WO2014047750A1 - 一种用于高亮度led图形化的纳米压印装置和方法 - Google Patents

一种用于高亮度led图形化的纳米压印装置和方法 Download PDF

Info

Publication number
WO2014047750A1
WO2014047750A1 PCT/CN2012/001430 CN2012001430W WO2014047750A1 WO 2014047750 A1 WO2014047750 A1 WO 2014047750A1 CN 2012001430 W CN2012001430 W CN 2012001430W WO 2014047750 A1 WO2014047750 A1 WO 2014047750A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
substrate
pressure
vacuum
embossing
Prior art date
Application number
PCT/CN2012/001430
Other languages
English (en)
French (fr)
Inventor
兰红波
Original Assignee
Lan Hongbo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lan Hongbo filed Critical Lan Hongbo
Priority to US14/362,464 priority Critical patent/US9563119B2/en
Publication of WO2014047750A1 publication Critical patent/WO2014047750A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures

Definitions

  • the invention belongs to the technical field of micro-nano manufacturing and optoelectronic device manufacturing, and in particular relates to a nano-imprinting device and method for high-brightness LED patterning.
  • LED patterning (sapphire substrate patterning and LED epitaxial patterning) has been considered by academics and industry to improve light generation efficiency and light extraction efficiency and to improve light source quality (controlling light emission direction and far field pattern uniformity).
  • NPSS Nano-Patterned Sapphire Substrate
  • LED epitaxial wafer patterning technology Photonic Crystal LED, Photonic Crystal LED; Nanorod LED, Nanorod LED; Nanowire LED, Nanowire LED
  • sapphire substrates and LED epitaxial wafers have the following characteristics: uneven surface, warpage and bending deformation, large thickness variation, and sharp surface of several micrometers. Protrusions, as well as the presence of more pronounced surface defects and particulate contaminants, and exhibit fragile properties. Therefore, it is extremely difficult to manufacture a large-area, high-aspect-ratio micro-nano structure on a non-flat LED epitaxial wafer or a sapphire substrate surface with high efficiency, low cost, and large scale by using various existing micro-nano manufacturing methods. The need for graphical industrial applications.
  • the conventional optical lithography focal depth ratio cannot meet the requirements of exposure; the fabrication of large-area nanostructures by electron beam lithography is costly and low in productivity. It is difficult to achieve large-scale, large-scale manufacturing.
  • the existing contact or proximity lithography equipment cannot meet the requirements of nano-pattern manufacturing precision.
  • Stepper projection lithography can realize NPSS manufacturing, but the Stepper used in the semiconductor industry appears in the LED industry. Too expensive, greatly increasing the manufacturing cost of LEDs. LEDs are very cost sensitive.
  • some companies currently use the second-hand refurbished Stepper but there are problems in terms of product yield and equipment reliability.
  • Interferometric lithography has great advantages in the fabrication of large-area periodic micro/nano structures, but the method is not enough: the depth of focus is small, the selectivity of nanostructured patterns is poor, and the production environment is demanding (and LED production process) Poor compatibility), especially at present, there is hardly a commercial company that provides a mature lithography machine (manufacturing of large-size wafer nano-patterns).
  • nanofabrication methods such as nanosphere lithography, anodized aluminum stencil (AAO), natural lithography, block copolymer self-assembly, etc. have also been tried to be applied to LED patterning, there are some deficiencies, such as Cost, productivity, consistency, yield and scale manufacturing. Unable to meet the high-efficiency, low-cost, consistent industrial-grade production requirements for LED graphics.
  • Nanoimprint Lithography is a new micro-nano patterning method, which is a technique for patterning through the deformation of a resist by using a mold.
  • NIL has High resolution, ultra-low cost (NIL is at least an order of magnitude lower than traditional optical projection lithography by international authorities), and its most significant advantage is its large-area, complex three-dimensional micro-nano structure.
  • the ability to manufacture, especially for soft UV nanoimprinting has the potential to achieve round-scale nanoimprinting on non-flat (bending, warping or step), fragile substrates, and the unique features of the roll-press process Continuous large-area embossing capability.
  • Nanoimprint lithography has been identified by academics and industry as the most ideal technical solution for LED graphics.
  • the existing nanoimprint process is applied to LED patterning, and there are still many shortcomings in mold life, productivity, yield and reliability, especially facing some challenging technical problems, such as difficulty in large-area demoulding and soft mold deformation. , damage to the mold due to particulate dirt and sharp protrusion defects, consistency and repeatability of the imprinted pattern, and the like.
  • materials such as sapphire and GaN are difficult to etch, and it is usually necessary to deposit a hard mask layer first, in order to reduce the production cost, shorten the process route, and directly emboss the large on the resist.
  • the aspect ratio feature structure eliminates the need for a hard mask layer process, simplifies the production process and reduces production costs. Therefore, LED patterning has a very urgent need for new imprinting techniques that produce large-area, high-aspect-ratio micro-nano structures efficiently and at low cost on non-flat surfaces or curved or fragile substrates.
  • the object of the present invention is to solve the above problems, and to provide a nanoimprinting device and method for high-brightness LED patterning, which adopts a low-cost water-soluble, film-like elastic composite soft mold combined with large-area nano-pressure Printing process and gas-assisted progressive sequential pressure application and uncovering release method for high-efficiency, low-cost manufacturing of large areas, high depth and width on non-flat surfaces (bending, warping, steps or protrusions) or curved or fragile substrates Than the micro-nano structure.
  • the present invention adopts the following technical solution - a nanoimprinting device for high-brightness LED patterning, which comprises: a film stage, a vacuum chuck, a substrate (wafer or epitaxial wafer), ultraviolet curing Type nanoimprint resist, mold, gas valve plate, embossing mechanism, ultraviolet light source, mold feeding mechanism, vacuum line, pressure line; wherein, the vacuum chuck is fixed directly above the wafer table, and the vacuum chuck is positive
  • the substrate is adsorbed on the upper surface, and the liquid ultraviolet curing type nanoimprint resist is coated on the substrate;
  • the mold is attached to the mold feeding mechanism, the roller for placing the film mold, the two auxiliary supporting rollers and the embossing mold On the outside of the recovered roller, the mold is placed above the substrate coated with the liquid UV-curable nanoimprint resist and below the valve plate through the auxiliary support roller, and the gas plate is fixed under the embossing mechanism.
  • the ultraviolet light source is fixed above the imprinting mechanism; the vacuum line and
  • the mold is a water-soluble, film-like, elastic composite transparent soft mold comprising a pattern layer and a support layer, wherein the pattern layer has the following characteristics: water solubility, high elastic modulus, high transparency, thermal stability and good mechanics Characteristics, choose Poly B A water-soluble polymer compound such as polyvinyl alcohol (PVA) or poly(acrylic acid, PAA).
  • the support layer is a transparent high elastic film-like PET material.
  • the graphics layer contains the micro-nano feature structure (graphics) to be copied, and the support layer is located above the graphics layer.
  • the thickness of the patterned layer is 10-50 microns and the thickness of the support layer PET is 100-200 microns.
  • the mold is manufactured by a roll printing process, a printed electronic technique or a nanoimprint technique.
  • the mold feeding mechanism comprises: a roller for placing a film-shaped mold, a roller for recovering the mold after pressing, an auxiliary supporting roller, a guiding and an anti-torsion mechanism, and the mold feeding mechanism is divided into two axes On the side, one side is a roller for placing a film-shaped mold and an auxiliary support roller, the roller for placing the film-shaped mold is closer to the central axis of the mold feeding mechanism than the auxiliary support roller, and the other side is for recycling the mold after imprinting.
  • the roller and the other auxiliary support roller, the roller recovered by the die after embossing is symmetric with the roller on which the film-shaped mold is placed with respect to the central axis of the die feeding mechanism, and the auxiliary support roller and the other auxiliary support roller are opposite to The center axis of the mold feeding mechanism is symmetrical.
  • the wafer stage is an x-y precision workbench, which realizes the substrate replacement station and the positioning and position adjustment of the substrate and the mold during the imprint process.
  • the embossing mechanism includes a one-dimensional displacement platform and an ultraviolet light source connecting bracket that move up and down in the z-axis direction, and a plurality of buffer gaskets are mounted under the connecting bracket.
  • the ultraviolet light source is an ultraviolet LED lamp array.
  • the working range of the pressure line is: 0-2 bar; the working pressure during the imprinting process is 10-100 mbar.
  • the working range of the vacuum line is: -O.lbar ⁇ -0.4bar, the working pressure during the embossing process is -300Pa ⁇ - 5kPa; the closed area I under the mold and the vacuum suction cup during the embossing work is low pressure In the vacuum environment, the closed area II surrounded by the mold and the embossing mechanism is a pressure environment.
  • the working method adopted by the above nanoimprinting device for high-brightness LED patterning includes the following steps: Step (1): Pretreatment process;
  • Step (2) The imprint process
  • Step (3) curing process
  • Step (4) demolding process
  • Step (5) post-processing
  • Step (6) Transfer of the imprinted graphic.
  • the working process of the step (1) is to spin-coat a liquid ultraviolet curing type nanoimprint resist on the substrate, place the substrate on the vacuum chuck above the film stage, and apply vacuum suction
  • the substrate coated with the ultraviolet curable nanoimprint resist is adsorbed and fixed on the vacuum chuck; the wafer stage is moved from the initial station to the imprint station, and the imprint station is the center position directly under the mold.
  • the working process of the step (2) is:
  • the embossing mechanism drives the gas valve plate and the ultraviolet light source to move from the initial station to the substrate until the buffer seal of the embossing mechanism and the upper surface support layer of the mold, the pattern layer on the lower surface of the mold and the vacuum chuck
  • the cushioning gasket is completely in close contact; the sealing area I formed under the mold and the vacuum chuck, the upper part of the mold and the embossing mechanism enclose a closed area II, and the sealing area I and II should be sealed during the embossing and demolding work. Not leaking;
  • the vacuum suction cup opens the vacuum pipeline, and a low-pressure vacuum environment is formed in the sealed region I to remove the bubble defect trapped in the imprint process.
  • the film-shaped mold is completely conformally contacted with the liquid ultraviolet-curable nanoimprint resist on the substrate; at the same time, the pressure of all the pressure lines of the gas-ceiling plate is kept uniform and uniform, and the upper and the pressure of the mold are increased.
  • the closed area II enclosed by the printing mechanism forms a low pressure pressure environment, and a uniform embossing force is applied on the film-shaped mold to realize complete filling of the ultraviolet curing type nanoimprint resist in the mold micro-nano structure cavity, and reduce Thin to a predetermined residual layer thickness; or the direct initial film thickness is the same as the height of the embossed feature structure, so that no film embossing is achieved. Since it is a disposable mold, there is no need to worry about the mold being damaged by the direct contact of the mold with the substrate.
  • the working process of the step (3) is:
  • the ultraviolet light source is turned on, and the ultraviolet light is exposed to the ultraviolet curable nanoimprint resist through the mold to fully cure the ultraviolet curable nanoimprint resist; the curing time is 10-30 s.
  • step (4) The working process of the step (4) is:
  • step (5) The working process of the step (5) is:
  • the imprinting mechanism moves up and returns to the initial station; at the same time, the carrier moves to the substrate changing station, and the vacuum is turned off.
  • the vacuum line on the suction cup remove the embossed substrate, replace the new substrate, and open the vacuum line on the vacuum suction cup to fix the new substrate on the vacuum suction cup;
  • step (6) The working process of the step (6) is:
  • the feature structure is transferred to the substrate by an etching process using a cured UV-cured nanoimprint resist as a mask; or by a "Lift-off" process,
  • the feature structure is transferred to other functional structural materials, including dry etching or wet etching.
  • the working principle of the invention is:
  • the embossing process uses "compressed gas and low-pressure vacuum to assist the pressure" and adopts a progressive sequential micro-contact embossing method from the center of the mold to the two outer directions. Based on the film-like elastic mold structure, gas assist on the mold The embossing force and the vacuum suction force of the lower part of the mold, as well as the capillary force, achieve uniform distribution of the embossing force on the non-flat substrate (protrusion, wave shape, curved surface, etc.), and realize the mold under the condition of small embossing force.
  • the demolding process uses a mold to continuously "uncover" the mold release from the sides of the substrate to the center. Under the combined action of the vacuum suction above the mold and the release force of the compressed air under the mold, a slight release force is applied. Large area demoulding can be achieved.
  • the mold and the UV-curable nanoimprint resist solve the problem of removing bubbles in the large-area imprinting process and ensuring complete contact between the mold and the substrate to improve the imprinting in a low-pressure vacuum environment. Graphic consistency.
  • the innovations and benefits of the present invention are: (1) 'The mold used in the present invention is a disposable low-cost mold.
  • the water-soluble material is easy to remove; its film shape and high elastic property ensure good conformal contact with the non-flat substrate; in addition, it can effectively reduce the defects caused by particles in the production environment during nanoimprinting. .
  • the imprinting and demolding processes are based on sequential and micro-contact modes, which reduce the deformation and release force of the mold, and the bubbles trapped during the imprinting process can be Discharge in time.
  • the mold pattern layer material is a water-soluble material.
  • the mold pattern layer material is a water-soluble material.
  • the embossing process is under the condition of low pressure vacuum, and combined with the progressive micro-contact embossing method from the center position of the mold to the two outer directions, solving the technical problem of trapping bubbles in the large-area embossing process and ensuring small embossing. Good conformal contact under force conditions.
  • the embossing force release process is used to fully release the deformation of the mold, effectively improving the quality and precision of the soft mold embossing pattern.
  • the film-shaped mold adopts a continuous rolling embossing process and the like, and the embossing material has low cost, and the mold manufacturing has the advantages of high efficiency and low cost manufacturing. Meet the requirements of batch industrial applications.
  • the embossing process and the demolding process of the present invention take the center of the mold as a symmetry axis, the mold is uniformly and symmetrically stressed, and both sides of the embossing and demoulding processes are simultaneously performed, and the production efficiency is high.
  • the mold is disposable.
  • the water-soluble mold solves the problem that the sharp protrusion, the defect, the particulate matter and the like are damaged to the mold, and the technical problem that the high aspect ratio structure release mold is easily damaged, and the mold life is low.
  • the present invention simplifies the structure of the apparatus without relying on the balance, the uniform hook applied by the precision machine, and the embossing force perpendicular to the surface. Uniform pressure application during large-area imprinting is achieved by gas-assisted pressure (combination of positive and negative pressure).
  • the present invention combines the advantages of both plate embossing and roll embossing, and realizes efficient and low-cost manufacturing of large-area micro-nano structures. Provides an industrial grade solution for commercial applications of large area micro/nanostructures.
  • the most significant advantages of the present invention are: to achieve a large area of high efficiency and low cost in various soft and hard substrates, including non-flat (bending, warping, step or protrusion) or curved substrate or fragile substrate surface.
  • high aspect ratio micro-nano structure for large area micro-nano structure manufacturing, or large-area nano-patterning of non-flat substrate, or large-area nano-patterning of curved surface, or high-aspect ratio large-area micro-nano structure manufacturing Industrial grade application solutions.
  • the invention is suitable for high-density magnetic disks (HDD), micro-optical devices (such as optical lenses, diffractive optical elements, etc.), various coatings (anti-reflection, self-cleaning, frost resistance, etc.), three-dimensional miniature batteries, and butterfly solar concentrating Manufacture of device, compound eye sensor, microfluidic device, biosensor, MEMS device, photovoltaic device, etc., especially suitable for LED nano-patterning (photonic crystal LED manufacturing nano-patterned sapphire substrate, etc.) and wafer level micro Industrial grade production of optics.
  • HDD high-density magnetic disks
  • micro-optical devices such as optical lenses, diffractive optical elements, etc.
  • various coatings anti-reflection, self-cleaning, frost resistance, etc.
  • three-dimensional miniature batteries three-dimensional miniature batteries
  • butterfly solar concentrating Manufacture of device compound eye sensor, microfluidic device, biosensor, MEMS device, photovoltaic device, etc., especially suitable for LED nano-patterning
  • FIG. 1 is a schematic structural view of a nanoimprinting apparatus for high-brightness LED patterning according to the present invention
  • FIG. 2 is a schematic view showing the structure of a water-soluble, film-like elastic composite soft mold used in the present invention
  • Figure 3 is a schematic structural view of the internal piping arrangement of the gas valve plate of the present invention.
  • Figure 4a is a plan view showing the structure of the vacuum chuck of the present invention.
  • Figure 4b is a side cross-sectional view showing the structure of the internal piping arrangement of the vacuum chuck of the present invention.
  • Figure 5 is a schematic structural view of the embossing mechanism of the present invention.
  • Figure 6 is a schematic structural view of the mold feeding mechanism of the present invention.
  • FIG. 7 is a flow chart showing the working process of the imprint method for high-brightness LED patterning of the present invention.
  • the invention adopts a nano-patterned 4 inch sapphire substrate as an embodiment, the substrate 3 is a 4-inch sapphire, and the patterned layer 501 of the film-like composite elastic soft mold selects a water-soluble polymer polyvinyl alcohol (PVA), a support layer. 502 Uses a highly transparent and elastic film-like PET material.
  • PVA polymer polyvinyl alcohol
  • FIG. 1 is a schematic structural view of a nanoimprinting apparatus for high-brightness LED patterning according to the present invention, which includes: a wafer stage 1. Vacuum chuck 2, substrate 3, ultraviolet curing type nanoimprint resist 4, mold 5, gas valve plate 6, imprint mechanism 7, ultraviolet light source 8, mold feeding mechanism 9, vacuum line 10, pressure tube
  • the substrate 3 coated with the ultraviolet curable nanoimprint resist 4 is adsorbed on the vacuum chuck 2, and the vacuum chuck 2 is fixed on the wafer stage 1; the gas valve plate 6 is fixed at the pressure
  • the bottom surface 706 of the printing mechanism 7 is fixed to the top surface 705 of the imprinting mechanism 7;
  • the mold 5 is attached to the roller 901 of the mold feeding mechanism 9 where the film-like mold is placed, the two auxiliary supporting rollers 902 and the pressing
  • the mold 5 is placed above the substrate 3 coated with the liquid ultraviolet-curable nanoimprint resist 4 and below the gas slab 6 through the auxiliary support roller 902, the vacuum line 10 and the pressure line 11 are connected
  • the template 5 is a two-layer film-like elastic transparent soft mold comprising a pattern layer 501 and a support layer 502.
  • the graphic layer 501 comprises a micro/nano feature 50101 to be replicated, the thickness of the graphic layer 501 is 40 microns, and the thickness of the support layer 502 PET is 150 microns.
  • the support layer 502 is located above the graphic layer 501.
  • the graphic layer 501 is made of a water-soluble polymer polyvinyl alcohol (PVA) ; the support layer 502 is made of a highly transparent and elastic film-like PET material.
  • PVA water-soluble polymer polyvinyl alcohol
  • Figure 3 is a schematic view showing the structure of the gas valve panel 6 of the present invention and its internal piping arrangement.
  • One of the sides is provided with an air inlet 601, the bottom surface is formed with a groove surface 602, and one side of the groove surface 602 is communicated with the air inlet 601.
  • the intake port 601 is connected to the vacuum line 10 and the pressure line 11.
  • FIG. 4a is a plan view showing the structure of the vacuum chuck 2 of the present invention
  • FIG. 4b is a side cross-sectional view showing the structure of the internal piping of the vacuum chuck 2 of the present invention, which comprises: a first buffer gasket 201 (freely movable up and down), and a first buffer gasket is placed.
  • connection bracket 701 is configured to connect and fix the ultraviolet light source 8, the gas valve plate 6, the second buffer gasket 702, and the motion actuator 709 for moving the stamping mechanism 7 up and down in the z-axis direction. (such as one-dimensional displacement platform, etc.).
  • the sealing area II is formed by the second cushioning gasket 702, the mold 5 and the first cushioning gasket 201 on the vacuum chuck 2 cooperating.
  • the top surface 705 of the connecting bracket 701 of the embossing mechanism 7 is connected to the ultraviolet light source 8.
  • the bottom surface 706 of the connecting bracket 701 of the embossing mechanism 7 is connected to the gas valve panel 6, and the top surface 705 of the connecting bracket 701 of the embossing mechanism 7 is The motion actuators 709 are connected.
  • Fig. 6 is a schematic view showing the structure of the mold feeding mechanism 9 of the present invention, which comprises a roller 901 for placing a film-shaped mold, an auxiliary supporting roller 902, and a roller 903 for recovering the mold after imprinting.
  • the roller 901 in which the film-shaped mold is placed is used for placing (loading) the film-shaped mold 5 (the film-shaped elastic mold 5 manufactured by the roll-pressing process), and the roller 903 recovered by the mold after the embossing is used for recovering the mold-removed
  • the mold 5, the auxiliary support roller 902 functions to assist the support, guide and anti-torsion, and can be placed at different positions (two in this embodiment).
  • the roller 903 recovered by the die after the embossing is the active rotating wheel, and the roller 901 for placing the film-shaped mold is a passive rotating wheel. After the embossing is performed once, the roller 903 recovered by the embossing is actively rotated after the embossing, the new mold 5 The feed is moved to the imprinting station, and the working process cycle of the next imprint is started.
  • Figure 7 is a flow chart showing the operation of the embossing method for high-brightness LED patterning of the present invention, which comprises the following steps:
  • a 200 nm liquid UV-curable nanoimprint resist 4 was spin-coated on a 4-inch sapphire substrate 3, placed on a vacuum chuck 2 above the wafer stage 1, and coated with ultraviolet light by vacuum suction.
  • the sapphire substrate 3 of the photocurable nanoimprint resist 4 is adsorbed and fixed on the vacuum chuck 2.
  • the stage 1 is moved from the initial station to the imprint station (center position directly below the mold 5).
  • the embossing mechanism 7 drives the gas valve plate 6 and the ultraviolet light source 8 to move from the initial station to the sapphire substrate 3 until the second buffer gasket 702 of the embossing mechanism 7 and the mold 5, the mold 5 and the vacuum chuck 2
  • the first cushion seal 201 is in full contact.
  • the lower portion of the mold 5 and the closed region I formed by the vacuum chuck 2, the upper portion of the mold 5 and the imprint mechanism 7 enclose a closed region II, and it is ensured that the sealed regions I and II are sealed and airtight during the imprinting and demolding work.
  • the pressure line 11 is opened one by one in the two outer directions, and the ultraviolet curing type on the film-like mold 5 and the sapphire substrate 3 is performed under the uniform pressure exerted by the compressed air.
  • the nanoimprint resist 4 is gradually conformally contacted; 3 after the film-like mold 5 is completely conformally and uniformly contacted with the ultraviolet curable nanoimprint resist 4, the vacuum chuck 2 opens the vacuum line 10 and is formed in the sealed region I.
  • the liquid ultraviolet curable nanoimprint resist 4 gradually releases the pressure applied to the mold 5 before curing, and finally maintains the imprint force of 5 mbar to make the mold The deformation of 5 is completely restored; 2 Subsequently, the ultraviolet light source 8 is turned on, and the ultraviolet light is exposed to the liquid ultraviolet curing type nanoimprint resist 4 through the mold 5 to fully cure the liquid ultraviolet curing type nanoimprint resist. Agent 4.
  • the curing time is 20s.
  • the pressure line 11 of the gas valve plate 6 and the vacuum line 10 of the vacuum suction cup 2 are closed; 2 from the outermost sides of the gas valve plate 6 simultaneously start the vacuum line 10 one by one toward the center of the mold 5, and the closed area II forms a low pressure vacuum At the same time, the pressure line 11 is opened on the vacuum chuck 2, and the sealed area I forms a low pressure pressure environment.
  • the mold 5 is continuously "uncovered" from the outer side to the center of the sapphire substrate 3; finally, the center position of the mold 5 is separated from the solidified polymer on the sapphire substrate 3, and the mold 5 and the imprinted micro-nano are realized.
  • the complete separation of the feature structure 50101 completes the demolding. 3
  • the vacuum line 10 in the gas valve plate 6, the pressure line 11 of the vacuum chuck 2, and the horizontal pressure line 202 of the pressure line 11 of the first buffer seal 201 on the vacuum chuck 2 are closed (first buffer seal) Pad 201 is reset).
  • the imprinting mechanism 7 moves up and returns to the initial station.
  • the stage 1 is moved to the substrate 3 replacement station, the horizontal vacuum line 204 on the vacuum chuck 2 is closed, the embossed sapphire substrate 3 is removed, the new sapphire substrate 3 is replaced, and the vacuum chuck 2 is opened at the same time.
  • the horizontal vacuum line 204 secures the new sapphire substrate 3 to the vacuum chuck 2. 2
  • the roller 903 recovered by the die is rotated, and the film-shaped mold 5 is advanced to the movement, and the size of the feed movement is 300 mm. Begin a new round of embossing work cycle.
  • the remaining mold 5 material in the structure of the cured UV-curable nanoimprint resist 4 after curing is removed.
  • the micro/nano feature 50101 of the mold 5 may have some micro-nano feature 50101 residual of the mold 5 due to the adhesion of the polymer to the mold release or the mold release force is not uniform or the mechanical strength of the mold 5 is low after the mold release process.
  • the mold 5 material remaining in the imprinted special structure forms an embossing defect), resulting in Mold 5 failure and generation of embossing defects.
  • the present invention provides an ideal solution using a water soluble disposable mold 5.
  • the material of the mold 5 remaining in the embossed structure is a water-soluble material. Therefore, the substrate 3 and the embossed features thereon were placed in an 80 ⁇ aqueous solution for 10 minutes to remove the mold 5 remaining in the characteristic structure. 2 with Thereafter, the residual layer is removed by a reactive ion etching process, and the embossed organic polymer is used as a mask to transfer the features to the sapphire substrate 3 by an ICP dry etching process.
  • the working range of the pressure line 11 in this embodiment is: 0-2 bar ; the working pressure in the embossing process is 30 mbar. The pressure is released to 5 mbar and the embossing force of 5 mbar is maintained during the curing process.
  • the mold 5 is manufactured by a roll-to-roll nanoimprint process, and the manufacturing process thereof: (1) manufacturing a silicon mold (mother mold) by laser interference lithography; (2) using a silicon mold as a master mold, using an electroforming process, A nickel mold of a sheet structure is fabricated and coated on a cylindrical roller to form a working die for roll printing; G) a nickel mold of a roller type is used as a working mold, and a PET is used as a backing (support layer 502)
  • the water-soluble PVA is an imprint material, and the mold 5 required for the present embodiment is produced by roll-to-roll or roll-to-plane nanoimprint process (heat curing).
  • the working range of the vacuum line 10 is: ⁇ -0.2 bar, and the working pressure during the imprinting process is -600 Pa ;

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

一种用于高亮度LED图形化的纳米压印装置和方法。该装置包括:承片台(1)、真空吸盘(2)、衬底(3)、紫外光固化型纳米压印抗蚀剂(4)等,模具(5)为薄膜状弹性复合软模具,它包括图形层(501)和支撑层(502),图形层具有水溶性、薄膜结构、弹性和高透明的特性,模具的制造采用滚压印工艺。基于该装置实现LED图形化的方法包括:(1)预处理过程;(2)压印过程;(3)固化过程;(4)脱模过程;(5)后处理过程;(6)压印图形的转移。该装置和方法实现了在非平整表面或曲面衬底或者易碎衬底上高效、低成本制造大面积、高深宽比微纳米结构,适合光学器件、三维微型电池、MEMS器件、光伏器件、抗反射层、自清洁表面等的规模化制造,尤其适合LED图形化和晶圆级无拼接微光学器件工业级规模化生产。

Description

一种用于高亮度 LED图形化的纳米压印装置和方法
技术领域
本发明属于微纳制造和光电子器件制造技术领域, 尤其涉及一种用于高亮度 LED 图形 化的纳米压印装置和方法。
背景技术
LED图形化(蓝宝石衬底图形化和 LED外延片图形化)已经被学术界和工业界认为是提 高光生成效率和光萃取效率以及改进光源质量 (控制光发射方向和远场图形均匀性) 最有效 途径, 即所谓纳米级图形化蓝宝石衬底(Nano-Patterned Sapphire Substrate, NPSS )和 LED外 延片图形化技术(Photonic Crystal LED, 光子晶体 LED; Nanorod LED, 纳米棒 LED; Nanowire LED, 纳米线 LED), 目前被业界认为是提高取光效率, 实现超高亮度 LED最有效的技术手 段之一。 不同于传统 IC领域所指使用的平整洁净硅片, 蓝宝石衬底和 LED外延片具有以下 特点, 表面不平整, 存在翘曲和弯曲变形, 厚度尺寸变化大, 并且会有数微米尺寸的表面尖 锐的突起, 以及存在较为明显的表面缺陷和颗粒状污染物, 而且呈现出易碎的特性。 因此, 采用现有的各种微纳制造方法, 在非平整 LED外延片或蓝宝石衬底表面高效、 低成本、 规模 化制造出大面积、高深宽比微纳结构是极为困难的,无法满足 LED图形化工业级应用的需求。 例如, 由于 LED 外延片存在翘曲、 弯曲以及表面波浪外形和尖锐的凸起, 传统光学光刻焦 深比无法适应曝光的要求; 采用电子束光刻制造大面积纳米结构成本高, 生产率低, 难以实 现大面积、规模化的制造。对于 NPSS, 采用现有的接触式或者接近式光刻设备无法满足纳米 图形制造精度的要求, 采用步进式投影光刻 (Stepper) 虽然可以实现 NPSS制造, 但是半导 体行业使用的 Stepper在 LED行业显得过于昂贵, 大大增加了 LED的制造成本。 而 LED对 于成本非常敏感。 另外, 目前一些企业采用二手翻新的 Stepper, 但是在产品良率、 设备可靠 性等方面都存在问题。 干涉光刻在大面积周期性的微纳结构制造方面具有较大的优势, 但是 该方法的显著不足:焦深小、纳米结构图形的可选择性差、对于生产环境的要求苛刻(与 LED 生产工艺兼容性差), 尤其是目前几乎还没有一家商业化公司提供成熟的千涉光刻机(大尺寸 晶圆纳米图形的制造)。 虽然其它诸如纳米球珠光刻、 阳极氧化铝模板 (AAO)、 自然光刻、 嵌段共聚物自组装等纳米制造方法也已经尝试被应用于 LED图形化,但是都在存在某方面的 不足, 如成本、 生产率、一致性、 良率和规模化制造等。 无法满足 LED图形化的高效、 低成 本、 一致性好工业级生产要求。
纳米压印光刻( Nanoimprint Lithography, NIL)是一种全新微纳米图形化的方法, 它是一种 使用模具通过抗蚀剂的受力变形实现其图形化的技术。 与其它微纳米制造方法相比, NIL 具 有高分辩率、 超低成本 (国际权威机构评估同等制作水平的 NIL比传统光学投影光刻至少低 一个数量级) 和高生产率的特点, 而且其最显著的优势在于大面积、 复杂三维微纳结构制造 的能力, 尤其是对于软紫外纳米压印具有在非平整(弯曲、 翘曲或者台阶)、 易碎衬底上底上 实现品圆级纳米压印的潜能, 以及滚压印工艺所特有的连续大面积压印能力。 纳米压印光刻 己经被学术界和工业界确定为实现 LED图形化的最理想的技术方案。但现有纳米压印工艺应 用于 LED图形化, 在模具寿命、 生产率、 良率和可靠性等方面还存在许多不足, 尤其还面临 一些挑战性技术难题, 如大面积脱模困难、 软模具变形、 颗粒状污物和尖锐的突起缺陷对于 模具的损伤、 压印图形的一致性和可重复性等。 另外, 在图形转移过程中的工艺环节, 蓝宝 石和 GaN等材料难以刻蚀, 通常需要先沉积一层硬掩模层, 为了降低生产成本, 缩短工艺路 线, 直接在抗蚀剂上压印出大深宽比的特征结构, 可以省去硬掩模层工序, 简化了生产工艺 和降低了生产成本。 因此, LED 图形化对于在非平整表面或曲面或易碎衬底上高效和低成本 制造大面积、 高深宽比微纳结构的新型压印技术有着非常迫切的需求。
所以,为了满足 LED图形化的工业级应用需求,迫切需要开发新的纳米压印工艺和装备, 它具有在非平整表面上低成本、 高效量产大面积、 高深宽比、 微纳米结构能力。
发明内容
本发明的目的就是为了解决上述问题,提供一种用于高亮度 LED图形化的纳米压印装置 和方法, 它采用一种低成本水溶性、 薄膜状弹性复合软模具, 并结合大面积纳米压印工艺和 气体辅助渐进顺序施压以及揭开式脱模方法, 实现在非平整表面 (弯曲、 翘曲、 台阶或者突 起) 或者曲面或者易碎性衬底高效、 低成本制造大面积、 高深宽比微纳结构。
为了实现上述目的, 本发明采用如下技术方案- 一种用于高亮度 LED图形化的纳米压印装置, 它包括: 承片台、 真空吸盘、 衬底(晶圆 或外延片)、 紫外光固化型纳米压印抗蚀剂、 模具、 气阀板, 压印机构、 紫外光光源、 模具进 给机构、 真空管路、 压力管路; 其中, 承片台的正上方固定真空吸盘, 真空吸盘的正上方吸 附着衬底, 衬底上涂铺液态紫外光固化型纳米压印抗蚀剂; 模具附在模具进给机构的放置薄 膜状模具的辊轮、 两个辅助支撑辊轮和压印后模具回收的辊轮的外面, 模具通过辅助支撑辊 轮放置在涂有液态紫外光固化型纳米压印抗蚀剂的衬底的上方和气阀板的下方, 气阔板固定 在压印机构的下方, 紫外光光源固定在压印机构的上方; 真空管路和压力管路与气阀板的进 气口相连, 真空管路和压力管路与真空吸盘的进气口相连。
所述模具为水溶性、 薄膜状、 弹性复合透明软模具, 它包括图形层和支撑层, 其中图形 层具有以下特性: 水溶性、 高弹性模量、 高透明性、 热稳定性和良好的力学特性, 选择聚乙 烯醇 (polyvinyl alcohol, PVA)或聚丙烯酸(poly(acrylic acid), PAA)等水溶性高分子化合物。 所述支撑层为透明高弹性薄膜状 PET材料。其中图形层包含所要复制的微纳特征结构 (图形), 支撑层位于图形层之上。 图形层的厚度是 10-50微米, 支撑层 PET厚度是 100-200微米。 所 述模具采用滚压印工艺、 印刷电子技术或者纳米压印技术制造。
所述模具进给机构包括: 放置薄膜状模具的辊轮、 压印后模具回收的辊轮、 辅助支撑辊 轮、 导向和防扭偏机构, 所述模具进给机构分为左右轴对称的两侧, 一侧为放置薄膜状模具 的辊轮和辅助支撑辊轮, 放置薄膜状模具的辊轮比辅助支撑辊轮更靠近模具进给机构的中轴 线, 另一侧是压印后模具回收的辊轮和另外一个辅助支撑辊轮, 压印后模具回收的辊轮与放 置薄膜状模具的辊轮相对于模具进给机构的中轴线对称, 辅助支撑辊轮和另外一个辅助支撑 辊轮相对于模具进给机构的中轴线对称。
所述承片台为 x-y精密工作台, 实现衬底更换工位、 压印过程中衬底与模具的定位和位 置的调整。
所述压印机构包括沿 z轴方向上下移动的一维位移平台和紫外光光源的连接支架, 连接 支架的下方安装有若干个缓冲密封垫。
所述紫外光光源为紫外 LED灯阵列。
所述压力管路的工作范围是: 0-2bar; 压印过程中的工作压力是 10-100mbar。
所述真空管路工作范围是: -O.lbar〜- 0.4bar, 压印过程中的工作压力是 -300Pa〜- 5kPa; 压印工作过程中模具下方和真空吸盘所围成的密闭区域 I为低压真空环境, 模具上方和 压印机构所围成的密闭区域 II为压力环境。
上述用于高亮度 LED图形化的纳米压印装置所采用的工作方法, 包括如下步骤: 歩骤 (1 ): 预处理过程;
歩骤 (2): 压印过程;
步骤 (3 ): 固化过程;
步骤 (4): 脱模过程;
步骤 (5 ): 后处理过程;
步骤 (6) 压印图形的转移。
所述步骤 (1 ) 的工作过程为在衬底上旋涂一层液态紫外光固化型纳米压印抗蚀剂, 将 衬底置于承片台之上的真空吸盘上, 并通过真空吸力将涂铺紫外光固化型纳米压印抗蚀剂的 衬底吸附固定于真空吸盘上; 承片台从初始工位移动到压印工位, 所述压印工位是模具的正 下方中心位置。 所述步骤 (2) 的工作过程为:
( 2-1)压印机构带动气阀板、 紫外光光源从初始工位向衬底移动, 直到压印机构的缓冲 密封垫与模具上表面支撑层, 模具下表面图形层与真空吸盘上的缓冲密封垫完全紧密接触; 模具的下方和真空吸盘形成的密闭区域 I, 模具的上方和压印机构围成密闭的区域 II, 压印和 脱模工作过程中应确保密闭区域 I和 II密封和不漏气;
( 2-2)从气阀板的中心位置开始, 向两外侧方向逐个开启气阀板内的压力管路, 在压缩 空气的施加的压力作用下, 使模具与衬底上的紫外光固化型纳米压印抗蚀剂渐进式顺序共形 微接触;
( 2-3 )模具与紫外光固化型纳米压印抗蚀剂完全共形均匀接触后, 一方面真空吸盘开启 真空管路, 在密闭区域 I形成低压真空环境, 去除压印过程中陷入的气泡缺陷, 使薄膜状模 具与衬底上的液态紫外光固化型纳米压印抗蚀剂完全共形接触; 同时, 气阔板的所有压力管 路的压力保持均匀一致性增大, 模具的上方和压印机构所围成的密闭区域 II形成低压压力环 境, 在薄膜状模具上施加均匀一致的压印力, 实现紫外光固化型纳米压印抗蚀剂在模具微纳 结构腔体内完全填充, 并且减薄至预定的残留层厚度; 或者直接初始留膜厚度与压印特征结 构的高度相同, 实现无留膜压印, 由于是一次性模具, 无需担心模具与衬底直接接触导致模 具的损伤。
所述步骤 (3) 的工作过程为:
(3-1 ) 首先, 逐渐释放施加在模具上的压力, 使模具的变形得到完全的释放;
(3-2) 随后, 开启紫外光光源, 紫外光透过模具对紫外光固化型纳米压印抗蚀剂曝光, 充分固化紫外光固化型纳米压印抗蚀剂; 固化的时间 10-30s。
所述步骤 (4) 的工作过程为:
(4-1) 首先, 关闭气阀板的压力管路和真空吸盘真空管路;
(4-2)从气阔板最外两侧同时开始向模具的中心逐个开启气阔板内的真空管路, 使密闭 区域 II形成低压真空环境; 同时, 真空吸盘上开启压力管路, 密闭区域 I形成低压压力环境。 实现模具从衬底两外侧向中心连续 "揭开"式的脱模; 最后, 模具中心位置与衬底上固化的 聚合物相互分离, 实现模具与压印结构的完全分离, 完成脱模。
(4-3)最后, 关闭气阀板内的真空管路、 真空吸盘的压力管路以及真空吸盘上的缓冲密 封垫的压力通路的进气管路, 缓冲密封垫复位。
所述步骤 (5 ) 的工作过程为:
(5-1 ) 压印机构向上移动, 返回初始工位; 同时承片台移动到衬底更换工位, 关闭真空 吸盘上的真空管路, 取下压印后的衬底, 更换新的衬底, 同时开启真空吸盘上的真空管路, 将新的衬底固定在真空吸盘上;
(5-2) 同时压印后模具回收的辊轮转动, 薄膜状模具向前进给运动, 进给移动的尺寸大 于衬底的最大外圆尺寸; 幵始新一轮压印工作过程的循环。
所述步骤 (6) 的工作过程为:
(6-1) 去除固化后紫外光固化型纳米压印抗蚀剂结构中的残留的模具材料; 将衬底和其 上压印的微纳特征结构置于 70-100Ό的水溶液中 5-10分钟,去除残留在压印结构中的模具残 留材料。
(6-2) 随后通过刻蚀工艺, 以固化后压印的紫外光固化型纳米压印抗蚀剂为掩模, 将特 征结构转移到衬底上; 或者通过 "Lift-off"工艺, 将特征结构转移到其它功能结构材料上, 所述刻蚀工艺包括干法刻蚀或湿法刻蚀。
本发明的工作原理是:
( 1 ) 引入一种低成本水溶性、 薄膜状弹性复合软模具。 压印过程釆用 "压缩气体和低压 真空共同辅助施压"和采用从模具中心位置向两外侧方向逐渐均匀性渐进顺序微接触压印方 式, 基于薄膜状弹性模具结构, 在模具上面的气体辅助压印力和模具下部的真空吸力、 以及 毛细力共同作用下, 实现在非平整衬底 (突起、 波浪形、 曲面等) 压印力均匀分布, 并在很 小压印力的条件下实现模具与非平衬底上的紫外光固化型纳米压印抗蚀剂完全共形密切接 触, 克服压印过程中陷入上的气泡缺陷。 脱模过程采用模具从衬底两侧向中心连续 "揭开" 式脱模方式, 在模具上方的真空吸力和模具下方的压縮空气施加脱模力的共同作用下, 采用 微小的脱模力即可实现大面积脱模。
(2 )通过薄膜状弹性复合软模具、 压缩气体和低压真空力共同辅助渐进式顺序施压、均 勾顺序微接触压印方法, 实现非平整衬底均匀共形接触, 确保压印非平整衬底大面积压印图 形的一致性, 并且解决了压印过程中引入颗粒污染物的问题。
(3)压印过程中, 模具和紫外光固化型纳米压印抗蚀剂在低压真空环境中, 解决了大面 积压印过程中陷入气泡的去除问题以及确保模具和衬底完全接触提高压印图形的一致性。
(4)使用一次性水溶性模具, 一方面解决了压印过程中模具的寿命和成本的问题, 另外 降低了压印缺陷的产生, 提高了复形质量, 高深宽比微纳特征结构在脱模过程由于模具和固 化后聚合物的粘附, 以及脱模力不均匀等因素导致一些微纳特征结构极易断在或者粘附在压 印的结构层中, 残留在压印结构层中的模具材料可在水溶液中去除而不损伤图形层。
本发明的创新点及有益效果是: ( 1 ) '本发明所使用的模具为一次性低成本模具。 即采用水溶性材料, 易于去除; 其薄膜 状和高弹性特性, 确保与非平整衬底具有良好共形接触能力; 此外还可以有效降低纳米压印 过程中由于生产环境中的颗粒物引起的缺陷问题。
( 2 )渐进式顺序微接触的压印和脱模方法,压印和脱模过程都是基于顺序和微接触模式, 减小了模具变形和脱模力, 压印过程中陷入的气泡能够被及时排出。
( 3 ) 具有在小压印力下, 在非平整衬底 (突起、 翘曲、 弯曲、 台阶) 实现与薄膜状弹性 模具完全共形密切接触的能力, 实现了在非平整衬底大面积均匀一致的压印 (大面积压印图 形一致性)。
( 4)模具图形层材料为水溶性材料,对于高深宽比微纳特征结构即使脱模过程中模具的 微纳特征结构残留在复压印结构层中, 极易去除。 提高压印图形的质量, 实现了大面积、 高 深宽比微纳结构的制造。
( 5 )压印过程在低压真空条件下, 并结合采用从模具中心位置向两外侧方向渐进式顺序 微接触压印方式, 解决了大面积压印过程中陷入气泡的技术难题并确保小压印力条件下良好 的共形接触。
( 6 )因为本发明使用的是一次性模具,无需担心模具与衬底直接接触,导致模具的损伤, 可以实现无残留层的压印。
( 7 ) 固化前, 采用压印力释放工艺, 将模具的变形得到充分的释放, 有效提高软模具压 印图形的质量和精度。
( 8 )薄膜状模具采用连续滚压印工艺等制造方法, 压印材料成本低廉, 模具制造具有高 效、 低成本制造的优势。 满足批量化工业级应用的要求。
(9) 本发明压印过程和脱模过程以模具中心为对称轴, 模具均匀、对称受力, 压印和脱 模过程两侧同时进行, 生产效率高。
( 10 )模具为一次性。 水溶性模具, 解决了尖锐凸起、 缺陷、 颗粒物等对于模具的损伤, 以及高深宽比结构脱模模具易损伤的技术难题, 模具寿命低的问题。
( 11 ) 本发明不依赖精密机械施加的平衡、 均勾, 与表面垂直的压印力, 简化了设备结 构。 通过气体辅助压力 (正压和负压的结合) 实现大面积压印过程中的均匀施压。
( 12 ) 生产环境的要求低, 对于衬底或者晶圆的不平整度、 缺陷、 颗粒物不敏感, 适应 度高。 这在实际工业应用中是非常重要的。
( 13 ) 本发明结合了平板压印和滚压印二者优势, 实现了大面积微纳米结构的高效、 低 成本制造。 为大面积微纳米结构的商业化应用提供一种工业级的解决方案。 本发明的最显著优势在于: 实现了在各种软、 硬衬底, 包括非平整(弯曲、 翘曲、 台阶 或者突起)或曲面衬底或者易碎衬底表面高效、低成本制造出大面积、 高深宽比微纳米结构, 为大面积微纳结构制造, 或者非平整衬底大面积纳米图形化, 或者曲面的大面积纳米图形化, 或者高深宽比大面积微纳结构制造提供了一种工业级的应用解决方案。
本发明适合于高密度磁盘 (HDD)、 微光学器件 (如光学透镜、 衍射光学元件等)、 各种 涂层 (抗反射、 自清洁、 抗霜等)、 三维微型电池、 蝶式太阳能聚光器、 复眼影像感测器、 微 流控器件、 生物传感器、 MEMS器件、 光伏器件等的制造, 尤其适合 LED纳米图形化(光子 晶体 LED的制造纳图形化蓝宝石衬底等) 和晶圆级微光学器件的工业级生产。
附图说明
图 1是本发明用于高亮度 LED图形化的纳米压印装置结构示意图;
图 2是本发明使用的水溶性、 薄膜状弹性复合软模具结构示意图;
图 3是本发明气阀板其内部管路布置的结构示意图;
图 4a是本发明真空吸盘的结构俯视图;
图 4b是本发明真空吸盘内部管路布置的结构侧面剖视图;
图 5是本发明压印机构的结构示意图;
图 6是本发明模具进给机构的结构示意图;
图 7是本发明用于高亮度 LED图形化的压印方法的工作过程流程图;
其中, 1承片台、 2真空吸盘、 3衬底、 4紫外光固化型纳米压印抗蚀剂、 5模具、 6气阀 板, 7压印机构、 8紫外光光源、 9模具进给机构、 10真空管路、 11压力管路、 201、 第一缓 冲密封垫, 202水平压力管路、 203垂直孔、 204水平真空管路、 205吸附衬底的垂直管路、 206连通区域 I水平管路、 207连通区域 I垂直管路、 501图形层、 502支撑层、 50101微纳特 征结构、 50102微纳结构腔体、 601进气口、 602凹槽面、 701连接支架、 702、 第二缓冲密封 垫、 705顶面、 706底面、 709运动执行机构、 901放置薄膜状模具的辊轮、 902辅助支撑辊 轮、 903压印后模具回收的辊轮。
具体实施方式
下面结合附图与实施例对本发明作进一步说明。
本发明以纳米图形化 4英寸蓝宝石衬底为实施例, 衬底 3为 4英寸蓝宝石, 薄膜状复合 弹性软模具的图形层 501选择水溶性聚合物聚乙烯醇 (polyvinyl alcohol, PVA), 支撑层 502 使用高透明和弹性薄膜状 PET材料。
图 1是本发明用于高亮度 LED图形化的纳米压印装置结构示意图, 它包括: 承片台 1、 真空吸盘 2、 衬底 3、 紫外光固化型纳米压印抗蚀剂 4、 模具 5、 气阀板 6, 压印机构 7、 紫外 光光源 8、 模具进给机构 9、 真空管路 10、 压力管路 11 ; 其中, 涂铺有紫外光固化型纳米压 印抗蚀剂 4的衬底 3吸附在真空吸盘 2之上, 真空吸盘 2固定在承片台 1之上; 气阀板 6固 定在压印机构 7的底面 706, 紫外光光源 8固定在压印机构 7的顶面 705; 模具 5附在模具进 给机构 9的放置薄膜状模具的辊轮 901、两个辅助支撑辊轮 902和压印后模具回收的辊轮 903 的外面, 模具 5通过辅助支撑辊轮 902放置在涂有液态紫外光固化型纳米压印抗蚀剂 4的衬 底 3的上方和气阔板 6的下方, 真空管路 10和压力管路 11与气阀板 6的进气口 601相连, 压力管路 11与真空吸盘 2的水平压力管路 202连接、 真空管路 10与真空吸盘 2的水平真空 管路 204连接、 真空管路 10和压力管路 11与真空吸盘 2的连通区域 I水平管路 206相连。 图 2是本发明使用的水溶性、 薄膜状高弹性复合软模具结构示意图, 所述模板 5为两层薄膜 状弹性透明的软模具, 它包括图形层 501和支撑层 502。 所述图形层 501包含要复制的微纳 特征结构 50101, 图形层 501的厚度是 40微米, 支撑层 502 PET的厚度是 150微米。 支撑层 502位于图形层 501之上。图形层 501采用水溶性聚合物聚乙烯醇 (polyvinyl alcohol, PVA); 支撑层 502使用高透明和弹性薄膜状 PET材料。
图 3是本发明气阀板 6及其内部管路布置的结构示意图。 其中一个侧面开有进气口 601 , 底面加工出凹槽面 602, 凹槽面 602的一侧与进气口 601相通。 进气口 601与真空管路 10和 压力管路 11相连。
图 4a是本发明真空吸盘 2的结构俯视图, 图 4b是本发明真空吸盘 2内部管路布置的结 构侧面剖视图, 它包括: 第一缓冲密封垫 201 (上下自由活动)、 放置第一缓冲密封垫 201的 垂直孔 203、 与垂直孔 203相通的水平压力管路 202 (与压力管路 11相连, 通过压力管路 11 所提供的压縮气体使第一缓冲密封垫 201在压印过程中向上运动, 与模具 5和压印机构 7的 第二缓冲密封垫 702 (固定不动) 共同作用, 形成密闭区域 1)、 固定吸附衬底 3的水平真空 管路 204 (与真空管路 10相连, 提供吸附衬底 3的负压)、 吸附衬底的垂直管路 205 (与水平 真空管路 204相连通)、 连通区域 I水平管路 206 (与真空管路 10和压力管路 11相连, 压印 时与真空管路 10相连通, 脱模时与压力管路 11相连通)、 与连通区域 I水平管路 206相连通 的连通区域 I垂直管路 207 (压印时, 在密闭区域 I中形成低压真空环境; 脱模时在密闭区域 1中形成正压环境)。 第一缓冲密封垫 201在垂直孔 203中应确保能够自由运动。
图 5是本发明压印机构 7的结构示意图,它包括连接支架 701、第二缓冲密封垫 702 (固 定在连接支架 701上)、运动执行机构 709。其中连接支架 701用以连接和固定紫外光光源 8、 气阀板 6、第二缓冲密封垫 702以及实现压印机构 7沿 z轴方向上下移动的运动执行机构 709 (如一维位移平台等)。 当压印机构 7 从初始工位移动到压印工位时, 通过第二缓冲密封垫 702、 模具 5和真空吸盘 2上的第一缓冲密封垫 201共同作用, 形成密封区域 II。 压印机构 7 的连接支架 701的顶面 705与紫外光光源 8相连, 压印机构 7的连接支架 701的底面 706与 气阀板 6相连, 压印机构 7的连接支架 701的顶面 705与运动执行机构 709相连。
图 6是本发明模具进给机构 9的结构示意图, 它包括放置薄膜状模具的辊轮 901、 辅助 支撑辊轮 902、压印后模具回收的辊轮 903。其中放置薄膜状模具的辊轮 901用以放置(承载) 薄膜状模具 5 (通过滚压印工艺制造的薄膜状弹性模具 5 ), 压印后模具回收的辊轮 903用以 回收脱模后的模具 5, 辅助支撑辊轮 902起到辅助支撑、 导向和防扭偏的功能, 可以在不同 的位置放置多个(本实施例使用两个)。 压印后模具回收的辊轮 903是主动转动轮, 放置薄膜 状模具的辊轮 901是被动转动轮, 完成一次压印脱模后, 压印后模具回收的辊轮 903主动旋 转, 新的模具 5进给移动到压印工位, 开始下一次压印的工作过程循环。
图 7是本发明用于高亮度 LED图形化的压印方法的工作过程流程图, 它包括如下工艺 歩骤:
( 1) 预处理过程
在 4英寸蓝宝石衬底 3上旋涂 200nm的液态紫外光固化型纳米压印抗蚀剂 4,将其置于 承片台 1之上的真空吸盘 2上, 并通过真空吸力将涂铺有紫外光固化型纳米压印抗蚀剂 4的 蓝宝石衬底 3吸附固定在真空吸盘 2上。 承片台 1从初始工位移动到压印工位 (模具 5的正 下方中心位置)。
(2) 压印过程
①压印机构 7带动气阀板 6、 紫外光光源 8从初始工位向蓝宝石衬底 3方向移动, 直到 压印机构 7的第二缓冲密封垫 702与模具 5, 模具 5与真空吸盘 2上的第一缓冲密封垫 201 完全接触。模具 5的下方和真空吸盘 2形成的密闭区域 I,模具 5的上方和压印机构 7围成密 闭的区域 II, 应确保密闭区域 I和 II压印和脱模工作过程中密闭和不漏气; ②从气阀板 6的 中心位置开始, 向两外侧方向逐个开启压力管路 11, 在压缩空气所施加的均匀压力作用下, 使薄膜状模具 5与蓝宝石衬底 3上的紫外光固化型纳米压印抗蚀剂 4逐渐共形接触;③ 薄膜 状的模具 5与紫外光固化型纳米压印抗蚀剂 4完全共形均匀接触后, 真空吸盘 2开启真空管 路 10, 在密闭区域 I形成低压真空环境 (一方面去除压印过程中陷入的气泡缺陷, 另一方面 使薄膜状的模具 5与非平整衬底 3上的液态紫外光固化型纳米压印抗蚀剂 4完全共形接触); 同时, 气阔板 6的所有压力管路的压力保持均匀一致性增大, 模具 5的上方和压印机构 7所 围成的密闭区域 II形成低压压力环境 (在薄膜状的模具 5上施加均匀一致的压印力), 实现 液态紫外光固化型纳米压印抗蚀剂 4在模具 5微纳结构腔体 50102内完全填充, 并且减薄至 60nm预定的残留层厚度。 压印过程的工作压力是 30 mbar。
(3 ) 固化过程
①为了降低模具 5的变形对于压印质量的影响,液态紫外光固化型纳米压印抗蚀剂 4固 化前, 逐渐释放施加在模具 5上的压力, 最后保持 5 mbar的压印力, 使模具 5的变形得到完 全的恢复; ②随后, 开启紫外光光源 8, 紫外光透过模具 5对液态紫外光固化型纳米压印抗 蚀剂 4曝光, 充分固化液态紫外光固化型纳米压印抗蚀剂 4。 固化的时间 20s。
(4) 脱模过程
①首先, 关闭气阀板 6的压力管路 11和真空吸盘 2真空管路 10; ②从气阀板 6最外两 侧同时开始向模具 5的中心逐个开启真空管路 10, 密闭区域 II形成低压真空环境; 同时, 真 空吸盘 2上开启压力管路 11, 密闭区域 I形成低压压力环境。 实现模具 5从蓝宝石衬底 3的 两外侧向中心连续 "揭开"式的脱模; 最后, 模具 5中心位置与蓝宝石衬底 3上固化的聚合 物相互分离, 实现模具 5与压印微纳特征结构 50101的完全分离, 完成脱模。 ③最后, 关闭 气阀板 6内的真空管路 10、 真空吸盘 2的压力管路 11以及真空吸盘 2上的第一缓冲密封垫 201的压力管路 11的水平压力管路 202 (第一缓冲密封垫 201复位)。
( 5 ) 后处理过程
①压印机构 7向上移动, 返回初始工位。 同时承片台 1移动到衬底 3更换工位, 关闭真 空吸盘 2上的水平真空管路 204, 取下压印后的蓝宝石衬底 3, 更换新的蓝宝石衬底 3, 同时 开启真空吸盘 2上的水平真空管路 204, 将新的蓝宝石衬底 3固定在真空吸盘 2上。 ②同时 压印后模具回收的辊轮 903转动,薄膜状的模具 5向前进给运动,进给移动的尺寸是 300mm。 开始新一轮压印工作过程的循环。
(6) 压印图形的转移
① 去除固化后紫外光固化型纳米压印抗蚀剂 4结构中的残存的模具 5材料。 模具 5的 微纳特征结构 50101在脱模过程由于固化后聚合物与脱模的粘附或者脱模力不均匀或者模具 5的机械强度低等原因,可能有些模具 5的微纳特征结构 50101残留到压印的特征结构中(对 于传统纳米压印工艺将导致严重的后果, 一方面将导致模具 5的失效, 另一方面残留在压印 特种结构中的模具 5材料形成压印缺陷), 导致模具 5失效和压印缺陷的生成。本发明使用水 溶性的一次性模具 5提供了一种理想的解决方案。 因为模具 5是一次性, 无需要担心模具 5 的损伤; 另外, 残留在压印特征结构中的模具 5材料为水溶性材料。 因此, 将衬底 3和其上 压印的特征结构置于 80Ό的水溶液中 10分钟, 去除残留在特征结构中的模具 5残留。② 随 后, 先采用反应离子刻蚀工艺 RIE去除残留层, 以固化后压印的有机聚合物为掩模, 通过 ICP 干法刻蚀工艺, 将特征结构转移到蓝宝石衬底 3上。
本实施例所述压力管路 11的工作范围是: 0-2bar; 压印过程中的工作压力是 30mbar。 压 力释放到 5 mbar, 并在固化过程中保持 5 mbar的压印力。
所述模具 5的制造采用滚对滚纳米压印工艺, 其制造过程: (1 ) 采用激光干涉光刻制造 硅模具(母模); (2) 以硅模具为母模, 采用电铸工艺, 制造薄片结构的镍模具, 并将其包覆 在圆柱形辊轮上, 形成滚压印的工作模具; G ) 以辊轮型的镍模具为工作模具, 以 PET为背 衬(支撑层 502),水溶性 PVA为压印材料,使用滚对滚或者滚对平面纳米压印工艺(热固化), 制造本实施例所需的模具 5。
所述真空管路 10工作范围是: <-0.2bar, 压印过程中的工作压力是 -600Pa;
上述虽然结合附图对本发明的具体实施方式进行了描述, 但并非对本发明保护范围的限 制, 所属领域技术人员应该明白, 在本发明的技术方案的基础上, 本领域技术人员不需要付 出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims

1. 一种用于高亮度 LED 图形化的纳米压印装置, 其特征是, 它包括: 承片台、 真空吸 盘、 衬底、 紫外光固化型纳米压印抗蚀剂、 模具、 气阀板, 压印机构、 紫外光光源、 模具进 给机构、 真空管路、 压力管路; 其中, 承片台的正上方固定真空吸盘, 真空吸盘的正上方吸 附着衬底, 衬底上涂铺液态紫外光固化型纳米压印抗蚀剂; 模具附在模具进给机构的放置薄 膜状模具的辊轮、 两个辅助支撑辊轮和压印后模具回收的辊轮的外面, 模具通过辅助支撑辊 轮放置在涂有液态紫外光固化型纳米压印抗蚀剂的衬底的上方和气阔板的下方, 气阀板固定 在压印机构的下方, 紫外光光源固定在压印机构的上方; 真空管路和压力管路与气阀板的进 气口相连, 真空管路和压力管路与真空吸盘的进气口相连。
2. 如权利要求 1所述的一种用于高亮度 LED图形化的纳米压印装置, 其特征是, 所述 模具为水溶性、 薄膜状、 弹性复合透明软模具, 它包括图形层和支撑层, 其中图形层具有以 下特性: 水溶性、 高弹性模量、 透明性、 热稳定性和良好的力学特性, 选择聚乙烯醇或聚丙 烯酸水溶性高分子化合物; 所述支撑层为透明高弹性薄膜状 PET材料; 其中图形层包含所要 复制的微纳特征结构, 支撑层位于图形层之上; 图形层的厚度是 10-50微米, 支撑层 PET厚 度是 100-200微米; 所述模具采用滚压印工艺、 印刷电子技术或者纳米压印技术制造。
3. 如权利要求 1所述的一种用于高亮度 LED图形化的纳米压印装置, 其特征是, 所述 模具进给机构包括: 放置薄膜状模具的辊轮、 压印后模具回收的辊轮、 辅助支撑辊轮、 导向 和防扭偏机构, 所述模具进给机构分为左右轴对称的两侧, 一侧为放置薄膜状模具的辊轮和 辅助支撑辊轮, 放置薄膜状模具的辊轮比辅助支撑辊轮更靠近模具进给机构的中轴线, 另一 侧是压印后模具回收的辊轮和另外一个辅助支撑辊轮, 压印后模具回收的辊轮与放置薄膜状 模具的辊轮相对于模具进给机构的中轴线对称, 辅助支撑辊轮和另外一个辅助支撑辊轮相对 于模具进给机构的中轴线对称;
所述承片台为 x-y精密工作台, 实现衬底更换工位、 压印过程中衬底与模具的定位和位 置的调整;
所述压印机构包括沿 z轴方向上下移动的一维位移平台和紫外光光源的连接支架, 连接 支架的下方安装有若干个缓冲密封垫;
所述紫外光光源为紫外 LED灯阵列;
所述压力管路的工作范围是: 0-2bar; 压印过程中的工作压力是 10-100mbai;
所述真空管路工作范围是: -O.lbar〜- 0.4bar, 压印过程中的工作压力是 -300Pa~-5kPa; 压印工作过程中模具下方和真空吸盘所围成的密闭区域 I为低压真空环境, 模具上方和 压印机构所围成的密闭区域 II为压力环境。
4.如权利要求 1所述的一种用于高亮度 LED图形化的纳米压印装置所采用的工作方法, 其特征是, 包括如下步骤- 歩骤 (1 ): 预处理过程;
步骤 (2): 压印过程;
歩骤 (3 ): 固化过程;
歩骤 (4): 脱模过程;
步骤 (5 ): 后处理过程;
步骤 (6) 压印图形的转移。
5.如权利要求 4所述的一种用于高亮度 LED图形化的纳米压印方法, 其特征是, 所述 歩骤(1 )的工作过程为在衬底上旋涂一层液态紫外光固化型纳米压印抗蚀剂, 将衬底置于承 片台之上的真空吸盘上, 并通过真空吸力将涂铺液态紫外光固化型纳米压印抗蚀剂的衬底吸 附固定于真空吸盘上; 承片台从初始工位移动到压印工位, 所述压印工位是模具的正下方中 心位置。
6.如权利要求 4所述的一种用于高亮度 LED图形化的纳米压印方法, 其特征是, 所述步 骤 (2) 的工作过程为:
( 2-1)压印机构带动气阀板、 紫外光光源从初始工位向衬底移动, 直到压印机构的缓冲 密封垫与模具上表面支撑层, 模具下表面图形层与真空吸盘上的缓冲密封垫完全接触; 模具 的下方和真空吸盘形成的密闭区域 I, 模具的上方和压印机构围成密闭的区域 II, 压印和脱模 工作过程中应确保密闭区域 I和 II密封和不漏气;
( 2-2)从气阀板的中心位置开始, 向两外侧方向逐个开启气阀板内的压力管路, 在压缩 空气的施加的压力作用下, 使模具与衬底上的液态紫外光固化型纳米压印抗蚀剂渐进式顺序 共形微接触;
(2-3 )模具与液态紫外光固化型纳米压印抗蚀剂完全共形均匀接触后, 一方面真空吸盘 幵启真空管路, 在密闭区域 I形成低压真空环境, 去除压印过程中陷入的气泡缺陷, 使薄膜 状模具与衬底上的液态紫外光固化型纳米压印抗蚀剂完全共形接触; 同时, 气阀板的所有压 力管路的压力保持均匀一致性增大, 模具的上方和压印机构所围成的密闭区域 II形成低压压 力环境, 在薄膜状模具上施加均匀一致的压印力, 实现液态紫外光固化型纳米压印抗蚀剂在 模具微纳结构腔体内完全填充, 并且减薄至预定的残留层厚度; 或者直接初始留膜厚度与压 印特征结构高度相同, 实现无留膜压印。
7.如权利要求 4所述的一种用于高亮度 LED图形化的纳米压印方法, 其特征是, 所述步 骤 (3 ) 的工作过程为:
( 3-1 ) 首先, 逐渐释放施加在模具上的压力, 使模具的变形得到完全的释放;
(3-2 ) 随后, 开启紫外光光源, 紫外光透过模具对液态紫外光固化型纳米压印抗蚀剂曝 光, 充分固化液态紫外光固化型纳米压印抗蚀剂; 固化的时间 10-30s。
8.如权利要求 4所述的一种用于高亮度 LED图形化的纳米压印方法, 其特征是, 所述步 骤 (4) 的工作过程为:
(4-1) 首先, 关闭气阀板的压力管路和真空吸盘真空管路;
(4-2)从气阀板最外两侧同时开始向模具的中心逐个开启气阀板内的真空管路, 使密闭 区域 II形成低压真空环境; 同时, 真空吸盘上开启压力通路, 密闭区域 I形成低压压力环境; 实现模具从衬底两外恻向中心连续 "揭开"式的脱模; 最后, 模具中心位置与衬底上固化的 聚合物相互分离, 实现模具与压印结构的完全分离, 完成脱模;
(4-3)最后, 关闭气阔板内的真空管路、 真空吸盘的压力管路以及真空吸盘上的缓冲密 封垫的压力通路的进气管路, 缓冲密封垫复位。
9.如权利要求 4所述的一种用于高亮度 LED图形化的纳米压印方法, 其特征是, 所述步 骤 (5) 的工作过程为:
(5-1) 压印机构向上移动, 返回初始工位; 同时承片台移动到衬底更换工位, 关闭真空 吸盘上的真空管路, 取下压印后的衬底, 更换新的衬底, 同时开启真空吸盘上的真空管路, 将新的衬底固定在真空吸盘上;
(5-2) 同时压印后模具回收的辊轮转动, 薄膜状模具向前进给运动, 进给移动的尺寸大 于衬底的最大外圆尺寸; 开始新一轮压印工作过程的循环。
10.如权利要求 4所述的一种用于高亮度 LED图形化的纳米压印方法, 其特征是, 所述步 骤 (6) 的工作过程为:
(6-1) 去除固化后紫外光固化型纳米压印抗蚀剂结构中的残留的模具材料; 将衬底和其 上压印的微纳特征结构置于 70-100Ό的水溶液中 5-10分钟,去除残留在压印结构中的模具残 留材料;
(6-2) 随后通过刻蚀工艺, 以固化后压印的紫外光固化型纳米压印抗蚀剂为掩模, 将特 征结构转移到衬底上; 或者通过 "Lift-off"工艺, 将特征结构转移到其它功能结构材料上, 所述刻蚀工艺包括干法刻蚀或湿法刻蚀。
PCT/CN2012/001430 2012-09-29 2012-10-25 一种用于高亮度led图形化的纳米压印装置和方法 WO2014047750A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/362,464 US9563119B2 (en) 2012-09-29 2012-10-25 Large-area nanopatterning apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210376654.5 2012-09-29
CN201210376654.5A CN102866582B (zh) 2012-09-29 2012-09-29 一种用于高亮度led图形化的纳米压印装置和方法

Publications (1)

Publication Number Publication Date
WO2014047750A1 true WO2014047750A1 (zh) 2014-04-03

Family

ID=47445527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001430 WO2014047750A1 (zh) 2012-09-29 2012-10-25 一种用于高亮度led图形化的纳米压印装置和方法

Country Status (3)

Country Link
US (1) US9563119B2 (zh)
CN (1) CN102866582B (zh)
WO (1) WO2014047750A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112327576A (zh) * 2020-10-23 2021-02-05 歌尔股份有限公司 纳米压印软模固定装置和纳米压印设备
CN113031391A (zh) * 2021-03-05 2021-06-25 中国科学院光电技术研究所 一种简易紫外纳米压印光刻装置
CN113348067A (zh) * 2018-11-29 2021-09-03 善洁科技有限公司 使用可溶性模板制造经纹理化表面的方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103963500A (zh) * 2013-01-28 2014-08-06 南昌欧菲光科技有限公司 压印装置
CN103192532B (zh) * 2013-03-20 2015-04-08 青岛博纳光电装备有限公司 一种制造水溶性pva薄膜模具的装置及其方法
CN104070681A (zh) * 2013-03-26 2014-10-01 南昌欧菲光科技有限公司 连续压印成型方法及连续压印成型装置
CN103235483B (zh) * 2013-05-07 2016-01-20 青岛博纳光电装备有限公司 大面积纳米图形化的装置和方法
CN103246161B (zh) * 2013-05-10 2015-09-02 青岛博纳光电装备有限公司 一种用于大面积纳米压印的自适应压印头
CN103253870B (zh) * 2013-05-14 2016-03-02 青岛博纳光电装备有限公司 一种抗反射和自清洁玻璃及其制造方法
US10875235B2 (en) 2014-04-01 2020-12-29 The Regents Of The University Of California Bactericidal surface patterns
JP6333031B2 (ja) * 2014-04-09 2018-05-30 キヤノン株式会社 インプリント装置および物品の製造方法
CN103926790A (zh) * 2014-05-07 2014-07-16 李宁 具有对准式自动脱模紫外纳米压印装置及方法
FR3029433B1 (fr) * 2014-12-04 2017-01-13 Commissariat Energie Atomique Procede de transfert d'au moins une partie d'un film composite sur une membrane souple en polymere
US10180248B2 (en) 2015-09-02 2019-01-15 ProPhotonix Limited LED lamp with sensing capabilities
CN105137714B (zh) * 2015-10-10 2019-08-13 兰红波 一种大尺寸晶圆整片纳米压印的装置及其压印方法
CN105159029A (zh) * 2015-10-10 2015-12-16 兰红波 大面积微纳图形化的装置和方法
JP6655988B2 (ja) * 2015-12-25 2020-03-04 キヤノン株式会社 インプリント装置の調整方法、インプリント方法および物品製造方法
WO2017156460A1 (en) 2016-03-11 2017-09-14 The Regents Of The University Of California Synthetic polymeric implantable artificial cornea device incorporating nanopatterns
WO2017160658A1 (en) * 2016-03-14 2017-09-21 The Regents Of The University Of California Fabrication of nano-structures on multiple sides of a non-planar surface
CN117124507A (zh) * 2016-08-26 2023-11-28 分子印记公司 制造单片光子器件的方法、光子器件
CN106914290B (zh) * 2017-05-05 2020-07-10 广东工业大学 一种微流控芯片封装装置及方法
US11147527B2 (en) 2017-06-30 2021-10-19 Scint-X Ab Filling micromechanical structures with x-ray absorbing material
KR102448904B1 (ko) * 2017-07-31 2022-09-29 삼성디스플레이 주식회사 임프린트 장치 및 임프린트 방법
US10828394B2 (en) 2017-09-13 2020-11-10 The Regents Of The University Of California Anti-bacterial anti-fungal nanopillared surface
CN109501216A (zh) * 2017-09-14 2019-03-22 长春工业大学 一种振动辅助热压印的装置及方法
US11086049B2 (en) 2017-10-03 2021-08-10 The Regents Of The University Of California Anti-microbial bandage contact lens with ocular drug delivery
JP6773063B2 (ja) 2018-02-22 2020-10-21 日亜化学工業株式会社 透光性部材の形成方法
JP7100485B2 (ja) * 2018-04-26 2022-07-13 キヤノン株式会社 インプリント装置およびデバイス製造方法
CN109551878B (zh) * 2018-11-23 2020-12-15 金凌印刷(苏州)有限公司 一种全轮转六色双层标签印刷装置及其印刷工艺
CN110739391B (zh) * 2019-10-24 2022-09-02 绍兴中芯集成电路制造股份有限公司 表面声波滤波器件及其制造方法
CN114537006B (zh) * 2021-03-19 2023-07-21 北京劲吾新能源科技有限公司 一种利用水溶性薄膜制作彩色光伏的方法及彩色光伏
CN113075861B (zh) * 2021-04-01 2023-09-19 青岛天仁微纳科技有限责任公司 一种新型纳米压印设备及其压印方法
CN113075859B (zh) * 2021-04-01 2024-01-26 青岛天仁微纳科技有限责任公司 一种负压式纳米压印设备及其压印方法
CN113189840A (zh) * 2021-04-16 2021-07-30 深圳先进技术研究院 微纳结构制作方法及微纳结构制作装置
CN113441377B (zh) * 2021-06-29 2022-10-28 辽宁分子流科技有限公司 一种纳米银丝电极薄膜的制备方法
CN114536798A (zh) * 2022-02-25 2022-05-27 南京航空航天大学 一种可负压辅助的卷对卷精密辊压制造装置与方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1979336A (zh) * 2005-12-09 2007-06-13 奥博杜卡特股份公司 具有中间模具的图案复制用装置
CN101104318A (zh) * 2006-07-12 2008-01-16 小松产机株式会社 压制成形装置及其方法
US20110140304A1 (en) * 2009-12-10 2011-06-16 Molecular Imprints, Inc. Imprint lithography template
TW201135352A (en) * 2010-01-28 2011-10-16 Molecular Imprints Inc Roll-to-roll imprint lithography and purging system
CN102346369A (zh) * 2011-09-08 2012-02-08 青岛理工大学 一种整片晶圆纳米压印光刻机
CN102591143A (zh) * 2012-02-29 2012-07-18 青岛理工大学 一种大面积纳米压印光刻的装置和方法
CN202771153U (zh) * 2012-09-29 2013-03-06 兰红波 一种用于高亮度led图形化的纳米压印装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7296519B2 (en) * 2002-05-27 2007-11-20 Koninklijke Philips Electronics N.V. Method and device for transferring a pattern from stamp to a substrate
TW570290U (en) * 2003-05-02 2004-01-01 Ind Tech Res Inst Uniform pressing device for nanometer transfer-print
JP2007083626A (ja) * 2005-09-22 2007-04-05 Ricoh Co Ltd 微細構造転写装置
WO2009017308A1 (en) * 2007-07-31 2009-02-05 Byung-Jun Song Apparatus for feeding foil of printing machine with tension
JP2010067796A (ja) * 2008-09-11 2010-03-25 Canon Inc インプリント装置
US8747092B2 (en) * 2010-01-22 2014-06-10 Nanonex Corporation Fast nanoimprinting apparatus using deformale mold
JP5693941B2 (ja) * 2010-03-31 2015-04-01 株式会社東芝 テンプレートの表面処理方法及び装置並びにパターン形成方法
CN102241136B (zh) * 2010-05-12 2014-12-10 鸿富锦精密工业(深圳)有限公司 纳米压印装置及纳米压印方法
JP5190497B2 (ja) * 2010-09-13 2013-04-24 株式会社東芝 インプリント装置及び方法
CN201926865U (zh) * 2010-12-22 2011-08-10 青岛理工大学 整片晶圆纳米压印的装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1979336A (zh) * 2005-12-09 2007-06-13 奥博杜卡特股份公司 具有中间模具的图案复制用装置
CN101104318A (zh) * 2006-07-12 2008-01-16 小松产机株式会社 压制成形装置及其方法
US20110140304A1 (en) * 2009-12-10 2011-06-16 Molecular Imprints, Inc. Imprint lithography template
TW201135352A (en) * 2010-01-28 2011-10-16 Molecular Imprints Inc Roll-to-roll imprint lithography and purging system
CN102346369A (zh) * 2011-09-08 2012-02-08 青岛理工大学 一种整片晶圆纳米压印光刻机
CN102591143A (zh) * 2012-02-29 2012-07-18 青岛理工大学 一种大面积纳米压印光刻的装置和方法
CN202771153U (zh) * 2012-09-29 2013-03-06 兰红波 一种用于高亮度led图形化的纳米压印装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113348067A (zh) * 2018-11-29 2021-09-03 善洁科技有限公司 使用可溶性模板制造经纹理化表面的方法
CN112327576A (zh) * 2020-10-23 2021-02-05 歌尔股份有限公司 纳米压印软模固定装置和纳米压印设备
CN113031391A (zh) * 2021-03-05 2021-06-25 中国科学院光电技术研究所 一种简易紫外纳米压印光刻装置
CN113031391B (zh) * 2021-03-05 2023-06-30 中国科学院光电技术研究所 一种简易紫外纳米压印光刻装置

Also Published As

Publication number Publication date
US9563119B2 (en) 2017-02-07
CN102866582A (zh) 2013-01-09
CN102866582B (zh) 2014-09-10
US20140305904A1 (en) 2014-10-16

Similar Documents

Publication Publication Date Title
WO2014047750A1 (zh) 一种用于高亮度led图形化的纳米压印装置和方法
WO2017059745A1 (zh) 大面积微纳图形化的装置和方法
CN105137714B (zh) 一种大尺寸晶圆整片纳米压印的装置及其压印方法
CN102566262B (zh) 一种适用于非平整衬底晶圆级纳米压印的装置
US8741199B2 (en) Method and device for full wafer nanoimprint lithography
CN102591143B (zh) 一种大面积纳米压印光刻的装置和方法
CN106918987B (zh) 一种复合纳米压印光刻机及工作方法
CN102346369B (zh) 一种整片晶圆纳米压印光刻机
CN102854741B (zh) 用于非平整衬底晶圆级纳米压印的复合软模具及制造方法
CN102096315B (zh) 整片晶圆纳米压印的装置和方法
WO2016051928A1 (ja) インプリント用テンプレート及びその製造方法
JP2007313894A (ja) 微細構造薄膜転写用ローラモールド
Lan Large-area nanoimprint lithography and applications
CN103172019A (zh) 一种干粘附微纳复合两级倾斜结构的制备工艺
CN103869611A (zh) 整片纳米压印用三层复合结构透明软模具原位制造方法
KR20160084417A (ko) 향상된 오버레이 보정을 위한 저접촉 임프린트 리소그래피 템플레이트 척킹 시스템
CN204925614U (zh) 大面积微纳图形化的装置
CN202771153U (zh) 一种用于高亮度led图形化的纳米压印装置
CN201926865U (zh) 整片晶圆纳米压印的装置
CN202205025U (zh) 一种整片晶圆纳米压印光刻机
CN213149470U (zh) 一种紫外纳米压印光刻自动脱模系统
CN109656097B (zh) 纳米压印装置及纳米压印方法
Stuart et al. Nanofabrication module integrated with optical aligner
CN117724292A (zh) 一种激光扩散片的制备方法
TW202343135A (zh) 減輕壓印微影缺陷的方法以及遮罩壓印微影模具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885431

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14362464

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885431

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.09.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12885431

Country of ref document: EP

Kind code of ref document: A1