WO2014046130A1 - アルミニウム部材と銅部材との接合構造 - Google Patents
アルミニウム部材と銅部材との接合構造 Download PDFInfo
- Publication number
- WO2014046130A1 WO2014046130A1 PCT/JP2013/075158 JP2013075158W WO2014046130A1 WO 2014046130 A1 WO2014046130 A1 WO 2014046130A1 JP 2013075158 W JP2013075158 W JP 2013075158W WO 2014046130 A1 WO2014046130 A1 WO 2014046130A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper
- aluminum
- plate
- phase
- interface
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/017—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/02—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/22—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
- B23K20/233—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
- B23K20/2333—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer one layer being aluminium, magnesium or beryllium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/10—Aluminium or alloys thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/12—Copper or alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/433—Auxiliary members in containers characterised by their shape, e.g. pistons
- H01L23/4334—Auxiliary members in encapsulations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/1266—O, S, or organic compound in metal component
- Y10T428/12667—Oxide of transition metal or Al
Definitions
- the present invention relates to a joining structure of an aluminum member made of aluminum or an aluminum alloy and a copper member made of copper or a copper alloy.
- the above-mentioned aluminum member and copper member are both widely used in electronic and electrical parts and heat dissipation parts because they are both excellent in electrical conductivity and thermal conductivity.
- the copper member is particularly excellent in electrical conductivity and thermal conductivity, and has characteristics such as high mechanical strength and large deformation resistance.
- the aluminum member is slightly inferior in electrical conductivity and thermal conductivity as compared with copper, but has a characteristic that it is lightweight and has low deformation resistance. For this reason, in the above-mentioned electronic and electrical parts, heat dissipation parts, etc., copper members and aluminum members are selected and used according to the required performance.
- Patent Documents 1-3 propose a method of joining an aluminum member and a copper member while suppressing the generation of intermetallic compounds.
- a copper member and an aluminum member are combined, drawn or overlap-rolled, and the copper member and the aluminum member are bonded in advance, and then heat treatment is performed at a temperature equal to or lower than the melting temperature.
- the friction welding method the copper member and the aluminum member are rubbed against each other while being pressed, and the copper member and the aluminum member are joined by frictional heat and pressing force.
- Patent Document 1 describes that a clad material in which a copper member and an aluminum member are metal-bonded is formed by inserting a rod-like aluminum member inside a tubular copper member and then performing a drawing process.
- Patent Document 2 an insert material made of pure aluminum or the like is joined to a copper member by cold rolling, an aluminum member is joined to the insert material side by hot or cold rolling, and a copper member is joined. It is disclosed that the heat treatment is performed after joining the insert material.
- Patent Document 3 proposes a method in which a metal layer made of Ag is formed on the joint surface of a copper member, and the metal layer and the aluminum member are brazed.
- the present invention has been made in view of the above-described circumstances, and an aluminum member made of aluminum or an aluminum alloy and a copper member made of copper or a copper alloy are joined relatively easily and reliably, It is an object of the present invention to provide a bonding structure of an aluminum member and a copper member that has excellent bonding reliability and can be applied to an electronic / electrical component, a heat dissipation component, and the like.
- an aluminum member made of aluminum or an aluminum alloy and a copper member made of copper or a copper alloy are joined by solid phase diffusion bonding, and the aluminum member
- an intermetallic compound layer made of Cu and Al is formed at the bonding interface between the copper member and the copper member, and an oxide is formed along the interface at the interface between the copper member and the intermetallic compound layer. Dispersed in layers.
- the aluminum member and the copper member made of copper or a copper alloy are joined by solid phase diffusion joining, and the joining interface between the aluminum member and the copper member is formed. Since the intermetallic compound layer made of Cu and Al is formed, Cu in the copper member and Al in the aluminum member are sufficiently diffused to each other, and the aluminum member and the copper member are firmly bonded. Yes. Further, since the oxide is dispersed in layers along the interface at the interface between the copper member and the intermetallic compound layer, the oxide film formed on the surface of the aluminum member is destroyed and solid phase diffusion is performed. Joining has progressed sufficiently.
- the joining structure between the aluminum member and the copper member according to another aspect of the present invention is the joining structure between the aluminum member and the copper member described in (1), and the average crystal grain size of the copper member is 50 ⁇ m.
- the average crystal grain size of the aluminum member is set to 500 ⁇ m or more.
- the average crystal grain size of the copper member is in the range of 50 ⁇ m to 200 ⁇ m
- the average crystal grain size of the aluminum member is 500 ⁇ m or more
- the joining structure of the aluminum member and the copper member according to another aspect of the present invention is the joining structure of the aluminum member and the copper member according to (1) or (2), wherein the intermetallic compound layer is A structure in which a plurality of intermetallic compounds are laminated along the bonding interface. In this case, it can suppress that a brittle intermetallic compound layer grows large. Also, since Cu in the copper member and Al in the aluminum member are interdiffused, an intermetallic compound suitable for each composition is formed in layers from the copper member side to the aluminum member side. The characteristics in the vicinity of the interface can be stabilized.
- the joining structure of the aluminum member and the copper member according to another aspect of the present invention is the joining structure of the aluminum member and the copper member according to (3), and the intermetallic compound layer is at least ⁇ 2 The phase, the ⁇ 2 phase, and the ⁇ phase are stacked along the bonding interface.
- the joining structure of the aluminum member and the copper member according to another aspect of the present invention is the joining structure of the aluminum member and the copper member according to (3), wherein the intermetallic compound layer is on the aluminum member side. In order from the copper member side toward the copper member side, the ⁇ phase and the ⁇ 2 phase are laminated along the bonding interface, and at least one of the ⁇ 2, ⁇ , and ⁇ 2 phases is laminated.
- the intermetallic compound suitable for each composition is formed in layers from the copper member side toward the aluminum member side by interdiffusion of Cu in the copper member and Al in the aluminum member, Volume fluctuation inside the intermetallic compound layer is reduced, internal strain is suppressed, and sufficient bonding strength can be ensured.
- an aluminum member made of aluminum or an aluminum alloy and a copper member made of copper or a copper alloy are bonded relatively easily and reliably, and have sufficient bonding reliability, and an electronic / electrical component. It is possible to provide a joining structure between an aluminum member and a copper member and a method for manufacturing the joining structure between the aluminum member and the copper member that can be applied to a heat radiating component or the like.
- FIG. 12 is an enlarged explanatory view of an interface between the copper plate and the intermetallic compound layer in FIG. 11. It is a schematic explanatory drawing of the pressurization apparatus used in the manufacturing method of the laminated board which has the joining structure of the aluminum member which is embodiment of this invention, and a copper member.
- FIG. 2 the laminated board 10 which has the joining structure of the aluminum member and copper member which are embodiment of this invention is shown.
- the laminated plate 10 is configured such that an aluminum plate 11 made of aluminum or an aluminum alloy is laminated and bonded to one surface of a copper plate 12 made of copper or a copper alloy.
- the aluminum plate 11 is a rolled plate of pure aluminum (4N aluminum) having a purity of 99.99% or more
- the copper plate 12 is a rolled plate of oxygen-free copper.
- the laminated plate 10 is widely used, for example, for electronic / electrical components, heat dissipation components, and the like.
- the other surface of the aluminum plate 11 is finned and is a kind of heat transfer component. It is used as a heat sink.
- the other surface of the aluminum plate 11 is a surface opposite to a surface (one surface of the aluminum plate 11) on which the aluminum plate 11 is joined to the copper plate 12.
- the joint portion 20 is composed of an intermetallic compound layer 21 made of Cu and Al.
- a plurality of intermetallic compounds are laminated along the joint interface between the aluminum plate 11 and the copper plate 12. ing.
- the thickness t of the intermetallic compound layer 21 is set in the range of 1 ⁇ m to 80 ⁇ m, preferably in the range of 5 ⁇ m to 80 ⁇ m.
- the junction 20 is formed by stacking three types of intermetallic compounds 22, 23, and 24 as shown in the electron microscope observation photograph of FIG. 3 and the mapping diagram of the Cu element and the Al element. ing. These three types of intermetallic compounds 22, 23, and 24 are sequentially formed as a ⁇ phase 22, a ⁇ 2 phase 23, and a ⁇ 2 phase 24 from the aluminum plate 11 side to the copper plate 12 side.
- the analysis values of Cu and Al change on the step, and a plurality of intermetallic compounds are laminated.
- the ⁇ 2 phase 23 and the ⁇ 2 phase 24 have a similar composition ratio of Cu and Al, and therefore cannot be clearly distinguished from the results of the line analysis in FIGS. 4 and 5.
- the oxide 27 is formed along the interface at the interface between the copper plate 12 and the intermetallic compound layer 21. Dispersed in layers.
- the oxide 27 is an aluminum oxide such as alumina (Al 2 O 3 ). The oxide 27 is dispersed in a state of being divided at the interface between the copper plate 12 and the intermetallic compound layer 21, and there is a region where the copper plate 12 and the intermetallic compound layer 21 are in direct contact. Yes.
- the average crystal grain size of the aluminum member 11 is 500 ⁇ m or more, and the average crystal grain size of the copper plate 12 is in the range of 50 ⁇ m or more and 200 ⁇ m or less.
- FIG. 8 shows an AsB image (very low angle scattered reflection electron image) in the vicinity of the joint 20.
- the copper plate 12 is white.
- the aluminum member 11 is black. 8A and 8B, the crystal structure of the portion where ion etching is performed is observed.
- the average crystal grain size of the aluminum member 11 and the average crystal grain size of the copper plate 12 can be measured.
- the AsB image was taken with a scanning electron microscope (ULTRA 55 manufactured by Carl Zeiss NTS) at an acceleration voltage of 17 kV and a WD of 2.4 mm.
- the manufacturing method of this laminated board 10 is demonstrated using FIG. First, the aluminum plate 11 is laminated on one surface of the copper plate 12. At this time, in the joining surface of the aluminum plate 11 and the copper plate 12, if irregularities such as scratches are generated, a gap is generated when the layers are laminated.
- the pressure device 30 includes a base plate 31, a guide post 32, a fixing plate 33, a pressing plate 34, an urging means 35, and an adjusting screw 36.
- the guide posts 32 are vertically attached to the four corners of the upper surface of the base plate 31.
- the fixed plate 33 is disposed at the upper end portion of the guide posts 32.
- the pressing plate 34 is supported by the guide post 32 so as to be movable up and down between the base plate 31 and the fixed plate 33.
- the urging means 35 is a spring or the like provided between the fixed plate 33 and the pressing plate 34 to urge the pressing plate 34 downward.
- the adjustment screw 36 can move the fixing plate 33 up and down.
- the fixed plate 33 and the pressing plate 34 are arranged in parallel to the base plate 31, and the aluminum plate 11 and the copper plate 12 are arranged between the base plate 31 and the pressing plate 34.
- carbon sheets 37 are interposed between the aluminum plate 11 and the pressing plate 34 and between the copper plate 12 and the base plate 31, respectively.
- the fixing plate 33 is moved up and down by adjusting the position of the adjusting screw 36, and the pressing plate is pushed into the 34 base plate 31 side by the biasing means 35, whereby the aluminum plate 11 and the copper plate 12 are pressed in the stacking direction.
- the vacuum heating furnace 40 is charged with the pressed state.
- the heating temperature is set to 400 ° C. or more and less than 548 ° C.
- the holding time is set to a range of 5 minutes to 240 minutes.
- the heating temperature is more preferably in the range of 543 ° C. (Cu and Al eutectic temperature ⁇ 5 ° C.) or more and less than 548 ° C. (Cu and Al eutectic temperature).
- the heating temperature is 400 ° C. or higher and lower than 548 ° C. and lower than the eutectic temperature of Cu and Al, a liquid phase is not generated and diffusion proceeds in a solid state.
- the aluminum plate 11 and the copper plate 12 are only pressed in the lamination direction, and no shear force is applied to the bonding interface between the aluminum plate 11 and the copper plate 12.
- the laminated board 10 which has the junction part 20 made into the structure which laminated
- the intermetallic compound layer 21 made of Cu and Al is formed between the aluminum plate 11 and the copper plate 12.
- Al in the copper plate 12 side and Cu in the copper plate 12 material sufficiently diffused to the aluminum plate 11 side, and the aluminum plate 11 and the copper plate 12 are securely solid-phase diffusion bonded to ensure bonding strength. can do.
- the oxide 27 is dispersed in layers along the interface at the interface between the copper plate 12 and the intermetallic compound layer 21, the oxide film formed on the surface of the aluminum plate 11 and the surface of the copper plate 12 are formed.
- the oxide film is surely destroyed, and the mutual diffusion of Cu and Al is sufficiently advanced, so that the aluminum plate 11 and the copper plate 12 are securely joined.
- the intermetallic compound layer 21 has a structure in which a plurality of intermetallic compounds are laminated along the bonding interface, so that the brittle intermetallic compound layer 21 is prevented from growing greatly. it can.
- the intermetallic compound suitable for each composition is formed in layers from the copper plate 12 side toward the aluminum plate 11 side by mutual diffusion of Cu in the copper plate 12 and Al in the aluminum plate 11. Therefore, the characteristics of the joint portion 20 can be stabilized.
- the intermetallic compound layer 21 is formed by laminating three kinds of intermetallic compounds of the ⁇ phase 22, the ⁇ 2 phase 23, and the ⁇ 2 phase 24 sequentially from the aluminum plate 11 side to the copper plate 12 side.
- volume fluctuation in the intermetallic compound layer 21 is reduced, and internal strain is suppressed. That is, when solid phase diffusion is not performed, for example, when a liquid phase is formed, an intermetallic compound is generated more than necessary, and the volume of the intermetallic compound layer increases, and the intermetallic compound layer Internal distortion occurs. However, in the case of solid phase diffusion, the brittle intermetallic compound layer does not grow greatly, and the intermetallic compound is formed in a layer form, so that the internal strain is suppressed.
- the average crystal grain size of the aluminum member 11 is 500 ⁇ m or more
- the average crystal grain size of the copper plate 12 is in the range of 50 ⁇ m or more and 200 ⁇ m or less
- the average of the aluminum member 11 and the copper plate 12 is The crystal grain size is set relatively large. Therefore, excessive strain or the like is not accumulated in the aluminum member 11 and the copper plate 12, and the fatigue characteristics of the laminated plate 10 are improved.
- the average thickness of the intermetallic compound layer 21 is in the range of 1 ⁇ m or more and 80 ⁇ m or less, preferably in the range of 5 ⁇ m or more and 80 ⁇ m or less.
- the aluminum plate 11 and the copper plate 12 can be firmly joined together, and the brittle intermetallic compound layer 21 is prevented from growing more than necessary as compared with the aluminum plate 11 and the copper plate 12. This stabilizes the characteristics.
- the aluminum plate 11 and the copper plate 12 are pressed in the stacking direction, and the load during pressing is set to 3 kgf / cm 2 or more. Therefore, the oxide film on the surface of the aluminum plate 11 and the oxide film on the surface of the copper plate 12 can be reliably broken, and the mutual diffusion of Cu and Al can be sufficiently advanced. Further, since the load at the time of pressing is 35 kgf / cm 2 or less, the deformation of the aluminum plate 11 and the copper plate 12 can be suppressed, and there is no need to use a large pressure device or the like, and the aluminum is relatively easy. The plate 11 and the copper plate 12 can be joined.
- the temperature at the time of heating with the vacuum heating furnace 40 is 400 degreeC or more, the diffusion rate of Al and Cu can be ensured, and the mutual diffusion of Al and Cu can be advanced sufficiently. . Moreover, since the temperature at the time of heating with the vacuum heating furnace 40 is set to less than 548 ° C., generation of a liquid phase at the bonding interface can be suppressed, generation of an intermetallic compound can be prevented, and a plurality of intermetallic compounds can be prevented. It is possible to form the joint portion 20 having a structure in which compounds are laminated along the joint interface. In addition, by setting the temperature at the time of heating in the vacuum heating furnace 40 to 543 ° C.
- the holding time at the time of heating with the vacuum heating furnace 40 is set to 5 minutes or more, the mutual diffusion of Al and Cu can be sufficiently advanced. Moreover, since the holding time at the time of heating with the vacuum heating furnace 40 is 240 minutes or less, the aluminum plate 11 and the copper plate 12 can be prevented from being thermally deteriorated, and the manufacturing cost of the laminated plate 10 can be suppressed. Become.
- the joining surface of the aluminum plate 11 and the copper plate 12 is made a smooth surface by removing scratches or the like by polishing or the like in advance, there is no gap when the aluminum plate 11 and the copper plate 12 are laminated. Occurrence can be suppressed, the aluminum plate 11 and the copper plate 12 can be brought into close contact with each other, and Al and Cu can be mutually diffused over the entire bonding surface, so that the aluminum plate 11 and the copper plate 12 can be reliably bonded. Can do.
- a laminated plate used as a heat sink which is a kind of heat transfer component, has been described as an example, but is not limited thereto, and is used for other applications such as electronic and electrical components. Also good.
- the laminated board which joined the aluminum plate and the copper plate was mentioned as an example and demonstrated, it is not limited to this, What joined the aluminum member and copper member of another shape may be used.
- an aluminum tube and a copper tube may be joined. In this case, it is preferable to heat in the state pressed from the inner peripheral side of the inner tubular body and the outer peripheral side of the outer tubular body (a state pressed in the stacking direction of the aluminum member and the copper member).
- a copper plate 130 including a die pad 132 to which a semiconductor element or the like is bonded and a lead portion 133 used as an external terminal may be used.
- the die pad 132 of the copper plate 130 is bonded to one surface of the aluminum plate 111.
- the thickness of the die pad 132 is in the range of 0.1 mm or more and 6.0 mm or less.
- the thickness of the aluminum plate 111 is in the range of 0.1 mm to 1.0 mm.
- the joint portion 20 between the aluminum plate 11 and the copper plate 12 is configured by laminating a ⁇ phase 22, a ⁇ 2 phase 23, and a ⁇ 2 phase 24 sequentially from the aluminum plate 11 side to the copper plate 12 side.
- the present invention is not limited to this.
- the joining portion 220 between the aluminum plate 211 and the copper plate 212 is formed along the joining interface between the aluminum plate 211 and the copper plate 212 in order from the aluminum plate 211 side to the copper plate 212 side.
- the phase 222 and the ⁇ 2 phase 223 may be laminated, and at least one of the ⁇ 2 phase 224, the ⁇ phase 225, and the ⁇ 2 phase 226 may be laminated.
- the oxide 27 is dispersed in a layered manner along the interface at the interface between the copper plate 12 and the intermetallic compound layer 21 in the joint 20 has been described.
- FIG. As shown, along the interface between the copper plate 312 and the intermetallic compound layer 321, the oxide 327 is layered inside a layer formed of at least one of a ⁇ 2 phase 324, a ⁇ phase 325, and a ⁇ 2 phase 326. A distributed configuration may be adopted.
- the oxide 327 is an aluminum oxide such as alumina (Al 2 O 3 ).
- the aluminum plate made of pure aluminum having a purity of 99.99% and the copper plate made of oxygen-free copper have been described, but the present invention is not limited to this, and aluminum or aluminum is used. What is necessary is just to join the aluminum member which consists of an alloy, and the copper member which consists of copper or a copper alloy.
- the aluminum plate and the copper plate were pressed in the laminating direction with a load of 12 kgf / cm 2 and heated in a vacuum heating furnace at 540 ° C.
- the heating time in the vacuum heating furnace was the holding time shown in Table 1.
- the clad material produced by roll-rolling Al board and Cu board hot was prepared as a prior art example.
- the thermal cycle test was implemented using the test piece of the example of this invention and a prior art example.
- a test piece of the present invention example a test piece prepared by the same method as the above-described test piece preparation method and having a size of 40 mm ⁇ 40 mm is used.
- a clad material having a size of 40 mm ⁇ 40 mm is used. used.
- the joining rate after the thermal cycle load was calculated by the following formula using a test piece after 4000 cycles of the thermal cycle ( ⁇ 45 ° C. to 200 ° C.).
- an intermetallic compound layer in which a plurality of intermetallic compounds are laminated at the bonding interface is observed, and an oxide is present at the interface between the copper member and the intermetallic compound layer. It was observed that it was dispersed along On the other hand, in the conventional example, the oxide was not dispersed along the interface between the copper member and the intermetallic compound. Furthermore, the copper plate and the aluminum plate have a processed structure by rolling, and the average crystal grain size is very fine.
- the aluminum plate portion was broken, and it was confirmed that the joint had higher shear strength than the aluminum plate (base material).
- an aluminum member made of aluminum or an aluminum alloy and a copper member made of copper or a copper alloy are bonded relatively easily and reliably, and have sufficient bonding reliability, and an electronic / electrical component. It is possible to provide a joining structure between an aluminum member and a copper member and a method for manufacturing the joining structure between the aluminum member and the copper member that can be applied to a heat radiating component or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Laminated Bodies (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本願は、2012年09月21日に日本に出願された特願2012-208578号について優先権を主張し、その内容をここに援用する。
ここで、銅部材は、電気伝導性、熱伝導性に特に優れ、機械的強度が高く、変形抵抗が大きいといった特性を有している。一方、アルミニウム部材は、銅に比べて電気伝導性、熱伝導性には若干劣るものの、軽量であるとともに変形抵抗が小さいといった特性を有している。
このため、上述の電子電気部品や放熱部品等においては、要求される性能に応じて、銅部材及びアルミニウム部材が選択して使用されている。最近では、上述の電子電気部品や放熱部品等を小型化及び軽量化する観点から、銅部材とアルミニウム部材とを接合した接合体が求められている。
拡散接合法は、銅部材とアルミニウム部材とを合わせ抽伸又は重ね圧延して予め銅部材とアルミニウム部材とを接合した後に、溶融温度以下の温度で熱処理を実施するものである。
また、摩擦圧接法は、銅部材とアルミニウム部材とを押圧しながら摩擦させ、摩擦熱と押圧力とによって接合するものである。
また、特許文献2には、銅部材に、純アルミニウム等からなるインサート材を冷間圧延によって接合し、インサート材側にアルミニウム部材を熱間又は冷間圧延によって接合すること、及び、銅部材にインサート材を接合した後に熱処理を実施することが開示されている。
さらに、特許文献3には、銅部材の接合面にAgからなる金属層を形成し、金属層とアルミニウム部材とをろう付けする方法が提案されている。
また、銅部材とアルミニウム部材との接合界面に大きなせん断力を作用させていることから、接合界面近傍が不安定な性状となりやすく、接合界面近傍の特性を安定させることはできなかった。さらに、アルミニウム部材の表面には酸化膜が形成されているが、大きなせん断力によって酸化膜が接合界面近傍にランダムに分散してしまうことになり、接合界面近傍の特性が不安定となるおそれがあった。
また、前記銅部材と前記金属間化合物層との界面において、酸化物が前記界面に沿って層状に分散していることから、アルミニウム部材の表面に形成された酸化膜が破壊されて固相拡散接合が十分に進行している。
この場合、前記銅部材の平均結晶粒径が50μm以上200μm以下の範囲内とされ、前記アルミニウム部材の平均結晶粒径が500μm以上とされており、前記銅部材及び前記アルミニウム部材の平均結晶粒径が比較的大きくなっている。すなわち、固相拡散接合を行う際に圧延等の強加工を行っていないことから、前記銅部材及び前記アルミニウム部材に過剰な歪み等が蓄積されていないのである。よって、前記銅部材及び前記アルミニウム部材における疲労特性を向上させることが可能となる。
この場合、脆い金属間化合物層が大きく成長してしまうことを抑制できる。また、銅部材中のCuとアルミニウム部材中のAlとが相互拡散することにより、銅部材側からアルミニウム部材側に向けてそれぞれの組成に適した金属間化合物が層状に形成されることから、接合界面近傍の特性を安定させることができる。
(5)本発明の他の態様のアルミニウム部材と銅部材との接合構造は、(3)に記載のアルミニウム部材と銅部材との接合構造であって、前記金属間化合物層は、アルミニウム部材側から銅部材側に向けて順に、前記接合界面に沿って、θ相、η2相が積層し、さらにζ2相、δ相、及びγ2相のうち少なくとも一つの相が積層した構造とされている。
この場合、銅部材中のCuとアルミニウム部材中のAlとが相互拡散することにより、銅部材側からアルミニウム部材側に向けてそれぞれの組成に適した金属間化合物が層状に形成されているので、金属間化合物層内部における体積変動が小さくなり、内部歪みが抑えられ、接合強度を十分に確保することができる。
この積層板10は、例えば電子電気部品や放熱部品等に幅広く使用されるものであり、本実施形態においては、アルミニウム板11の他方の面にフィン加工が施され、伝熱部品の一種であるヒートシンクとして使用されるものである。アルミニウム板11の他方の面とは、アルミニウム板11が銅板12と接合される面(アルミニウム板11の一方の面)の反対の面である。
これら3種の金属間化合物22、23、24は、アルミニウム板11側から銅板12側に向けて順に、θ相22、η2相23、ζ2相24とされている。
図4に示すCuのライン分析結果及び図5に示すAlのライン分析結果では、Cu及びAlの分析値がステップ上に変化していることが確認されており、複数の金属間化合物が積層していることが確認される。なお、η2相23、ζ2相24は、CuとAlの構成比率が近似していることから、図4及び図5のライン分析結果では明確に区別できない。
図8に、接合部20近傍のAsB像(極低角度散乱反射電子像)を示す。なお、図8(a)においては、アルミニウム部材11を観察するために条件を設定していることから、銅板12が白くなっている。また、図8(b)、(c)においては、銅板12を観察するために条件を設定していることから、アルミニウム部材11が黒くなっている。また、図8(a)、(b)においては、イオンエッチングを実施した部分の結晶組織を観察している。
これらのAsB像(極低角度散乱反射電子像)から、アルミニウム部材11の平均結晶粒径及び銅板12の平均結晶粒径を測定することができる。
なお、AsB像は走査型電子顕微鏡(カール ツァイスNTS社製ULTRA55)を用いて、加速電圧:17kV、WD:2.4mmで撮影した。
まず、銅板12の一方の面にアルミニウム板11を積層する。このとき、アルミニウム板11及び銅板12の接合面においては、傷等の凹凸が生じていると積層した際に隙間が生じてしまうため、あらかじめ研磨等によって平滑な面とされていることが好ましい。
この加圧装置30は、ベース板31と、ガイドポスト32と、固定板33と、押圧板34と、付勢手段35と、調整ネジ36と、を備えている。ガイドポスト32は、このベース板31の上面の四隅に垂直に取り付けられている。固定板33は、これらガイドポスト32の上端部に配置されている。押圧板34は、これらベース板31と固定板33との間で上下移動自在にガイドポスト32に支持されている。付勢手段35は、固定板33と押圧板34との間に設けられて押圧板34を下方に付勢するばね等である。調整ネジ36は、固定板33を上下させることができる。
そして、調整ネジ36の位置を調節することによって固定板33を上下させて、付勢手段35により押圧板を34ベース板31側に押し込むことにより、アルミニウム板11及び銅板12が積層方向に押圧される。
このようにして、複数の金属間化合物が前記接合界面に沿って積層した構造とされた接合部20を有する積層板10が製造される。
具体的には、金属間化合物層21は、アルミニウム板11側から銅板12側に向けて順に、θ相22、η2相23、ζ2相24の3種の金属間化合物が積層しているので、金属間化合物層21内部における体積変動が小さくなり、内部歪みが抑えられる。すなわち、固相拡散しなかった場合、例えば、液相が形成された場合には、金属間化合物が必要以上に発生し、金属間化合物層はその体積の変動が大きくなり、金属間化合物層に内部歪みが生じる。しかし、固相拡散した場合には、脆い金属間化合物層が大きく成長せずに、金属間化合物が層状に形成されるため、その内部歪みが抑えられる。
よって、アルミニウム部材11及び銅板12に過剰な歪み等が蓄積されておらず、この積層板10の疲労特性が向上することになる。
さらに、真空加熱炉40で加熱する際の保持時間を5分以上としているので、AlとCuの相互拡散を十分に進行させることができる。また、真空加熱炉40で加熱する際の保持時間を240分以下としているので、アルミニウム板11及び銅板12が熱劣化することを抑制できるとともに、この積層板10の製造コストを抑えることが可能となる。
例えば、伝熱部品の一種であるヒートシンクとして使用される積層板を例にあげて説明したが、これに限定されることはなく、電子電気部品等の他の用途に使用されるものであってもよい。
例えば、アルミニウム管と銅管とを接合したものであってもよい。この場合には、内側の管体の内周側と外側の管体の外周側から押圧した状態(アルミニウム部材と銅部材との積層方向に押圧した状態)で加熱することが好ましい。
ダイパッド132の厚さは、0.1mm以上6.0mm以下の範囲とされている。また、アルミニウム板111の厚さは、0.1mm以上1.0mm以下の範囲とされている。
例えば、図11に示すように、アルミニウム板211と銅板212との接合部220は、アルミニウム板211側から銅板212側に向けて順に、アルミニウム板211と銅板212との接合界面に沿って、θ相222、η2相223が積層し、さらにζ2相224、δ相225、及びγ2相226のうち少なくとも一つの相が積層して構成されていても良い。
本発明例として、純度99.99%以上のアルミニウム板(10mm×10mm、厚さ0.6mm)の一方の面に、無酸素銅からなる銅板(2mm×2mm、厚さ0.3mm)を、上述の実施形態に記載した方法によって固相拡散接合した。このとき、アルミニウム板と銅板とを積層方向に12kgf/cm2の荷重で押圧し、真空加熱炉で540℃の条件で加熱を実施した。真空加熱炉での加熱時間は表1記載の保持時間とした。
また、従来例として、Al板とCu板を熱間でロール圧延して作製したクラッド材を準備した。
得られた積層板の断面をクロスセクションポリッシャ(日本電子株式会社製SM-09010)を用いて、イオン加速電圧:5kV、加工時間:14時間、遮蔽板からの突出量:100μmでイオンエッチングした後に観察し、接合界面近傍における銅板及びアルミニウム板の平均結晶粒径を測定した。なお、この平均結晶粒径の測定は、JIS H 0501記載の切断法に準拠して実施した。
クロスセクションポリッシャ(日本電子株式会社製SM-09010)を用いて、イオン加速電圧:5kV、加工時間:14時間、遮蔽板からの突出量:100μmでイオンエッチングした断面を走査型電子顕微鏡(カール ツァイスNTS社製ULTRA55)を用いて、加速電圧:1kV、WD:2.5mmでIn-Lens像を撮影すると、Cuと金属間化合物層の界面に沿って層状に分散した白いコンラストが得られた。また同条件にてESB像を撮影すると、前記箇所はAlより暗いコントラストになっていた。さらにEDS分析から前記箇所に酸素が濃集していた。以上のことからCuと金属間化合物層との界面には、酸化物が、前記界面に沿って層状に分散していることを確認した。
上記の方法により酸化物が確認できたものを表1では「あり」とし、確認できなかったものを「なし」と記載した。
この試験片を用いて、シェアテストを実施した。なお、このシェアテストは、国際電気標準会議の規格IEC 60749-19に準拠して実施した。
また、本発明例及び従来例の試験片を用いて冷熱サイクル試験を実施した。本発明例の試験片としては、上述した試験片の作製方法と同様の方法で作製し、サイズを40mm×40mmとした試験片を使用し、従来例としては40mm×40mmのサイズのクラッド材を使用した。冷熱サイクル負荷後の接合率は、冷熱サイクル(-45℃から200℃)を4000回繰り返した後の試験片を用いて、以下の式で算出した。ここで、初期接合面積とは、接合前における接合すべき面積、すなわち本実施例では試験片の面積とした。
接合率 = (初期接合面積-剥離面積)/初期接合面積
評価結果を表1に示す。
一方、従来例においては、酸化物が銅部材と金属間化合物の界面に沿って分散していなかった。さらに、銅板及びアルミニウム板は、圧延による加工組織となっており、平均結晶粒径が非常に細かくなっていた。
12、130、212、312 銅板(銅部材)
20、220 接合部(アルミニウム部材と銅部材との接合構造)
21、321 金属間化合物層
22、222 θ相
23、223 η2相
24、224、324 ζ2相
27、327 酸化物
325 δ相
326 γ2相
Claims (5)
- アルミニウム又はアルミニウム合金からなるアルミニウム部材と銅又は銅合金からなる銅部材とが固相拡散接合によって接合され、
前記アルミニウム部材と前記銅部材との接合界面には、CuとAlからなる金属間化合物層が形成されており、
前記銅部材と前記金属間化合物層との界面には、酸化物が、前記界面に沿って層状に分散していることを特徴とするアルミニウム部材と銅部材との接合構造。 - 前記銅部材の平均結晶粒径が50μm以上200μm以下の範囲内とされ、前記アルミニウム部材の平均結晶粒径が500μm以上とされている請求項1に記載のアルミニウム部材と銅部材との接合構造。
- 前記金属間化合物層は、複数の金属間化合物が前記接合界面に沿って積層した構造とされている請求項1または請求項2に記載のアルミニウム部材と銅部材との接合構造。
- 前記金属間化合物層は、少なくとも、η2相、ζ2相、θ相が、前記接合界面に沿って積層した構造とされている請求項3に記載のアルミニウム部材と銅部材との接合構造。
- 前記金属間化合物層は、アルミニウム部材側から銅部材側に向けて順に、前記接合界面に沿って、θ相、η2相が積層し、さらにζ2相、δ相、及びγ2相のうち少なくとも一つの相が積層した構造とされている請求項3に記載のアルミニウム部材と銅部材との接合構造。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380048500.6A CN104661785B (zh) | 2012-09-21 | 2013-09-18 | 铝部件与铜部件的接合结构 |
EP13839672.6A EP2898979B1 (en) | 2012-09-21 | 2013-09-18 | Bonding structure for aluminum member and copper member |
IN2361DEN2015 IN2015DN02361A (ja) | 2012-09-21 | 2013-09-18 | |
KR1020157004288A KR102051697B1 (ko) | 2012-09-21 | 2013-09-18 | 알루미늄 부재와 구리 부재의 접합 구조 |
US14/428,776 US10011093B2 (en) | 2012-09-21 | 2013-09-18 | Bonding structure of aluminum member and copper member |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-208578 | 2012-09-21 | ||
JP2012208578 | 2012-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014046130A1 true WO2014046130A1 (ja) | 2014-03-27 |
Family
ID=50341440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/075158 WO2014046130A1 (ja) | 2012-09-21 | 2013-09-18 | アルミニウム部材と銅部材との接合構造 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10011093B2 (ja) |
EP (1) | EP2898979B1 (ja) |
JP (1) | JP5549958B2 (ja) |
KR (1) | KR102051697B1 (ja) |
CN (1) | CN104661785B (ja) |
IN (1) | IN2015DN02361A (ja) |
TW (1) | TWI589382B (ja) |
WO (1) | WO2014046130A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014076486A (ja) * | 2012-09-21 | 2014-05-01 | Mitsubishi Materials Corp | アルミニウム部材と銅部材との接合構造 |
US9968012B2 (en) | 2012-10-16 | 2018-05-08 | Mitsubishi Materials Corporation | Heat-sink-attached power module substrate, heat-sink-attached power module, and method for producing heat-sink-attached power module substrate |
JP2020136349A (ja) * | 2019-02-14 | 2020-08-31 | 三菱マテリアル株式会社 | 絶縁回路基板、及び、絶縁回路基板の製造方法 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6428327B2 (ja) * | 2015-02-04 | 2018-11-28 | 三菱マテリアル株式会社 | ヒートシンク付パワーモジュール用基板、パワーモジュール、及び、ヒートシンク付パワーモジュール用基板の製造方法 |
JP6572810B2 (ja) * | 2016-03-15 | 2019-09-11 | 三菱マテリアル株式会社 | 接合体の製造方法、及び、パワーモジュール用基板の製造方法 |
US10242932B2 (en) | 2016-06-24 | 2019-03-26 | Infineon Technologies Ag | LDMOS transistor and method |
US9960229B2 (en) | 2016-06-24 | 2018-05-01 | Infineon Technologies Ag | Semiconductor device including a LDMOS transistor |
US10050139B2 (en) | 2016-06-24 | 2018-08-14 | Infineon Technologies Ag | Semiconductor device including a LDMOS transistor and method |
US10622284B2 (en) | 2016-06-24 | 2020-04-14 | Infineon Technologies Ag | LDMOS transistor and method |
CN106077937B (zh) * | 2016-06-24 | 2018-08-03 | 西安理工大学 | 一种铝-铜双金属复合材料的制备方法 |
US9875933B2 (en) | 2016-06-24 | 2018-01-23 | Infineon Technologies Ag | Substrate and method including forming a via comprising a conductive liner layer and conductive plug having different microstructures |
CN106475679B (zh) * | 2016-11-30 | 2018-07-27 | 山东大学 | 一种铜与铝合金的无中间层非连续加压真空扩散连接工艺 |
CN106583914B (zh) * | 2016-12-23 | 2019-03-05 | 浙江康盛股份有限公司 | 一种铜铝连接件面-面渗溶接工艺 |
KR101925119B1 (ko) * | 2016-12-23 | 2019-02-27 | 저지앙 캉성 컴퍼니 리미티드 | 구리 알루미늄 연결부재의 면-면 삼투용접 공정 및 제조방법 |
JP6819385B2 (ja) * | 2017-03-17 | 2021-01-27 | 三菱マテリアル株式会社 | 半導体装置の製造方法 |
KR102422070B1 (ko) * | 2017-03-29 | 2022-07-15 | 미쓰비시 마테리알 가부시키가이샤 | 히트 싱크가 부착된 절연 회로 기판의 제조 방법 |
JP6972627B2 (ja) * | 2017-04-05 | 2021-11-24 | 株式会社アイシン | カーボンナノチューブ複合体の製造方法及び積層体 |
EP3780085A4 (en) * | 2018-03-28 | 2021-12-29 | Mitsubishi Materials Corporation | Insulated circuit board with heat sink |
JP2022169003A (ja) | 2021-04-27 | 2022-11-09 | 三菱マテリアル株式会社 | ヒートシンク、および、ヒートシンク一体型絶縁回路基板 |
TWI800244B (zh) * | 2022-01-28 | 2023-04-21 | 奇鋐科技股份有限公司 | 具有熱管之散熱器總成 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04315524A (ja) | 1991-04-10 | 1992-11-06 | Kobe Steel Ltd | 銅材とアルミニウム材との接合用部材及びその製造方法 |
JPH06292984A (ja) * | 1993-04-12 | 1994-10-21 | Asahi Chem Ind Co Ltd | 銅−アルミニウム異種金属継手材 |
JP2001252772A (ja) | 2000-03-10 | 2001-09-18 | Showa Denko Kk | アルミニウム−銅クラッド材およびその製造方法 |
JP2004001069A (ja) | 2002-04-05 | 2004-01-08 | Sumitomo Precision Prod Co Ltd | アルミニウム部材と銅部材の接合方法及びその接合構造物 |
WO2011155379A1 (ja) * | 2010-06-08 | 2011-12-15 | 株式会社Neomaxマテリアル | アルミニウム銅クラッド材 |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW252061B (en) | 1994-07-20 | 1995-07-21 | Dong-Hann Chang | Process of undergoing diffusion bonding under low pressure |
JPH08255973A (ja) | 1995-03-17 | 1996-10-01 | Toshiba Corp | セラミックス回路基板 |
US6033787A (en) | 1996-08-22 | 2000-03-07 | Mitsubishi Materials Corporation | Ceramic circuit board with heat sink |
US6124635A (en) | 1997-03-21 | 2000-09-26 | Honda Giken Kogyo Kabushiki Kaisha | Functionally gradient integrated metal-ceramic member and semiconductor circuit substrate application thereof |
JPH11156995A (ja) | 1997-09-25 | 1999-06-15 | Daido Steel Co Ltd | クラッド板とこれを用いた電池用ケース並びにこれらの製造方法 |
JP3752830B2 (ja) | 1998-03-31 | 2006-03-08 | マツダ株式会社 | 接合金属部材及び該部材の接合方法 |
JP2001148451A (ja) | 1999-03-24 | 2001-05-29 | Mitsubishi Materials Corp | パワーモジュール用基板 |
JP2002064169A (ja) | 2000-08-21 | 2002-02-28 | Denki Kagaku Kogyo Kk | 放熱構造体 |
JP2002203942A (ja) | 2000-12-28 | 2002-07-19 | Fuji Electric Co Ltd | パワー半導体モジュール |
JP2002231865A (ja) | 2001-02-02 | 2002-08-16 | Toyota Industries Corp | ヒートシンク付絶縁基板、接合部材及び接合方法 |
JP2003078086A (ja) * | 2001-09-04 | 2003-03-14 | Kubota Corp | 半導体素子モジュール基板の積層構造 |
JP2003092383A (ja) | 2001-09-19 | 2003-03-28 | Hitachi Ltd | パワー半導体装置およびそのヒートシンク |
JP2003258170A (ja) | 2002-02-26 | 2003-09-12 | Akane:Kk | ヒートシンク |
TW540298B (en) | 2002-09-04 | 2003-07-01 | Loyalty Founder Entpr Co Ltd | Composite board forming method for heat sink |
JP3938079B2 (ja) | 2003-03-20 | 2007-06-27 | 三菱マテリアル株式会社 | パワーモジュール用基板の製造方法 |
AU2003257838A1 (en) * | 2003-08-07 | 2005-02-25 | Sumitomo Precision Products Co., Ltd. | Al-Cu JUNCTION STRUCTURE AND METHOD FOR MANUFACTURING SAME |
US7532481B2 (en) | 2004-04-05 | 2009-05-12 | Mitsubishi Materials Corporation | Al/AlN joint material, base plate for power module, power module, and manufacturing method of Al/AlN joint material |
JP2006100770A (ja) | 2004-09-01 | 2006-04-13 | Toyota Industries Corp | 回路基板のベース板の製造方法及び回路基板のベース板並びにベース板を用いた回路基板 |
JP4759384B2 (ja) | 2005-12-20 | 2011-08-31 | 昭和電工株式会社 | 半導体モジュール |
EP2210970B1 (en) * | 2007-10-25 | 2017-03-29 | Mitsubishi Rayon Co., Ltd. | Stamper, process for producing the same, process for producing molding, and aluminum base die for stamper |
JP5067187B2 (ja) | 2007-11-06 | 2012-11-07 | 三菱マテリアル株式会社 | ヒートシンク付パワーモジュール用基板及びヒートシンク付パワーモジュール |
JP4747315B2 (ja) | 2007-11-19 | 2011-08-17 | 三菱マテリアル株式会社 | パワーモジュール用基板及びパワーモジュール |
JP5163199B2 (ja) | 2008-03-17 | 2013-03-13 | 三菱マテリアル株式会社 | ヒートシンク付パワーモジュール用基板及びヒートシンク付パワーモジュール |
JP2010034238A (ja) | 2008-07-28 | 2010-02-12 | Shin Kobe Electric Mach Co Ltd | 配線板 |
JP2010137251A (ja) | 2008-12-11 | 2010-06-24 | Mitsubishi Electric Corp | 金属接合体およびその製造方法 |
US8159821B2 (en) | 2009-07-28 | 2012-04-17 | Dsem Holdings Sdn. Bhd. | Diffusion bonding circuit submount directly to vapor chamber |
WO2011030754A1 (ja) | 2009-09-09 | 2011-03-17 | 三菱マテリアル株式会社 | ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンク付パワーモジュール用基板及びパワーモジュール |
CN102596488B (zh) | 2009-10-26 | 2013-09-18 | 株式会社新王材料 | 铝接合合金、具有由该合金形成的接合合金层的覆层材料和铝接合复合材料 |
CN102742008B (zh) | 2010-02-05 | 2015-07-01 | 三菱综合材料株式会社 | 功率模块用基板及功率模块 |
CN101947689B (zh) * | 2010-09-21 | 2012-10-03 | 河南科技大学 | 铜铝复合板的连续复合成形方法及其复合成形装置 |
DE102010041714A1 (de) | 2010-09-30 | 2011-08-25 | Infineon Technologies AG, 85579 | Leistungshalbleitermodul und Verfahren zur Herstellung eines Leistungshalbleitermoduls |
JP5736807B2 (ja) | 2011-02-02 | 2015-06-17 | 三菱マテリアル株式会社 | ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール用基板の製造方法及びパワーモジュール |
JP5403129B2 (ja) | 2012-03-30 | 2014-01-29 | 三菱マテリアル株式会社 | パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法 |
KR102051697B1 (ko) | 2012-09-21 | 2019-12-03 | 미쓰비시 마테리알 가부시키가이샤 | 알루미늄 부재와 구리 부재의 접합 구조 |
-
2013
- 2013-09-18 KR KR1020157004288A patent/KR102051697B1/ko active IP Right Grant
- 2013-09-18 IN IN2361DEN2015 patent/IN2015DN02361A/en unknown
- 2013-09-18 TW TW102133870A patent/TWI589382B/zh active
- 2013-09-18 WO PCT/JP2013/075158 patent/WO2014046130A1/ja active Application Filing
- 2013-09-18 EP EP13839672.6A patent/EP2898979B1/en active Active
- 2013-09-18 US US14/428,776 patent/US10011093B2/en active Active
- 2013-09-18 JP JP2013193431A patent/JP5549958B2/ja active Active
- 2013-09-18 CN CN201380048500.6A patent/CN104661785B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04315524A (ja) | 1991-04-10 | 1992-11-06 | Kobe Steel Ltd | 銅材とアルミニウム材との接合用部材及びその製造方法 |
JPH06292984A (ja) * | 1993-04-12 | 1994-10-21 | Asahi Chem Ind Co Ltd | 銅−アルミニウム異種金属継手材 |
JP2001252772A (ja) | 2000-03-10 | 2001-09-18 | Showa Denko Kk | アルミニウム−銅クラッド材およびその製造方法 |
JP2004001069A (ja) | 2002-04-05 | 2004-01-08 | Sumitomo Precision Prod Co Ltd | アルミニウム部材と銅部材の接合方法及びその接合構造物 |
WO2011155379A1 (ja) * | 2010-06-08 | 2011-12-15 | 株式会社Neomaxマテリアル | アルミニウム銅クラッド材 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014076486A (ja) * | 2012-09-21 | 2014-05-01 | Mitsubishi Materials Corp | アルミニウム部材と銅部材との接合構造 |
US10011093B2 (en) | 2012-09-21 | 2018-07-03 | Mitsubishi Materials Corporation | Bonding structure of aluminum member and copper member |
US9968012B2 (en) | 2012-10-16 | 2018-05-08 | Mitsubishi Materials Corporation | Heat-sink-attached power module substrate, heat-sink-attached power module, and method for producing heat-sink-attached power module substrate |
JP2020136349A (ja) * | 2019-02-14 | 2020-08-31 | 三菱マテリアル株式会社 | 絶縁回路基板、及び、絶縁回路基板の製造方法 |
JP7342371B2 (ja) | 2019-02-14 | 2023-09-12 | 三菱マテリアル株式会社 | 絶縁回路基板、及び、絶縁回路基板の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2898979A1 (en) | 2015-07-29 |
US10011093B2 (en) | 2018-07-03 |
IN2015DN02361A (ja) | 2015-09-04 |
TW201433392A (zh) | 2014-09-01 |
TWI589382B (zh) | 2017-07-01 |
JP2014076486A (ja) | 2014-05-01 |
KR20150056534A (ko) | 2015-05-26 |
EP2898979A4 (en) | 2016-06-08 |
JP5549958B2 (ja) | 2014-07-16 |
US20150251382A1 (en) | 2015-09-10 |
EP2898979B1 (en) | 2019-03-06 |
CN104661785B (zh) | 2017-05-03 |
KR102051697B1 (ko) | 2019-12-03 |
CN104661785A (zh) | 2015-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5549958B2 (ja) | アルミニウム部材と銅部材との接合構造 | |
JP5614485B2 (ja) | ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法 | |
KR102422607B1 (ko) | 접합체, 히트 싱크가 부착된 파워 모듈용 기판, 히트 싱크, 및 접합체의 제조 방법, 히트 싱크가 부착된 파워 모듈용 기판의 제조 방법, 히트 싱크의 제조 방법 | |
JP5725060B2 (ja) | 接合体、パワーモジュール用基板、及びヒートシンク付パワーモジュール用基板 | |
JP5991102B2 (ja) | ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法 | |
JP5991103B2 (ja) | ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法 | |
US20200365475A1 (en) | Bonded body of copper and ceramic, insulating circuit substrate, bonded body of copper and ceramic production method, and insulating circuit substrate production method | |
WO2021033421A1 (ja) | 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法 | |
WO2020044593A1 (ja) | 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法 | |
JP6908173B2 (ja) | 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法 | |
WO2019088222A1 (ja) | 接合体、及び、絶縁回路基板 | |
WO2019188885A1 (ja) | 絶縁回路基板用接合体の製造方法および絶縁回路基板用接合体 | |
US9821406B2 (en) | Jointed body, method for manufacturing same and jointed member | |
JP2007044701A (ja) | 鉛フリー化はんだ材 | |
JP2013089865A (ja) | 電子素子搭載用基板 | |
CN114728857B (zh) | 铜-陶瓷接合体、绝缘电路基板、铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法 | |
JP6432208B2 (ja) | パワーモジュール用基板の製造方法、及び、ヒートシンク付パワーモジュール用基板の製造方法 | |
JP6327058B2 (ja) | ヒートシンク付パワーモジュール用基板、接合体の製造方法、パワーモジュール用基板の製造方法、及び、ヒートシンク付パワーモジュール用基板の製造方法 | |
WO2023286856A1 (ja) | 銅/セラミックス接合体、および、絶縁回路基板 | |
JP6287681B2 (ja) | 接合体の製造方法、パワーモジュール用基板の製造方法、及び、ヒートシンク付パワーモジュール用基板の製造方法 | |
WO2023286860A1 (ja) | 銅/セラミックス接合体、および、絶縁回路基板 | |
JP2019087608A (ja) | 接合体、絶縁回路基板、ヒートシンク付絶縁回路基板、ヒートシンク、及び、接合体の製造方法、絶縁回路基板の製造方法、ヒートシンク付絶縁回路基板の製造方法、ヒートシンクの製造方法 | |
WO2020096040A1 (ja) | 接合体、ヒートシンク付絶縁回路基板、及び、ヒートシンク | |
CN117500769A (zh) | 铜-陶瓷接合体及绝缘电路基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13839672 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157004288 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14428776 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013839672 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |