which uses a supported catalyst comprising at least one Group VIB metal and at least one Group VIII non-used in a sulfur-containing form Precious metals which are deposited on a special support containing a ruthenium metal aluminate selected from the group consisting of nickel and cobalt.
  • CN200910170584. 6 proposes a selective hydrogenation process using a sulfurization catalyst having a defined composition comprising at least one Group VIB metal supported on alumina and at least one Group VII I non-noble metal, Wherein the Group VIB metal oxide is 4% to 20% by weight of the catalyst ; the Group VIII non-noble metal oxide is less than 15% by weight of the catalyst; and the molar ratio of the Group VIII non-noble metal to the Group VIB metal The total pore volume of the catalyst is 0. 4 ⁇ 1. 4 cmVg.
  • a catalyst for selective hydrogenation of unsaturated compounds which is a supported catalyst, characterized in that the support is supported on at least one Group VIB metal and at least one Group VIII non-noble metal, wherein:
  • the amount of the oxide of the group VIB element is 4% to 10% by weight, preferably 6% to 8%;
  • the amount of the Group VIII non-precious element oxide is 6% to 15% by weight, preferably 8% to 12% by weight ;
  • the ratio of B acid to L acid in the acid center of the catalyst surface B, 6 / L ⁇ is not more than 0.4, preferably 0.05 0.3; the ratio of weak L acid and strong L acid in the acid center of the catalyst surface is L / L is 0.5 ⁇ 2.0 Preferably, it is 0.5 to 1.5; the carrier is alumina or mainly alumina.
  • the molar ratio of the Group VIII non-noble metal to the Group VIB metal oxide in the catalyst is preferably more than 3.0, 5.0 mol/mol or less, particularly 3.2 or more and 5.0 mol/mol or less; group VIII element density of not less than 8 X 10 "4 g of the group VIII element oxide / m 2 catalyst, especially not less than 10X 10" 4 g of the group VIII element oxide / m 2 of catalyst, would be better.
  • Unsaturated compounds in the processing raw materials are prone to polymerization to form colloidal precursors such as colloids under the action of the acid center of the catalyst. These materials will cover the surface active center of the catalyst and affect the catalytic action.
  • the catalyst has a certain acid center. Therefore, in the design of the catalyst, in order to meet the requirements of different reactions, it is necessary to adjust the composition of the acidic center of the catalyst and the distribution of strong and weakly acidic centers.
  • the invention does not limit the method for adjusting the ratio of B acid to L acid in the acid center of the catalyst surface, the ratio of weak L acid and strong L acid, and is also introduced in the book "Hydrogenation Process and Engineering” published by the petrochemical press.
  • the technique of the present invention for example, the modification of the carrier by using a non-metal oxide, the hydrothermal treatment of the catalyst carrier, etc., may be carried out by the present invention, but is not limited to the above method. Therefore, the present invention does not particularly limit the carrier composition as long as it satisfies the ratio of the B acid to the L acid, the ratio of the weak L acid and the strong L acid which satisfy the requirements of the present invention.
  • the carrier recommended by the present invention is alumina or predominantly alumina.
  • the alumina content is preferably not less than 80% by weight, more preferably not less than 90% by weight.
  • different alumina crystal forms, total pore volume, specific surface area may be selected, and the crystal form is preferably ⁇ , ⁇ , ⁇ or above mixed crystal.
  • Different carrier compositions there are many ways to adjust the surface acid center, which is the basic means of carrier modification. except In addition to Hydrogenation Process and Engineering, there is a large amount of literature on the regulation of the acid center of the carrier surface, such as
  • the catalyst carrier is prepared by a method known in the art: if necessary, the carrier may be modified with a non-metal oxide or a precursor, or the obtained carrier may be treated with steam at 400 to 600 ° C for 4 to 6 hours. It can also be calcined at 500 to 700 ° C or 700 to 900 ° C or 900 to 1100 for 4 to 6 hours.
  • the total pore volume of the catalyst is preferably 0.2 ⁇ 0.5cm 3 / g, more preferably 0.2 cm 3 /g ⁇ 0.45cm 3 / g, most preferably 0.2 cm 3 /g ⁇ 0.39cm 3 / g.
  • the specific surface of the catalyst is preferably 50 to 200 m 2 /g, more preferably 50 to 150 m 2 /g.
  • the acid center of the catalyst was analyzed by pyridine infrared analysis. This method is described in detail in Chapter 7, In-situ Infrared Spectroscopy, of Modern Catalytic Research Methods published by Science Press. Other indicators use well-known analytical and computational methods in the industry.
  • the catalyst carrier can be prepared by various techniques such as tableting, kneading, rolling into balls, extrusion, and spray molding.
  • the catalyst support may be modified by various technical means to meet the requirements of the catalyst for the properties of the catalyst.
  • the present invention does not particularly limit the preparation method of the catalyst, and a general impregnation method such as a salt of the active component nickel and/or molybdenum may be added to water or other solution capable of forming a complex to prepare an active metal impregnation. Solution.
  • the catalyst carrier is impregnated with an active metal impregnation solution, then dried at 120 to 300 ° C, and calcined at 400 to 800 ° C.
  • the invention optimizes the surface acid distribution of the catalyst by selecting the active component of the catalyst, in particular, further selecting a suitable catalyst group VI II/VIB metal ratio, the non-precious metal density of the group VIII per unit catalyst surface area, and improving the hydrogenation of the polyunsaturated compound. Conversion and selectivity increase the isomerization rate of monounsaturated compounds. Isoolefins generally have higher stability and higher octane numbers, which are often very important for improving the properties of unsaturated compounds or mixtures containing unsaturated compounds.
  • the catalyst is first vulcanized during use, and the vulcanization conditions are the same as in the prior art, such as converting a metal oxide into a sulfide.
  • the vulcanization conditions are generally as follows: a pressure of 0.5 MPa to 3.0 MPa, a vulcanization temperature of 200 ° C to 500 ° C, a vulcanization volume space velocity o.s i ⁇ s. oh - vulcanization under a hydrogen atmosphere and a hydrogen sulfide atmosphere.
  • the catalyst may be used under the conditions of a pressure of 1.0 to 5.0 MPa, a hydrogen/polyunsaturated compound molar ratio of 1 to 20 mol/mol, a space velocity of 2.0 to 6.0 h, and a temperature of 50 to 250 °C.
  • the use of the catalyst of the invention when treating an unsaturated compound or comprising a mixture of unsaturated compounds, allows operation at a relatively high molar ratio of hydrogen/polyunsaturated compound, such as greater than 5.0, to hydrogenate the monounsaturated compound to saturation
  • a relatively high molar ratio of hydrogen/polyunsaturated compound such as greater than 5.0
  • the polyunsaturated compound Since the polyunsaturated compound is very active, it easily undergoes an addition reaction with other compounds in the system to form a compound having a larger molecular weight.
  • the reaction system contains a sulfide, especially a light sulfide, the addition reaction of the polyunsaturated compound can produce a sulfide having a higher boiling point, and these sulfides can be removed by fractional distillation.
  • the polyunsaturated compound is selectively hydrogenated to a monounsaturated compound
  • the polyunsaturated compound can be selectively hydrogenated to a monounsaturated compound by the action of a catalyst.
  • the monounsaturated compound can undergo an isomerization reaction which helps to improve the stability of the monounsaturated compound.
  • While the polyunsaturated compound is hydrogenated to form a monounsaturated compound, a small amount of the monounsaturated compound is hydrogenated to a saturated compound. In most cases, monounsaturated compounds are desirable to be retained. Hydrogenation of monounsaturated compounds is therefore minimized by optimization of catalysts and conditions.
  • Propanthiol conversion % ( 1-propanethiol content in product / propanethiol content in raw material) *100
  • Diene conversion % (1 - Diene content in product / Diene content in raw material) *100
  • Monoene conversion % (1 - Monoene content in product / Monoolefin content in raw material) * 100
  • Monoolefin isomerization rate % isomerized olefin content / (isomerized olefin content + alkane content) *100
  • Hydrogenation selectivity % diene conversion / (diene conversion + monoene conversion) *100
  • the catalyst carrier was added to the above impregnation liquid, and after immersing for 3 hours at normal temperature, it was taken out, aged for 12 hours, then dried at 120 ° C, and calcined at 500 ° C for 4 hours to obtain a catalyst A.
  • the specific surface area of the catalyst is 148 m 2 /g, the total pore volume is 0.41 cmVg, ⁇ ', the content is 6.4%, and the NiO content is 10.6%. Comparative example 2
  • the catalyst carrier was added to the above immersion liquid, and after immersing for 3 hours at normal temperature, it was taken out, aged for 12 hours, then dried at 120 Torr, and calcined at 500 Torr for 4 hours to obtain a catalyst B.
  • the specific surface area of the catalyst is 240 m 2 /g, the total pore volume is 0.38 cmVg, the Mo0 3 content is 6.4%, and the ⁇ 0 content is 10.6%.
  • the l lg industrial ammonium molybdate was added to 80 g of water to stir and dissolve, and then 40 g of industrial nickel nitrate and 12 g of industrial citric acid were added, and stirred and dissolved to prepare a catalyst active metal impregnation liquid.
  • the catalyst carrier was added to the above immersion liquid, and after immersing for 3 hours at normal temperature, it was taken out, aged for 12 hours, then dried at 120 Torr, and 50 (TC was calcined for 4 hours to obtain a catalyst C.
  • the specific surface area of the catalyst was 101 m 2 /g, and the total pore volume was obtained. 0.38 cmVg, Mo0 3 content 5. 0%, NiO content 5.8%, more properties analysis data are shown in Table 1.
  • the catalyst carrier was added to the above immersion liquid, and after immersing for 3 hours at normal temperature, it was taken out, aged for 12 hours, then dried at 120 Torr, and calcined at 500 Torr for 4 hours to obtain a catalyst D.
  • the catalyst has a specific surface area of 101 m 2 /g, a total pore volume of 0.38 cm 7 g, a MoO 3 content of 11.0%, a NiO content of 4.0%, and more properties analysis data are shown in Table 1.
  • the catalyst carrier is added to the above immersion liquid, and after being immersed for 3 hours at normal temperature, it is taken out, aged for 12 hours, and then The mixture was dried at 120 ° C and calcined at 500 ° C for 4 hours to prepare a catalyst E.
  • the specific surface area of the catalyst is 101 m 2 /g, the total pore volume is 0.38 cmVg, the content of Mo0 3 is 6.4%, and the content of NiO is 10.6%.
  • the catalyst carrier was added to the above immersion liquid, and after immersing for 3 hours at normal temperature, it was taken out, aged for 12 hours, then dried at 120 ° C, and calcined at 500 ° C for 4 hours to obtain a catalyst F.
  • the catalyst specific surface area is 97 m 2 /g, the total pore volume is 0.35 cmVg, the MoO 3 content is 9.1%, and the CoO content is 14.8%.
  • the catalyst carrier was added to the above immersion liquid, and after immersing for 1 hour at normal temperature, it was taken out, aged for 12 hours, then dried at 120 Torr, and calcined at 500 Torr for 4 hours to obtain a catalyst G.
  • the catalyst has a specific surface area of 96 m 2 /g, a total pore volume of 0.42 cm 3 /g, a MoO 3 content of 6.3%, a NiO content of 11.7%, and more properties analysis data are shown in Table 1.
  • the catalyst carrier was added to the above immersion liquid, and after immersion for 30 minutes at 6 CTC, it was taken out, aged for 12 hours, then dried at 120 Torr, and calcined at 500 Torr for 4 hours to obtain a catalyst H.
  • the specific surface area of the catalyst is 142 m 2 /g, the total pore volume is 0.39 cm 7 g, the W0 3 content is 7.0%, and the NiO content is 11.5%.
  • Ti0 2 -Al 2 0 3 powder (Ti0 2 content 3.5%) 100g, add 50g water, knead, extrude, dry at 120 ° C, calcination at 500 ° C for 4 hours, then roast at 700 4 for 4 hours , a catalyst carrier is obtained.
  • the catalyst carrier was added to the above impregnation liquid, and after immersing for 3 hours at normal temperature, it was taken out, aged for 12 hours, then dried at 12 CTC, and calcined at 500 for 4 hours to obtain a catalyst I.
  • the catalyst has a specific surface area of 165 m 2 /g, a total pore volume of 0.28 cm 7 g, a MoO 3 content of 5.6%, and a NiO content of 13.2%.
  • the catalysts E, F, G, H, and I are the catalysts of the present invention; in contrast, the catalysts A, B, C, and D do not belong to the catalyst of the present invention.
  • Example 6 Evaluation of Catalyst The catalyst was packed in the middle of the reaction tube with an inner diameter of 15 mm and a height of 320 mm, and the upper and lower sides of the catalyst were loaded with 20-40 mesh quartz sand support.
  • the catalyst is first vulcanized prior to use.
  • the sulfurized oil is a mixture of cyclohexane and carbon disulfide (CS 2 content is 2%).
  • the vulcanization conditions are: pressure 2.0 MPa, liquid hourly space velocity 4 h, hydrogen oil volume ratio 200:1, temperature 320 ° C, and the vulcanization time test mixture of unsaturated compounds has the following composition: propyl mercaptan 100 ppm by weight, pentadiene 1% Weight, heptene-1 3% by weight, balance of cyclohexane.
  • the method of the present invention has a higher conversion rate of propanethiol and diene, and the isomerization ratio of monoolefin and the selectivity of hydrogenation are also significantly higher.
  • the method of the comparison Example 7 - 9
  • Example 1 of the present invention has better adaptability. When the unsaturated compound is hydrotreated by this catalyst, it can be operated in a relatively wide range, and high conversion rate and selectivity of the reaction product can be obtained.
  • Example 2 According to the method of Example 1, three different pore volume industrial alumina powders were respectively prepared to prepare catalysts, and catalysts E, J, and K were obtained. The main difference between the three catalysts is the difference in total pore volume. Catalyst E, J, K respectively of the total pore volume 0. 38cm 3 / g, 0. 28cm 3 / g, 0. 55 cm 3 / g. The catalyst was evaluated by the method of Example 6, and the obtained experimental results are shown in Table 3.
  • the effect of the hydrotreating is remarkably improved when the unsaturated compound is hydrogenated using the catalyst of the present invention.
  • the catalyst of the present invention has a higher conversion of mercaptan, a higher diene saturation ratio, and a better selectivity for hydrogenation of diene than other catalysts.

Abstract

本发明涉及一种不饱和化合物选择加氢催化剂,所述负载型催化剂包含在载体上沉积的至少一种第VIB族和至少一种第VIII族非贵金属氧化物,催化剂具有优化的催化剂表面酸分布,更优选的是具有优化的VIII/VIB族金属比率、每单位催化剂表面积第VIII族非贵金属密度。使用本发明的催化剂,可使不饱和化合物或含有不饱和化合物的混合物中轻硫化物增重、多不饱和化合物加氢、单不饱和化合物异构化,操作弹性大,加氢处理的效果显著改善。

Description

一种不饱和化合物选择加氢催化剂
技术领域
本发明涉及一种不饱和化合物选择加氢催化剂。
背景技术
在不饱和化合物选择加氢工艺过程中, 原料可能除不饱和化合物外还含有一定数量 的硫化物, 其中全部或部分是轻硫化物, 这些轻硫化物可以在加氢催化剂的作用下和原 料中的多不饱和化合物反应生成重硫化物, 这些重硫化物可以采用分馏的办法除去。
上述原料中多不饱和化合物性质很不稳定, 容易在储存和后续加工过程中聚合。 在 加氢催化剂的作用下, 可以将这部分多不饱和化合物选择加氢成单不饱和化合物。
在多不饱和化合物加氢成单不饱和化合物的同时,有少量多不饱和化合物或单不饱和 化合物被加氢成饱和化合物, 通过催化剂的优化设计可以尽量避免此反应的发生。
CN03815240. 1 提出了一种使用均相催化剂将多不饱和化合物选择性氢化为单不饱和 化合物的方法。此方法使用至少一种选自元素周期表中第 ΙΒ、 ΠΒ、 VB、 VIB, VIIB和 VIII 族的过渡金属元素的盐, 至少一种配位体和至少一种有机金属还原剂。
CN200610064286. 5提出了一种具有控制空隙度的催化剂的选择性氢化方法。 所述方 法使用一种载体上的催化剂,它含有以硫化形式使用的至少一种第 VIB族金属和至少一种 第 VIII族非贵金属, 它们沉积在载体上, 具有控制的孔隙度, 其中: 第 VIB族元素的氧 化物的重量含量严格高于 12重量%,第 VIII族元素的氧化物的重量含量低于 15重量%, 所述催化剂的金属组分的硫化度至少等于 60%,直径大于 0. 05微米的所述催化剂孔体积 是总孔体积的 10〜40%。
CN200610064287. x提出了使用硫化催化剂的选择性氢化方法。 所述方法采用含有沉 积在载体上的至少一种第 VIB族金属和至少一种第 VIII族非贵金属的催化剂, 其中: 第 VIB族元素的氧化物含量严格高于 12重量%,第 VIII族元素的氧化物含量低于 15重量%, 所述催化剂的金属组分的硫化度至少等于 60%, 第 VIH族非贵金属与第 VIB族金属的摩 尔比是 0. 2〜0. 5摩尔 /摩尔。
CN200610064397. 6分别提出了使用特定载体的催化剂的选择性氢化方法, 所述方法 使用一种载带催化剂,它含有以含硫形式使用的至少一种第 VIB族金属和至少一种第 VIII 族非贵金属,它们沉积在含有 ΜΑ1Λ类金属铝酸盐的特别载体上,其中金属 M选自镍和钴。
CN200910170584. 6提出了一种利用具有规定组成的硫化催化剂的选择加氢方法, 所 述催化剂包含在氧化铝上负载的至少一种第 VIB族金属和至少一种第 VII I族非贵金属, 其中第 VIB族金属氧化物以重量计为催化剂重量的 4%〜20%; 第 VIII族非贵金属氧化物 以重量计小于催化剂重量的 15%; 第 VIII族非贵金属和第 VIB族金属的摩尔比为 0. 6至 3. 0摩尔 /摩尔, 催化剂具有 0. 4〜1. 4 cmVg的总孔体积。
发明内容
本发明的目的在于提供一种不饱和化合物选择加氢的催化剂,该催化剂在选择加氢的 同时, 还可进行轻硫化物增重、 单不饱和化合物异构化反应。
一种不饱和化合物选择加氢的催化剂,为负载型催化剂,其特征在于载体上负载至少 一种第 VIB族金属和至少一种第 VIII族非贵金属, 其中:
第 VIB族元素氧化物以重量计的量为 4%~10%, 最好是 6%〜8%;
第 VIII族非贵元素氧化物以重量计的量为 6%〜15%重量, 最好是 8%~12%;
催化剂表面酸性中心中 B酸与 L酸的比率 B ,6/L ή不大于 0.4, 最好为 0.05 0.3 ; 催化剂表面酸性中心中弱 L酸和强 L酸的比率 L /L强为 0.5〜2.0, 最好是 0.5〜1.5; 载体是氧化铝或主要是氧化铝。
本发明中,催化剂中第 VIII族非贵金属和第 VIB族金属氧化物的摩尔比最好大于 3.0, 小于等于 5.0摩尔 /摩尔, 特别是大于等于 3.2且小于等于 5.0摩尔 /摩尔; 每单位催化剂 表面积的第 VIII族元素密度不小于 8 X 10"4克第 VIII族元素氧化物 /m2催化剂, 特别是不 小于 10X 10"4克第 VIII族元素氧化物 /m2催化剂, 效果会更好。
加工原料中的不饱和化合物在催化剂酸性中心的作用下易发生聚合反应生成胶质等 一些生焦前驱物, 这些物质会覆盖在催化剂的表面活性中心上, 影响催化作用的发挥。但 是对于硫化物增重反应、异构化反应来说, 又需要催化剂具有一定的酸性中心。 因此, 在 催化剂的设计中, 为了满足不同反应的要求, 调节催化剂酸性中心构成、 强、 弱酸性中心 的分布是十分必要的。
本发明并不限制调节催化剂表面酸性中心中 B酸与 L酸的比率、弱 L酸和强 L酸的比 率的方法, 在石化出版社出版的《加氢工艺与工程》一书中也介绍了这方面的技术, 譬如 使用非金属氧化物对载体进行改性、对催化剂载体进行水热处理等,本发明可使用其中的 方法, 但并不局限于上述方法。 因此本发明并不特别限定载体组成, 只要能满足本发明要 求的 B酸与 L酸的比率、弱 L酸和强 L酸的比率即可。本发明推荐的载体是氧化铝或主要 是氧化铝。 氧化铝含量最好不小于 80wt%, 更优选为不小于 90 wt %。 根据所处理的物料 不同, 可选择不同的氧化铝晶型、 总孔体积、 比表面, 晶型最好为 Υ、 δ、 Θ 或以上混 晶。 不同的载体组成, 其表面酸性中心调节方法也可多种, 它是载体改性的基本手段。 除 《加氢工艺与工程》 之外, 有大量文献都涉及了载体表面酸性中心调节方法, 如
CN10203915K CN1597093等, 因此要求载体具有特定的表面酸性中心在现有技术中已完 全能实现,并且生产厂商能根据用户需求来提供相应的产品。如采用业内公知的方法制备 催化剂载体: 根据需要, 可以用非金属氧化物、 或前驱物对载体进行改性, 亦可将制得的 载体在 400〜600°C用水蒸气处理 4〜6小时, 亦可在 500〜700°C或 700〜900°C或 900〜 1100温度下焙烧 4〜6小时。 通过上述方法, 可以对催化剂酸性中心的性质、 强、 弱酸中 心分布进行调节。催化剂的总孔体积优选为 0.2~0.5cm3/g , 更好为 0.2 cm3/g〜0.45cm3/g, 最佳是 0.2 cm3/g〜0.39cm3/g。催化剂的比表面优选为 50〜200 m2/g,更好为 50〜150 m2/g。
通过对不饱和化合物或含有不饱和化合物混合物加氢反应体系的研究我们发现,当催 化剂具有本发明所述特征时, 加氢处理的效果显著改善。
催化剂的酸性中心分析采用吡啶红外分析法。此方法在科学出版社出版的《现代催化 研究方法》第 7章原位红外光谱方法中有详细的介绍。其他指标采用业内公知的分析与计 算方法。
可采用压片、 混捏、 滚动成球、 挤出、 喷雾成型等各种技术手段制备催化剂载体。 可 可以采取各种技术手段对催化剂载体进行改性, 以满足此方法对催化剂性质的要求。
本发明并不特别限定催化剂的制备方法,可以采用通用的浸渍方法,如可将活性组分 镍和 /或钼的盐类加入水或其他可形成络合物的溶液中, 制成活性金属浸渍溶液。 用活性 金属浸渍溶液浸渍催化剂载体, 然后在 120〜300°C烘干, 在 400〜800°C焙烧制成的。
本发明通过选择催化剂活性组分, 优化催化剂表面酸分布, 特别是进一步选择合适的 催化剂 VI II/VIB族金属比率、每单位催化剂表面积第 VIII族非贵金属密度,提高了多不 饱和化合物加氢的转化率和选择性,提高了单不饱和化合物的异构化率。异构烯烃通常具 有更高的稳定性和更高的辛烷值,这通常对改进不饱和化合物或含有不饱和化合物混合物 的性质是非常重要的。
和现有技术相同, 催化剂在使用时要先硫化, 硫化条件同现有技术, 如将金属氧化物 转变为硫化物。 硫化条件一般为: 压力在 0.5MPa〜3.0MPa, 硫化温度 200°C〜500°C, 硫 化体积空速 o.s i^ s.oh— 在氢气、 硫化氢气氛下进行硫化。
催化剂的使用条件可以为压力 1.0〜5.0MPa、 氢 /多不饱和化合物摩尔比 1〜20摩尔 / 摩尔、 空速 2.0〜6.0h— 温度为 50〜250°C。
使用本发明的催化剂在处理不饱和化合物或包含不饱和化合物混合物时,允许在相对 较高譬如大于 5.0的氢 /多不饱和化合物摩尔比下操作, 其单不饱和化合物的加氢成饱和 化合物的程度很低, 操作弹性大。
在一个不饱和化合物选择加氢过程中, 可能发生 (包含但不仅限于) 以下几种反应:
( 1 ) 多不饱和化合物加成反应;
由于多不饱和化合物非常活泼,容易与体系中的其他化合物发生加成反应,生成分子 量更大的化合物。当反应体系中含有硫化物尤其是轻硫化物时,利用多不饱和化合物的加 成反应可生成沸点更高的硫化物, 这些硫化物可以利用分馏的方式除去。
( 2 ) 多不饱和化合物选择加氢成单不饱和化合物;
在催化剂的作用下, 可以将多不饱和化合物选择加氢成单不饱和化合物。
( 3 ) 单不饱和化合物的异构化;
在加氢的过程中,单不饱和化合物可以发生异构化反应,此反应有助于提高单不饱和 化合物的稳定性。
( 4 ) 单不饱和化合物的加氢;
在多不饱和化合物加氢生成单不饱和化合物的同时,少量单不饱和化合物被加氢成饱 和化合物。在大多数情况下, 单不饱和化合物是希望被保留的。 因此要通过催化剂及条件 的优化将单不饱和化合物的加氢减少到最低程度。
具体实施方式
在本发明中, 评价催化剂性能的重要技术指标表示如下:
丙硫醇转化率% = ( 1-产品中丙硫醇含量 /原料中丙硫醇含量) *100
双烯转化率% = ( 1-产品中双烯含量 /原料中双烯含量) *100
单烯转化率% = ( 1-产品中单烯含量 /原料中单烯含量) *100
单烯异构化率% = 异构化烯烃含量 / (异构化烯烃含量 +烷烃含量) *100
加氢选择性% = 双烯转化率 / (双烯转化率 +单烯转化率) *100
对比例 1
取工业 Si02- A1203粉 (Si02含量 14%) 100g, 加入 50g水, 捏合、 挤出成型, 120°C 烘干, 60CTC焙烧 4小时, 得到催化剂载体。
将 14g工业钼酸铵加入 45g水中搅拌溶解, 再加入 75g工业硝酸镍、 12g工业柠檬 酸, 搅拌溶解, 制成催化剂活性金属浸渍液。
将催化剂载体加入上述浸渍液中, 常温下浸渍 3小时后取出, 陈化 12小时, 然后 120°C烘干, 500°C焙烧 4小时,制得催化剂 A。催化剂比表面 148m2/g,总孔体积 0.41 cmVg, ΜοΟ',含量 6. 4%, NiO含量 10. 6%, 更多性质分析数据见表 1。 对比例 2
取工业氧化铝粉 100g, 加入 50g水, 捏合、 挤出成型, 12CTC烘干, 500°C焙烧 4小 时, 得到催化剂载体。
将 14g工业钼酸铵加入 45g水中搅拌溶解, 再加入 75g工业硝酸镍、 12g工业柠檬 酸, 搅拌溶解, 制成催化剂活性金属浸渍液。
将催化剂载体加入上述浸渍液中, 常温下浸渍 3小时后取出, 陈化 12小时, 然后 120Ό烘干, 500Ό焙烧 4小时,制得催化剂 B。催化剂比表面 240m2/g,总孔体积 0.38 cmVg, Mo03含量 6. 4%, ^0含量10. 6%, 更多性质分析数据见表 1。
对比例 3
取工业氧化铝粉 100g, 加入 50g水, 捏合、 挤出成型, 120°C烘干, 500°C焙烧 4小 时, 再在 900Ό焙烧 4小时, 得到催化剂载体。
将 l lg工业钼酸铵加入 80g水中搅拌溶解, 再加入 40g工业硝酸镍、 12g工业柠檬 酸, 搅拌溶解, 制成催化剂活性金属浸渍液。
将催化剂载体加入上述浸渍液中, 常温下浸渍 3小时后取出, 陈化 12小时, 然后 120Ό烘干, 50(TC焙烧 4小时,制得催化剂 C。催化剂比表面 101m2/g,总孔体积 0.38 cmVg, Mo03含量 5. 0%, NiO含量 5. 8%, 更多性质分析数据见表 1。
对比例 4
取工业氧化铝粉 100g, 加入 50g水, 捏合、 挤出成型, 120°C烘干, 500°C焙烧 4小 时, 再在 900Ό焙烧 4小时, 得到催化剂载体。
将 30g工业钼酸铵加入 90g水中搅拌溶解, 再加入 30g工业硝酸镍、 12g工业柠檬 酸, 搅拌溶解, 制成催化剂活性金属浸渍液。
将催化剂载体加入上述浸渍液中, 常温下浸渍 3小时后取出, 陈化 12小时, 然后 120Ό烘干, 500Ό焙烧 4小时,制得催化剂 D。催化剂比表面 101m2/g,总孔体积 0.38 cm7g, Mo03含量 11. 0%, NiO含量 4. 0%, 更多性质分析数据见表 1。
实施例 1
取工业氧化铝粉 100g, 加入 50g水, 捏合、 挤出成型, 120°C烘干, 500Ό焙烧 4小 时, 再在 90CTC焙烧 4小时, 得到催化剂载体。
将 14g工业钼酸铵加入 45g水中搅拌溶解, 再加入 75g工业硝酸镍、 12g工业柠檬 酸, 搅拌溶解, 制成催化剂活性金属浸渍液。
将催化剂载体加入上述浸渍液中, 常温下浸渍 3小时后取出, 陈化 12小时, 然后 120°C烘干, 500°C焙烧 4小时,制得催化剂 E。催化剂比表面 101m2/g,总孔体积 0.38 cmVg, Mo03含量 6. 4%, NiO含量 10. 6%, 更多性质分析数据见表 1。
实施例 2
取工业氧化铝粉 100g, 加入 50g水, 捏合、 挤出成型, 120Ό烘千, 500°C焙烧 4小 时, 再在 450Ό的水蒸气中处理 4小时, 得到催化剂载体。
将 18g工业钼酸铵加入 45g水中搅拌溶解, 再加入 95g工业硝酸钴、 16g工业柠檬 酸, 搅拌溶解, 制成催化剂活性金属浸渍液。
将催化剂载体加入上述浸渍液中, 常温下浸渍 3小时后取出, 陈化 12小时, 然后 120°C烘干, 500°C焙烧 4小时,制得催化剂 F。催化剂比表面 97m2/g,总孔体积 0.35cmVg, Mo03含量 9. 1%, CoO含量 14. 8%, 更多性质分析数据见表 1。
实施例 3
取工业 Si02-八1203粉 ( Si02含量 1. 4%) lOOg,加入 50g水,捏合、挤出成型, 120Ό 烘干, 700Ό焙烧 4小时, 得到催化剂载体。
将 12g工业钼酸铵加入 120g 25%浓度氨水溶液中搅拌溶解, 再加入 75g工业硝酸镍, 搅拌溶解, 制成催化剂活性金属浸渍液。
将催化剂载体加入上述浸渍液中, 常温下浸渍 1小时后取出, 陈化 12小时, 然后 120Ό烘干, 500Ό焙烧 4小时,制得催化剂 G。催化剂比表面 96m2/g,总孔体积 0.42cm3/g, Mo03含量 6. 3%, NiO含量 11. 7%, 更多性质分析数据见表 1。
实施例 4
取工业 Si02 A1203粉 (Si02含量 7%) 100g, 加入 50g水, 捏合、 挤出成型, 120。C洪 干, 600Ό焙烧 4小时, 得到催化剂载体。
将 12g工业偏钨酸铵加入 45g水中搅拌溶解, 再加入 75g工业硝酸镍、 15g工业柠 檬酸, 搅拌溶解, 制成催化剂活性金属浸渍液。
将催化剂载体加入上述浸渍液中, 6CTC下浸渍 30分钟后取出, 陈化 12小时, 然后 120Ό烘干, 500Ό焙烧 4小时,制得催化剂 H。催化剂比表面 142m2/g,总孔体积 0.39cm7g, W03含量 7. 0%, NiO含量 11. 5%, 更多性质分析数据见表 1。
实施例 5
取工业 Ti02-Al203粉 (Ti02含量 3. 5%) 100g, 加入 50g水, 捏合、 挤出成型, 120°C 烘干, 500°C焙烧 4小时, 再在 700Γ焙烧 4小时, 得到催化剂载体。
将 14g工业钼酸铵加入 45g水中搅拌溶解, 再加入 100g工业硝酸镍、 15g工业柠檬 酸, 搅拌溶解, 制成催化剂活性金属浸渍液。
将催化剂载体加入上述浸渍液中, 常温下浸渍 3小时后取出, 陈化 12小时, 然后 12CTC烘干, 500 焙烧 4小时,制得催化剂 I。催化剂比表面 165m2/g,总孔体积 0.28 cm7g, Mo03含量 5. 6%, NiO含量 13. 2%, 更多性质分析数据见表 1。 表 1 催化剂 A、 B、 C, D、 E、 F、 G、 H、 I物性组成
Figure imgf000008_0001
上述催化剂中, 催化剂 E、 F、 G、 H、 I为本发明的催化剂; 相比之下, 催化剂 A、 B、 C、 D不属于本发明的催化剂。
工业实用性
实施例 6 催化剂的评价 将催化剂装填在内径 15mm、 高 320mm的反应管中部, 催化剂的上、 下部装填 20~40 目的石英砂支撑。
使用前首先对催化剂进行硫化。硫化油为环己烷和二硫化碳混合物(CS2含量为 2%)。 硫化条件为: 压力 2.0MPa、 液时空速 4h 、 氢油体积比 200: 1 , 温度 320°C, 硫化时间 试验用不饱和化合物的混合物具有以下组成: 丙硫醇 lOOppm重量、 戊二烯 1%重量、 庚烯 -1 3%重量、 环己垸余量。
在压力 2.0MPa、 空速 4.0 1^、 温度 120°C、 氢 /双烯摩尔比 5 : 1条件下进行加氢处理, 然后分析加氢产品中丙硫醇、 双烯、 单烯、 异构化单烯、 垸烃的含量。
分别使用对比例 1〜4、 实施例 1〜5的催化剂进行加氢实验, 得到的实验结果如表 2 所示。
不同对比例、 实施例实验结果
Figure imgf000009_0001
在不饱和化合物或含有不饱和化合物混合物加氢试验中, 本发明的方法具有更高的丙 硫醇及双烯的转化率, 单烯烃的异构化率、 加氢的选择性也明显高于对比例的方法。 实施例 7 - 9
使用催化剂实施例 1的催化剂 E, 采用相同的硫化方法、 采用相同组成的进料, 改 变反应的条件, 取得的实验结果如表 3所示。
表 3 催化剂 E不同条件下实验结果
实施例 6 7 8 催化剂编号 E E E
压力 MPa 1. 5 2. 0 3. 0 空速 h— 1 2. 0 4. 0 3. 0 温度 °C 100 120 1 10 氢 /双烯摩尔比 10. 0 5. 0 15. 0 丙硫醇转化率 % 100 100 100 双烯转化率 % 89. 2 88. 5 88. 2 单烯异构化率 % 53. 1 52. 5 52. 7 加氢选择性 % 99. 1 98. 5 98. 7 从上面数据可以看出, 本发明实施例 1所示的催化剂具有较好的适应性。 采用此催 化剂对不饱和化合物进行加氢处理时,在比较宽的范围内进行操作,都可以得到很高的反 应产物转化率和选择性。
实施例 10〜12 总孔体积的影响
按照实施例 1的方法,分别选取三种不同孔体积的工业氧化铝粉制备催化剂,得到 催化剂 E、 J、 K。 三种催化剂的主要差异是总孔体积的不同。 催化剂 E、 J、 K总孔体积分 别为 0. 38cm3/g、 0. 28cm3/g、 0. 55 cm3/g。 采用实施例 6的方法对催化剂进行评价, 得到 的实验结果如表 3所示。
表 3 催化剂总孔体积的影响
Figure imgf000010_0001
从实验数据可以看出, 在适当降低催化剂的总孔体积的情况下, 不饱和化合物加氢 的选择性进一步改善。
使用本发明的催化剂在不饱和化合物加氢时,加氢处理的效果显著改善。相对其他催 化剂,本发明的催化剂具有更高的硫醇转化率、更高的双烯饱和率以及更好的双烯加氢的 选择性。

Claims

权 利 要 求
1. 一种不饱和化合物选择加氢的催化剂, 为负载型催化剂, 其特征在于载体上负载至少 一种第 VIB族金属和至少一种第 VIII族非贵金属, 其中:
第 VIB族元素氧化物以重量计的量为 4%~10%;
第 VIII族非贵元素氧化物以重量计的量为 6%~15%重量;
催化剂表面酸性中心中 B酸与 L酸的比率 B ,6/L ,β不大于 0.4;
催化剂表面酸性中心中弱 L酸和强 L酸的比率 L m/L强为 0.5〜2.0;
载体是氧化铝或主要是氧化铝。
2.根据权利要求 1所述的方法,其特征在于催化剂中第 VIII族非贵金属和第 VIB族金属 氧化物的摩尔比大于 3.0, 小于等于 5.0摩尔 /摩尔; 每单位催化剂表面积的第 VIII族元 素密度不小于 8 X 10·4克第 VIII族元素氧化物 /m2催化剂。
3.根据权利要求 2所述的方法,其特征在于催化剂中第 VIII族非贵金属和第 VIB族金属 氧化物的摩尔比为大于等于 3.2且小于等于 5.0摩尔 /摩尔。
4. 根据权利要求 1所述的方法, 其特征在于催化剂中第 VIB族金属选自钼和 /或钨, 优 选为钼。
5. 根据权利要求 1所述的方法, 其特征在于催化剂中第 VIII族非贵金属选自镍和 /或钴, 优选为镍。
6. 根据权利要求 1所述的方法, 其特征在于催化剂中第 VIB族元素氧化物以重量计为 6%〜8%。
7. 根据权利要求 1所述的方法, 其特征在于催化剂中第 VIII族非贵金属氧化物以重量计 为 8%〜12%。
8. 根据权利要求 1所述的方法, 其特征在于催化剂中每单位催化剂表面积的第 VIII族元 素密度不小于 10 X 10"4克第 VIII族元素氧化物 /m2
9. 根据权利要求 1 所述的方法 , 其特征在于催化剂表面酸性中心中 B酸与 L酸的比率 B总 /L总为 0.05-0.30
10. 根据权利要求 1所述的方法, 其特征在于催化剂表面酸性中心中弱 L酸和强 L酸的 比率 L弱 /L强为 0.5〜1.5。
11 . 根据权利要求 1中所述的方法, 其特征在于催化剂的总孔体积为 0.2〜0.5cm3/g , 优 选为 0.2 cm3/g〜0,45cm3/g, 更好是 0.2 cm3/g〜0,39cm3/g。
12. 根据权利要求 1中所述的方法, 其特征在于催化剂的比表面为 50〜200 m2/g, 优选为 50〜150 m/g。
13. 根据权利要求 1中所述的方法, 其特征在于催化剂载体中氧化铝含 优选为不小于 90wt%。
14. 根据权利要求 1中所述的方法, 其特征在于催化剂载体中氧化铝的 或以上的混晶。
PCT/CN2012/001507 2011-12-06 2012-11-08 一种不饱和化合物选择加氢催化剂 WO2014047752A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/432,144 US9422486B2 (en) 2011-12-06 2012-11-08 Selective hydrogenation catalyst for unsaturated compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210367401.1A CN103143366B (zh) 2011-12-06 2012-09-28 一种不饱和化合物选择加氢催化剂
CN201210367401.1 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014047752A1 true WO2014047752A1 (zh) 2014-04-03

Family

ID=50389565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001507 WO2014047752A1 (zh) 2011-12-06 2012-11-08 一种不饱和化合物选择加氢催化剂

Country Status (1)

Country Link
WO (1) WO2014047752A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1351122A (zh) * 2000-10-26 2002-05-29 中国石油化工股份有限公司 一种高中油型加氢裂化催化剂
US20040045871A1 (en) * 2001-11-07 2004-03-11 Bauer Lorenz J. Middle distillate selective hydrocracking process
CN102039151A (zh) * 2009-10-21 2011-05-04 中国石油化工股份有限公司 一种加氢裂化催化剂及其制备方法
CN102166520A (zh) * 2010-02-25 2011-08-31 中国石油天然气股份有限公司 加氢精制催化剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1351122A (zh) * 2000-10-26 2002-05-29 中国石油化工股份有限公司 一种高中油型加氢裂化催化剂
US20040045871A1 (en) * 2001-11-07 2004-03-11 Bauer Lorenz J. Middle distillate selective hydrocracking process
CN102039151A (zh) * 2009-10-21 2011-05-04 中国石油化工股份有限公司 一种加氢裂化催化剂及其制备方法
CN102166520A (zh) * 2010-02-25 2011-08-31 中国石油天然气股份有限公司 加氢精制催化剂

Similar Documents

Publication Publication Date Title
TWI492788B (zh) 使用具特定組合物之硫化觸媒之選擇性氫化方法
JP5329926B2 (ja) ヒ素を含むオレフィンガソリンの脱硫の二工程方法
JP2016016404A (ja) 高密度モリブデンを有する水素化処理触媒及びその調製方法
US10618033B2 (en) Mesoporous and macroporous nickel-based catalyst having a median macropore diameter of greater than 200 nm and its use with regard to hydrogenation
JP4704334B2 (ja) オレフィン含有流中に含有されているジオレフィンの選択的水素化のための及びこれからのヒ素の除去のための方法及び触媒並びにこのような触媒の製造方法
EP2858752A1 (en) A catalyst composition and a process for selective hydrogenation of methyl acetylene and propadiene
US9422486B2 (en) Selective hydrogenation catalyst for unsaturated compound
WO2014047752A1 (zh) 一种不饱和化合物选择加氢催化剂
WO2014047753A1 (zh) 一种使不饱和化合物选择加氢的方法
CN108865243B (zh) 一种碳四烷基化原料的预加氢处理方法
RU2676260C2 (ru) Катализатор селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья и способ его приготовления
US20090223868A1 (en) Catalyst and process for the selective hydrodesulfurization of an olefin containing hydrocarbon feedstock
RU2660904C1 (ru) Катализатор защитного слоя для процесса гидроочистки
CN114433187B (zh) 多级孔催化剂的后修饰方法、由该方法得到的加氢裂化催化剂及其应用
EP3822332A1 (en) Catalyst for selective hydrogenation of diolefins and method for preparing catalyst
CN109433219B (zh) 一种有机硫加氢催化剂及其制备方法、应用
CN115461144A (zh) 具有镍和钼的特定分布的选择性加氢催化剂
JP5331280B2 (ja) 調整された酸度を有する触媒を用いる炭化水素転換方法
RU2662234C1 (ru) Способ приготовления катализатора гидрокрекинга углеводородного сырья
US20230264180A1 (en) Selective hydrogenation catalyst comprising specific carrier in the form of an aluminate
CN115443187A (zh) 包含载体和特定镍钼比的加氢催化剂
JP2023550821A (ja) メソ多孔性・マクロ多孔性担体上の触媒の存在下におけるガソリンの選択的水素化のための方法
CN117244556A (zh) 氧化铝载体及其制备方法、及包含该氧化铝载体的预加氢催化剂
JP2023550823A (ja) メソ-マクロ多孔性担体上の触媒の存在中での仕上げ水素化脱硫の実施方法
CN117772293A (zh) 一种选择性加氢催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885779

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14432144

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885779

Country of ref document: EP

Kind code of ref document: A1