WO2014045914A1 - 圧電デバイス及びその使用方法 - Google Patents

圧電デバイス及びその使用方法 Download PDF

Info

Publication number
WO2014045914A1
WO2014045914A1 PCT/JP2013/074215 JP2013074215W WO2014045914A1 WO 2014045914 A1 WO2014045914 A1 WO 2014045914A1 JP 2013074215 W JP2013074215 W JP 2013074215W WO 2014045914 A1 WO2014045914 A1 WO 2014045914A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
electric field
voltage
film
polarization
Prior art date
Application number
PCT/JP2013/074215
Other languages
English (en)
French (fr)
Inventor
藤井 隆満
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP13840021.3A priority Critical patent/EP2899766B1/en
Publication of WO2014045914A1 publication Critical patent/WO2014045914A1/ja
Priority to US14/661,114 priority patent/US9437801B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/802Circuitry or processes for operating piezoelectric or electrostrictive devices not otherwise provided for, e.g. drive circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/101Piezoelectric or electrostrictive devices with electrical and mechanical input and output, e.g. having combined actuator and sensor parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Interconnections, e.g. connection electrodes of multilayer piezoelectric or electrostrictive devices

Definitions

  • the present invention relates to a piezoelectric device and a method of using the piezoelectric device, and more particularly, to a configuration of a device using a piezoelectric element such as a piezoelectric actuator, an acceleration sensor, and an angular velocity sensor that operates using a piezoelectric effect or an inverse piezoelectric effect, and the piezoelectric device.
  • the present invention relates to a method for maintaining the operation performance of the system.
  • Patent Document 1 discloses that in order to polarize a piezoelectric body used in a piezoelectric component, heating (aging) is performed in the manufacturing process of the piezoelectric component, and processing is performed at an applied voltage of 2 to 2.5 times the coercive electric field. (Claim 1 of Patent Document 1). Further, it is generally described that an applied voltage that is three times or more the coercive electric field is necessary as a condition for polarization treatment of the piezoelectric material (Patent Document 1, page 1, right column).
  • Patent Document 2 describes a polarization method of a vibrator for a piezoelectric vibration gyro. According to the document 2, it is proposed that a high electric field is applied between the electrodes and the polarization treatment is performed in the air (claims 2 and 3 of patent document 2).
  • Patent Document 3 describes that the temperature of polarization processing of piezoelectric element parts is performed at a temperature higher than the reflow temperature (Claim 1 of Patent Document 3).
  • Patent Document 4 proposes a piezoelectric actuator using a piezoelectric film having an asymmetric bipolar polarization-electric field curve (Pr-E hysteresis) polarization characteristic and a driving method thereof.
  • Pr-E hysteresis asymmetric bipolar polarization-electric field curve
  • the piezoelectric film is depolarized (depolarized) when a solder reflow process or the like is performed after device formation. For this reason, it has been necessary to proceed with process steps such as reflow at the lowest possible temperature to minimize deterioration of the characteristics of the piezoelectric body, or to perform polarization processing again after a high temperature process such as reflow.
  • the Nb-doped PZT film has a good piezoelectric constant without undergoing polarization treatment (in an unpolarized treatment state) (Patent Document 4).
  • This material does not easily depolarize even when heated, and thus has an advantage that the post-deposition process has no temperature limitation and is easy to handle.
  • Patent Document 4 proposes a driving method of an actuator that applies a driving voltage having an electric field strength sufficiently larger than the coercive electric field of the piezoelectric film. The drive is not described. Further, the relationship between sensor driving having asymmetric polarization characteristics and reflow is not described.
  • An object of the present invention is to provide a highly reliable piezoelectric device capable of ensuring stable and stable operation performance and a method of using the piezoelectric device.
  • the piezoelectric device is a piezoelectric device that operates using at least one of the piezoelectric effect and the inverse piezoelectric effect of a piezoelectric film, and is a bipolar polarization-electric field (Pr-E) of a piezoelectric material.
  • the hysteresis characteristic has a bias that is asymmetrical with respect to the axis of the zero electric field.
  • the first coercive electric field having the smaller absolute value is Ec1
  • the second coercive electric field having the larger absolute value is the second.
  • the coercive electric field is defined as Ec2 and the coercive field bias rate is defined as [(Ec2 + Ec1) / (Ec2-Ec1)] ⁇ 100 [%]
  • a piezoelectric film having a coercive field bias rate of 20% or more is used.
  • polarization processing by applying a high voltage is unnecessary, and even when depolarization occurs due to the usage environment or over time, the polarization state is recovered by applying a relatively low voltage. can do. Thereby, the performance of the device can be maintained / recovered, and stable operation performance can be ensured.
  • the bias rate of the piezoelectric film is 70% or more.
  • the polarization state recovery process (refresh process) can be performed with a lower voltage.
  • a driving circuit that supplies a driving voltage for driving the piezoelectric element unit to the piezoelectric element unit and a detection that detects a voltage signal obtained from the piezoelectric element unit A configuration including at least one of the circuits may be employed.
  • the actuator device includes a piezoelectric element that operates using the inverse piezoelectric effect and a drive circuit thereof.
  • the sensor device includes a piezoelectric element that operates using the piezoelectric effect and a detection circuit thereof.
  • a piezoelectric element unit that combines a driving piezoelectric element that operates using the inverse piezoelectric effect and a detecting piezoelectric element that operates using the piezoelectric effect, a driving circuit, and Some configurations include a detection circuit.
  • the refresh voltage application circuit may be incorporated in at least one of the drive circuit and the detection circuit.
  • an electronic circuit unit including at least one of a drive circuit and a detection circuit and a refresh voltage application circuit is configured as an integrated circuit. Can be.
  • the electronic circuit unit can be configured by ASIC (Application Specific Integrated Circuit).
  • ASIC Application Specific Integrated Circuit
  • the magnitude of the voltage supplied from the refresh voltage application circuit to the piezoelectric element portion is 5 V or less. preferable.
  • the refresh voltage is preferably 5 V or less, more preferably 3 V or less, and even more preferably 1.5 V or less.
  • the piezoelectric element portion has a laminated structure in which a first electrode, a piezoelectric film, and a second electrode are laminated.
  • the refresh voltage application circuit can be configured to apply a negative voltage to the second electrode when the first electrode is grounded.
  • the polarity of the applied voltage can be selected as appropriate.
  • a lower electrode corresponding to the first electrode
  • a piezoelectric film and an upper electrode (corresponding to the second electrode) are stacked on the substrate.
  • the lower electrode is grounded and a negative voltage is applied to the upper electrode to perform a refresh process (a process for restoring the polarization state).
  • the piezoelectric film may be a perovskite oxide.
  • the piezoelectric film has one or more perovskite oxides (inevitable) represented by the following general formula (P-1): An impurity may be included.).
  • X of the piezoelectric film is Nb and b3 is 0.05 or more and 0.3 or less.
  • X of the piezoelectric film is at least one metal element of Nb and Bi.
  • a in the general formula (P-1) of the piezoelectric film is preferably 1.1 or more.
  • the piezoelectric element portion uses a piezoelectric element for driving that operates using an inverse piezoelectric effect, and a piezoelectric effect.
  • a detection voltage element that operates as a refresh voltage when the detection voltage output from the detection piezoelectric element is lower than a reference value when the driving piezoelectric element is driven at a predetermined drive voltage.
  • a control means for applying a voltage to the piezoelectric element portion from the application circuit can be provided.
  • the method of using the piezoelectric device according to the fourteenth aspect has a bias that the bipolar polarization-electric field (Pr-E) hysteresis characteristic of the piezoelectric material is asymmetric when the axis of the zero electric field is used as a reference,
  • the first coercive electric field having the smaller absolute value is Ec1
  • the second coercive electric field having the larger absolute value is Ec2
  • the coercive field bias rate is [(Ec2 + Ec1) / (Ec2 ⁇ Ec1)] ⁇ 100 [%]
  • a piezoelectric film having a coercive electric field bias rate of 20% or more is used, and at least one of the piezoelectric effect and the inverse piezoelectric effect of the piezoelectric film is used.
  • 3 times By applying a voltage to the electric field strength of lower restoring the polarization state of the piezoelectric film.
  • the performance degradation of the piezoelectric device due to depolarization can be prevented, and stable performance can be secured while maintaining the operation performance of the device.
  • polarization processing by applying a high voltage is unnecessary, and polarization performance deterioration due to use environment or aging can be prevented and device performance can be maintained.
  • a highly stable and reliable piezoelectric device can be provided.
  • FIG. 1 is a diagram illustrating a configuration example of a piezoelectric device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of the bipolar polarization-electric field hysteresis (Pr-E hysteresis) characteristic of the piezoelectric film.
  • FIG. 3 is a plan view of the manufactured gyro sensor. 4 is an enlarged sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is a graph summarizing the results of the preliminary experiment.
  • FIG. 6 is a diagram showing Pr-E hysteresis characteristics of a conventional piezoelectric film (intrinsic PZT).
  • FIG. 7 is a flowchart showing a procedure of a manufacturing process of an electronic device using a conventional piezoelectric film (intrinsic PZT).
  • FIG. 8 is a flowchart showing a procedure of a manufacturing process of an electronic device using a conventional piezoelectric film (intrinsic PZT).
  • FIG. 9 is a diagram showing the Pr—E hysteresis characteristics of the piezoelectric film (Nb—PZT) of the present embodiment.
  • FIG. 10 is a flowchart showing a method for manufacturing a piezoelectric device and a method for using the same according to the present embodiment.
  • FIG. 11 is a chart summarizing the results obtained for Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 12 is a block diagram showing another embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration example of a piezoelectric device according to an embodiment of the present invention.
  • This piezoelectric device 10 corresponds to a sensor element unit 28 (corresponding to a “piezoelectric element unit”) in which driving piezoelectric elements 20 and 22 and a detecting piezoelectric element 26 are provided on a substrate 14 constituting a vibrating unit 12. ).
  • the piezoelectric device 10 includes an electronic circuit unit 30 that is electrically connected to the sensor element unit 28.
  • the piezoelectric device 10 can be configured as a sensor unit packaged (covered with a package member (not shown)) including the sensor element unit 28 and the electronic circuit unit 30.
  • the piezoelectric elements 20 and 22 for driving in the sensor element unit 28 operate using the inverse piezoelectric effect, and convert electrical signals (driving voltage) into mechanical stress.
  • the detecting piezoelectric element 26 operates using the piezoelectric effect, and converts mechanical stress into an electrical signal.
  • the electronic circuit unit 30 includes a drive circuit 32 that supplies a drive voltage to the drive piezoelectric elements 20 and 22, a detection circuit 34 that detects a voltage signal (detection voltage) obtained from the detection piezoelectric element 26, and A voltage for refresh processing (polarization recovery processing) for maintaining / recovering the polarization state of the piezoelectric elements 20, 22, and 26 in order to maintain the operation performance of the device (referred to as “refresh voltage” in this specification). And a refresh voltage application circuit 36 to be supplied.
  • the electronic circuit unit 30 can be composed of an integrated circuit typified by ASIC (Application Specific Specific Integrated Circuit).
  • ASIC Application Specific Specific Integrated Circuit
  • the drive circuit 32, the detection circuit 34, and the refresh voltage application circuit 36 are described as separate blocks.
  • a refresh voltage application function may be incorporated in the drive circuit 32, and the detection circuit It is also possible to incorporate a refresh voltage application function into 34.
  • the piezoelectric elements 20, 22, and 26 of the sensor element unit 28 are provided on a substrate 14 as a support layer, with a lower electrode 40 (corresponding to “first electrode”), a piezoelectric film 42, and an upper electrode 44 (“second electrode”). Corresponds to a stacked structure sequentially stacked in this order. Note that the thicknesses and ratios of the layers shown in FIG. 1 and other drawings are appropriately changed for convenience of explanation, and do not necessarily reflect actual thicknesses and ratios. Further, in this specification, in expressing the laminated structure, the direction away from the surface of the substrate 14 in the substrate thickness direction is expressed as “up”. In FIG.
  • the direction of gravity (in FIG. 1) This coincides with the vertical relationship when (downward) is the downward direction.
  • the posture of the substrate 14 can be tilted or reversed. Even when the stacking direction of the laminated structure depending on the posture of the substrate 14 does not necessarily coincide with the vertical direction based on the direction of gravity, in order to express the vertical relationship of the laminated structure without confusion, the surface of the substrate 14 is used as a reference. The direction away from the surface in the thickness direction is expressed as “up”. For example, even when the top and bottom of FIG. 1 are reversed, the lower electrode 40 is formed on the substrate 14 and the piezoelectric film 42 is stacked thereon.
  • the material of the substrate 14 is not particularly limited.
  • silicon (Si), silicon oxide, glass, stainless steel (SUS), yttrium stabilized zirconia (YSZ), alumina, sapphire, SiC, SrTiO 3, or the like is used.
  • a laminated substrate such as an SOI (Silicon on Insulator) substrate in which a SiO 2 film and a Si active layer are sequentially laminated on a silicon substrate may be used.
  • the composition of the lower electrode 40 and the upper electrode 44 is not particularly limited.
  • Au gold
  • Pt platinum
  • Ag silver
  • Ir iridium
  • Al aluminum
  • Mo molecular weight
  • Ru Ruthenium
  • TiN titanium nitride
  • the lower electrode 40 preferably includes a platinum group metal.
  • the structure which uses Ti, TiW, etc. as an adhesion layer is preferable, and the aspect formed by laminating
  • the upper electrode 44 is electrically connected to an ASIC (electronic circuit unit 30) and other electronic circuits (including a lead wiring pattern) using wire bonding, anisotropic conductive film (ACF), or the like. A connection is made. For this reason, it is desirable that the uppermost layer (outermost surface layer) of the upper electrode 44 be a material excellent in wire bonding properties.
  • a metal having a relatively low melting point is preferable.
  • a metal having a melting point of 1500 degrees or less is desirable, and for example, a configuration containing any of Al, Au, Ti, Cu, Cr, and Ni is preferable.
  • FIG. 1 shows a form in which each piezoelectric element 20, 22, 26 is separately processed in element units, and shows a configuration in which the lower electrode 40, the piezoelectric film 42, and the upper electrode 44 are separated in element units.
  • the lower electrode 40 and the piezoelectric film 42 may be configured so as not to be individually separated for each element.
  • a common lower electrode a common electrode layer that is not patterned
  • the piezoelectric film 42 can also be configured as an integral piezoelectric film that is not separately processed for the plurality of piezoelectric elements 20, 22, and 26 (see, for example, FIGS. 1 and 3 of Patent Document 2). .
  • the portion of the piezoelectric film 42 sandwiched between the upper electrode 44 and the lower electrode 40 facing the piezoelectric element is piezoelectrically active. It functions as a part.
  • the sensor element unit 28 is configured by combining two driving piezoelectric elements 20 and 22 and one detecting piezoelectric element 26, but the number of piezoelectric elements, driving and detecting elements are described.
  • the presence or absence of the combination, the number ratio thereof, the arrangement form of the piezoelectric elements, and the like are not limited to this example, and various designs are possible depending on the application and specifications of the device.
  • a tuning fork type gyro sensor (FIGS. 3 and 4), which will be described later, includes a plurality of vibration units 12 having the configuration shown in FIG.
  • a configuration in which a driving electrode is disposed at the center and detection electrodes are disposed on both sides thereof is also possible.
  • a piezoelectric sensor device in which the driving piezoelectric elements 20 and 22 and the driving circuit 32 are omitted from the configuration of FIG. 1 is also possible.
  • a form of a piezoelectric actuator device in which the detection piezoelectric element 26 and the detection circuit 34 are omitted from the configuration of FIG. 1 is also possible.
  • a piezoelectric film made of one or more perovskite oxides (which may contain inevitable impurities) represented by the following general formula (P-1) is used.
  • X is at least one metal element selected from the group of elements of group V and group VI. a> 0, b1> 0, b2> 0, b3 ⁇ 0.
  • a ⁇ 1.0 and b1 + b2 + b3 1.0, these numerical values may deviate from 1.0 within a range where a perovskite structure can be taken.
  • a may be less than 1.0, and there is a tolerance between the value of (b1 + b2 + b3) and 1.0. Can do.
  • PZT lead zirconate titanate
  • X may be any metal element of Group VA, Group VB, Group VIA, and Group VIB, and is at least one selected from the group consisting of V, Nb, Ta, Cr, Mo, W, and Bi. Is preferred.
  • b3 is preferably 0.05 or more and 0.3 or less.
  • a lead zirconate titanate (PZT) thin film doped with 12% of Nb by atomic composition percentage can be used.
  • a bulk piezoelectric body may be bonded to the substrate and polished.
  • the amount of displacement is small. Furthermore, there is a problem that the yield due to destruction during polishing is small.
  • the piezoelectric film 42 of the present embodiment is preferably a thin film having a thickness of 5 ⁇ m or less. Since the applied voltage can be lowered as the film thickness is thinner, the film thickness is more preferably 3 ⁇ m or less.
  • a piezoelectric thin film having a thickness of 2 ⁇ m formed by sputtering is used as the piezoelectric film, but the present invention is not limited to this.
  • the film thickness of the piezoelectric film can be 1 ⁇ m to 1.5 ⁇ m.
  • a vapor phase growth method As a method for forming the piezoelectric film 42, a vapor phase growth method is preferable. For example, various methods such as ion plating, MOCVD (metal organic chemical vapor deposition), and PLD (pulse laser deposition) can be applied in addition to sputtering. It is also conceivable to use a method other than the vapor phase growth method (for example, a sol-gel method).
  • the piezoelectric film 42 may be referred to as an “Nb-doped PZT film”.
  • FIG. 2 shows the bipolar polarization-electric field hysteresis (Pr-E hysteresis) characteristics of the piezoelectric film 42.
  • the horizontal axis represents drive voltage (electric field)
  • the vertical axis represents polarization. Since the drive voltage on the horizontal axis is expressed by the product of the thickness of the piezoelectric film in the voltage application direction and the electric field, the value of the electric field is obtained by dividing the value of the drive voltage by the thickness of the piezoelectric body.
  • V1 is the product of the coercive electric field on the positive electric field side and the thickness in the voltage application direction of the piezoelectric film
  • V2 is the coercive electric field on the negative electric field side and the voltage application direction of the piezoelectric film. Is the product of the thickness of
  • the Nb-doped PZT film has coercive electric field points on the negative electric field side and the positive electric field side, respectively, and is asymmetric (positive electric field) with respect to the y axis (position of zero electric field) indicating remanent polarization. Pr-E hysteresis characteristics biased to the side).
  • the coercive electric field Ec1 on the negative electric field side and the coercive electric field Ec2 on the positive electric field side have a relationship of
  • the coercive electric field Ec2 is large when a positive electric field is applied, so that it is difficult to be polarized, and when a negative electric field is applied, the absolute value of the coercive electric field Ec1 Because the value is small, it is easily polarized.
  • a large piezoelectric performance can be obtained by driving by applying an electric field having a polarity with a smaller absolute value of the coercive electric field value (in the case of FIG. 2, driving by a negative electric field).
  • the piezoelectric device 10 using a piezoelectric material having a biased PE hysteresis characteristic as shown in FIG. 2 operates the piezoelectric element within a range of a value smaller than the coercive electric field (Ec1) having a smaller absolute value.
  • bias rate of Pr-E hysteresis is defined by the following [Formula 1]
  • the bias rate of PE hysteresis shown in FIG. 2 is about 75%.
  • the deviation rate is the absolute value of the value obtained by [Equation 1].
  • the driving voltage is in the opposite direction to that when the Pr-E hysteresis characteristic is biased toward the negative field.
  • the bias rate of the Pr-E hysteresis has a correlation with the Nb doping amount (that is, the doping amount of the “X” element in the general formula (P-1)) in the piezoelectric film.
  • the bias rate increases as the doping amount of elements such as Nb and Bi increases. Also, the bias rate tends to increase as the amount of “Pb” in the general formula (P-1) increases.
  • the value of “a” is preferably 1.1 or more and Pb excess.
  • the upper limit of the Nb amount in the piezoelectric material is determined from the viewpoint of whether or not a piezoelectric film suitable for practical use can be formed. In general, increasing the doping amount of Nb improves the piezoelectric performance, but if the doping amount of Nb increases excessively, cracks tend to occur due to stress. Since cracks are unlikely to occur if the film thickness is small, the doping amount of Nb is determined depending on the film thickness of the piezoelectric film actually used.
  • the film thickness of the piezoelectric film is approximately 1 ⁇ m to 5 ⁇ m, and the upper limit of the Nb doping amount is approximately 20 at% ( Atomic composition percentage; at%). That is, the Nb doping amount of the piezoelectric film 42 is preferably 6 at% or more and 20 at% or less.
  • a lower electrode was formed on an SOI wafer as the substrate 14, and PZT doped with 12% Nb (Nb-doped PZT) was formed to a thickness of 2 ⁇ m on the lower electrode. Further, an upper electrode was formed on the Nb-doped PZT film and processed into a target device shape by using a semiconductor processing process such as dry etching, and an angular velocity sensor element (gyro sensor) for preliminary experiments was manufactured.
  • a semiconductor processing process such as dry etching
  • FIG. 3 is a plan view of the gyro sensor produced for the preliminary experiment
  • FIG. 4 is an enlarged sectional view taken along the line IV-IV in FIG.
  • This gyro sensor has the same structure as that disclosed in JP 2011-59125 A.
  • 3 and 4 are drawings that incorporate FIGS. 1 and 2 in the publication, and the same reference numerals as those in the publication are used for the reference numerals in the drawings.
  • Reference numeral 1 denotes a substrate
  • 2 denotes a vibrating portion
  • 3 denotes a fixing portion that supports the vibrating portion 2.
  • 4 is a lower electrode
  • 5 is a piezoelectric body
  • 6 is a drive electrode
  • 7 is a detection electrode
  • 8 is a protective film
  • 9 is connected to an external electric circuit (not shown in FIG. 3, corresponding to the electronic circuit unit 30 in FIG. 1). This is a connection electrode.
  • 3 correspond to the substrate 14, the vibration part 12, the lower electrode 40, and the piezoelectric film 42 in FIG. 1, respectively. 3 corresponds to the upper electrodes of the drive piezoelectric elements 20 and 22 in FIG. 1, and the detection electrode 7 in FIG. 3 corresponds to the upper electrode of the detection piezoelectric element 26 in FIG. Yes.
  • this gyro sensor includes a pair of columnar vibrating portions 2 and a fixing portion 3 that supports the vibrating portion 2. Two drive electrodes 6 and one detection electrode 7 are formed on the upper surface of 2.
  • the vibrating portion 2 By applying an AC voltage to the two drive electrodes 6 of each vibration part 2, it can be bent at a natural frequency. By devising such as shifting the phase of voltage application to the two drive electrodes 6 in one vibrating portion 2 by 180 degrees, the vibrating portion 2 can be excited in the left-right direction on the paper surface of FIG.
  • the two vibrating parts 2 are not vibrated in a substantially parallel state, but are vibrated so as to be closed or opened.
  • the vibration unit 2 is distorted by the Coriolis force, thereby causing a potential to be applied to the detection electrode 7. Occurs.
  • the angular velocity can be detected by amplifying and processing this signal by an external circuit.
  • the points indicated by black squares in FIG. 5 indicate the plot points of the polarization degree after normalization. From the result of the preliminary experiment 1, it is confirmed that the piezoelectric film of the present example is almost polarized (in the initial state, the polarization is substantially uniform) in a state where the polarization treatment is not performed (in the state of the unpolarization treatment). all right. That is, by using such a piezoelectric material, a polarization process (initial polarization process for obtaining piezoelectric performance) that has been conventionally required becomes unnecessary.
  • the degree of polarization changes abruptly in the vicinity of the electric field of ⁇ 10 kV / cm indicated by the broken line in the figure, and when an electric field having an electric field strength of 10 kV / cm or more is applied, the degree of polarization becomes 0.1.
  • Exceeds 8 the polarization state recovers 80% or more). In other words, it was found that the polarization state could not be sufficiently recovered by applying an electric field with an electric field intensity of less than 10 kV / cm, and that an electric field with an electric field intensity of 10 kV / cm or higher would not recover the polarization of 80% or higher. .
  • This value of 10 kV / cm is sufficiently lower than the electric field strength required for the polarization treatment of the conventional piezoelectric material (intrinsic PZT).
  • the duration of the polarization process is 1 minute, but in practice it is sufficient if the voltage application duration in the polarization process is about 1 second.
  • the piezoelectric film used in the present embodiment is in a state of polarization in the initial state (in an unpolarized state as it is formed), and the required piezoelectric film can be obtained without performing the conventional polarization process. Performance is realized.
  • depolarization due to various factors in the process of processing the piezoelectric film. For example, when an electrostatic chuck that adsorbs a wafer is used, a large electric field is applied to the film surface, which may cause reverse polarization. Alternatively, exposure to the plasma may cause a potential to be applied to the film surface and reverse polarization depending on conditions. Further, there is at least a risk of depolarization in a state where the device is exposed to a high temperature in a reflow process after being formed into a device.
  • the piezoelectric device of the present embodiment has a function of maintaining the device performance by applying a refresh voltage to the piezoelectric element to recover the polarization state.
  • FIG. 6 is a graph showing Pr-E hysteresis characteristics of a conventional piezoelectric film (intrinsic PZT).
  • the horizontal axis represents an electric field (unit: [kV / cm]), and the vertical axis represents remanent polarization (unit: [ ⁇ C / cm 2 ]).
  • the Pr-E hysteresis characteristic of the conventional PZT film is generally symmetric with respect to the limitation.
  • FIG. 7 and 8 are flowcharts showing the steps of a manufacturing process of an electronic device using a conventional piezoelectric film (PZT).
  • FIG. 7 is a flow for performing polarization processing after silicon (Si) device processing
  • FIG. 8 is a flow for performing polarization processing immediately after the formation of the PZT film.
  • a PZT film is formed on the lower electrode (step S214).
  • An upper electrode is formed thereon and patterned to form a desired laminated structure (step S216), and then the silicon layer is processed into a desired shape and thickness (step S218).
  • polarization processing is performed (step S220) to achieve a required polarization state.
  • the wafer is separated into individual device units by dicing (step S222), and connected to the integrated circuit by wire bonding (step S224), and packaged (step S226).
  • the packaged device is mounted on an electronic circuit board, and solder reflow processing is performed (step S228).
  • an electronic circuit board on which the device is mounted is manufactured, and then the final product (electronic device) is manufactured through an assembly process (step S230).
  • step S214 the same step numbers are assigned to the same or similar processes as the flow described in FIG.
  • step S215 a polarization process
  • step S216 an upper electrode formation and patterning process
  • step S220 in FIG. 7 and step S215 in FIG. 8 has been performed before it becomes the final product (electronic device).
  • the driving ASIC is low for use in mobile devices such as a mobile phone because of power consumption.
  • the output voltage of the ASIC varies depending on the specifications of each company, for example, a voltage of 5 V or less is generally used for mobile device applications. For this reason, in order to apply a voltage of 5 V or more in the device, a special device such as a charge pump is required, which causes an increase in cost. Further, the ASIC for outputting a high voltage is problematic because the size is increased.
  • FIG. 9 is a graph showing Pr-E hysteresis characteristics of the piezoelectric film (Nb-PZT) of this embodiment.
  • a piezoelectric element using an Nb-doped PZT film having such asymmetric hysteresis characteristics is used as, for example, an ejection energy generating element of an ink jet printer, an electric field sufficiently larger (large in absolute value) than the coercive electric field on the negative electrode side. Is used.
  • a piezoelectric film having a thickness of 3 ⁇ m is driven with a driving voltage of 20 V (potential difference). This driving voltage exceeds the coercive electric field, and there is no fear of depolarization.
  • FIG. 10 is a flowchart showing the manufacturing process of the piezoelectric device according to the present embodiment and the refresh process after completion of the final product (also referred to as “repolarization process” or “polarization state recovery process”).
  • the same step numbers are assigned to the same or similar processes as those in the conventional flow described in FIG.
  • the manufacturing method of the piezoelectric device which concerns on this embodiment, and its usage method are demonstrated.
  • Step 1 First, a substrate is prepared (Step S210 in FIG. 10).
  • a single crystal bulk silicon substrate Si wafer
  • an SOI (Silicon On On Insulator) substrate may be used.
  • Step 2 Next, a lower electrode (corresponding to “first electrode”) is formed on one side of the substrate (step S212, “lower electrode forming step”).
  • a TiW film having a thickness of 20 nm is formed by sputtering, and an Ir film having a thickness of 150 nm is formed thereon.
  • This laminated film of TiW (20 nm) / Ir (150 nm) becomes the lower electrode.
  • the material of the lower electrode and the film thickness of each layer are not limited to the above example, and various designs are possible.
  • Step 3 Thereafter, an Nb-doped PZT film (piezoelectric film 42) is formed on the lower electrode (step S214, “piezoelectric film forming process”).
  • a Nb-doped PZT thin film (reference numeral 44) is formed on the lower electrode by sputtering at a film forming temperature of 500 ° C. to a thickness of 2 ⁇ m.
  • an upper electrode is formed on the PZT thin film and patterned into a desired shape (step S216, “upper electrode forming step”).
  • the upper electrode has a laminated structure of IrO / Ir / Au.
  • the laminated structure a configuration in which an A material layer, a B material layer, and a C material layer are laminated in this order from the lower layer to the upper layer is represented by the notation “A / B / C”. That is, the material described before “/” constitutes the lower layer, and the material described after “/” represents the upper layer.
  • Step 5 Thereafter, the substrate is processed into a desired shape and thickness (Step S218, “Si device processing step”). Processing is performed using device processing techniques such as lithography, ashing, and Si deep digging.
  • Step S222 “dicing process”.
  • Step 7) Next, the individually separated elements are electrically connected to the integrated circuit by wire bonding (step S224, “wire bonding step”).
  • Step 8) Thereafter, the device is packaged by the package member (step S226, “package step”). In this way, a packaged sensor device is obtained.
  • Step 9 The packaged device is mounted on an electronic circuit board (“mounting step”), and a reflow process is performed (“reflow step”, step S228).
  • Reflow is a well-known technique for surface mounting.
  • the electronic components are placed on a substrate coated with a solder paste in advance, and heat treatment is performed for solder bonding. This is a process for performing all of the above.
  • the electronic circuit board is assembled in the electronic device assembly process (step S228), and the final product (electronic device) is manufactured (step S230).
  • the electronic device here can be, for example, a mobile phone, a digital camera, a personal computer, a digital music player, a game machine, various other devices such as an electronic endoscope, and the like. It is not limited.
  • step S240 of FIG. 10 is a step of applying a refresh voltage (refresh processing step) to restore the polarization state due to depolarization to the original polarization state.
  • a refresh voltage refresh processing step
  • the Pr-E hysteresis As the piezoelectric body.
  • the deviation of the Pr-E hysteresis characteristic of the piezoelectric body can be realized by adding Nb or Bi into PZT. Also, the bias rate increases as the Pb amount increases.
  • the refresh process can be performed after the device has been used for a long time, and the sensitivity of the device can be stabilized.
  • a refresh process can be performed to restore the polarization state.
  • the voltage applied in the refresh process is preferably an electric field having a magnitude of 10 kV / cm or more at which the slope of the change in polarization degree changes rapidly in the experimental results of FIG. A degree of polarization of 80% or more can be expected by applying an electric field having a value larger than this electric field strength.
  • the film thickness of the piezoelectric film in sensor use or actuator use for example, 1 ⁇ m or more and 5 ⁇ m or less, preferably 4 ⁇ m or less, and more preferably 3 ⁇ m or less are assumed. It is desirable that the film thickness is as thin as possible.
  • a refresh process is performed by applying a refresh voltage of about 2 V to 3 V to a piezoelectric film having a thickness of 1 to 2 ⁇ m.
  • the timing for performing this refreshing polarization process may be any time.
  • an electronic device such as a smartphone, a mobile phone, a game machine, or a digital camera, it is possible to always maintain good performance.
  • the refresh process is performed in various modes such as a mode that is automatically performed at the time of device startup or device reset, a mode in which forced execution is performed by software, a mode that is performed at an appropriate timing according to a user operation, etc. And may be implemented at any timing.
  • a refresh voltage may be individually applied to each electrode, or all channels may be simultaneously used. Further, it is sufficient that the polarization processing time is about 1 second. According to the experimental data, when the refresh voltage is applied for about 1 second, performance of 80% or more when the refresh voltage is applied for 1 minute is obtained. Therefore, a refresh voltage application for a short time of about 1 second is sufficient.
  • Example 1 Similar to the preliminary experiment, a lower electrode was formed on an SOI wafer serving as the substrate 14, and PZT doped with 12% Nb (Nb-doped PZT) with a thickness of 2 ⁇ m was formed on the lower electrode.
  • This piezoelectric film had a PE hysteresis bias rate of 75% (see FIG. 9) and was previously polarized. Using this piezoelectric film as it is (without performing polarization treatment), after forming the upper electrode, device processing such as lithography, ashing, and Si deep digging is performed, and the gyro sensor having the configuration described in FIGS. processed.
  • value of the coercive electric field Ec1 having a smaller absolute value
  • the gyro sensor according to Example 1 has the coercive electric field value
  • 6 kV. It is a device driven with an electric field strength of / cm or less.
  • this piezoelectric film was intentionally polarized in the reverse direction (reverse polarization treatment).
  • This reverse polarization process created a state in which the performance due to depolarization was degraded.
  • a voltage of about 2 V was applied from the ASIC (electronic circuit unit 30 in FIG. 1) for about 1 second so that an electric field having an electric field strength of 10 kV / cm was applied (the lower electrode was grounded and a negative voltage was applied to the upper electrode). Applied).
  • the depolarization state is generated by the reverse polarization process.
  • the depolarization occurs due to the deterioration over time due to the long-term use of the actual device or the use environment, and the refresh process (application of the refresh voltage)
  • the refresh process application of the refresh voltage
  • the performance can be maintained within an allowable range that does not cause a problem in the practical performance of the device.
  • the electric field strength applied to maintain the device performance is related to the deviation of the Pr-E hysteresis of the piezoelectric material.
  • the electric field strength applied in the refresh process is preferably not more than three times the coercive electric field value
  • the upper limit of the electric field strength applied in the refresh process is generally set to three times or less of the coercive electric field value
  • Example 1 the coercive electric field value
  • the voltage value is preferably 5 V or less, more preferably 3 V or less, and even more preferably 1.5 V or less from the design of the ASIC.
  • the lower limit of the refresh voltage is a voltage that is higher than the drive voltage of a device that operates with a minute voltage.
  • the refresh voltage is a voltage value that applies an electric field having an electric field strength larger than the electric field strength that operates the device, and the electric field strength that is applied to the piezoelectric film by applying the refresh voltage is the coercive electric field value
  • a material that reduces the coercive electric field value on the polar side (in this embodiment, the negative side) that drives the device, or the piezoelectric film This can be achieved by reducing the thickness.
  • the selection of the piezoelectric material and the design of the film thickness are design parameters for carrying out the invention.
  • Example 2 Instead of the piezoelectric film in Example 1, the Nb doping amount is 8 at%, the bias rate of Pr-E hysteresis is 23%, and the negative coercive field is “ ⁇ 30 kV / cm”.
  • a gyro sensor similar to that of Example 1 was manufactured under the other conditions. When the driving voltage was 0.14 V, the lower electrode was grounded, and a negative voltage was applied to the upper electrode, it was confirmed that it operated well.
  • the electric field intensity at which the degree of polarization reached 80% after the reverse polarization treatment of the piezoelectric film of Example 2 was 15 kV / cm.
  • this piezoelectric film was intentionally polarized in the reverse direction (reverse polarization treatment).
  • This reverse polarization process created a state in which the performance due to depolarization was degraded.
  • a voltage of about 3 V was applied from the ASIC (electronic circuit unit 30 in FIG. 1) for about 1 second so that an electric field having an electric field strength of 15 kV / cm was applied (the lower electrode was grounded and a negative voltage was applied to the upper electrode). Applied).
  • a piezoelectric film having a thickness of 2 ⁇ m was prepared with an Nb doping amount of 3 at%, a PE hysteresis bias rate of 4%, and a negative coercive electric field of ⁇ 46 kV / cm. Since this piezoelectric film was not sufficiently polarized in advance, an Al electrode was formed on the entire surface of the piezoelectric film after film formation, and a polarization treatment was performed. Thereafter, the Al electrode was removed by etching to form an upper electrode. Thereafter, device processing such as lithography, ashing, and Si deep digging was performed, and a gyro sensor having the same form as in FIGS. 3 and 4 was produced.
  • a piezoelectric film having a Nb doping amount of 0 at%, a PE hysteresis bias rate of 3%, and a negative coercive electric field of ⁇ 48 kV / cm was formed to a thickness of 2 ⁇ m. Since this piezoelectric film was not polarized in advance, an Al electrode was formed on the entire surface of the piezoelectric film after the film formation, and the polarization treatment was performed. Thereafter, the Al electrode was removed by etching to form an upper electrode. Thereafter, device processing such as lithography, ashing, and Si deep digging was performed, and a gyro sensor having the same form as in FIGS. 3 and 4 was produced.
  • FIG. 11 shows Example 1 (bias rate 75%) and Example 2 (bias rate 23%), but good results can be obtained for those with a bias rate of 20% or more. In particular, for those having a bias rate of 70% or more, it is possible to recover the polarization state at a lower refresh voltage. Furthermore, since the polarization state in an initial state is favorable, it is preferable as a material.
  • bias rate 78% Considering variation in conditions from the result of Example 1 (bias rate 75%), it is considered that a bias rate of 70% or more is sufficient.
  • FIG. 12 is a block diagram showing another embodiment of the present invention. 12, elements that are the same as or similar to those shown in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.
  • the piezoelectric device 10 used as an angular velocity sensor, a gyro sensor, or the like has a configuration in which the driving piezoelectric elements 20 and 22 and the detection piezoelectric element 26 are combined, and the driving piezoelectric element.
  • a detection voltage is obtained from the detection piezoelectric element 26 when the elements 20 and 22 are driven. Therefore, by comparing the detection voltage output when driven with a specific drive voltage with a reference value (predetermined threshold), it is determined whether or not performance degradation due to depolarization has occurred. Can do.
  • control circuit 38 (corresponding to “control means”) that automatically determines the presence or absence of performance degradation due to depolarization and controls the execution of the refresh process.
  • control circuit 38 refreshes the refresh voltage application circuit 36 when the detection voltage output from the detection piezoelectric element 26 is lower than the reference value when the drive piezoelectric elements 20 and 22 are driven at a predetermined drive voltage. Is provided with a control circuit 38 for applying a voltage to the sensor element unit 28.
  • the control circuit 38 sends a command to the drive circuit 32 to drive the drive piezoelectric elements 20 and 22 with a specific (predetermined) drive voltage, and the detection voltage obtained from the detection piezoelectric element 26 at the time of the drive. Get information. When the detected voltage is lower than a predetermined reference value, it can be determined that performance degradation due to depolarization has occurred.
  • the control circuit 38 automatically determines whether or not the refresh process is necessary based on the determination result, and sends a command to the refresh voltage application circuit 36 to supply the refresh voltage from the refresh voltage application circuit 36 when necessary.
  • control circuit 38 for example, a mode using a comparator that compares a signal obtained from the detection circuit 34 with a predetermined reference value and outputs the comparison result, or a CPU (Central Processing Unit) is used.
  • a mode using a comparator that compares a signal obtained from the detection circuit 34 with a predetermined reference value and outputs the comparison result or a CPU (Central Processing Unit) is used.
  • a CPU Central Processing Unit
  • control circuit 38 that realizes such a control function can be mounted on the ASIC (electronic circuit unit 30). Note that the control circuit 38 is not limited to being mounted on the electronic circuit unit 30, but can be mounted on an external circuit unit or device.
  • the present invention is not limited to the angular velocity sensor and the gyro sensor exemplified above, and can be applied to various forms of sensor devices and actuator devices.
  • 1 is not limited to a sensor having a configuration in which the driving actuator (using the reverse piezoelectric effect) and the sensor piezoelectric body (using the piezoelectric effect) are combined.
  • the present invention can also be applied to an actuator element that uses only the piezoelectric effect.
  • the electric field strength corresponding to the potential difference generated between the electrodes of the detecting piezoelectric element corresponds to the “electric field strength for operating the device”.
  • the piezoelectric device of the present invention can be used in various applications such as an angular velocity sensor, an acceleration sensor, a pressure sensor, an actuator, and a power generation device, and is particularly effective for a small voltage driving region and a device used for sensing a small voltage. Demonstrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Gyroscopes (AREA)

Abstract

 圧電デバイス(10)は、圧電材料のバイポーラ分極-電界(Pr-E)ヒステリシス特性が非対称となる偏りを持ち、絶対値の小さい方の第1の抗電界をEc1、絶対値の大きい方の第2の抗電界をEc2とし、抗電界の偏り率を〔(Ec2+Ec1)/(Ec2-Ec1)〕×100[%]と定義するとき、偏り率が20%以上である圧電体膜(42)が用いられ、第1の抗電界よりも小さい電界強度で動作する圧電素子部(28)を備える。また、圧電デバイス(10)は、当該デバイスの動作性能を保つために、デバイスを動作させる電界強度よりも大きく、かつ第1の抗電界の絶対値|Ec1|の3倍以下の電界強度となる電圧を印加して圧電体膜(42)の分極状態を回復させるリフレッシュ電圧印加回路(36)を備える。

Description

圧電デバイス及びその使用方法
 本発明は圧電デバイス及びその使用方法に係り、特に圧電アクチュエータ、加速度センサ、角速度センサなど圧電体膜の圧電効果や逆圧電効果を利用して動作する圧電素子を用いたデバイスの構成及びその圧電デバイスの動作性能を保つための方法に関する。
 チタン酸ジルコン酸鉛(PZT)などの圧電体膜を用いた圧電アクチュエータや圧電センサは広く知られている。従来のPZT膜は所要の圧電性能を得るために、デバイスの製造プロセスにおいて分極処理が必要であった。特許文献1では、圧電部品に用いられる圧電体を分極するために、圧電部品の製造工程において加熱(エージング)を行い、抗電界の2~2.5倍の印加電圧にて処理することが開示されている(特許文献1の請求項1)。また、一般的には圧電材料の分極処理の条件として抗電界の3倍以上の印加電圧が必要であると記載されている(特許文献1第1頁右欄)。
 特許文献2では、圧電振動ジャイロ用振動子の分極方法が記載されている。同文献2によれば、電極間に高電界を印加して空気中で分極処理を施すことが提案されている(特許文献2の請求項2、3)。
 特許文献3では、圧電素子部品の分極処理の温度をリフロー温度よりも高温で行うことが記載されている(特許文献3の請求項1)。
 特許文献4では、非対称なバイポーラ分極-電界曲線(Pr-Eヒステリシス)の分極特性をもつ圧電体膜を用いた圧電アクチュエータとその駆動方法が提案されている。
特開平4-82309号公報 特開2007-40879号公報 特開2005-340631号公報 特開2011-78203号公報
 特許文献1~3に示されているような従来の圧電材料では、デバイス化した後にハンダリフロー工程などを経ると、圧電体膜が脱分極(減分極)する。このため、できる限り低い温度でリフローなどのプロセス工程を進め、圧電体の特性低下を最小限に抑えるか、或いは、リフローなどの高温プロセス後に再度の分極処理を行う必要があった。
 その一方で、特許文献4に示されているように、NbをドープしたPZT膜は分極処理を経ずに(未分極処理状態にて)圧電定数が良好である(特許文献4)。この材料は、加熱しても容易には脱分極しないため成膜後のプロセスに温度制限がなく扱いやすいという利点がある。
 しかしながら、NbドープPZT膜を用いたデバイスであっても、例えば、途中のプロセスで脱分極する方向でプラズマ処理されたり、故意によらず逆分極方向の電界が印加されたり(例えば、真空装置内の静電チャック)、高温の使用環境や長時間の使用での劣化などによって、脱分極し、十分な性能が引き出せないという場合がある。
 また、特許文献4は、圧電体膜の抗電界よりも十分に大きな電界強度の駆動電圧を印加するアクチュエータの駆動方法を提案しているが、センサとして用いる場合の駆動方法や微小な電位での駆動については記載されていない。さらに、非対称な分極特性を持つセンサ駆動とリフローとの関係も記載されていない。
 本発明はこのような事情に鑑みてなされたものであり、上記の課題に着目し、従来必要とされていた高電圧の印加による分極処理を不要とし、使用環境や経時による分極劣化を防止して安定した動作性能を確保できる信頼性の高い圧電デバイス及びその使用方法を提供することを目的とする。
 前記目的を達成するために、次の発明を提供する。
 (第1態様):第1態様に係る圧電デバイスは、圧電体膜の圧電効果及び逆圧電効果の少なくとも一方を利用して動作する圧電デバイスにおいて、圧電材料のバイポーラ分極-電界(Pr-E)ヒステリシス特性がゼロ電界の軸を基準としたときに非対称となる偏りを持ち、圧電材料における抗電界のうち、絶対値の小さい方の第1の抗電界をEc1、絶対値の大きい方の第2の抗電界をEc2とし、抗電界の偏り率を〔(Ec2+Ec1)/(Ec2-Ec1)〕×100[%]と定義するとき、抗電界の偏り率が20%以上である圧電体膜が用いられ、第1の抗電界よりも小さい電界強度で動作する圧電素子部と、圧電体膜の分極状態を回復させて圧電デバイスの動作性能を保つために、前記動作させる前記電界強度よりも大きく、かつ前記第1の抗電界の絶対値|Ec1|の3倍以下の電界強度となる電圧を印加するリフレッシュ電圧印加回路と、を備える。
 この態様によれば、従来必要とされていた高電圧の印加による分極処理が不要であり、使用環境や経時によって脱分極が発生した場合でも、比較的に低電圧の電圧印加によって分極状態を回復することができる。これにより、デバイスの性能を維持/回復することができ、安定した動作性能を確保できる。
 (第2態様):第1態様に記載の圧電デバイスにおいて、圧電体膜の偏り率が70%以上であることが好ましい。
 偏り率が大きいほど、第1の抗電界の値が小さい値となる。かかる態様によれば、より低い電圧で分極状態の回復処理(リフレッシュ処理)が可能である。
 (第3態様):第1態様又は第2態様に記載の圧電デバイスにおいて、圧電素子部を駆動する駆動電圧を圧電素子部に供給する駆動回路及び圧電素子部から得られる電圧信号を検出する検出回路のうち少なくとも一方の回路を備える構成とすることができる。
 アクチュエータデバイスは、逆圧電効果を利用して動作する圧電素子と、その駆動回路を備える。センサデハイスは、圧電効果を利用して動作する圧電素子と、その検出回路を備える。また、センサデバイスの種類によっては、逆圧電効果を利用して動作する駆動用の圧電素子と、圧電効果を利用して動作する検出用の圧電素子とを組み合わせた圧電素子部と、駆動回路及び検出回路とを備える構成もある。
 (第4態様):第3態様に記載の圧電デバイスにおいて、リフレッシュ電圧印加回路は、駆動回路及び検出回路のうち少なくとも一方の回路に組み込まれている構成とすることができる。
 リフレッシュ電圧を出力する機能を駆動回路や検出回路に組み込む回路構成とすることができる。
 (第5態様):第3態様又は第4態様に記載の圧電デバイスにおいて、駆動回路及び検出回路のうち少なくとも一方の回路と、リフレッシュ電圧印加回路とを含んだ電子回路部が集積回路で構成されるものとすることができる。
 例えば、電子回路部をASIC(Application Specific Integrated Circuit)で構成することができる。
 (第6態様):第1態様から第5態様のいずれか1項に記載の圧電デバイスにおいて、リフレッシュ電圧印加回路から圧電素子部に供給する電圧の大きさは5V以下であるものとすることが好ましい。
 ASICの設計を考慮すると、リフレッシュ電圧の大きさは5V以下であることが好ましく、より好ましくは3V以下、さらに好ましくは、1.5V以下である。
 (第7態様):第1態様から第6態様のいずれか1項に記載の圧電デバイスにおいて、圧電素子部は、第1電極と、圧電体膜と、第2電極とが積層された積層構造を有し、リフレッシュ電圧印加回路は、第1電極を接地したときに、第2電極にマイナス電圧を印加する構成とすることができる。
 圧電体膜の分極方向によって、印加する電圧の極性は適宜選択できるが、例えば、基板上に下部電極(第1電極に相当)、圧電体膜、上部電極(第2電極に相当)が積層された圧電素子構造において、下部電極を接地し、上部電極にマイナス電圧を印加してリフレッシュ処理(分極状態を回復させる処理)を行う構成とすることができる。
 (第8態様):第1態様から第7態様に記載の圧電デバイスにおいて、圧電体膜がペロブスカイト型の酸化物である構成とすることができる。
 (第9態様):第1態様から第8態様に記載の圧電デバイスにおいて、圧電体膜が、次の一般式(P-1)で表される1種又は複数種のペロブスカイト型酸化物(不可避不純物を含んでいても良い。)からなる構成とすることができる。
 一般式 Pb(Zrb1Tib2b3)O・・・(P-1)
(式(P-1)中、XはV族及びVI族の元素群より選ばれた少なくとも1種の金属元素である。a>0、b1>0、b2>0、b3≧0。a≧1.0であり、かつb1+b2+b3=1.0である場合が標準であるが、これらの数値はペロブスカイト構造を取り得る範囲内で1.0からずれてもよい。)
 かかる材料は、良好な圧電特性を示し、センサ用途、アクチュエータ用途のデバイスに好適である。
 (第10態様):第9態様に記載の圧電デバイスにおいて、圧電体膜のXがNbであり、b3が0.05以上0.3以下であることが好ましい。
 (第11態様):第9態様又は第10態様に記載の圧電デバイスにおいて、圧電体膜のXがNb、Biのうち少なくとも1種の金属元素であることが好ましい。
 (第12態様):第9態様から第11態様のいずれか1項に記載の圧電デバイスにおいて、圧電体膜の一般式(P-1)中のaが1.1以上であることが好ましい。
 (第13態様):第1態様から第12態様のいずれか1項に記載の圧電デバイスにおいて、圧電素子部は、逆圧電効果を利用して動作する駆動用の圧電素子と、圧電効果を利用して動作する検出用の圧電素子と、を含み、駆動用の圧電素子を所定の駆動電圧で駆動したときに検出用の圧電素子から出力される検出電圧が基準値よりも低い場合にリフレッシュ電圧印加回路から圧電素子部に電圧を印加する制御手段を備える構成とすることができる。
 かかる態様によれば、脱分極による性能劣化を自動的に判別して、リフレッシュ処理の実施の要否を制御することができ、一定のデバイス性能を保つことができる。
 (第14態様):第14態様に係る圧電デバイスの使用方法は、圧電材料のバイポーラ分極-電界(Pr-E)ヒステリシス特性がゼロ電界の軸を基準としたときに非対称となる偏りを持ち、圧電材料における抗電界のうち、絶対値の小さい方の第1の抗電界をEc1、絶対値の大きい方の第2の抗電界をEc2とし、抗電界の偏り率を〔(Ec2+Ec1)/(Ec2-Ec1)〕×100[%]と定義するとき、抗電界の偏り率が20%以上である圧電体膜を用い、圧電体膜の圧電効果及び逆圧電効果の少なくとも一方を利用して第1の抗電界よりも小さい電界強度で動作させる圧電デバイスの使用方法であって、圧電デバイスの動作性能を保つために、動作させる電界強度よりも大きく、かつ第1の抗電界の絶対値|Ec1|の3倍以下の電界強度となる電圧を印加して圧電体膜の分極状態を回復させる。
 この方法によれば、脱分極による圧電デバイスの性能劣化を防止することができ、デバイスの動作性能を維持して安定した性能を確保できる。
 本発明によれば、従来必要とされていた高電圧の印加による分極処理が不要であり、使用環境や経時などによる分極劣化を防止してデバイス性能を保つことができる。これにより、安定性及び信頼性の高い圧電デバイスを提供することができる。
図1は、本発明の実施形態に係る圧電デバイスの構成例を示す図である。 図2は、圧電体膜のバイポーラ分極-電界ヒステリシス(Pr-Eヒステリシス)特性の一例を示す図である。 図3は、作製したジャイロセンサの平面図である。 図4は、図3のIV-IV拡大断面図である。 図5は、予備実験の結果をまとめたグラフである。 図6は、従来の圧電体膜(真性PZT)のPr-Eヒステリシス特性を示す図である。 図7は、従来の圧電体膜(真性PZT)を用いた電子機器の製造プロセスの手順を示したフローチャートである。 図8は、従来の圧電体膜(真性PZT)を用いた電子機器の製造プロセスの手順を示したフローチャートである。 図9は、本実施形態の圧電体膜(Nb-PZT)のPr-Eヒステリシス特性を示す図である。 図10は、本実施形態に係る圧電デバイスの製造方法とその使用方法を示すフローチャートである。 図11は、実施例1、2及び比較例1、2について得られた結果をまとめた図表である。 図12は、本発明の他の実施形態を示す構成図である。
 以下、添付図面に従って本発明の実施形態について詳細に説明する。
 図1は本発明の実施形態に係る圧電デバイスの構成例を示す図である。ここでは、ジャイロセンサや角速度センサとして用いられるセンサデバイスの要部構成を例示する。この圧電デバイス10は、振動部12を構成する基板14の上に駆動用の圧電素子20、22と、検出用の圧電素子26とが設けられたセンサ素子部28(「圧電素子部」に相当)を備えている。また、圧電デバイス10は、センサ素子部28と電気的に接続された電子回路部30を備えている。圧電デバイス10は、センサ素子部28と電子回路部30とを含んでパッケージ化された(図示せぬパッケージ部材で覆われた)センサユニットとして構成することができる。
 センサ素子部28における駆動用の圧電素子20、22は、逆圧電効果を利用して動作し、電気信号(駆動電圧)から機械的応力に変換する。検出用の圧電素子26は、圧電効果を利用して動作し、機械的応力を電気信号に変換する。
 電子回路部30は、駆動用の圧電素子20、22に対して駆動電圧を供給する駆動回路32と、検出用の圧電素子26から得られる電圧信号(検出電圧)を検知する検出回路34と、デバイスの動作性能を保つために圧電素子20、22、26に対して分極状態を維持/回復するためのリフレッシュ処理(分極回復処理)用の電圧(本明細書において「リフレッシュ電圧」という。)を供給するリフレッシュ電圧印加回路36と、を含んでいる。
 電子回路部30は、ASIC(Application Specific Integrated Circuit)に代表される集積回路で構成することができる。図1では、説明の便宜上、駆動回路32、検出回路34、リフレッシュ電圧印加回路36をそれぞれ別々のブロックとして記載したが、駆動回路32にリフレッシュ電圧印加機能を組み込むことも可能であるし、検出回路34にリフレッシュ電圧印加機能を組み込むことも可能である。
 センサ素子部28の圧電素子20、22、26は、支持層としての基板14上に、下部電極40(「第1電極」に相当)、圧電体膜42、上部電極44(「第2電極」に相当)がこの順で順次積層された積層構造を有する。なお、図1や他の図面に示す各層の膜厚やそれらの比率は、説明の都合上、適宜変更して描いており、必ずしも実際の膜厚や比率を反映したものではない。また、本明細書では、積層構造を表現するにあたり、基板14の表面から基板厚み方向に離れる方向を「上」として表現する。図1では基板14を水平に保持した状態で基板14の上面に、下部電極40、圧電体膜42、上部電極44が順次重ねられている構成となっているため、重力の方向(図1の下方)を下方向としたときの上下の関係と一致している。ただし、基板14の姿勢を傾けたり、反転させたりすることも可能である。基板14の姿勢に依存する積層構造の積み重ね方向が必ずしも重力の方向を基準とする上下方向と一致しない場合についても、積層構造の上下関係を混乱なく表現するために、基板14の面を基準にして、その面から厚み方向に離れる方向を「上」と表現する。例えば、図1の上下を反転させた場合であっても、基板14上に下部電極40が形成され、その上に圧電体膜42が積層されるという表現で記述される。
 基板14の材料としては、特に制限はなく、例えば、シリコン(Si)、酸化シリコン、ガラス、ステンレス(SUS)、イットリウム安定化ジルコニア(YSZ)、アルミナ、サファイヤ、SiC,及びSrTiO等を用いることができる。また、基板14としては、シリコン基板上にSiO膜とSi活性層とが順次積層されたSOI(Silicon on Insulator)基板等の積層基板を用いてもよい。
 下部電極40や上部電極44の組成についても、特に制限なく、例えば、Au(金)、Pt(白金)、Ag(銀)、Ir(イリジウム)、Al(アルミミウム)、Mo(モリブデン)、Ru(ルテニウム)、TiN(窒化チタン)、IrO、RuO、LaNiO、及びSrRuO等の金属又は金属酸化物、及びこれらの組み合わせなどを用いることができる。
 その中でも特に、下部電極40は、白金族の金属を含む構成が好ましい。また、基板14との密着性を高めるために、密着層としてTiやTiWなどを用いる構成が好ましく、この密着層の上に白金族の金属を積層して形成する態様がさらに好ましい。
 上部電極44は、ワイヤーボンディングや異方性導電膜(ACF;anisotropic conductive film)などを利用して、ASIC(電子回路部30)や他の電子回路(リード配線パターンなどを含む)と電気的な接続が行われる。このため、上部電極44の最上層(最表面層)はワイヤーボンディング性に優れた材料であることが望ましい。その条件としては比較的、低融点の金属が好ましい。目安として、融点が1500度以下の金属が望ましく、例えば、Al、Au、Ti、Cu、Cr、Niのうちいずれかを含むものである構成が好ましい。
 <デバイス構造に関する変形例1>
 図1では各圧電素子20、22、26が素子単位で個別に分離加工された形態を示し、下部電極40、圧電体膜42、上部電極44について素子単位で分離されている構成を示したが、下部電極40や圧電体膜42については素子毎に個別に分離加工しない形態も可能である。例えば、図1に示した複数の圧電素子20、22、26について共通の下部電極(パターニングされていない共通の電極層)とすることができる。また、圧電体膜42についても複数の圧電素子20、22、26について個別に分離加工されていない一体の圧電体膜として構成することができる(例えば、特許文献2の図1、図3参照)。圧電素子20、22、26に対応して上部電極44がパターニング(分離形成)されていることにより、上部電極44と対向する下部電極40との間に挟まれる圧電体膜42の部分が圧電活性部として機能する。
 <デバイス構造に関する変形例2>
 図1では、センサ素子部28として、2つの駆動用の圧電素子20、22と、1つの検出用の圧電素子26とを組み合わせた構成を記載したが、圧電素子の個数、駆動用と検出用の組み合わせの有無やその個数比率、圧電素子の配置形態などについては本例に限定されず、デバイスの用途や仕様に応じて様々な設計が可能である。例えば、後述する音叉型のジャイロセンサ(図3及び図4)では、図1に示した構成の振動部12を複数備えている。また、特許文献2に記載されているジャイロセンサのように、中央部に駆動用の電極を配置し、その両側に検出用の電極を配置する形態も可能である。
 構造によらず様々な圧電デバイスに適用可能である。
 或いはまた、図1の構成から、駆動用の圧電素子20、22及び駆動回路32を省略した圧電センサデバイスの形態も可能である。また、図1の構成から検出用の圧電素子26や検出回路34を省略した圧電アクチュエータデバイスの形態も可能である。
 <圧電材料について>
 圧電体膜42としては、下記一般式(P-1)で表される1種又は複数種のペロブスカイト型酸化物からなる(不可避不純物を含んでいてもよい。)圧電体膜が用いられる。
  Pb(Zrb1Tib2b3)O・・・(P-1)
 式(P-1)中、XはV族及びVI族の元素群より選ばれた少なくとも1種の金属元素である。a>0、b1>0、b2>0、b3≧0。a≧1.0であり、かつb1+b2+b3=1.0である場合が標準であるが、これらの数値はペロブスカイト構造を取り得る範囲内で1.0からずれてもよい。なお、本実施形態は、a≧1.0の場合に限定されるものではない。また、本実施形態は、(b1+b2+b3)=1.0の場合に限定されるものではない。圧電体膜に含まれるペロブスカイト型酸化物がペロブスカイト構造を取り得る範囲内であれば、aは1.0未満でもよいし、また、(b1+b2+b3)の値と1.0の間に許容差が存在し得る。
 一般式(P-1)で表されるペロブスカイト型酸化物は、b3=0のときチタン酸ジルコン酸鉛(PZT)であり、b3>0のとき、PZTのBサイトの一部をV族及びVI族の元素群より選ばれた少なくとも1種の金属元素であるXで置換した酸化物である。
 Xは、VA族、VB族、VIA族、及びVIB族のいずれの金属元素でもよく、V,Nb,Ta,Cr,Mo,W,及びBiからなる群より選ばれた少なくとも1種であることが好ましい。
 被置換イオンの価数よりも高い価数を有する各種ドナーイオンを添加したPZTでは、真性PZTよりも圧電性能等の特性が向上することが知られている。
 例えば、XがNbである場合、b3が0.05以上0.3以下であることが好ましい。
 本実施形態における圧電体膜42の一具体例として、例えば、Nbを原子組成百分率で12%ドープしたチタン酸ジルコン酸鉛(PZT)薄膜を用いることができる。スパッタリング法等によってNbを12%ドープしたPZTを成膜することにより、圧電定数d31=250pm/Vという高い圧電特性を持つ薄膜を安定的に作製できる。なお、バルクの圧電体を基板に接合し、研磨してもよいが、この方法では圧電体を薄膜化するのが難しいために変位量が小さくなる。さらに、研磨中における破壊などによる歩留まりが小さいといった問題がある。このようなことを鑑みると、気相成長法やゾルゲル法などにより基板上に圧電薄膜を直接成膜する構成が好ましい。特に、本実施形態の圧電体膜42としては、膜厚が5μm以下の厚さの薄膜であることが好ましい。膜厚が薄いほど印加電圧を低くすることができるため、より好ましくは、膜厚が3μm以下とする。後述する予備実験や実施例1では圧電体膜として、スパッタリング法によって成膜された2μm厚の圧電薄膜を使用しているが、これに限定されるものではない。圧電体膜の膜厚を1μm~1.5μmとすることも可能である。
 <成膜方法について>
 圧電体膜42の成膜方法としては気相成長法が好ましい。例えば、スパッタ法の他、イオンプレーティング法、MOCVD法(有機金属気相成長法)、PLD法(パルスレーザー堆積法)など、各種の方法を適用し得る。また、気相成長法以外の方法(例えば、ゾルゲル法など)を用いることも考えられる。
 本実施形態では、NbをドープしたPZT膜を用いる例を説明する。以下、圧電体膜42を「NbドープPZT膜」と呼ぶ場合がある。
 <圧電体膜の特性について>
 図2は、圧電体膜42のバイポーラ分極-電界ヒステリシス(Pr-Eヒステリシス)特性を示したものである。図2の横軸は駆動電圧(電界)、縦軸は分極を示す。なお、横軸の駆動電圧は、圧電体膜の電圧印加方向の厚みと電界の積で表されるため、駆動電圧の値を圧電体の厚みで除算すれば電界の値となる。図2中の「V1」は、正電界側の抗電界と圧電体膜の電圧印加方向の厚みとの積であり、「V2」は、負電界側の抗電界と圧電体膜の電圧印加方向の厚みとの積である。
 図2に示すように、NbドープPZT膜は、負電界側と正電界側とにそれぞれ抗電界点を有し、残留分極を示すy軸(ゼロ電界の位置)に対して非対称な(正電界側に偏った)Pr-Eヒステリシス特性を有する。図2において、負電界側の抗電界Ec1と正電界側の抗電界Ec2とは|Ec1|<Ec2の関係がある。このように正電界側に偏った非対称Pr-Eヒステリシスを有する圧電体膜では、正電界を印加した場合は抗電界Ec2が大きいため分極されにくく、負電界を印加した場合は抗電界Ec1の絶対値が小さいため分極されやすい。
 つまり、正負の抗電界のうち、抗電界値の絶対値が小さい側の極性の電界印加により駆動させることにより(図2の場合、マイナス電界による駆動)、大きな圧電性能を得ることができる。図2のようなP-Eヒステリシス特性の偏りを持つ圧電材料を用いた圧電デバイス10は、絶対値が小さい方の抗電界(Ec1)より小さい値の範囲内で圧電素子を動作させる。
 Pr-Eヒステリシスの「偏り率」を以下の[式1]で定義すると、図2に示されるP-Eヒステリシスの偏り率は約75%である。
 [式1] 〔(Ec2+Ec1)/(Ec2―Ec1)〕×100 (%) …(1)
 このように、Pr-Eヒステリシス曲線が全体的に右に(正電界側に)偏った形となる圧電体膜42は分極処理を実施しない状態で、予め分極されている。
 なお、本実施形態では正電界側に偏ったPr-Eヒステリシス特性を有しているため[式1]で計算される値が「偏り率」となるが、逆に負電界側に偏ったPr-Eヒステリシス特性を有している圧電体においては、偏り率は[式1]で得られる値の絶対値となる。
 なお、正電界側に偏ったPr-Eヒステリシス特性を有している場合、駆動電圧の方向は負電界側に偏ったPr-Eヒステリシス特性を有している場合と逆方向になる。
 Pr-Eヒステリシスの偏り率は圧電体膜におけるNbドープ量(すなわち、一般式(P-1)中の「X」元素のドープ量)と相関がある。NbやBiなどの元素のドープ量を増やすほど、偏り率が増加する。また、一般式(P-1)中における「Pb」の量が多いほど偏り率が増加する傾向を示す。一般式(P-1)の「a」の値が1.1以上のPb過剰な状態であることが好ましい。
 なお、圧電材料中のNb量の上限については、実用に適した圧電体膜を成膜できるか否かという観点で決定される。一般にNbのドープ量を増やすと圧電性能が向上するが、Nbドープ量が過剰に多くなると、応力の関係でクラックが発生しやすい傾向にある。膜厚が薄ければクラックは発生しにくいため、実際に使用される圧電体膜の膜厚にも依存してNbのドープ量が決定される。携帯電話機やインクジェットプリンタなど一般的な電子機器への適用を想定した圧電アクチュエータや圧電センサの場合、圧電体膜の膜厚は概ね1μm~5μm程度であり、Nbドープ量の上限は概ね20at%(原子組成百分率;at%)程度とされる。すなわち、圧電体膜42のNbドープ量として、好ましくは6at%以上20at%以下である。
 <予備実験の内容>
 基板14としてのSOIウエハ上に下部電極を形成し、下部電極の上に重ねてNbを12%ドープしたPZT(NbドープPZT)を2μm厚形成した。さらに、NbドープPZT膜の上に上部電極を形成し、ドライエッチングなどの半導体加工プロセスを用いて目的のデバイス形状に加工を行い予備実験用の角速度センサ素子(ジャイロセンサ)を作製した。
 図3は予備実験のために作製したジャイロセンサの平面図、図4は図3のIV-IV拡大断面図である。このジャイロセンサは、特開2011-59125号公報に開示されている構造と同様のものである。図3及び図4は同公報における図1及び図2を援用した図面であり、図中の符号についても同公報の記載と同一の符号を用いた。符号1は基板、2は振動部、3は振動部2を支持している固着部である。4は下部電極、5は圧電体、6は駆動電極、7は検出電極、8は保護膜、9は外部の電気回路(図3中不図示、図1の電子回路部30に相当)と接続するための接続電極である。
 図3の基板1、振動部2、下部電極4、圧電体5がそれぞれ図1の基板14、振動部12、下部電極40、圧電体膜42に対応している。また、図3の駆動電極6は図1における駆動用の圧電素子20、22の上部電極に対応し、図3の検出電極7は図1における検出用の圧電素子26の上部電極に対応している。
 特開2011-59125号公報にも記載されているとおり、このジャイロセンサは、2本一対の柱状の振動部2と、振動部2を支持する固着部3とを備えており、それぞれの振動部2の上面には2つの駆動電極6と1つの検出電極7が形成されている。
 各振動部2の2つの駆動電極6に交流電圧を印加することにより、固有振動数で屈曲運動させることができる。1本の振動部2における2本の駆動電極6への電圧印加の位相を180度ずらす等の工夫をすることによって、振動部2を図3の紙面左右方向へ励振させることができる。2本の振動部2を略平行な状態に振動させるのではなく、閉じたり開いたりすりように振動させる。このような振動を行っているときに、当該ジャイロセンサを振動部2の長手方向に平行な軸周りに角速度運動させると、コリオリの力により、振動部2が歪み、これにより検出電極7に電位が生じる。この信号を外部の回路で増幅し処理することにより、角速度を検出できる。
 (予備実験1)
 作製したジャイロセンサの分極度を調べるために、当該作製したデバイスについて、初期の分極処理を実施しないまま、駆動電極6に0.14Vの駆動電圧を印加して駆動しながら、検出電極7より得られる出力電圧を検出した。検出電極に印加する電圧(リフレッシュ電圧)を変化させながら、出力される電圧をプロットして、-20V(-100kV/cm)の電界強度の時の出力を「1」として規格化した。
 図5中の黒塗り四角形印で示した点が規格化後の分極度のプロット点を示すものである。この予備実験1の結果から、本例の圧電体膜は、分極処理を実施しない状態で(未分極処理の状態で)、ほぼ分極されている(初期状態で分極が概ね揃っている)ことがわかった。つまり、このような圧電材料を用いることにより、従来必要とされていた分極処理(圧電性能を出すための初期の分極処理)が不要となる。
 (予備実験2)
 次に、予備実験1で用いた圧電体膜を逆方向に分極処理して、同様の実験を行った。すなわち、初期状態で得られている分極の方向とは逆方向に+20Vの電圧を1分間印加した後、上記予備実験1と同様の実験を行った。これは、初期状態(未分極処理状態)で分極状態が揃っている圧電体膜を予め故意に逆分極させた状態とし(脱分極状態に相当)、これにリフレッシュ電圧を印加して分極状態が回復するか否かを調べる実験となっている。図5中の三角形印で示したプロット点が予備実験2の実験結果を示すものである。
 図5によれば、同図中破線で示した-10kV/cmの電界の付近で急激に分極度が変化しており、10kV/cm以上の電界強度の電界を印加すると、分極度が0.8を越える(分極状態が80%以上回復する)。つまり、10kV/cm未満の電界強度の電界印加では分極状態を十分に回復できておらず、10kV/cm以上の電界強度の電界を印加しなければ80%以上の分極が回復しないことがわかった。この10kV/cmという値は、従来の圧電材料(真性PZT)の分極処理に必要な電界強度よりも充分に低い値である。なお、分極処理の継続時間は1分間としたが、実際には分極処理における電圧の印加継続時間は1秒程度あれば十分である。
 <圧電デバイスの性能維持/回復のための再分極の処理について>
 本実施形態で用いる圧電体膜は上記のように初期の状態で(成膜したままの未分極処理状態で)予め分極状態が整っており、従来の分極処理を実施することなく、所要の圧電性能が実現されている。ただし、圧電体膜を加工する際のプロセスにおいて、様々な要因で脱分極する可能性がある。例えば、ウエハを吸着する静電チャックを用いると、膜面に大きな電界が印加されるため逆分極される可能性がある。あるいは、プラズマ中に晒されることにより、条件によっては膜面に電位が印加され逆分極される可能性がある。さらに、デバイス化された後にリフロー処理にて高温に晒されている状態では少なくとも脱分極のリスクがある。
 また、最終商品として完成した圧電デバイスを、デバイスとして長期間使用していると、その使用方法や使用環境によっては僅かずつでも脱分極する可能性がある。圧電体膜が脱分極してしまうと、センサ感度やアクチュエータ特性(すなわち、デバイスとしての動作特性)が変わるため何らかの校正をする必要がある。
 以上のような脱分極による性能劣化を避けるために、本実施形態の圧電デバイスでは、圧電素子にリフレッシュ電圧を印加して分極状態を回復させ、デバイス性能を保つ機能を備えている。
 <従来の構成との比較>
 (従来方法)
 図6は従来の圧電体膜(真性PZT)のPr-Eヒステリシス特性を示す図である。横軸は電界(単位は[kV/cm])、縦軸は残留分極(単位は[μC/cm])を示す。図6に示すように、従来のPZT膜のPr-Eヒステリシス特性は、限定に対して概ね対称である。
 このような従来のPZT膜を用いた圧電素子を例えばインクジェットプリンタの吐出エネルギー発生素子として用いる場合には、図6中の矢印Aで示したように、負極側の抗電界を少し超える(絶対値として大きい)電界を印加して駆動することになる。脱分極が発生した状態でこのような駆動電圧(電界)を印加しても分極状態は十分に回復しない(元の分極状態に戻らない)。つまり、脱分極の状態を元の分極状態に戻すためには、抗電界の2~3倍の絶対値となる大きい電界(電圧)の印加が必要である(特許文献1)。
 その一方、ジャイロセンサなどの微小電圧で駆動する用途の場合は、図6中の矢印Bで示したように、非常に小さい電界で動作させるASICが用いられる。このような微小電圧に対応したASICで分極処理を行うことはできず、分極処理を行うには駆動電圧よりも遙かに大きい電圧が必要となる。
 図7及び図8は、従来の圧電膜(PZT)を用いた電子機器の製造プロセスの手順を示したフローチャートである。図7はシリコン(Si)デバイス加工後に分極処理を実施するフロー、図8はPZT膜形成直後に分極処理を実施するフローである。
 図7の例は、シリコン(Si)の基板上に下部電極を形成した後(ステップS210~S212)、下部電極上にPZT膜を形成する(ステップS214)。その上に上部電極を形成してパターニングを行い、目的の積層構造を形成した後に(ステップS216)、シリコン層を所望の形状及び厚さに加工する(ステップS218)。その後、分極処理を行い(ステップS220)、所要の分極状態を達成する。分極処理後、ダイシングによってウエハから個別の素子単位に分離し(ステップS222)、ワイヤーボンディングによる集積回路との接続を行い(ステップS224)、パッケージ化を行う(ステップS226)。パッケージ化されたデバイスは、電子回路基板に実装され、ハンダリフロー処理が行われる(ステップS228)。こうして、デバイスが搭載された電子回路基板が作製され、その後組み立て工程を経て、最終商品(電子機器)が製造される(ステップS230)。
 図8では、図7で説明したフローと同一又は類似する工程には同一のステップ番号を付した。図8の例は、ステップS214で示したPZT膜形成工程の後に、分極処理(ステップS215)が実施され、その後、上部電極の形成及びパターン化の工程(ステップS216)が行われる。以後の処理は図7と同様である。
 図7、図8に示したように、従来、分極処理(図7のステップS220、図8のステップS215)は、最終商品(電子機器)になる手前で行われていた。
 しかしながら、これでは最終商品の使用環境(例えば、高い温度下に置かれる、長期間の使用など)によって脱分極が発生し、デバイスの性能バラツキの原因になっていた。また、最終商品で分極処理を行うためには数十ボルトから数百ボルト程度の大きな電圧を印加する必要があり、このような高電圧の供給は駆動用ASICでは困難かつ、配線の耐圧を越えてしまうという問題がある。
 一般的に駆動用のASICは消費電力の関係から携帯電話等のモバイル機器用途には低い方が好ましい。ASICの出力電圧は各社の仕様によって異なるが、例えば、モバイル機器用途では一般的には5V以下のものが用いられる。そのため、仮に、当該機器内で5V以上の電圧を印加するためにはチャージポンプなどの特別な工夫が必要となり、コストアップの要因となる。さらに、高い電圧を出力するためのASICはサイズが大きくなったりし、問題である。
 (本発明の実施形態)
 これに対し、本実施形態では、図2で説明したように、Pr-Eヒステリシス特性が非対称に偏っている圧電体を用いており、従来のものより、はるかに低い電圧で分極処理が可能となっている。また、図1で説明したとおり、最終製品の電子回路部30にリフレッシュ電圧印加のための機能を組み入れることで使用環境に依存せずに長期間安定した性能を発揮できる。
 図9は本実施形態の圧電体膜(Nb-PZT)のPr-Eヒステリシス特性を示す図である。このような非対称のヒステリシス特性を持つNbドープPZT膜を用いた圧電素子を例えばインクジェットプリンタの吐出エネルギー発生素子として用いる場合には、負極側の抗電界よりも十分に大きい(絶対値として大きい)電界を印加して使用される。一例として、膜厚3μmの圧電体膜に対して20Vの大きさ(電位差)の駆動電圧で駆動される。この駆動電圧は抗電界を越えており、脱分極の懸念が無い。
 その一方、ジャイロセンサなどのセンサ用途の場合は、負極側の抗電界よりも小さい微小な電圧(例えば、1V以下又は0.5V以下といった小さい電圧)で駆動される。脱分極した際に、この微小な電圧の駆動電圧の印加では分極状態を元に戻すことはできないが、従来のPZTと比較して抗電界の絶対値が非常に小さいため、1Vから数V程度の比較的低い電圧印加での分極処理(分極状態の回復を行う処理であり、「リフレッシュ処理」という。)が可能である。一般的なデバイス駆動用のASICの電源は、5V或いは3V程度であるため、デバイス駆動用のAISCの出力電圧程度で十分に分極(分極状態の回復)処理が可能である。
 図10は本実施形態による圧電デバイスの製造プロセスと、最終商品完成後のリフレッシュ処理(「再分極処理」、或いは、「分極状態の回復処理」ともいう)についてフローチャートとして示したものである。図10中、図6で説明した従来のフローと同一又は類似する工程には同一のステップ番号を付した。図10を参照して本実施形態に係る圧電デバイスの製造方法とその使用方法を説明する。
 (工程1):まず、基板を準備する(図10のステップS210)。単結晶のバルクシリコン基板(Siウエハ)を用いてもよいし、SOI(Silicon On Insulator)基板を用いてもよい。
 (工程2):次に、基板の片側面に下部電極(「第1電極」に相当)を形成する(ステップS212、「下部電極形成工程」)。例えば、スパッタ法にてTiWを膜厚20nm形成し、その上に重ねてIrを膜厚150nm形成する。このTiW(20nm)/Ir(150nm)の積層膜が下部電極となる。なお、下部電極の材料や各層の膜厚は上記の例に限定されず、様々な設計が可能である。
 (工程3):その後、下部電極の上にNbドープPZT膜(圧電体膜42)を形成する(ステップS214、「圧電体膜形成工程」)。例えば、下部電極の上に、NbをドープしたPZT薄膜(符号44)を500℃の成膜温度にてスパッタ法により、2μmの膜厚で形成する。
 (工程4):さらにこのPZT薄膜の上に、上部電極を形成し、目的の形状にパターニングする(ステップS216、「上部電極形成工程」)。例えば、上部電極は、IrO/Ir/Auの積層構造を有する。なお、積層構造を表現するにあたり、下層から上層に向かって、A材料層、B材料層、C材料層の順に積層されている構成を「A/B/C」という表記によって表す。つまり、「/」の前に記載された材料が下層を構成し、「/」の後ろに記載された材料が上層を構成するものとして表記した。
 (工程5):その後、基板を所望の形状及び厚さに加工する(ステップS218、「Siデバイス加工工程」)。リソグラフィー、アッシング、Si深掘り等のデバイス加工技術を用いて加工が行われる。
 (工程6):そして、ダイシングによってウエハから個別の素子単位に分離する(ステップS222、「ダイシング工程」)。
 (工程7):次に、個別分離された素子をワイヤーボンディングによって集積回路との電気的な接続を行う(ステップS224、「ワイヤーボンディング工程」)。
 (工程8):その後、パッケージ部材によってデバイスのパッケージ化を行う(ステップS226、「パッケージ工程」)。こうして、パッケージ化されたセンサデバイスが得られる。
 (工程9):パッケージ化されたデバイスは、電子回路基板に実装され(「実装工程」)、リフロー処理が行われる(「リフロー工程」、ステップS228)。リフローは、表面実装技術として公知の技術であり、プリント基板などの回路基板上に電子部品を実装する際に、電子部品を予めハンダペーストを塗布した基板上に載せ、加熱処理を行ってハンダ接合を一括で行う工程である。もちろん、本例のデバイスに限らず、電子回路基板には、他の様々な電子部品を実装することができ、各電子部品はリフローによって電子回路基板に固定(ハンダ接合)される。こうして、デバイスが搭載された電子回路基板が作製される。その後、電子機器の組み立て工程にて電子回路基板の組み付けが行われ(ステップS228)、最終商品(電子機器)が製造される(ステップS230)。
 最終商品が出来上がるまでのプロセス中に、分極処理(図7のステップS220、図8のステップS215に相当する処理)は不要となっている。
 なお、ここでいう電子機器としては、例えば、携帯電話、デジタルカメラ、パソコン、デジタル音楽プレーヤ、ゲーム機、電子内視鏡などの医療機器その他の様々な機器が可能であり、機器の対象を特に制限するものではない。
 最終製品としての電子機器を使用すると、その使用環境や長期間の使用による経年劣化などにより、圧電体膜に脱分極が発生し得る。本実施形態では、このような脱分極による性能低下に対処するために、図10のステップS240で示した分極処理が行われる。ここでいう分極処理の工程(ステップS240)は、脱分極による分極状態を元の分極状態に回復させるためリフレッシュ電圧の印加を行う工程(リフレッシュ処理工程)である。このリフレッシュ処理により、デバイスの性能を維持/回復させることができる。
 デバイス性能を保つためのリフレッシュ処理を実現するためには、圧電体としてPr-Eヒステリシスの偏りが必要である。圧電体のPr-Eヒステリシス特性の偏りは、PZT中にNbやBiを添加することで実現できる。また、Pb量が多いほど偏り率が大きくなる。
 このように偏り率が大きい圧電体を使用することで、最終製品になった後からも、低い電圧(例えば、5V以下)で分極処理することが可能である。本実施形態によれば、デバイスの長期間使用後にリフレッシュ処理を行い、デバイスの感度を安定させることができる。また、高温下などの厳しい環境において使用した後に脱分極した場合に、リフレッシュ処理を行い、分極状態を元に戻すことができる。
 <リフレッシュ電圧の決定>
 リフレッシュ処理で印加する電圧(リフレッシュ電圧)は、図5の実験結果において、分極度の変化の傾きが急激に変化する10kV/cm以上の大きさの電界を印加するものであることが好ましい。この電界強度以上の大きな値の電界を印加することで80%以上の分極度が期待できる。
 センサ用途やアクチュエータ用途における圧電体膜の膜厚として、例えば、1μm以上5μm以下、好ましくは4μm以下、さらに好ましくは3μm以下を想定している。できる限り膜厚の薄いものが望ましく、例えば、1~2μmの膜厚の圧電体膜に対し、2V~3V程度のリフレッシュ電圧を印加してリフレッシュ処理を行う構成とする。
 このリフレッシュ用の分極処理を行うタイミングはいつでも構わない。デバイスをスマートフォンや携帯電話、ゲーム機、デジタルカメラなどの電子機器に取り付けた後で定期的に或いは不定期にリフレッシュ処理を行うことで、常に良好な性能を維持できる。
 リフレッシュ処理の実施は、デバイスの立ち上げ時や機器のリセット時などに自動的行われる態様、ソフトウエアによる強制実施を行う態様、ユーザ操作に応じて適宜のタイミングで実施する態様など、様々な態様があり、いかなるタイミングで実施されてもよい。また、複数の圧電素子を含むデバイスの場合、それぞれの電極に個別にリフレッシュ電圧を印加しても構わないし、全チャンネル同時でも構わない。また、分極処理時間は1秒程度あれば充分である。実験データによれば、リフレッシュ電圧を1秒程度印加すると、リフレッシュ電圧を1分間印加した場合の80%以上の性能が出る。したがって、1秒程度の短時間のリフレッシュ電圧印加で充分である。
 <実施例1>
 予備実験と同様に、基板14としてのSOIウエハ上に下部電極を形成し、下部電極の上に重ねてNbを12%ドープしたPZT(NbドープPZT)を2μm厚形成した。この圧電体膜は、P-Eヒステリシスの偏り率が75%であり(図9参照)、予め分極されているものであった。この圧電体膜をそのまま(分極処理を行わずに)用い、上部電極を形成した後、リソグラフィー、アッシング、Si深掘り等のデバイス加工を行い、図3及び図4で説明した形態のジャイロセンサに加工した。
 圧電体膜の抗電界の値|Ec1|(絶対値が小さい方の抗電界Ec1の値)は6kV/cmであり、当該実施例1に係るジャイロセンサは、抗電界の値|Ec1|=6kV/cm以下の電界強度で駆動するデバイスである。
 駆動電圧は0.14Vとし、下部電極を接地し、上部電極にマイナス電圧を印加して駆動したところ、良好に動作することが確認できた。
 更に、この圧電体膜を長期間使用したことを想定して、意図的に逆方向に分極処理(逆分極処理)した。この逆分極処理によって、脱分極による性能が劣化した状態を作り出した。その後、電界強度が10kV/cmの電界が印加されるように、ASIC(図1の電子回路部30)から2Vほどの電圧を約1秒間印加した(下部電極を接地し、上部電極にマイナス電圧を印加した)。
 このリフレッシュ処理後、再び、0.14Vでの駆動を行ったところ、先ほどの駆動時より若干低いものの、実用上問題無いレベルで良好に動作した(図11の「実施例1」参照)。
 この実施例1では、逆分極処理によって脱分極の状態を発生させたが、実際のデバイスの長期使用による経時劣化や使用環境によって脱分極が発生することになり、リフレッシュ処理(リフレッシュ電圧の印加)によって、分極状態を回復させ、デバイスの動作性能を維持/回復させることができる。
 なお、リフレッシュ処理によって必ずしも完全に元の分極状態に戻すことができるものとは言えないが、デバイスの実用性能上問題のない許容範囲で性能を保つことができる。
 <リフレッシュ電圧の条件について>
 デバイスの性能を保つために印加する電界強度は圧電材料のPr-Eヒステリシスの偏りと関係がある。リフレッシュ処理で印加する電界強度は、デバイス駆動する電圧側(本例ではマイナス側)の抗電界値|Ec1|の3倍以下であることが好ましい。電界強度でいうと概ね30kV/cm程度以下となる。リフレッシュ処理で印加する電界強度の上限は抗電界値|Ec1|の3倍以下とすることが目安であるが、ASICで対処できる範囲であれば、3倍を超える値であってもよい。
 本実施例1では、マイナス側の抗電界値|Ec1|が約6kV/cmであるため(図9参照)、その3倍の18kV/cmの電界強度を印加すれば十分に分極処理(リフレッシュ処理)できる。
 具体的なリフレッシュ処理の電圧として、ASICの設計より、電圧値は5V以下が好ましく、より好ましくは3V以下であり、さらに好ましくは1.5V以下である。
 リフレッシュ電圧の下限については、微小電圧で動作するデバイスの駆動電圧よりも大きい電圧とする。つまり、リフレッシュ電圧は、デバイスを動作させる電界強度よりも大きい電界強度の電界を印加する電圧値とし、かつ、リフレッシュ電圧の印加によって圧電体膜に印加する電界強度は、抗電界の値|Ec1|の3倍以下とすることが好ましい。
 このような低い電圧による分極処理を実現するためには、デバイスを駆動する極性側(本実施例では負側)の抗電界の値をより小さくするような材料を設計するか、圧電体膜の厚みを薄くすることで実現できる。
 圧電材料の選択や膜厚の設計は、発明を実施する際の設計パラメータとなる。
 <実施例2>
 実施例1の圧電体膜に代えて、Nbのドープ量を8at%とし、Pr-Eヒステリシスの偏り率が23%、負側の抗電界が「-30kV/cm」の圧電体膜を2μm厚で作製し、他の条件は実施例1と同様のジャイロセンサを作製した。駆動電圧は0.14Vとし、下部電極を接地し、上部電極にマイナス電圧を印加して駆動したところ、良好に動作することが確認できた。
 この実施例2の圧電体膜は、逆分極処理された後に分極度が80%に達する電界強度が15kV/cmであった。
 更に、この圧電体膜を長期間使用したことを想定して、意図的に逆方向に分極処理(逆分極処理)した。この逆分極処理によって、脱分極による性能が劣化した状態を作り出した。その後、電界強度が15kV/cmの電界が印加されるように、ASIC(図1の電子回路部30)から3Vほどの電圧を約1秒間印加した(下部電極を接地し、上部電極にマイナス電圧を印加した)。
 このリフレッシュ処理後、再び、0.14Vでの駆動を行ったところ、先ほどの駆動時より若干低いものの、実用上問題無いレベルで良好に動作した(図11の「実施例2」参照)。
 <比較例1>
 比較例1として、Nbのドープ量を3at%とし、P-Eヒステリシスの偏り率が4%、負側の抗電界が-46kV/cmの圧電体膜を2μm厚で作製した。この圧電体膜は予め十分に分極されていないため、成膜後にAl電極を圧電体膜の全面に形成し、分極処理を実施した。その後、Al電極はエッチングして剥離し、上部電極を形成した。その後、リソグラフィー、アッシング、Si深掘り等のデバイス加工を行い、図3及び図4と同様の形態のジャイロセンサを作製した。
 得られたデバイスの特性を調べたところ、分極が十分ではなく、脱分極していると思われる素子があった。これはどの工程で脱分極したか明確に解明することはできなかった。
 この比較例1の圧電体膜は、逆分極処理された後に分極度が80%に達する電界強度が30kV/cmであった。当該比較例1のデバイスを再分極処理するためには、6V以上の電圧印加が必要であり、ASICによる分極処理はできなかった(図11の「比較例1」参照)。
 <比較例2>
 比較例2として、Nbのドープ量を0at%とし、P-Eヒステリシスの偏り率が3%、負側の抗電界が-48kV/cmの圧電体膜を2μm厚で作製した。この圧電体膜は予め分極されていないため、成膜後にAl電極を圧電体膜の全面に形成し、分極処理を実施した。その後、Al電極はエッチングして剥離し、上部電極を形成した。その後、リソグラフィー、アッシング、Si深掘り等のデバイス加工を行い、図3及び図4と同様の形態のジャイロセンサを作製した。
 得られたデバイスの特性を調べたところ、分極が十分ではなく、脱分極していると思われる素子があった。この比較例2の圧電体膜は、逆分極処理された後に分極度が80%に達する電界強度が60kV/cmであった。当該比較例2のデバイスを再分極処理するためには、12V以上の電圧印加が必要であり、ASICによる分極処理はできなかった(図11の「比較例2」参照)。
 上述した実施例1、2及び比較例1、2について得られた結果を図11の表にまとめた。図11の表における判定欄について「A」は良好な評価を表し、「C」は不良或いは不適当の評価を示す記号である。
 図11では、実施例1(偏り率75%)、実施例2(偏り率23%)を示したが、偏り率20%以上のものについて、良好な結果が得られる。特に、偏り率70%以上のものについて、より低いリフレッシュ電圧での分極状態の回復が可能である。さらに初期状態での分極状況が良好であるため、材料として好ましい。
 実施例1(偏り率75%)の結果から条件のバラツキなどを考慮すれば、偏り率が70%以上あれば十分であると考えられる。
 <角速度センサ(ジャイロセンサ)における自動リフレッシュ機能について>
 図12は、本発明の他の実施形態を示す構成図である。図12中、図1に示した構成と同一又は類似する要素には同一の符号を付し、その説明は省略する。
 既に説明したとおり、角速度センサやジャイロセンサなどとして用いられる圧電デバイス10は、駆動用の圧電素子20、22と、検出用の圧電素子26とが組み合わされた構成を備えており、駆動用の圧電素子20、22を駆動したときに検出用の圧電素子26から検出電圧が得られる。したがって、ある特定の駆動電圧で駆動したときに出力される検出電圧を基準値(予め定められている閾値)と比較することにより、脱分極による性能低下が発生しているか否かを判別することができる。
 図12に示す実施形態は、脱分極による性能低下の有無を自動判別してリフレッシュ処理の実行を制御する制御回路38(「制御手段」に相当)を備えた構成である。
 すなわち、制御回路38は、駆動用の圧電素子20、22を所定の駆動電圧で駆動したときに検出用の圧電素子26から出力される検出電圧が基準値よりも低い場合にリフレッシュ電圧印加回路36からセンサ素子部28に電圧を印加する制御回路38を備える。
 制御回路38は、駆動回路32に指令を送り、ある特定の(所定の)駆動電圧で駆動用の圧電素子20、22を駆動し、その駆動時に検出用の圧電素子26から得られる検出電圧の情報を取得する。この検出電圧が予め定められている基準値よりも低い場合に、脱分極による性能低下が発生していると判定することができる。制御回路38は、この判定結果に基づき、リフレッシュ処理の要否を自動判別して、必要な場合にリフレッシュ電圧印加回路36に指令を送り、リフレッシュ電圧印加回路36からリフレッシュ電圧を供給させる。
 制御回路38としては、例えば、検出回路34から得られる信号と、所定の基準値とを比較して、その比較結果を出力する比較器を用いる態様、或いは、CPU(中央演算処理装置)を用いる態様など、様々な設計が可能である。
 このような制御機能を実現する制御回路38をASIC(電子回路部30)に搭載することができる。なお、制御回路38は、電子回路部30に搭載する形態に限らず、外部の回路部又は装置に搭載することも可能である。
 <他の応用例>
 本発明は、上記に例示した角速度センサ、ジャイロセンサに限らず、様々な形態のセンサデバイスやアクチュエータデバイスに適用することができる。図1で例示した駆動用アクチュエータ(逆圧電効果を利用)と、センサ用圧電体(圧電効果を利用)とが組み合わされた構成のセンサに限らず、圧電効果のみを利用するセンサ素子や、逆圧電効果のみを利用するアクチュエータ素子についても本発明を適用することも可能である。
 なお、駆動用の圧電素子を備えていないセンサデバイスの場合、検出用の圧電素子の電極間に発生する電位差に対応した電界強度が、当該デバイスを「動作させる電界強度」に相当する。
 本発明の圧電体デバイスの用途は、角速度センサ、加速度センサ、圧力センサ、アクチュエータ、発電デバイスなど、様々な用途があり得るが、特に、微小な電圧駆動領域や微小電圧のセンシングに用いるものについて効果を発揮する。
 本発明は以上説明した実施形態に限定されるものではなく、本発明の技術的思想内で当該分野の通常の知識を有するものにより、多くの変形が可能である。
 1…基板、2…振動部、3…固着部、4…下部電極、5…圧電体、6…駆動電極、7…検出電極、10…圧電デバイス、12…振動部、14…基板、20…圧電素子、22…圧電素子、26…圧電素子、28…センサ素子部、30…電子回路部、32…駆動回路、34…検出回路、36…リフレッシュ電圧印加回路、38…制御回路

Claims (14)

  1.  圧電体膜の圧電効果及び逆圧電効果の少なくとも一方を利用して動作する圧電デバイスにおいて、
     圧電材料のバイポーラ分極-電界(Pr-E)ヒステリシス特性がゼロ電界の軸を基準としたときに非対称となる偏りを持ち、
     前記圧電材料における抗電界のうち、絶対値の小さい方の第1の抗電界をEc1、絶対値の大きい方の第2の抗電界をEc2とし、
     抗電界の偏り率を〔(Ec2+Ec1)/(Ec2-Ec1)〕×100[%]と定義するとき、
     前記抗電界の偏り率が20%以上である前記圧電体膜が用いられ、前記第1の抗電界よりも小さい電界強度で動作する圧電素子部と、
     前記圧電体膜の分極状態を回復させて前記圧電デバイスの動作性能を保つために、前記動作させる前記電界強度よりも大きく、かつ前記第1の抗電界の絶対値|Ec1|の3倍以下の電界強度となる電圧を印加するリフレッシュ電圧印加回路と、
     を備える圧電デバイス。
  2.  前記圧電体膜の前記偏り率が70%以上である請求項1に記載の圧電デバイス。
  3.  前記圧電素子部を駆動する駆動電圧を前記圧電素子部に供給する駆動回路及び前記圧電素子部から得られる電圧信号を検出する検出回路のうち少なくとも一方の回路を備える請求項1又は2に記載の圧電デバイス。
  4.  前記リフレッシュ電圧印加回路は、前記駆動回路及び前記検出回路のうち少なくとも一方の回路に組み込まれている請求項3に記載の圧電デバイス。
  5.  前記駆動回路及び前記検出回路のうち少なくとも一方の回路と、前記リフレッシュ電圧印加回路とを含んだ電子回路部が集積回路で構成される請求項3又は4に記載の圧電デバイス。
  6.  前記リフレッシュ電圧印加回路から前記圧電素子部に供給する電圧の大きさは5V以下である請求項1から5のいずれか1項に記載の圧電デバイス。
  7.  前記圧電素子部は、第1電極と、前記圧電体膜と、第2電極とが積層された積層構造を有し、
     前記リフレッシュ電圧印加回路は、前記第1電極を接地したときに、前記第2電極にマイナス電圧を印加する請求項1から6のいずれか1項に記載の圧電デバイス。
  8.  前記圧電体膜がペロブスカイト型の酸化物である請求項1から7のいずれか1項に記載の圧電デバイス。
  9.  前記圧電体膜が、次の一般式(P-1)で表される1種又は複数種のペロブスカイト型酸化物(不可避不純物を含んでいても良い。)からなる請求項1から8のいずれか1項に記載の圧電デバイス。
     一般式 Pb(Zrb1Tib2b3)O・・・(P-1)
    (式(P-1)中、XはV族及びVI族の元素群より選ばれた少なくとも1種の金属元素である。a>0、b1>0、b2>0、b3≧0。a≧1.0であり、かつb1+b2+b3=1.0である場合が標準であるが、これらの数値はペロブスカイト構造を取り得る範囲内で1.0からずれてもよい。)
  10.  前記圧電体膜のXがNbであり、b3が0.05以上0.3以下である請求項9に記載の圧電デバイス。
  11.  前記圧電体膜のXがNb、Biのうち少なくとも1種の金属元素である請求項9又は10に記載の圧電デバイス。
  12.  前記圧電体膜の前記一般式(P-1)中のaが1.1以上である請求項9から11のいずれか1項に記載の圧電デバイス。
  13.  前記圧電素子部は、前記逆圧電効果を利用して動作する駆動用の圧電素子と、前記圧電効果を利用して動作する検出用の圧電素子と、を含み、
     前記駆動用の圧電素子を所定の駆動電圧で駆動したときに前記検出用の圧電素子から出力される検出電圧が基準値よりも低い場合に前記リフレッシュ電圧印加回路から前記圧電素子部に電圧を印加する制御手段を備える請求項1から12のいずれか1項に記載の圧電デバイス。
  14.  圧電材料のバイポーラ分極-電界(Pr-E)ヒステリシス特性がゼロ電界の軸を基準としたときに非対称となる偏りを持ち、
     前記圧電材料における抗電界のうち、絶対値の小さい方の第1の抗電界をEc1、絶対値の大きい方の第2の抗電界をEc2とし、
     抗電界の偏り率を〔(Ec2+Ec1)/(Ec2-Ec1)〕×100[%]と定義するとき、
     前記抗電界の偏り率が20%以上である圧電体膜を用い、
     前記圧電体膜の圧電効果及び逆圧電効果の少なくとも一方を利用して前記第1の抗電界よりも小さい電界強度で動作させる圧電デバイスの使用方法であって、
     前記圧電デバイスの動作性能を保つために、前記動作させる前記電界強度よりも大きく、かつ前記第1の抗電界の絶対値|Ec1|の3倍以下の電界強度となる電圧を印加して前記圧電体膜の分極状態を回復させる圧電デバイスの使用方法。
PCT/JP2013/074215 2012-09-19 2013-09-09 圧電デバイス及びその使用方法 WO2014045914A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13840021.3A EP2899766B1 (en) 2012-09-19 2013-09-09 Piezoelectric device and method for using same
US14/661,114 US9437801B2 (en) 2012-09-19 2015-03-18 Piezoelectric device and method for using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-205691 2012-09-19
JP2012205691A JP5756786B2 (ja) 2012-09-19 2012-09-19 圧電デバイス及びその使用方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/661,114 Continuation US9437801B2 (en) 2012-09-19 2015-03-18 Piezoelectric device and method for using same

Publications (1)

Publication Number Publication Date
WO2014045914A1 true WO2014045914A1 (ja) 2014-03-27

Family

ID=50341229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074215 WO2014045914A1 (ja) 2012-09-19 2013-09-09 圧電デバイス及びその使用方法

Country Status (5)

Country Link
US (1) US9437801B2 (ja)
EP (1) EP2899766B1 (ja)
JP (1) JP5756786B2 (ja)
TW (1) TW201414026A (ja)
WO (1) WO2014045914A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11913851B2 (en) 2020-08-31 2024-02-27 Japan Display Inc. Pressure sensor

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012111972A1 (de) * 2012-12-07 2014-06-12 Epcos Ag Verfahren zur Herstellung eines elektronischen Bauteils
JP6258241B2 (ja) * 2015-02-27 2018-01-10 富士フイルム株式会社 圧電アクチュエータ
WO2016190110A1 (ja) * 2015-05-25 2016-12-01 コニカミノルタ株式会社 圧電薄膜、圧電アクチュエータ、インクジェットヘッド、インクジェットプリンタおよび圧電アクチュエータの製造方法
JP2017094615A (ja) 2015-11-25 2017-06-01 株式会社リコー 液体吐出ヘッド、液体吐出ユニット及び液体を吐出する装置
KR101823628B1 (ko) * 2016-11-17 2018-01-31 한국과학기술원 압전체 편극 장치 및 이를 이용한 편극 방법
JP6972768B2 (ja) * 2017-08-22 2021-11-24 株式会社デンソー 可変焦点ミラーシステム
JP7201603B2 (ja) * 2017-09-12 2023-01-10 日本碍子株式会社 圧電素子の製造方法
US11730058B2 (en) * 2018-09-20 2023-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated heater (and related method) to recover degraded piezoelectric device performance
US11456330B2 (en) * 2019-08-07 2022-09-27 Taiwan Semiconductor Manufacturing Company, Ltd. Fatigue-free bipolar loop treatment to reduce imprint effect in piezoelectric device
US11439015B2 (en) * 2019-10-10 2022-09-06 International Business Machines Corporation Surface mount device placement to control a signal path in a printed circuit board
JP7316927B2 (ja) * 2019-12-05 2023-07-28 富士フイルム株式会社 圧電memsデバイス、製造方法および駆動方法
JP7316926B2 (ja) * 2019-12-05 2023-07-28 富士フイルム株式会社 圧電memsデバイス、製造方法および駆動方法
JP2023038732A (ja) * 2021-09-07 2023-03-17 株式会社東芝 磁気ディスク装置及びマイクロアクチュエータのバイアス電圧及び駆動電圧の切り替え方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082309A (ja) 1994-06-20 1996-01-09 Kyokuto Kaihatsu Kogyo Co Ltd 貨物自動車における牽引装置
JP2004180496A (ja) * 2002-11-15 2004-06-24 Matsushita Electric Ind Co Ltd 圧電体アクチュエータの駆動方法および圧電体アクチュエータ並びにこれを用いたディスク記録再生装置
JP2004338326A (ja) * 2003-05-19 2004-12-02 Kyocera Corp インクジェット記録装置およびその制御方法
JP2005340631A (ja) 2004-05-28 2005-12-08 Sony Corp 圧電素子部品及び電子装置
JP2007040879A (ja) 2005-08-04 2007-02-15 Nec Tokin Corp 圧電振動ジャイロ用振動子の分極方法
JP2011059125A (ja) 2010-10-28 2011-03-24 Panasonic Corp 角速度センサ素子
JP2011078203A (ja) 2009-09-30 2011-04-14 Fujifilm Corp 圧電アクチュエータとその駆動方法、液体吐出装置、圧電型超音波振動子
JP2011138925A (ja) * 2009-12-28 2011-07-14 Fujifilm Corp アクチュエータ素子とその駆動方法、製造方法、デバイス検査方法、並びにmemsスイッチ
JP2011176038A (ja) * 2010-02-23 2011-09-08 Fujifilm Corp アクチュエータ及びアクチュエータ構造体、並びにアクチュエータの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482309A (ja) 1990-07-24 1992-03-16 Murata Mfg Co Ltd 圧電体の分極方法
JP3805837B2 (ja) * 1996-08-12 2006-08-09 トヨタ自動車株式会社 角速度検出装置
KR100883374B1 (ko) * 2001-04-06 2009-02-11 리코 프린팅 시스템즈 가부시키가이샤 예비분사장치 및 예비분사장치를 갖추는 잉크젯 기록장치
US7230597B2 (en) * 2001-07-13 2007-06-12 Tpo Hong Kong Holding Limited Active matrix array devices
JP3788759B2 (ja) * 2001-11-02 2006-06-21 リコープリンティングシステムズ株式会社 インクジェットプリンタ用ライン型記録ヘッド
JP4288908B2 (ja) * 2002-07-26 2009-07-01 リコープリンティングシステムズ株式会社 インクジェット記録装置
US7141911B2 (en) * 2002-11-15 2006-11-28 Matsushita Electric Industrial Co., Ltd. Driving method of piezoelectric actuator, piezoelectric actuator, and disk recording and reproducing apparatus using the same
JP4403707B2 (ja) * 2003-03-25 2010-01-27 リコープリンティングシステムズ株式会社 インク滴吐出状態検知装置及びインクジェット記録装置
JPWO2009157189A1 (ja) * 2008-06-27 2011-12-08 パナソニック株式会社 圧電体素子とその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082309A (ja) 1994-06-20 1996-01-09 Kyokuto Kaihatsu Kogyo Co Ltd 貨物自動車における牽引装置
JP2004180496A (ja) * 2002-11-15 2004-06-24 Matsushita Electric Ind Co Ltd 圧電体アクチュエータの駆動方法および圧電体アクチュエータ並びにこれを用いたディスク記録再生装置
JP2004338326A (ja) * 2003-05-19 2004-12-02 Kyocera Corp インクジェット記録装置およびその制御方法
JP2005340631A (ja) 2004-05-28 2005-12-08 Sony Corp 圧電素子部品及び電子装置
JP2007040879A (ja) 2005-08-04 2007-02-15 Nec Tokin Corp 圧電振動ジャイロ用振動子の分極方法
JP2011078203A (ja) 2009-09-30 2011-04-14 Fujifilm Corp 圧電アクチュエータとその駆動方法、液体吐出装置、圧電型超音波振動子
JP2011138925A (ja) * 2009-12-28 2011-07-14 Fujifilm Corp アクチュエータ素子とその駆動方法、製造方法、デバイス検査方法、並びにmemsスイッチ
JP2011176038A (ja) * 2010-02-23 2011-09-08 Fujifilm Corp アクチュエータ及びアクチュエータ構造体、並びにアクチュエータの製造方法
JP2011059125A (ja) 2010-10-28 2011-03-24 Panasonic Corp 角速度センサ素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2899766A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11913851B2 (en) 2020-08-31 2024-02-27 Japan Display Inc. Pressure sensor

Also Published As

Publication number Publication date
EP2899766A1 (en) 2015-07-29
EP2899766B1 (en) 2017-04-05
JP2014060330A (ja) 2014-04-03
EP2899766A4 (en) 2016-06-08
US20150194591A1 (en) 2015-07-09
US9437801B2 (en) 2016-09-06
JP5756786B2 (ja) 2015-07-29
TW201414026A (zh) 2014-04-01

Similar Documents

Publication Publication Date Title
JP5756786B2 (ja) 圧電デバイス及びその使用方法
JP5539430B2 (ja) 電子機器の製造方法
US8864288B2 (en) Piezoelectric device, method of manufacturing piezoelectric device, and liquid ejection head
JP5836754B2 (ja) 圧電体素子及びその製造方法
KR100978145B1 (ko) 에피택셜 산화물막, 압전막, 압전막 소자, 압전막 소자를이용한 액체 토출 헤드 및 액체 토출 장치
EP1703253A1 (en) Angular velocity sensor and manufacturing method thereof
WO2010122707A1 (ja) 圧電体薄膜とその製造方法、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP5275698B2 (ja) 圧電体膜の分極方法および圧電素子構造体の製造方法
JP4691614B1 (ja) 圧電体薄膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
JP6699662B2 (ja) 圧電薄膜、圧電アクチュエータ、インクジェットヘッド、インクジェットプリンタおよび圧電アクチュエータの製造方法
JP2008265289A (ja) 液体吐出ヘッド及び液体吐出装置
WO2008059781A1 (fr) Composant électronique et son procédé de fabrication
JP2011044528A (ja) 圧電素子、圧電アクチュエーター、液体噴射ヘッドおよび液体噴射装置
JP2013247216A (ja) 圧電素子およびそれを備えたインクジェットヘッド
JP2009206329A (ja) 圧電素子およびその製造方法、圧電アクチュエータ、並びに、液体噴射ヘッド
JP2018190890A (ja) 圧電膜を有する積層基板、圧電膜を有する素子および圧電膜を有する積層基板の製造方法
JP2009170631A (ja) 圧電素子とその製造方法およびこれを用いた圧電応用デバイス
JP2009123974A (ja) 圧電素子、角速度センサ、及び圧電素子の製造方法
JP6365347B2 (ja) 圧電デバイス、圧電デバイスの製造方法、インクジェットヘッド、インクジェットヘッドの製造方法およびインクジェットプリンタ
JP4815743B2 (ja) 圧電素子の製造方法
JP5384843B2 (ja) 圧電素子構造体の製造方法および圧電素子構造体
JP2009123972A (ja) 圧電素子、角速度センサ、及び圧電素子の製造方法
JP6193599B2 (ja) 角速度センサ及びその製造方法
JP2007281338A (ja) 圧電素子および圧電材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840021

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013840021

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013840021

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE