CN105137714B - 一种大尺寸晶圆整片纳米压印的装置及其压印方法 - Google Patents

一种大尺寸晶圆整片纳米压印的装置及其压印方法 Download PDF

Info

Publication number
CN105137714B
CN105137714B CN201510653696.2A CN201510653696A CN105137714B CN 105137714 B CN105137714 B CN 105137714B CN 201510653696 A CN201510653696 A CN 201510653696A CN 105137714 B CN105137714 B CN 105137714B
Authority
CN
China
Prior art keywords
wafer
mold
lower chamber
air inlet
upper cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510653696.2A
Other languages
English (en)
Other versions
CN105137714A (zh
Inventor
兰红波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201510653696.2A priority Critical patent/CN105137714B/zh
Publication of CN105137714A publication Critical patent/CN105137714A/zh
Priority to DE112016004025.3T priority patent/DE112016004025T5/de
Priority to PCT/CN2016/103011 priority patent/WO2017059828A1/zh
Application granted granted Critical
Publication of CN105137714B publication Critical patent/CN105137714B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

本发明公开了一种大尺寸晶圆整片纳米压印的装置及其压印方法,该装置包括上腔体和下腔体,下腔体通过第一升降机构带动下腔体上下移动与上腔体接触或分离,在上腔体的底部设有用于压印的弹性模具,在下腔室内水平设有承片台,承片台底部设有第二升降机构,上腔体的腔壁上开有与压力管路活动连接的上腔体进气口,下腔体的腔壁上开有与真空管路和压力管路均活动连接的下腔体进气口,承片台上开有与真空管路连通的承片台进气口,该装置还包括曝光光源。本发明的有益效果是:本发明实现了超大尺寸、非平整衬底、易碎衬底大面积微纳米结构的高效、低成本批量化制造,为大尺寸晶圆级大面积微纳米结构制造提供一种工业级的解决方案。

Description

一种大尺寸晶圆整片纳米压印的装置及其压印方法
技术领域
本发明涉及一种大尺寸晶圆整片纳米压印的装置及其压印方法,尤其涉及一种高效、低成本批量化制造大面积微纳结构的方法和装置,属于微纳制造技术领域。
背景技术
纳米压印光刻(Nanoimprint Lithography,NIL)作为一种全新的微纳米制造技术,较之现行的投影光刻和下一代光刻技术,具有高分辩率、超低成本(国际权威机构评估同等制作水平的NIL比传统光学投影光刻至少低一个数量级)和高生产率的特点,而且其最显著的优势在于大面积、复杂三维微纳结构制造的能力以及非平整衬底的图形化,尤其是软紫外纳米压印工艺还具有在非平整(弯曲、翘曲或者台阶)、曲面、易碎衬底上底上实现晶圆级纳米压印的潜能,以及滚压印工艺所特有的连续图形化能力。整片晶圆纳米压印能够实现单步图形化整片晶圆(即晶圆级图形化),并且具有压印效率高、成本低、图形无拼接突出优势,在LED图形化、晶圆级微纳光学器件、高清平板显示等领域具有非常广泛的应用前景和巨大市场。
目前已经公开的整片晶圆纳米压印专利CN 102096315 B(整片晶圆纳米压印的装置和方法)和SUSS公司的基底完整压印光刻(SCIL)都是利用气阀板并通过正压和负压的转换实现软模具与晶圆的顺序微接触压印和揭开式脱模,完成整片晶圆纳米压印。但是该种方法工艺和结构复杂,生产成本高,气阀板制造困难(高透明石英板的加工困难\成本高),而且固有的不足就是压印面积目前限定在较小尺寸晶圆,6英寸以上晶圆难以实现整片压印。现有的其它整片晶圆纳米压印只能实现压印工步,无法完成自动脱模,更难以实现大面积纳米压印所要求的揭开式脱模。
为了满足LED图形化、晶圆级微纳光学器件、高清平板显示等领域对于不断增大的大尺寸晶圆微纳图形化的要求,迫切需要开发大尺寸晶圆整片晶圆纳米压印新方法和新工艺,突破制约8英寸以上晶圆级纳米压印的难题。
发明内容
本发明的目的是为了解决大尺寸晶圆级微纳米图形化问题,提供一种用于大尺寸晶圆整片纳米压印的装置及其方法,实现对大尺寸衬底高效、低成本晶圆级图形化。
为了达成上述目的,本发明采用如下技术方案:
一种大尺寸晶圆整片纳米压印的装置,包括内含有上腔室的上腔体和内含有下腔室的下腔体,下腔体通过第一升降机构带动下腔体上下移动与上腔体接触或分离,在上腔体的底部设有用于压印的弹性模具,在下腔室内水平设有承片台,承片台底部设有第二升降机构,上腔体的腔壁上开有与压力管路活动连接的上腔体进气口,下腔体的腔壁上开有与真空管路和压力管路均活动连接的下腔体进气口,承片台上开有与真空管路连通的承片台进气口,该装置还包括曝光光源,通过压力管路和真空管路实现压模,简单方便,成本低廉,通过压力差实现模具从晶圆外侧到中心连续“揭开”式脱模,脱模简单,成本低,效率高;脱模力小,对于模具和压印结构损伤小,延长模具寿命,承片台进气口通过真空管路形成负压环境便于吸附晶圆。
进一步地,所述承片台通过工作台固定在所述的下腔室内,所述工作台竖直穿过所述下腔体的中心,所述第二升降机构固定在工作台的中心,由第二升降机构带动承片台实现上下移动。
进一步地,在所述承片台上固定有晶圆,晶圆表面涂覆有压印材料。
进一步地,所述模具从上到下依次包括支撑层和图形层,支撑层上表面的外侧与所述上腔体的下表面连接,下表面通过偶联剂材料与图形层固定,模具是弹性的这样施加的压印力小;模具与晶圆获得良好的共形接触;大面积压印过程中陷入的气泡能够及时排出。
进一步地,所述上腔体的上表面固定有透明的玻璃。
进一步地,所述曝光光源固定在所述上腔体上方,快速直接地固化压印材料。
进一步地,所述图形层采用透明氟聚合物材料,厚度为10-50μm。
进一步地,所述支撑层是的透明的、高柔性的,其厚度范围为100-500μm。
一种大尺寸晶圆整片纳米压印的装置的压印方法,具体使用步骤如下:
1)预处理过程
将表面涂覆有压印材料的晶圆通过真空吸附在承片台上,将模具通过真空吸附在上腔体的底面;
第二升降机构通过工作台带动承片台向上运动至晶圆上表面与模具的间隙为1-2mm,第一升降机构推动下腔体向上位移保证上腔体与下腔体完全贴合;
2)压印过程
从下腔体进气口通过真空管路抽真空,使得模具产生完全变形,模具弯曲变形后弧形最低点与晶圆接触,停止抽真空;
第二升降机构带动承片台向上移动至模具变成水平状态;
从上腔体进气口通过压力管路进气,实现模具对整片晶圆的均匀施压,保持设定的时间;
断开压力管路与上腔体进气口的连接,上腔体进气口与大气相通,模具的变形逐渐释放;
3)固化过程
开启曝光光源,光源透过透明玻璃和模具对压印材料进行曝光固化,曝光时间保持设定的时间后,关闭曝光光源;
4)脱模过程
下腔体进气口与大气相通,释放负压;下腔体进气口与压力管路连接进气,模具与晶圆表面的压印材料逐渐分离,在向上力的作用下,模具继续变形呈向上拱起弧形状态,停止进气;
第二升降机构带动承片台向下移动,返回至初始工位;
下腔体进气口与大气相通;
第一升降机构带动下腔体向下移动,带动下腔体返回至初始工位,从下腔体的上方取下压印完成的晶圆,放置新的晶圆,开始下一轮工作循环;
5)后处理过程
通过常规的各向异性刻蚀工艺等比例对压印材料往下刻蚀,去除残留层,在压印材料上复制出模具的微纳米特征结构;
进一步结合刻蚀工艺(湿法刻蚀或者干法刻蚀),以压印材料上的图形为掩模,将图形层转移到晶圆上,实现晶圆级图形化,或者结合Lift-off工艺,将图形层转移到其它功能材料上,实现功能材料图形化。
进一步地,步骤2)和步骤4)中,压印过程和脱模过程均以模具的中心为对称轴,模具均匀、对称受力。
本发明的工作原理是:利用模具、两个腔室正压和负压的转换,并结合工作台(承片台)上下移动,实现软模具与晶圆顺序微接触均匀施压压印,固化后揭开式脱模,将模具上的特征图形单步复制转移到涂铺在晶圆上的压印材料上,实现大尺寸晶圆整片压印。
本发明的有益效果是:
(1)通过上腔室、软模具、下腔室、工作台和气路系统(压力和真空)的密切配合,协同工作,实现大尺寸晶圆整片纳米压印,克服了现有整片晶圆纳米压印方法存在的不足。本发明具有结构和工艺简单、效率高、成本低、压印图形精度高和缺陷低的显著优点。
(2)本发明压印过程通过工作台向上移动,将产生弯曲变形的模具顶平,实现从模具中心位置向外侧方向逐渐顺序微接触施压压印,其显著的优势:结构简单,效率高,施加的压印力小;模具与晶圆获得良好的共形接触;大面积压印过程中陷入的气泡能够及时排出,解决大面积纳米压印气泡消除的难题。
(3)结合软模具和气体辅助均匀施压方式,解决大尺寸、非平整晶圆压印过程中模具与晶圆大面积完全共形接触、均匀一致施压的问题。
(4)压印和固化过程是在真空环境下,大面积纳米压印陷入和产生的气泡能够能完全消除,消除大面积纳米压印气泡缺陷,而且有力与压印材料的快速固化,提高压印效率。
(5)压印过程中,通过上腔室正压产生对模具向下均匀压力和下腔室负压对模具施加向下真空吸力的共同作用下,实现模具对整片晶圆均匀施压,液态紫外光固化型压印材料对于模具微纳特征结构腔体快速完全填充,提高了压印效率,避免出现填充不完全的缺陷。
(6)本发明通过上腔室和下腔室的压力差实现模具从晶圆外侧到中心连续“揭开”式脱模,其显著优势:脱模简单,成本低,效率高;脱模力小,对于模具和压印结构损伤小,延长模具寿命,提高复形精度和质量。
(7)压印过程和脱模过程模具对称均匀受力,需要的压印力和脱模力小,模具变形小,复形精度高。
(8)压印过程和脱模过程以模具的中心为对称,在压印和脱模过程中模具的两侧同时进行,生产率高。
(9)本发明实现了超大尺寸、非平整衬底、易碎衬底大面积微纳米结构的高效、低成本批量化制造,为大尺寸晶圆级大面积微纳米结构制造提供一种工业级的解决方案。
(10)本发明适合于大尺寸LED图形化、晶圆级微纳光学器件、高清平板显示等工业级规模化生产,尤其适合无拼接大尺寸晶圆微纳图形化。
附图说明
图1是本发明大尺寸晶圆整片纳米压印装置结构示意图。
图2是本发明模具结构示意图。
图3是本发明大尺寸晶圆整片纳米压印工作过程流程图。
图4a是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4b是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4c是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4d是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4e是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4f是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4g是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4h是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4i是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4j是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4k是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
其中,1第二升降机构、2第一升降机构、3下腔体、4承片台、5晶圆、6压印材料、7密封圈、8模具、9上腔体、10透明玻璃、11光源、12真空管路、13压力管路、301下腔体进气口、801模具图形层、80101模具微纳特征结构、80102模具弯曲变形弧形最低点、80103模具最外侧、802模具偶联剂、803模具支撑层、901上腔体底面、902上腔体进气口、I上腔室、II下腔室,14.第一压印工位,15.第二压印工位。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。
图1是本发明大尺寸晶圆整片纳米压印装置结构示意图,它包括:第二升降机构1、第一升降机构2、下腔体3、承片台4、晶圆5、压印材料6、密封圈7、模具8、上腔体9、透明玻璃(石英玻璃)10、曝光光源11、真空管路12、压力管路13;其中,工作台置于本装置中心位置的最下方,工作台穿过下腔体3,工作台的内部设有第二升降机构,承片台4水平置于下腔体3内部;第一升降机构2置于下腔体3的下方并与下腔体3的底部相连接;承片台4置于工作台上;晶圆5置于承片台4上,并通过真空吸附方式固定在承片台4上;液态紫外光固化型压印材料6均匀涂铺在晶圆5上;模具8通过真空吸附方式固定在上腔体9的底面,并置于涂铺有压印材料晶圆5的正上方;上腔体9置于模具8和下腔体3的正上方,曝光光源11的正下方;透明石英玻璃10置于上腔体3内;曝光光源(紫外光光源)11置于上腔体9和透明玻璃10的正上方;密封圈7置于上腔体的底面901和下腔体3的顶面;真空管路12和压力管路13与下腔体进气口301相连通,压力管路12与上腔体9进气口902相连通,真空管路11与承片台4进气口相连通。
所述下腔体3、模具8、上腔体9(包括透明玻璃10)通过模具8分割形成两个封闭的腔室,其中,上腔体9内部为上腔室I,下腔体3内部为下腔室II;在下腔体3与模具8、上腔体9与模具8之间分别设置密封圈7,确保压印工作过程中上腔室I和下腔室II完全密闭,不发生漏气。
图2是本发明所述模具8结构示意图,它包括图形层801和支撑层803,其中图形层801具有极低的表面能、高弹性模量和透明的特性,包含所要复制的模具微纳特征结构80101,支撑层803具有透明、高度柔性和薄膜结构的特性,其中图形层801位于支撑层803的下方。图形层801可以采用h-PDMS、低表面能和高弹性模量氟聚合物基材料、ETFE等;支撑层803可以采用PDMS、PET、PC等高弹性和高透明材料。图形层801的厚度范围是10-50微米,图形层采用透明氟聚合物Teflon AF 1600,厚度15微米;支撑层803厚度范围是100-500微米。支撑层803进行表面改性处理,或者涂覆一层透明的偶联剂材料802。
本实施例的模具8采用透明高弹性的PET薄膜为支撑层803,厚度150微米,偶联剂材料802采用透明无色的KH-550。
本发明以8英吋(直径约200毫米)GaN基光子晶体LED(LED外延片纳米图形化)的整片晶圆纳米压印为实施例,结合大尺寸晶圆整片纳米压印工作过程流程图(如图3)和大尺寸晶圆整片纳米压印工艺步骤示意图(图4a-图4k),详细说明大尺寸晶圆整片纳米压印的原理和具体工艺步骤。
实施例中晶圆5、模具8和纳米压印工作过程的一些具体参数设置如下:晶圆5为8英吋GaN基外延片,需要在P型半导体层压印出光子晶体结构,其中光子晶体的几何参数是:晶格常数600nm,圆孔的直径200nm,孔的深度是100nm。压印材料6使用Micro resisttechnology公司的mr-XNIL26,在GaN基外延片旋涂的厚度是300nm。
具体工艺过程包括:
(1)预处理过程
在晶圆5上均匀涂铺一层液态紫外光固化型压印材料6(亦称抗蚀剂,一种低粘度快速光固化型聚合物材料),将晶圆5置于承片台4上,并通过真空吸附方式将涂铺压印材料6的晶圆5吸附固定在承片台4上;将模具8置于上腔体的底面901,并通过真空吸附方式予以固定。如图4a所示。
第二升降机构1带动晶圆5从初始工位移动到第一压印工位14,晶圆5与模具8的间隙是2毫米;第一升降机构2带动下腔体3从初始工位移动到第一压印工位14,上腔体9和下腔体3完全闭合,在第一升降机构2施加的向上作用力下,压印过程中保证上腔室I的四周完全密闭,下腔室II的四周完全密闭,无漏气。如图4b所示。
(2)压印过程
①下腔体进气口301连通真空管路12,下腔室II形成负压环境,在真空吸力作用下,模具8产生弯曲变形,使模具弯曲变形弧形最低点80102与晶圆5相接触,关闭与下腔体进气口301连通的真空管路12,如图4c所示;
②工作台1带动承片台4和晶圆5向上移动,承片台4和晶圆5从第一压印工位14上升到第二压印工位15(整个模具8变成水平状态),实现从晶圆5中心向外侧逐渐顺序微接触压印,晶圆5与模具8获得完全共形接触;如图4d所示;
③上腔体进气口902连通压力管路13开始进气,上腔室I形成正压环境,在上腔室I正压产生对模具8向下均匀施压的压印力和下腔室II负压对模具8施加向下真空吸力的共同作用下,实现模具8对整片晶圆5均匀施压,将液态紫外光固化型压印材料6快速完全填充到模具微纳特征结构80101中;如图4e所示;
④保持3s后,关闭上腔体进气口902的压力管路13;随后,上腔体进气口902与大气相通,将上腔室I变为常压(大气压);使模具8在压力下的变形完全释放;如图4f所示;
(3)固化过程
①开启曝光光源11,紫外光光源透过透明玻璃10和模具8对压印材料6进行曝光固化;
②曝光时间保持5s,压印材料6完全固化后,关闭曝光光源11,如图4g所示;
(4)脱模过程
①下腔体进气口301首先与大气相通,释放负压;随后下腔体进气口301连通压力管路13,在压力作用下,从模具最外侧80103开始,模具8与晶圆5上压印材料6逐渐顺序分离,直到扩展到模具中心80102,模具8与压印材料6完全分离,实现类似揭开式脱模;如图4h;模具8与压印材料6完全分离后,在下腔室II的向上力作用下,模具8继续产生变形,最后变成向上拱起弧形状态,关闭下腔体3进气口301的压力管路13;如图4i所示;
②第二升降机构1带动晶圆5向下移动,从第二压印工位15返回到初始工位;
③下腔体进气口301与大气相通;如图4j所示;
④第一升降机构2带动下腔体3向下移动;卸下压印完成的晶圆5,放置新的晶圆5,开始下一轮工作循环;如图4k所示;
(5)后处理过程
①通过常规的各向异性刻蚀工艺等比例往下刻蚀,去除残留层,在压印材料6上复制出模具微纳米特征结构80101;
②后续结合刻蚀工艺(湿法刻蚀或者ICP刻蚀),以压印图形为掩模,将特征图形转移到GaN基LED衬底(晶圆5)上,实现LED外延片的图形化或者光子晶体LED制造。
本实施例所述曝光光源为高压UV汞灯,UV灯的功率500W。
本实施例所述压力管路的工作范围是:0~0.2MPa,所述真空管路工作范围是:0~-0.08MPa。
本实施例所述升降机构2采用带缓冲的气缸。
本实施例所述步骤(2)下腔室II的负压-0.04Mpa,上腔室I的正压为0.1MPa。
本实施例所述步骤(4)下腔室II的正压为0.05MPa。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种大尺寸晶圆整片纳米压印的装置,其特征在于,包括内含有上腔室的上腔体和内含有下腔室的下腔体,下腔体通过第一升降机构带动下腔体上下移动与上腔体接触或分离,在上腔体的底部设有用于压印的弹性模具,在下腔室内水平设有承片台,承片台底部设有第二升降机构,上腔体的腔壁上开有与压力管路活动连接的上腔体进气口,下腔体的腔壁上开有与真空管路和压力管路均活动连接的下腔体进气口,承片台上开有与真空管路连通的承片台进气口,该装置还包括曝光光源;
所述承片台通过工作台固定在所述的下腔室内,所述工作台竖直穿过所述下腔体的中心,所述第二升降机构固定在工作台的中心;
所述模具从上到下依次包括支撑层和图形层,支撑层上表面的外侧与所述上腔体的下表面连接,下表面通过偶联剂材料与图形层固定;
所述图形层采用透明氟聚合物材料,厚度为10-50μm;
所述支撑层是的透明的、柔性的,其厚度范围为100-500μm。
2.如权利要求1所述的大尺寸晶圆整片纳米压印的装置,其特征在于,在所述承片台上固定有晶圆,晶圆表面涂覆有压印材料。
3.如权利要求1所述的大尺寸晶圆整片纳米压印的装置,其特征在于,所述上腔体的上表面固定有透明的玻璃。
4.如权利要求1所述的大尺寸晶圆整片纳米压印的装置,其特征在于,所述曝光光源固定在所述上腔体上方。
5.采用权利要求1-4中任一项权利要求所述的装置的压印方法,其特征在于,具体使用步骤如下:
1)预处理过程
将表面涂覆有压印材料的晶圆通过真空吸附在承片台上,将模具通过真空吸附在上腔体的底面;
第二升降机构通过工作台带动承片台向上运动至晶圆上表面与模具的间隙为1-2mm,第一升降机构推动下腔体向上位移保证上腔体与下腔体完全贴合;
2)压印过程
从下腔体进气口通过真空管路抽真空,使得模具产生完全变形,模具弯曲变形后弧形最低点与晶圆接触,停止抽真空;
第二升降机构带动承片台向上移动至模具变成水平状态;
从上腔体进气口通过压力管路进气,实现模具对整片晶圆的均匀施压,保持设定的时间;
断开压力管路与上腔体进气口的连接,上腔体进气口与大气相通,模具的变形逐渐释放;
3)固化过程
开启曝光光源,光源透过透明玻璃和模具对压印材料进行曝光固化,曝光时间保持设定的时间后,关闭曝光光源;
4)脱模过程
下腔体进气口与大气相通,释放负压;下腔体进气口与压力管路连接进气,模具与晶圆表面的压印材料逐渐分离,在向上力的作用下,模具继续变形呈向上拱起弧形状态,停止进气;
第二升降机构带动承片台向下移动,返回至初始工位;
下腔体进气口与大气相通;
第一升降机构带动下腔体向下移动,带动下腔体返回至初始工位,从下腔体的上方取下压印完成的晶圆,放置新的晶圆,开始下一轮工作循环;
5)后处理过程
通过常规的各向异性刻蚀工艺等比例对压印材料往下刻蚀,去除残留层,在压印材料上复制出模具的微纳米特征结构;
进一步结合刻蚀工艺,以压印材料上的图形为掩模,将图形层转移到晶圆上,实现晶圆级图形化。
6.如权利要求5所述的压印方法,其特征在于,所述步骤2)和步骤4)中,压印过程和脱模过程均以模具的中心为对称轴,模具均匀、对称受力。
CN201510653696.2A 2015-10-10 2015-10-10 一种大尺寸晶圆整片纳米压印的装置及其压印方法 Active CN105137714B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510653696.2A CN105137714B (zh) 2015-10-10 2015-10-10 一种大尺寸晶圆整片纳米压印的装置及其压印方法
DE112016004025.3T DE112016004025T5 (de) 2015-10-10 2016-10-24 Einrichtung zum ganzflächigen Nanoprägen eines großen Wafers und zugehöriges Prägeverfahren
PCT/CN2016/103011 WO2017059828A1 (zh) 2015-10-10 2016-10-24 一种大尺寸晶圆整片纳米压印的装置及其压印方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510653696.2A CN105137714B (zh) 2015-10-10 2015-10-10 一种大尺寸晶圆整片纳米压印的装置及其压印方法

Publications (2)

Publication Number Publication Date
CN105137714A CN105137714A (zh) 2015-12-09
CN105137714B true CN105137714B (zh) 2019-08-13

Family

ID=54723106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510653696.2A Active CN105137714B (zh) 2015-10-10 2015-10-10 一种大尺寸晶圆整片纳米压印的装置及其压印方法

Country Status (3)

Country Link
CN (1) CN105137714B (zh)
DE (1) DE112016004025T5 (zh)
WO (1) WO2017059828A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137714B (zh) * 2015-10-10 2019-08-13 兰红波 一种大尺寸晶圆整片纳米压印的装置及其压印方法
CN106094429B (zh) * 2016-08-19 2019-11-05 京东方科技集团股份有限公司 压印装置及其工作方法
CN106483759B (zh) * 2016-12-12 2020-09-04 青岛天仁微纳科技有限责任公司 纳米压印设备
CN106990671B (zh) * 2017-05-27 2020-10-02 青岛天仁微纳科技有限责任公司 一种负压式纳米压印设备
JP7233174B2 (ja) * 2018-05-17 2023-03-06 キヤノン株式会社 インプリント装置、物品製造方法、平坦化層形成装置、情報処理装置、及び、決定方法
CN110125866B (zh) * 2019-05-30 2021-03-23 安徽元隽氢能源研究所有限公司 一种装配mea的工装及使用该工装的装配方法
WO2021110237A1 (de) * 2019-12-02 2021-06-10 Ev Group E. Thallner Gmbh Verfahren und vorrichtung zur ablösung eines stempels
CN111522197B (zh) * 2020-06-03 2024-04-02 中国科学院光电技术研究所 一种紫外纳米压印光刻自动脱模系统和方法
CN112859539B (zh) * 2021-01-21 2022-11-11 上海应用技术大学 一种x射线曝光装置
CN112897896A (zh) * 2021-03-15 2021-06-04 龙口科诺尔玻璃科技有限公司 一种基于htmi的彩晶玻璃生产工艺及其生产设备
CN113075861B (zh) * 2021-04-01 2023-09-19 青岛天仁微纳科技有限责任公司 一种新型纳米压印设备及其压印方法
CN113189840A (zh) * 2021-04-16 2021-07-30 深圳先进技术研究院 微纳结构制作方法及微纳结构制作装置
CN115138536B (zh) * 2022-06-28 2023-05-02 上海交通大学 埋置芯片封装基板匀胶气泡的真空处理方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403855A (zh) * 2008-11-07 2009-04-08 南京大学 紫外/热压固化型纳米压印方法与压印机
CN102096315A (zh) * 2010-12-22 2011-06-15 青岛理工大学 整片晶圆纳米压印的装置和方法
CN102346369A (zh) * 2011-09-08 2012-02-08 青岛理工大学 一种整片晶圆纳米压印光刻机
CN102566262A (zh) * 2012-02-29 2012-07-11 青岛理工大学 一种适用于非平整衬底晶圆级纳米压印的装置和方法
CN102591143A (zh) * 2012-02-29 2012-07-18 青岛理工大学 一种大面积纳米压印光刻的装置和方法
CN102866582A (zh) * 2012-09-29 2013-01-09 兰红波 一种用于高亮度led图形化的纳米压印装置和方法
CN204640788U (zh) * 2015-06-01 2015-09-16 青岛博纳光电装备有限公司 一种大面积纳米压印软模具复制装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4940262B2 (ja) * 2009-03-25 2012-05-30 株式会社東芝 インプリントパターン形成方法
US8747092B2 (en) * 2010-01-22 2014-06-10 Nanonex Corporation Fast nanoimprinting apparatus using deformale mold
JP2012049370A (ja) * 2010-08-27 2012-03-08 Toshiba Corp インプリント装置
CN203445141U (zh) * 2013-09-03 2014-02-19 和椿科技股份有限公司 压印装置
CN104425656B (zh) * 2013-09-03 2018-01-19 和椿科技股份有限公司 压印装置与压印方式
CN105137714B (zh) * 2015-10-10 2019-08-13 兰红波 一种大尺寸晶圆整片纳米压印的装置及其压印方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403855A (zh) * 2008-11-07 2009-04-08 南京大学 紫外/热压固化型纳米压印方法与压印机
CN102096315A (zh) * 2010-12-22 2011-06-15 青岛理工大学 整片晶圆纳米压印的装置和方法
CN102346369A (zh) * 2011-09-08 2012-02-08 青岛理工大学 一种整片晶圆纳米压印光刻机
CN102566262A (zh) * 2012-02-29 2012-07-11 青岛理工大学 一种适用于非平整衬底晶圆级纳米压印的装置和方法
CN102591143A (zh) * 2012-02-29 2012-07-18 青岛理工大学 一种大面积纳米压印光刻的装置和方法
CN102866582A (zh) * 2012-09-29 2013-01-09 兰红波 一种用于高亮度led图形化的纳米压印装置和方法
CN204640788U (zh) * 2015-06-01 2015-09-16 青岛博纳光电装备有限公司 一种大面积纳米压印软模具复制装置

Also Published As

Publication number Publication date
CN105137714A (zh) 2015-12-09
WO2017059828A1 (zh) 2017-04-13
DE112016004025T5 (de) 2018-05-17

Similar Documents

Publication Publication Date Title
CN105137714B (zh) 一种大尺寸晶圆整片纳米压印的装置及其压印方法
CN102866582B (zh) 一种用于高亮度led图形化的纳米压印装置和方法
CN102591143B (zh) 一种大面积纳米压印光刻的装置和方法
CN102566262B (zh) 一种适用于非平整衬底晶圆级纳米压印的装置
WO2017059745A1 (zh) 大面积微纳图形化的装置和方法
Plachetka et al. Wafer scale patterning by soft UV-nanoimprint lithography
US8741199B2 (en) Method and device for full wafer nanoimprint lithography
CN106918987B (zh) 一种复合纳米压印光刻机及工作方法
WO2016051928A1 (ja) インプリント用テンプレート及びその製造方法
CN102591142A (zh) 用于蓝宝石衬底图形化的纳米压印装置及方法
CN102508410A (zh) 一种三明治结构复合纳米压印模板及其制备方法
CN103869611A (zh) 整片纳米压印用三层复合结构透明软模具原位制造方法
CN102183875B (zh) 滚轮式紫外线软压印方法
CN214311286U (zh) 一种负压式纳米压印设备
JP2003109915A (ja) 剥離性雰囲気でのインプリントリソグラフィー方法及び装置
CN202771153U (zh) 一种用于高亮度led图形化的纳米压印装置
CN113075859B (zh) 一种负压式纳米压印设备及其压印方法
CN106200262A (zh) 真空负压纳米压印方法
CN108957949A (zh) 一种纳米压印方法
CN109656097B (zh) 纳米压印装置及纳米压印方法
CN213149470U (zh) 一种紫外纳米压印光刻自动脱模系统
CN113488573B (zh) 一种用非晶光子结构提高led封装器件出光效率的制备方法
CN108957945B (zh) 纳米压印软膜板生产机构
CN118192163A (zh) 一种双腔压差式纳米压印设备及压印方法
CN111522197A (zh) 一种紫外纳米压印光刻自动脱模系统和方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant