WO2017059828A1 - 一种大尺寸晶圆整片纳米压印的装置及其压印方法 - Google Patents
一种大尺寸晶圆整片纳米压印的装置及其压印方法 Download PDFInfo
- Publication number
- WO2017059828A1 WO2017059828A1 PCT/CN2016/103011 CN2016103011W WO2017059828A1 WO 2017059828 A1 WO2017059828 A1 WO 2017059828A1 CN 2016103011 W CN2016103011 W CN 2016103011W WO 2017059828 A1 WO2017059828 A1 WO 2017059828A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wafer
- mold
- cavity
- nano
- imprinting
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
Definitions
- the invention relates to a large-size wafer nano-imprinting device and an imprinting method thereof, in particular to a method and a device for efficiently and low-cost mass production of a large-area micro-nano structure, and belongs to the technical field of micro-nano manufacturing.
- Nanoimprint Lithography as a new micro-nano manufacturing technology, has higher resolution and ultra-low cost than current projection lithography and next-generation lithography technology.
- Horizontal NIL is at least an order of magnitude lower than conventional optical projection lithography and high productivity, and its most significant advantages are the ability to fabricate large-area, complex three-dimensional micro-nano structures and the patterning of non-flat substrates, especially soft UV nanoimprinting also has the potential to achieve wafer-level nanoimprinting on non-flat (bending, warping or step), curved, fragile substrates, and continuous patterning capabilities unique to roll-pressing processes .
- the whole wafer nanoimprint can realize single-step graphic whole wafer (ie wafer level patterning), and has the advantages of high imprint efficiency, low cost, and no splicing of graphics.
- wafer level Micro-nano optics, high-definition flat panel display and other fields have a very wide application prospects and a huge market.
- the entire wafer nanoimprinting patent CN 102096315 B (the whole wafer nanoimprinting device and method) and the SUSS company's substrate complete imprint lithography (SCIL) are all using the gas valve plate and passing the positive
- the compression and negative pressure conversion realizes the sequential micro-contact imprinting and uncovering demolding of the soft mold and the wafer to complete the nano-imprinting of the whole wafer.
- this method has complicated process and structure, high production cost, difficulty in manufacturing a gas valve plate (difficulty in processing high transparent quartz plate, high cost), and the inherent disadvantage is that the embossed area is currently limited to a small size wafer, 6 inches. It is difficult to achieve the entire embossing of the above wafers.
- the existing other nano-imprinting of the whole wafer can only achieve the imprinting step, and can not complete the automatic demolding, and it is more difficult to realize the uncovering demoulding required for the large-area nanoimprinting.
- the object of the present invention is to solve the problem of large-scale wafer-level micro-nano patterning, and to provide a device for large-size wafer nano-imprinting and a method thereof, thereby realizing efficient and low-cost wafers for large-sized substrates. Level graphics.
- a large-size wafer nano-imprinting device comprises an upper cavity containing an upper chamber and a lower cavity containing a lower chamber, and the lower cavity drives the lower cavity to move up and down by the first lifting mechanism
- the upper cavity is contacted or separated, and an elastic mold for embossing is arranged at the bottom of the upper cavity, and a bearing table is horizontally arranged in the lower cavity, and a second lifting mechanism is arranged at the bottom of the receiving table, and the cavity wall of the upper cavity
- An upper cavity inlet connected to the pressure pipeline is opened, and a lower cavity inlet connected to the vacuum pipeline and the pressure pipeline is opened on the cavity wall of the lower cavity, and the bearing platform is opened
- the inlet of the air inlet of the vacuum tube the device further comprises an exposure light source, and the pressure molding is realized by the pressure pipeline and the vacuum pipeline, which is simple and convenient, and the cost is low, and the mold is continuously uncovered from the outside of the wafer to the center through the pressure difference.
- the stage is fixed in the lower chamber through a table, the table vertically passes through the center of the lower chamber, and the second lifting mechanism is fixed at the center of the table, The second lifting mechanism drives the carrier to move up and down.
- a wafer is fixed on the wafer stage, and the surface of the wafer is coated with an imprint material.
- the mold comprises a support layer and a pattern layer in order from top to bottom, the outer side of the upper surface of the support layer is connected to the lower surface of the upper cavity, and the lower surface is fixed by the coupling agent material and the graphic layer, and the mold is elastic
- the embossing force thus applied is small; the mold and the wafer obtain good conformal contact; the bubbles trapped in the large-area embossing process can be discharged in time.
- the upper surface of the upper cavity is fixed with transparent glass.
- the exposure light source is fixed above the upper cavity to quickly and directly cure the imprint material.
- the pattern layer is made of a transparent fluoropolymer material and has a thickness of 10 to 50 ⁇ m.
- the support layer is transparent, highly flexible, and has a thickness in the range of 100-500 ⁇ m.
- the wafer coated with the embossed material is vacuum-adsorbed on the substrate, and the mold is vacuum-adsorbed on the bottom surface of the upper cavity;
- the second lifting mechanism drives the carrier table to move upward to the gap between the upper surface of the wafer and the mold by the working table to be 1-2 mm, and the first lifting mechanism pushes the lower cavity upward to ensure that the upper cavity and the lower cavity completely fit;
- the second lifting mechanism drives the stage to move upward until the mold becomes horizontal
- the air is introduced from the upper air inlet through the pressure line to achieve uniform pressure on the entire wafer and maintain the set time;
- the exposure light source Turning on the exposure light source, the light source is exposed and cured through the transparent glass and the mold, and after the exposure time is maintained for a set time, the exposure light source is turned off;
- the lower chamber inlet is open to the atmosphere to release the negative pressure; the lower chamber inlet is connected to the pressure line, and the embossing material on the surface of the mold is gradually separated. Under the action of the upward force, the mold continues to deform. Inwardly arching and arcing, stopping the intake;
- the second lifting mechanism drives the carrier to move downwards and returns to the initial station
- the lower chamber inlet is open to the atmosphere
- the first lifting mechanism drives the lower cavity to move downward, drives the lower cavity back to the initial station, removes the embossed wafer from above the lower cavity, places a new wafer, and starts the next working cycle;
- the embossed material is etched down by a conventional anisotropic etching process to remove the residual layer, and the micro-nano feature structure of the mold is reproduced on the embossed material;
- the pattern layer on the imprint material is used as a mask to transfer the pattern layer onto the wafer to realize wafer level patterning, or combined with the Lift-off process.
- the graphics layer is transferred to other functional materials to achieve functional material graphics.
- the embossing process and the demolding process are both symmetrical axes of the center of the mold, and the mold is uniformly and symmetrically stressed.
- the working principle of the invention is: using the mold, the conversion of the positive pressure and the negative pressure of the two chambers, and the upper and lower movement of the working table (the film table), the soft mold and the wafer are sequentially micro-contacted and uniformly pressed and embossed, and solidified. After the uncovering demolding, the single-step copying of the feature pattern on the mold is transferred to the imprint material coated on the wafer to realize the whole-chip imprinting of the large-sized wafer.
- the invention has the advantages of simple structure and process, high efficiency, low cost, high precision of embossing graphics and low defects.
- the positive pressure of the upper chamber and the downward vacuum of the lower chamber are applied to the mold by the positive pressure of the upper chamber to achieve uniform pressure on the whole wafer.
- the liquid UV-curable embossing material quickly and completely fills the mold micro-nano feature structure cavity, which improves the embossing efficiency and avoids defects with incomplete filling.
- the invention realizes the continuous "uncovering" demolding of the mold from the outside of the wafer to the center by the pressure difference between the upper chamber and the lower chamber, and has the remarkable advantages: simple demolding, low cost, high efficiency; mold release force Small, the damage to the mold and the embossed structure is small, the life of the mold is extended, and the precision and quality of the complex are improved.
- the embossing process and the demolding process are symmetrically and uniformly applied to the mold, and the required embossing force and demolding force are small, the mold deformation is small, and the complex precision is high.
- the embossing process and the demolding process are symmetric with the center of the mold, and both sides of the mold are simultaneously performed during the embossing and demolding processes, and the productivity is high.
- the invention realizes high-efficiency and low-cost batch manufacturing of large-area micro-nano structure of oversized, non-flat substrate and fragile substrate, and provides an industrial grade for large-scale wafer-level large-area micro-nano structure manufacturing. s solution.
- the invention is suitable for industrial-scale large-scale production of large-size LED graphics, wafer-level micro-nano optical devices, high-definition flat panel display, and the like, and is particularly suitable for micro-nano patterning of large-size wafers without splicing.
- FIG. 1 is a schematic view showing the structure of a large-size wafer nano-imprinting apparatus of the present invention.
- Figure 2 is a schematic view of the structure of the mold of the present invention.
- 3 is a flow chart of the nano-imprinting process of the large-size wafer of the present invention.
- 4a is a schematic view showing the steps of a nano-imprint process for a large-size wafer of the present invention.
- 4b is a schematic view showing the steps of the nano-imprint process of the large-size wafer of the present invention.
- 4c is a schematic view showing the steps of the nano-imprint process of the large-size wafer of the present invention.
- 4d is a schematic view showing the steps of the nanoimprint process of the large-size wafer of the present invention.
- 4e is a schematic view showing the steps of the nano-imprint process of the large-size wafer of the present invention.
- 4f is a schematic view showing the steps of the nanoimprint process of the large-size wafer of the present invention.
- 4g is a schematic view showing the steps of the nanoimprint process of the large-size wafer of the present invention.
- 4h is a schematic view showing the steps of the nanoimprint process of the large-size wafer of the present invention.
- 4i is a schematic view showing the steps of the nanoimprint process of the large-size wafer of the present invention.
- 4i is a schematic view showing the steps of the nanoimprint process of the large-size wafer of the present invention.
- 4k is a schematic view showing the steps of the nanoimprint process of the large-size wafer of the present invention.
- 1 second lifting mechanism 1 second lifting mechanism, 2 first lifting mechanism, 3 lower cavity, 4 bearing table, 5 wafers, 6 imprint material, 7 sealing ring, 8 mold, 9 upper cavity, 10 transparent glass, 11 Light source, 12 vacuum line, 13 pressure line, 301 lower chamber inlet, 801 mold pattern layer, 80101 mold micro-nano feature structure, 80102 mold bending deformation arc lowest point, 80103 mold outermost side, 802 mold coupling agent 803 mold support layer, 901 upper cavity bottom surface, 902 upper cavity inlet, I upper chamber, II lower chamber, 14. first imprint station, 15. second imprint station.
- FIG. 1 is a schematic structural view of a large-size wafer nano-imprinting apparatus according to the present invention, which includes: a second lifting mechanism 1, a first lifting mechanism 2, a lower cavity 3, a wafer stage 4, a wafer 5, and an imprint material. 6.
- the lower cavity 3, the mold 8, and the upper cavity 9 are divided by the die 8 to form two closed chambers, wherein the upper cavity 9 is inside the upper chamber I and the lower cavity 3 is inside.
- the lower chamber II; a sealing ring 7 is respectively disposed between the lower chamber 3 and the mold 8, the upper chamber 9 and the mold 8, to ensure that the upper chamber I and the lower chamber II are completely dense during the imprinting operation. Closed, no air leaks.
- FIG. 2 is a schematic view showing the structure of the mold 8 of the present invention, which comprises a pattern layer 801 and a support layer 803, wherein the pattern layer 801 has extremely low surface energy, high modulus of elasticity and transparent characteristics, and includes mold micro-nano characteristics to be reproduced.
- the structure 80101, the support layer 803 has the characteristics of transparency, high flexibility, and film structure, wherein the pattern layer 801 is located below the support layer 803.
- the graphic layer 801 can adopt h-PDMS, low surface energy and high elastic modulus fluoropolymer-based material, ETFE, etc.; the support layer 803 can adopt high elasticity and high transparent materials such as PDMS, PET, and PC.
- the thickness of the pattern layer 801 ranges from 10 to 50 microns, the pattern layer is a transparent fluoropolymer Teflon AF 1600, and the thickness is 15 microns; the thickness of the support layer 803 ranges from 100 to 500 microns.
- the support layer 803 is surface modified or coated with a layer of transparent coupling agent material 802.
- the mold 8 of the present embodiment uses a transparent and highly elastic PET film as the support layer 803 with a thickness of 150 ⁇ m, and the coupling agent material 802 is made of transparent and colorless KH-550.
- the invention adopts a whole wafer nanoimprint of 8 inch (about 200 mm diameter) GaN-based photonic crystal LED (LED epitaxial nano-patterning) as an example, and combines a large-sized wafer whole nanoimprint working process flow.
- the wafer 5 is an 8-inch GaN-based epitaxial wafer, and a photonic crystal structure is required to be printed on the P-type semiconductor laminate, wherein the photonic crystal
- the geometric parameters are: a lattice constant of 600 nm, a diameter of a circular hole of 200 nm, and a depth of the hole of 100 nm.
- the imprint material 6 was made of micro resist technology mr-XNIL26, and the thickness of the GaN-based epitaxial wafer was 300 nm.
- the specific process includes:
- a liquid UV-curable imprint material 6 (also referred to as a resist, a low-viscosity fast photocurable polymer material) is uniformly coated on the wafer 5, and the wafer 5 is placed on the wafer stage 4.
- the wafer 5 coated with the imprint material 6 is adsorbed and fixed on the wafer stage 4 by vacuum adsorption; the mold 8 is placed on the bottom surface 901 of the upper cavity, and fixed by vacuum adsorption. As shown in Figure 4a.
- the second lifting mechanism 1 drives the wafer 5 to move from the initial station to the first stamping station 14, and the gap between the wafer 5 and the mold 8 is 2 mm; the first lifting mechanism 2 drives the lower chamber 3 to move from the initial station.
- the upper cavity 9 and the lower cavity 3 are completely closed, and under the upward force applied by the first lifting mechanism 2, the periphery of the upper chamber I is completely sealed during the imprinting process, and the lower cavity is closed. Room II is completely enclosed around the air and there is no air leak. As shown in Figure 4b.
- the lower chamber inlet 301 is connected to the vacuum line 12, and the lower chamber II forms a negative pressure environment, under the action of vacuum suction,
- the mold 8 is bent and deformed so that the lowest point 80102 of the bending and deformation of the mold is in contact with the wafer 5, and the vacuum line 12 communicating with the lower chamber inlet 301 is closed, as shown in FIG. 4c;
- the table 1 drives the stage 4 and the wafer 5 to move upward, and the stage 4 and the wafer 5 rise from the first imprint station 14 to the second imprint station 15 (the entire mold 8 becomes horizontal) , achieving sequential micro-contact imprinting from the center of the wafer 5 to the outside, and the wafer 5 and the mold 8 obtain complete conformal contact; as shown in FIG. 4d;
- the upper chamber inlet 902 communicates with the pressure line 13 to start the intake, the upper chamber I forms a positive pressure environment, and the positive pressure in the upper chamber I produces an embossing force and a lower chamber for uniformly applying pressure to the mold 8 downward.
- II negative pressure exerts a downward vacuum suction on the mold 8, and the mold 8 is uniformly pressed on the whole wafer 5, and the liquid ultraviolet curing type imprint material 6 is quickly and completely filled into the mold micro-nano characteristic structure 80101.
- Figure 4e As shown in Figure 4e;
- the lower chamber inlet 301 is first open to the atmosphere to release the negative pressure; then the lower chamber inlet 301 is connected to the pressure line 13 under pressure, starting from the outermost surface 80103 of the mold, on the mold 8 and the wafer 5.
- the embossing material 6 is gradually separated in sequence until it extends to the mold center 80102, and the mold 8 is completely separated from the embossing material 6 to achieve a similar unslung demolding; as shown in FIG. 4h; the mold 8 is completely separated from the embossing material 6, and is in the lower chamber. Under the upward force of the chamber II, the mold 8 continues to deform, and finally becomes an upward arching arc state, closing the pressure line 13 of the air inlet 301 of the lower chamber 3; as shown in Fig. 4i;
- the second lifting mechanism 1 drives the wafer 5 to move downward, and returns from the second imprinting station 15 to the initial station;
- the first lifting mechanism 2 drives the lower cavity 3 to move downward; the embossed wafer 5 is removed, a new wafer 5 is placed, and the next working cycle is started; as shown in FIG. 4k;
- the exposure light source of this embodiment is a high pressure UV mercury lamp, and the power of the UV lamp is 500W.
- the working range of the pressure pipeline in the embodiment is: 0 to 0.2 MPa, and the working range of the vacuum pipeline is: 0 to -0.08 MPa.
- the lifting mechanism 2 of this embodiment employs a buffered cylinder.
- the negative pressure of the chamber II is -0.04 MPa
- the positive pressure of the upper chamber I is 0.1 MPa.
- the positive pressure of the lower chamber II in the step (4) of the present embodiment is 0.05 MPa.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
Abstract
一种大尺寸晶圆整片纳米压印的装置及其压印方法,其中装置包括上腔体(9)和下腔体(3),下腔体(3)通过第一升降机构(2)带动下腔体(3)上下移动与上腔体(9)接触或分离,在上腔体(9)的底部设有用于压印的弹性模具(8),在下腔室(3)内水平设有承片台(4),承片台(4)底部设有第二升降机构(1),上腔体(9)的腔壁上开有与压力管路(13)活动连接的上腔体进气口(902),下腔体(3)的腔壁上开有与真空管路(12)和压力管路(13)均活动连接的下腔体进气口(301),承片台(4)上开有与真空管路(12)连通的承片台(4)进气口,还包括曝光光源(11)。纳米压印的装置及其压印方法实现了超大尺寸、非平整衬底、易碎衬底大面积微纳米结构的高效、低成本批量化制造,为大尺寸晶圆级大面积微纳米结构制造提供一种工业级的解决方案。
Description
本发明涉及一种大尺寸晶圆整片纳米压印的装置及其压印方法,尤其涉及一种高效、低成本批量化制造大面积微纳结构的方法和装置,属于微纳制造技术领域。
纳米压印光刻(Nanoimprint Lithography,NIL)作为一种全新的微纳米制造技术,较之现行的投影光刻和下一代光刻技术,具有高分辩率、超低成本(国际权威机构评估同等制作水平的NIL比传统光学投影光刻至少低一个数量级)和高生产率的特点,而且其最显著的优势在于大面积、复杂三维微纳结构制造的能力以及非平整衬底的图形化,尤其是软紫外纳米压印工艺还具有在非平整(弯曲、翘曲或者台阶)、曲面、易碎衬底上底上实现晶圆级纳米压印的潜能,以及滚压印工艺所特有的连续图形化能力。整片晶圆纳米压印能够实现单步图形化整片晶圆(即晶圆级图形化),并且具有压印效率高、成本低、图形无拼接突出优势,在LED图形化、晶圆级微纳光学器件、高清平板显示等领域具有非常广泛的应用前景和巨大市场。
目前已经公开的整片晶圆纳米压印专利CN 102096315 B(整片晶圆纳米压印的装置和方法)和SUSS公司的基底完整压印光刻(SCIL)都是利用气阀板并通过正压和负压的转换实现软模具与晶圆的顺序微接触压印和揭开式脱模,完成整片晶圆纳米压印。但是该种方法工艺和结构复杂,生产成本高,气阀板制造困难(高透明石英板的加工困难\成本高),而且固有的不足就是压印面积目前限定在较小尺寸晶圆,6英寸以上晶圆难以实现整片压印。现有的其它整片晶圆纳米压印只能实现压印工步,无法完成自动脱模,更难以实现大面积纳米压印所要求的揭开式脱模。
为了满足LED图形化、晶圆级微纳光学器件、高清平板显示等领域对于不断增大的大尺寸晶圆微纳图形化的要求,迫切需要开发大尺寸晶圆整片晶圆纳米压印新方法和新工艺,突破制约8英寸以上晶圆级纳米压印的难题。
发明内容
本发明的目的是为了解决大尺寸晶圆级微纳米图形化问题,提供一种用于大尺寸晶圆整片纳米压印的装置及其方法,实现对大尺寸衬底高效、低成本晶圆级图形化。
为了达成上述目的,本发明采用如下技术方案:
一种大尺寸晶圆整片纳米压印的装置,包括内含有上腔室的上腔体和内含有下腔室的下腔体,下腔体通过第一升降机构带动下腔体上下移动与上腔体接触或分离,在上腔体的底部设有用于压印的弹性模具,在下腔室内水平设有承片台,承片台底部设有第二升降机构,上腔体的腔壁上开有与压力管路活动连接的上腔体进气口,下腔体的腔壁上开有与真空管路和压力管路均活动连接的下腔体进气口,承片台上开有与真空管路连通的承片台进气口,该装置还包括曝光光源,通过压力管路和真空管路实现压模,简单方便,成本低廉,通过压力差实现模具从晶圆外侧到中心连续“揭开”式脱模,脱模简单,成本低,效率高;脱模力小,对于模具和压印结构损伤小,延长模具寿命,承片台进气口通过真空管路形成负压环境便于吸附晶圆。
进一步地,所述承片台通过工作台固定在所述的下腔室内,所述工作台竖直穿过所述下腔体的中心,所述第二升降机构固定在工作台的中心,由第二升降机构带动承片台实现上下移动。
进一步地,在所述承片台上固定有晶圆,晶圆表面涂覆有压印材料。
进一步地,所述模具从上到下依次包括支撑层和图形层,支撑层上表面的外侧与所述上腔体的下表面连接,下表面通过偶联剂材料与图形层固定,模具是弹性的这样施加的压印力小;模具与晶圆获得良好的共形接触;大面积压印过程中陷入的气泡能够及时排出。
进一步地,所述上腔体的上表面固定有透明的玻璃。
进一步地,所述曝光光源固定在所述上腔体上方,快速直接地固化压印材料。
进一步地,所述图形层采用透明氟聚合物材料,厚度为10-50μm。
进一步地,所述支撑层是的透明的、高柔性的,其厚度范围为100-500μm。
一种大尺寸晶圆整片纳米压印的装置的压印方法,具体使用步骤如下:
1)预处理过程
将表面涂覆有压印材料的晶圆通过真空吸附在承片台上,将模具通过真空吸附在上腔体的底面;
第二升降机构通过工作台带动承片台向上运动至晶圆上表面与模具的间隙为1-2mm,第一升降机构推动下腔体向上位移保证上腔体与下腔体完全贴合;
2)压印过程
从下腔体进气口通过真空管路抽真空,使得模具产生完全变形,模具弯曲变形后弧形最低点与晶圆接触,停止抽真空;
第二升降机构带动承片台向上移动至模具变成水平状态;
从上腔体进气口通过压力管路进气,实现模具对整片晶圆的均匀施压,保持设定的时间;
断开压力管路与上腔体进气口的连接,上腔体进气口与大气相通,模具的变形逐渐释放;
3)固化过程
开启曝光光源,光源透过透明玻璃和模具对压印材料进行曝光固化,曝光时间保持设定的时间后,关闭曝光光源;
4)脱模过程
下腔体进气口与大气相通,释放负压;下腔体进气口与压力管路连接进气,模具与晶圆表面的压印材料逐渐分离,在向上力的作用下,模具继续变形呈向上拱起弧形状态,停止进气;
第二升降机构带动承片台向下移动,返回至初始工位;
下腔体进气口与大气相通;
第一升降机构带动下腔体向下移动,带动下腔体返回至初始工位,从下腔体的上方取下压印完成的晶圆,放置新的晶圆,开始下一轮工作循环;
5)后处理过程
通过常规的各向异性刻蚀工艺等比例对压印材料往下刻蚀,去除残留层,在压印材料上复制出模具的微纳米特征结构;
进一步结合刻蚀工艺(湿法刻蚀或者干法刻蚀),以压印材料上的图形为掩模,将图形层转移到晶圆上,实现晶圆级图形化,或者结合Lift-off工艺,将图形层转移到其它功能材料上,实现功能材料图形化。
进一步地,步骤2)和步骤4)中,压印过程和脱模过程均以模具的中心为对称轴,模具均匀、对称受力。
本发明的工作原理是:利用模具、两个腔室正压和负压的转换,并结合工作台(承片台)上下移动,实现软模具与晶圆顺序微接触均匀施压压印,固化后揭开式脱模,将模具上的特征图形单步复制转移到涂铺在晶圆上的压印材料上,实现大尺寸晶圆整片压印。
本发明的有益效果是:
(1)通过上腔室、软模具、下腔室、工作台和气路系统(压力和真空)的密切配合,协同工作,实现大尺寸晶圆整片纳米压印,克服了现有整片晶圆纳米压印方法存在的不足。本发明具有结构和工艺简单、效率高、成本低、压印图形精度高和缺陷低的显著优点。
(2)本发明压印过程通过工作台向上移动,将产生弯曲变形的模具顶平,实现从模具中心位置向外侧方向逐渐顺序微接触施压压印,其显著的优势:结构简单,效率高,施加的压印力小;模具与晶圆获得良好的共形接触;大面积压印过程中陷入的气泡能够及时排出,解决大面积纳米压印气泡消除的难题。
(3)结合软模具和气体辅助均匀施压方式,解决大尺寸、非平整晶圆压印过程中模具与晶圆大面积完全共形接触、均匀一致施压的问题。
(4)压印和固化过程是在真空环境下,大面积纳米压印陷入和产生的气泡能够能完全消除,消除大面积纳米压印气泡缺陷,而且有力与压印材料的快速固化,提高压印效率。
(5)压印过程中,通过上腔室正压产生对模具向下均匀压力和下腔室负压对模具施加向下真空吸力的共同作用下,实现模具对整片晶圆均匀施压,液态紫外光固化型压印材料对于模具微纳特征结构腔体快速完全填充,提高了压印效率,避免出现填充不完全的缺陷。
(6)本发明通过上腔室和下腔室的压力差实现模具从晶圆外侧到中心连续“揭开”式脱模,其显著优势:脱模简单,成本低,效率高;脱模力小,对于模具和压印结构损伤小,延长模具寿命,提高复形精度和质量。
(7)压印过程和脱模过程模具对称均匀受力,需要的压印力和脱模力小,模具变形小,复形精度高。
(8)压印过程和脱模过程以模具的中心为对称,在压印和脱模过程中模具的两侧同时进行,生产率高。
(9)本发明实现了超大尺寸、非平整衬底、易碎衬底大面积微纳米结构的高效、低成本批量化制造,为大尺寸晶圆级大面积微纳米结构制造提供一种工业级的解决方案。
(10)本发明适合于大尺寸LED图形化、晶圆级微纳光学器件、高清平板显示等工业级规模化生产,尤其适合无拼接大尺寸晶圆微纳图形化。
图1是本发明大尺寸晶圆整片纳米压印装置结构示意图。
图2是本发明模具结构示意图。
图3是本发明大尺寸晶圆整片纳米压印工作过程流程图。
图4a是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4b是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4c是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4d是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4e是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4f是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4g是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4h是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4i是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4i是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
图4k是本发明大尺寸晶圆整片纳米压印工艺步骤示意图。
其中,1第二升降机构、2第一升降机构、3下腔体、4承片台、5晶圆、6压印材料、7密封圈、8模具、9上腔体、10透明玻璃、11光源、12真空管路、13压力管路、301下腔体进气口、801模具图形层、80101模具微纳特征结构、80102模具弯曲变形弧形最低点、80103模具最外侧、802模具偶联剂、803模具支撑层、901上腔体底面、902上腔体进气口、I上腔室、II下腔室,14.第一压印工位,15.第二压印工位。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。
图1是本发明大尺寸晶圆整片纳米压印装置结构示意图,它包括:第二升降机构1、第一升降机构2、下腔体3、承片台4、晶圆5、压印材料6、密封圈7、模具8、上腔体9、透明玻璃(石英玻璃)10、曝光光源11、真空管路12、压力管路13;其中,工作台置于本装置中心位置的最下方,工作台穿过下腔体3,工作台的内部设有第二升降机构,承片台4水平置于下腔体3内部;第一升降机构2置于下腔体3的下方并与下腔体3的底部相连接;承片台4置于工作台上;晶圆5置于承片台4上,并通过真空吸附方式固定在承片台4上;液态紫外光固化型压印材料6均匀涂铺在晶圆5上;模具8通过真空吸附方式固定在上腔体9的底面,并置于涂铺有压印材料晶圆5的正上方;上腔体9置于模具8和下腔体3的正上方,曝光光源11的正下方;透明石英玻璃10置于上腔体3内;曝光光源(紫外光光源)11置于上腔体9和透明玻璃10的正上方;密封圈7置于上腔体的底面901和下腔体3的顶面;真空管路12和压力管路13与下腔体进气口301相连通,压力管路12与上腔体9进气口902相连通,真空管路11与承片台4进气口相连通。
所述下腔体3、模具8、上腔体9(包括透明玻璃10)通过模具8分割形成两个封闭的腔室,其中,上腔体9内部为上腔室I,下腔体3内部为下腔室II;在下腔体3与模具8、上腔体9与模具8之间分别设置密封圈7,确保压印工作过程中上腔室I和下腔室II完全密
闭,不发生漏气。
图2是本发明所述模具8结构示意图,它包括图形层801和支撑层803,其中图形层801具有极低的表面能、高弹性模量和透明的特性,包含所要复制的模具微纳特征结构80101,支撑层803具有透明、高度柔性和薄膜结构的特性,其中图形层801位于支撑层803的下方。图形层801可以采用h-PDMS、低表面能和高弹性模量氟聚合物基材料、ETFE等;支撑层803可以采用PDMS、PET、PC等高弹性和高透明材料。图形层801的厚度范围是10-50微米,图形层采用透明氟聚合物Teflon AF 1600,厚度15微米;支撑层803厚度范围是100-500微米。支撑层803进行表面改性处理,或者涂覆一层透明的偶联剂材料802。
本实施例的模具8采用透明高弹性的PET薄膜为支撑层803,厚度150微米,偶联剂材料802采用透明无色的KH-550。
本发明以8英吋(直径约200毫米)GaN基光子晶体LED(LED外延片纳米图形化)的整片晶圆纳米压印为实施例,结合大尺寸晶圆整片纳米压印工作过程流程图(如图3)和大尺寸晶圆整片纳米压印工艺步骤示意图(图4a-图4k),详细说明大尺寸晶圆整片纳米压印的原理和具体工艺步骤。
实施例中晶圆5、模具8和纳米压印工作过程的一些具体参数设置如下:晶圆5为8英吋GaN基外延片,需要在P型半导体层压印出光子晶体结构,其中光子晶体的几何参数是:晶格常数600nm,圆孔的直径200nm,孔的深度是100nm。压印材料6使用Micro resist technology公司的mr-XNIL26,在GaN基外延片旋涂的厚度是300nm。
具体工艺过程包括:
(1)预处理过程
在晶圆5上均匀涂铺一层液态紫外光固化型压印材料6(亦称抗蚀剂,一种低粘度快速光固化型聚合物材料),将晶圆5置于承片台4上,并通过真空吸附方式将涂铺压印材料6的晶圆5吸附固定在承片台4上;将模具8置于上腔体的底面901,并通过真空吸附方式予以固定。如图4a所示。
第二升降机构1带动晶圆5从初始工位移动到第一压印工位14,晶圆5与模具8的间隙是2毫米;第一升降机构2带动下腔体3从初始工位移动到第一压印工位14,上腔体9和下腔体3完全闭合,在第一升降机构2施加的向上作用力下,压印过程中保证上腔室I的四周完全密闭,下腔室II的四周完全密闭,无漏气。如图4b所示。
(2)压印过程
①下腔体进气口301连通真空管路12,下腔室II形成负压环境,在真空吸力作用下,
模具8产生弯曲变形,使模具弯曲变形弧形最低点80102与晶圆5相接触,关闭与下腔体进气口301连通的真空管路12,如图4c所示;
②工作台1带动承片台4和晶圆5向上移动,承片台4和晶圆5从第一压印工位14上升到第二压印工位15(整个模具8变成水平状态),实现从晶圆5中心向外侧逐渐顺序微接触压印,晶圆5与模具8获得完全共形接触;如图4d所示;
③上腔体进气口902连通压力管路13开始进气,上腔室I形成正压环境,在上腔室I正压产生对模具8向下均匀施压的压印力和下腔室II负压对模具8施加向下真空吸力的共同作用下,实现模具8对整片晶圆5均匀施压,将液态紫外光固化型压印材料6快速完全填充到模具微纳特征结构80101中;如图4e所示;
④保持3s后,关闭上腔体进气口902的压力管路13;随后,上腔体进气口902与大气相通,将上腔室I变为常压(大气压);使模具8在压力下的变形完全释放;如图4f所示;
(3)固化过程
①开启曝光光源11,紫外光光源透过透明玻璃10和模具8对压印材料6进行曝光固化;
②曝光时间保持5s,压印材料6完全固化后,关闭曝光光源11,如图4g所示;
(4)脱模过程
①下腔体进气口301首先与大气相通,释放负压;随后下腔体进气口301连通压力管路13,在压力作用下,从模具最外侧80103开始,模具8与晶圆5上压印材料6逐渐顺序分离,直到扩展到模具中心80102,模具8与压印材料6完全分离,实现类似揭开式脱模;如图4h;模具8与压印材料6完全分离后,在下腔室II的向上力作用下,模具8继续产生变形,最后变成向上拱起弧形状态,关闭下腔体3进气口301的压力管路13;如图4i所示;
②第二升降机构1带动晶圆5向下移动,从第二压印工位15返回到初始工位;
③下腔体进气口301与大气相通;如图4j所示;
④第一升降机构2带动下腔体3向下移动;卸下压印完成的晶圆5,放置新的晶圆5,开始下一轮工作循环;如图4k所示;
(5)后处理过程
①通过常规的各向异性刻蚀工艺等比例往下刻蚀,去除残留层,在压印材料6上复制出模具微纳米特征结构80101;
②后续结合刻蚀工艺(湿法刻蚀或者ICP刻蚀),以压印图形为掩模,将特征图形转移到GaN基LED衬底(晶圆5)上,实现LED外延片的图形化或者光子晶体LED制造。
本实施例所述曝光光源为高压UV汞灯,UV灯的功率500W。
本实施例所述压力管路的工作范围是:0~0.2MPa,所述真空管路工作范围是:0~-0.08MPa。
本实施例所述升降机构2采用带缓冲的气缸。
本实施例所述步骤(2)下腔室II的负压-0.04Mpa,上腔室I的正压为0.1MPa。
本实施例所述步骤(4)下腔室II的正压为0.05MPa。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (10)
- 一种大尺寸晶圆整片纳米压印的装置,其特征在于,包括内含有上腔室的上腔体和内含有下腔室的下腔体,下腔体通过第一升降机构带动下腔体上下移动与上腔体接触或分离,在上腔体的底部设有用于压印的弹性模具,在下腔室内水平设有承片台,承片台底部设有第二升降机构,上腔体的腔壁上开有与压力管路活动连接的上腔体进气口,下腔体的腔壁上开有与真空管路和压力管路均活动连接的下腔体进气口,承片台上开有与真空管路连通的承片台进气口,该装置还包括曝光光源。
- 如权利要求1所述的大尺寸晶圆整片纳米压印的装置,其特征在于,所述承片台通过工作台固定在所述的下腔室内,所述工作台竖直穿过所述下腔体的中心,所述第二升降机构固定在工作台的中心。
- 如权利要求1所述的大尺寸晶圆整片纳米压印的装置,其特征在于,在所述承片台上固定有晶圆,晶圆表面涂覆有压印材料。
- 如权利要求1所述的大尺寸晶圆整片纳米压印的装置,其特征在于,所述模具从上到下依次包括支撑层和图形层,支撑层上表面的外侧与所述上腔体的下表面连接,下表面通过偶联剂材料与图形层固定。
- 如权利要求1所述的大尺寸晶圆整片纳米压印的装置,其特征在于,所述上腔体的上表面固定有透明的玻璃。
- 如权利要求1所述的大尺寸晶圆整片纳米压印的装置,其特征在于,所述曝光光源固定在所述上腔体上方。
- 如权利要求4所述的大尺寸晶圆整片纳米压印的装置,其特征在于,所述图形层采用透明氟聚合物材料,厚度为10-50μm。
- 如权利要求4所述的大尺寸晶圆整片纳米压印的装置,其特征在于,所述支撑层是的透明的、高柔性的,其厚度范围为100-500μm。
- 如上述1-8中任一项权利要求所述的装置的压印方法,其特征在于,具体使用步骤如下:1)预处理过程将表面涂覆有压印材料的晶圆通过真空吸附在承片台上,将模具通过真空吸附在上腔体的底面;第二升降机构通过工作台带动承片台向上运动至晶圆上表面与模具的间隙为1-2mm,第一升降机构推动下腔体向上位移保证上腔体与下腔体完全贴合;2)压印过程从下腔体进气口通过真空管路抽真空,使得模具产生完全变形,模具弯曲变形后弧形最低点与晶圆接触,停止抽真空;第二升降机构带动承片台向上移动至模具变成水平状态;从上腔体进气口通过压力管路进气,实现模具对整片晶圆的均匀施压,保持设定的时间;断开压力管路与上腔体进气口的连接,上腔体进气口与大气相通,模具的变形逐渐释放;3)固化过程开启曝光光源,光源透过透明玻璃和模具对压印材料进行曝光固化,曝光时间保持设定的时间后,关闭曝光光源;4)脱模过程下腔体进气口与大气相通,释放负压;下腔体进气口与压力管路连接进气,模具与晶圆表面的压印材料逐渐分离,在向上力的作用下,模具继续变形呈向上拱起弧形状态,停止进气;第二升降机构带动承片台向下移动,返回至初始工位;下腔体进气口与大气相通;第一升降机构带动下腔体向下移动,带动下腔体返回至初始工位,从下腔体的上方取下压印完成的晶圆,放置新的晶圆,开始下一轮工作循环;5)后处理过程通过常规的各向异性刻蚀工艺等比例对压印材料往下刻蚀,去除残留层,在压印材料上复制出模具的微纳米特征结构;进一步结合刻蚀工艺,以压印材料上的图形为掩模,将图形层转移到晶圆上,实现晶圆级图形化。
- 如权利要求9所述的压印方法,其特征在于,所述步骤2)和步骤4)中,压印过程和脱模过程均以模具的中心为对称轴,模具均匀、对称受力。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112016004025.3T DE112016004025T5 (de) | 2015-10-10 | 2016-10-24 | Einrichtung zum ganzflächigen Nanoprägen eines großen Wafers und zugehöriges Prägeverfahren |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510653696.2A CN105137714B (zh) | 2015-10-10 | 2015-10-10 | 一种大尺寸晶圆整片纳米压印的装置及其压印方法 |
CN201510653696.2 | 2015-10-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017059828A1 true WO2017059828A1 (zh) | 2017-04-13 |
Family
ID=54723106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/103011 WO2017059828A1 (zh) | 2015-10-10 | 2016-10-24 | 一种大尺寸晶圆整片纳米压印的装置及其压印方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN105137714B (zh) |
DE (1) | DE112016004025T5 (zh) |
WO (1) | WO2017059828A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111522197A (zh) * | 2020-06-03 | 2020-08-11 | 中国科学院光电技术研究所 | 一种紫外纳米压印光刻自动脱模系统和方法 |
WO2021110237A1 (de) * | 2019-12-02 | 2021-06-10 | Ev Group E. Thallner Gmbh | Verfahren und vorrichtung zur ablösung eines stempels |
CN113075861A (zh) * | 2021-04-01 | 2021-07-06 | 青岛天仁微纳科技有限责任公司 | 一种新型纳米压印设备及其压印方法 |
CN115138536A (zh) * | 2022-06-28 | 2022-10-04 | 上海交通大学 | 埋置芯片封装基板匀胶气泡的真空处理方法及装置 |
WO2022217954A1 (zh) * | 2021-04-16 | 2022-10-20 | 深圳先进技术研究院 | 微纳结构制作方法及微纳结构制作装置 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105137714B (zh) * | 2015-10-10 | 2019-08-13 | 兰红波 | 一种大尺寸晶圆整片纳米压印的装置及其压印方法 |
CN106094429B (zh) * | 2016-08-19 | 2019-11-05 | 京东方科技集团股份有限公司 | 压印装置及其工作方法 |
CN106483759B (zh) * | 2016-12-12 | 2020-09-04 | 青岛天仁微纳科技有限责任公司 | 纳米压印设备 |
CN106990671B (zh) * | 2017-05-27 | 2020-10-02 | 青岛天仁微纳科技有限责任公司 | 一种负压式纳米压印设备 |
JP7233174B2 (ja) * | 2018-05-17 | 2023-03-06 | キヤノン株式会社 | インプリント装置、物品製造方法、平坦化層形成装置、情報処理装置、及び、決定方法 |
CN110125866B (zh) * | 2019-05-30 | 2021-03-23 | 安徽元隽氢能源研究所有限公司 | 一种装配mea的工装及使用该工装的装配方法 |
CN112859539B (zh) * | 2021-01-21 | 2022-11-11 | 上海应用技术大学 | 一种x射线曝光装置 |
CN112897896A (zh) * | 2021-03-15 | 2021-06-04 | 龙口科诺尔玻璃科技有限公司 | 一种基于htmi的彩晶玻璃生产工艺及其生产设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100244326A1 (en) * | 2009-03-25 | 2010-09-30 | Hiroshi Tokue | Imprint pattern forming method |
US20110180965A1 (en) * | 2010-01-22 | 2011-07-28 | Nanonex Corporation | Fast nanoimprinting apparatus using deformale mold |
JP2012049370A (ja) * | 2010-08-27 | 2012-03-08 | Toshiba Corp | インプリント装置 |
CN203445141U (zh) * | 2013-09-03 | 2014-02-19 | 和椿科技股份有限公司 | 压印装置 |
CN104425656A (zh) * | 2013-09-03 | 2015-03-18 | 和椿科技股份有限公司 | 压印装置与压印方式 |
CN105137714A (zh) * | 2015-10-10 | 2015-12-09 | 兰红波 | 一种大尺寸晶圆整片纳米压印的装置及其压印方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101403855A (zh) * | 2008-11-07 | 2009-04-08 | 南京大学 | 紫外/热压固化型纳米压印方法与压印机 |
CN102096315B (zh) * | 2010-12-22 | 2012-04-04 | 青岛理工大学 | 整片晶圆纳米压印的装置和方法 |
CN102346369B (zh) * | 2011-09-08 | 2013-04-10 | 青岛理工大学 | 一种整片晶圆纳米压印光刻机 |
CN102566262B (zh) * | 2012-02-29 | 2013-06-19 | 青岛理工大学 | 一种适用于非平整衬底晶圆级纳米压印的装置 |
CN102591143B (zh) * | 2012-02-29 | 2014-04-16 | 青岛理工大学 | 一种大面积纳米压印光刻的装置和方法 |
CN102866582B (zh) * | 2012-09-29 | 2014-09-10 | 兰红波 | 一种用于高亮度led图形化的纳米压印装置和方法 |
CN204640788U (zh) * | 2015-06-01 | 2015-09-16 | 青岛博纳光电装备有限公司 | 一种大面积纳米压印软模具复制装置 |
-
2015
- 2015-10-10 CN CN201510653696.2A patent/CN105137714B/zh active Active
-
2016
- 2016-10-24 WO PCT/CN2016/103011 patent/WO2017059828A1/zh active Application Filing
- 2016-10-24 DE DE112016004025.3T patent/DE112016004025T5/de not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100244326A1 (en) * | 2009-03-25 | 2010-09-30 | Hiroshi Tokue | Imprint pattern forming method |
US20110180965A1 (en) * | 2010-01-22 | 2011-07-28 | Nanonex Corporation | Fast nanoimprinting apparatus using deformale mold |
JP2012049370A (ja) * | 2010-08-27 | 2012-03-08 | Toshiba Corp | インプリント装置 |
CN203445141U (zh) * | 2013-09-03 | 2014-02-19 | 和椿科技股份有限公司 | 压印装置 |
CN104425656A (zh) * | 2013-09-03 | 2015-03-18 | 和椿科技股份有限公司 | 压印装置与压印方式 |
CN105137714A (zh) * | 2015-10-10 | 2015-12-09 | 兰红波 | 一种大尺寸晶圆整片纳米压印的装置及其压印方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021110237A1 (de) * | 2019-12-02 | 2021-06-10 | Ev Group E. Thallner Gmbh | Verfahren und vorrichtung zur ablösung eines stempels |
CN111522197A (zh) * | 2020-06-03 | 2020-08-11 | 中国科学院光电技术研究所 | 一种紫外纳米压印光刻自动脱模系统和方法 |
CN111522197B (zh) * | 2020-06-03 | 2024-04-02 | 中国科学院光电技术研究所 | 一种紫外纳米压印光刻自动脱模系统和方法 |
CN113075861A (zh) * | 2021-04-01 | 2021-07-06 | 青岛天仁微纳科技有限责任公司 | 一种新型纳米压印设备及其压印方法 |
CN113075861B (zh) * | 2021-04-01 | 2023-09-19 | 青岛天仁微纳科技有限责任公司 | 一种新型纳米压印设备及其压印方法 |
WO2022217954A1 (zh) * | 2021-04-16 | 2022-10-20 | 深圳先进技术研究院 | 微纳结构制作方法及微纳结构制作装置 |
CN115138536A (zh) * | 2022-06-28 | 2022-10-04 | 上海交通大学 | 埋置芯片封装基板匀胶气泡的真空处理方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
DE112016004025T5 (de) | 2018-05-17 |
CN105137714B (zh) | 2019-08-13 |
CN105137714A (zh) | 2015-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017059828A1 (zh) | 一种大尺寸晶圆整片纳米压印的装置及其压印方法 | |
WO2017059745A1 (zh) | 大面积微纳图形化的装置和方法 | |
WO2014047750A1 (zh) | 一种用于高亮度led图形化的纳米压印装置和方法 | |
CN106918987B (zh) | 一种复合纳米压印光刻机及工作方法 | |
CN102566262B (zh) | 一种适用于非平整衬底晶圆级纳米压印的装置 | |
CN102591143B (zh) | 一种大面积纳米压印光刻的装置和方法 | |
JP4942994B2 (ja) | 中間スタンプを用いたパターン複製装置 | |
WO2012083578A1 (zh) | 整片晶圆纳米压印的装置和方法. | |
WO2016051928A1 (ja) | インプリント用テンプレート及びその製造方法 | |
CN102508410A (zh) | 一种三明治结构复合纳米压印模板及其制备方法 | |
CN113075859B (zh) | 一种负压式纳米压印设备及其压印方法 | |
CN103869611A (zh) | 整片纳米压印用三层复合结构透明软模具原位制造方法 | |
CN204925614U (zh) | 大面积微纳图形化的装置 | |
CN202771153U (zh) | 一种用于高亮度led图形化的纳米压印装置 | |
JP2011071399A (ja) | ナノインプリントパターン形成方法 | |
CN103926790A (zh) | 具有对准式自动脱模紫外纳米压印装置及方法 | |
CN213149470U (zh) | 一种紫外纳米压印光刻自动脱模系统 | |
CN111522197B (zh) | 一种紫外纳米压印光刻自动脱模系统和方法 | |
CN216956666U (zh) | 一种晶圆级纳米压印设备 | |
CN108957949A (zh) | 一种纳米压印方法 | |
CN109656097B (zh) | 纳米压印装置及纳米压印方法 | |
CN108957945B (zh) | 纳米压印软膜板生产机构 | |
CN219349346U (zh) | 一种uv固化压印装置 | |
CN101702077A (zh) | 凹模热压印中应用光刻胶整形改善填充和减少残胶的方法 | |
CN117724292A (zh) | 一种激光扩散片的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16853131 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016004025 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16853131 Country of ref document: EP Kind code of ref document: A1 |