WO2014045721A1 - 配線基板、および、配線基板の製造方法 - Google Patents

配線基板、および、配線基板の製造方法 Download PDF

Info

Publication number
WO2014045721A1
WO2014045721A1 PCT/JP2013/070841 JP2013070841W WO2014045721A1 WO 2014045721 A1 WO2014045721 A1 WO 2014045721A1 JP 2013070841 W JP2013070841 W JP 2013070841W WO 2014045721 A1 WO2014045721 A1 WO 2014045721A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring pattern
connection conductor
interlayer connection
insulating layer
wiring board
Prior art date
Application number
PCT/JP2013/070841
Other languages
English (en)
French (fr)
Inventor
伊藤悟志
守屋要一
金森哲雄
八木幸弘
山本祐樹
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014536658A priority Critical patent/JP5928601B2/ja
Publication of WO2014045721A1 publication Critical patent/WO2014045721A1/ja
Priority to US14/635,429 priority patent/US20150173185A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4661Adding a circuit layer by direct wet plating, e.g. electroless plating; insulating materials adapted therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0338Layered conductor, e.g. layered metal substrate, layered finish layer, layered thin film adhesion layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09563Metal filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0369Etching selective parts of a metal substrate through part of its thickness, e.g. using etch resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0548Masks
    • H05K2203/0554Metal used as mask for etching vias, e.g. by laser ablation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/063Lamination of preperforated insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1105Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1461Applying or finishing the circuit pattern after another process, e.g. after filling of vias with conductive paste, after making printed resistors

Definitions

  • the present invention relates to a structure of a wiring board having a wiring pattern and a manufacturing method.
  • an interlayer connection conductor (via hole conductor) is provided in order to electrically connect wiring patterns between different layers.
  • the interlayer connection conductor is generally formed by providing a through hole in a wiring board and plating the inner wall of the through hole. This forming method has a problem in productivity, economy, and the like because the chemicals for the plating process are expensive or the processing time is long.
  • a frustoconical projection is formed on one side of a metal plate, and an insulating layer is formed on the projection side of the metal plate with a thickness similar to the height of the projection. Then, there is a method of joining a metal foil to the surface of the insulating layer, patterning the metal foil and the metal plate, and forming a wiring board (see, for example, Patent Document 1).
  • a conductive adhesive was attached to the tip (upper surface) of the protrusion to ensure electrical connection between the metal foil and the protrusion.
  • the conductive adhesive may ooze out in the plane direction, which may cause unnecessary conduction in the wiring board and cause a short circuit failure.
  • thermal stress may be generated due to the difference in expansion coefficient between the insulating layer and the metal foil, and the metal foil may be peeled off from the insulating layer.
  • the electrical connection by the adhesive is broken and poor conduction occurs.
  • the object of the present invention is to ensure the electrical connection between the metal foil and the protrusion without using a conductive adhesive, and to prevent the connection reliability from being lowered due to delamination or the like. And a method of manufacturing a wiring board.
  • the wiring board according to the present invention includes an insulating layer, a first wiring pattern and a second wiring pattern arranged with the insulating layer interposed therebetween, and the first wiring penetrating the insulating layer in the thickness direction.
  • An interlayer connection conductor conducting to the pattern and the second wiring pattern, the interlayer connection conductor being formed integrally with the first wiring pattern, and the second wiring pattern and the intermetallic compound Are joined through.
  • the first wiring pattern and the interlayer connection conductor are integrally formed as one and the same metal member, there is no bonding interface between the first wiring pattern and the interlayer connection conductor, and the first The mechanical connection and electrical connection between the wiring pattern and the interlayer connection conductor become strong.
  • the second wiring pattern and the interlayer connection conductor are chemically bonded via an intermetallic compound, the bonding state is more stable than physical contact or adhesion using a conductive adhesive.
  • the mechanical connection and electrical connection between the wiring pattern and the interlayer connection conductor are also strong. Therefore, the connection reliability between the first wiring pattern and the second wiring pattern is high.
  • a wiring board can be formed without using a conductive adhesive, and occurrence of a short-circuit failure due to bleeding of the conductive adhesive can be prevented.
  • the interlayer connection conductor is bonded to the second wiring pattern in a state in which the interlayer connecting conductor has bite into the second wiring pattern side with respect to the bonding interface between the second wiring pattern and the insulating layer. It is preferable that
  • the bonding interface between the interlayer connection conductor and the second wiring pattern is located on a different plane from the bonding interface between the insulating layer and the second wiring pattern. Then, since the thermal stress accompanying the temperature change of the wiring board is less likely to act on the bonding interface between the interlayer connection conductor and the second wiring pattern, the bonding interface between the interlayer connection conductor and the second wiring pattern is peeled off. It becomes difficult and connection reliability becomes higher.
  • the interlayer connection conductor has a roughened bonding interface with the second wiring pattern.
  • a method for manufacturing a wiring board according to the present invention is for manufacturing the above-described wiring board, and includes a pre-reaction medium forming process, an interlayer connection conductor forming process, a lamination process, a wiring pattern forming process, and a heating process. It is preferred to implement.
  • the pre-reaction medium forming process the pre-reaction medium of the intermetallic compound is formed on one side of the metal plate.
  • the interlayer connection conductor forming process the laminated body of the pre-reaction medium and the metal plate is partially removed from the pre-reaction medium side except for the region to be the interlayer connection conductor.
  • the insulating layer in which the interlayer connection conductor is embedded and the metal foil bonded to the surface of the insulating layer are formed in the laminate.
  • the first wiring pattern is formed from the metal plate, and the second wiring pattern is formed from the metal foil.
  • the intermetallic compound is formed by heating the laminate and reacting the pre-reaction medium.
  • the stacking process forms an insulating layer thinner than a height of the interlayer connection conductor, and a metal foil thicker than a height at which the interlayer connection conductor protrudes from the insulating layer is formed on the insulating layer. It is preferable to make it press-fit to.
  • the first wiring pattern and the interlayer connection conductor are integrally formed, and the second wiring pattern and the interlayer connection conductor are chemically bonded via the intermetallic compound.
  • the mechanical connection and electrical connection between the wiring pattern or the second wiring pattern and the interlayer connection conductor become strong. Therefore, delamination does not easily occur between the first wiring pattern or the second wiring pattern and the insulating layer, and the connection reliability is high.
  • the second wiring pattern and the interlayer connection conductor are joined by chemically reacting the pre-reaction medium of the intermetallic compound, there is no need to attach a conductive adhesive on the interlayer connection conductor at the time of manufacture. It is possible to prevent the occurrence of short-circuit defects due to the seepage of the conductive adhesive.
  • FIG. 1 is a schematic cross-sectional view of a wiring board 1 according to a first embodiment of the present invention.
  • the wiring substrate 1 includes an insulating layer 2 made of an insulating resin, an upper main surface wiring pattern 3 made of a conductive material, a lower main surface wiring pattern 4 made of a conductive material, and an interlayer connection conductor 5 made of a conductive material. It is equipped with.
  • the insulating layer 2 has a flat plate shape having an upper main surface and a lower main surface.
  • the insulating layer 2 is formed with a cylindrical through-hole 2A that opens in an upper main surface and a lower main surface.
  • the upper main surface wiring pattern 3 is a land or wiring pattern on which electronic components (not shown) are mounted.
  • the upper main surface wiring pattern 3 is patterned on the upper main surface of the insulating layer 2 so as to cover the through hole 2A.
  • the lower main surface wiring pattern 4 is connected to electrodes on a main substrate (for example, a mother board) (not shown) or used as a wiring pattern in the substrate.
  • the lower main surface wiring pattern 4 is patterned on the lower main surface of the insulating layer 2 so as to cover the through holes 2A.
  • the interlayer connection conductor 5 passes through the insulating layer 2 through the through hole 2A.
  • the interlayer connection conductor 5 is electrically connected to the upper main surface wiring pattern 3 at the upper end and is electrically connected to the lower main surface wiring pattern 4 at the lower end. Therefore, the electronic component and the main board are conducted through the upper main surface wiring pattern 3, the interlayer connection conductor 5, and the lower main surface wiring pattern 4.
  • the interlayer connection conductor 5 and the lower main surface wiring pattern 4 are formed integrally. That is, the lower main surface wiring pattern 4 is a first wiring pattern integrally formed with the interlayer connection conductor 5, and the interlayer connection conductor 5 and the lower main surface wiring pattern 4 are made of the same metal member. , There is no bonding interface between them.
  • the interlayer connection conductor 5 and the upper main surface wiring pattern 3 are formed separately. That is, the upper main surface wiring pattern 3 is a second wiring pattern, and the interlayer connection conductor 5 and the upper main surface wiring pattern 3 are made of metal members that are not integrally formed.
  • An intermetallic compound 6 is formed at the bonding interface between the interlayer connection conductor 5 and the upper main surface wiring pattern 3. The intermetallic compound 6 is chemically bonded to the upper main surface wiring pattern 3 and chemically bonded to the interlayer connection conductor 5.
  • the lower main surface wiring pattern 4 and the interlayer connection conductor 5 are integrally formed, mechanical connection and electrical connection between the lower main surface wiring pattern 4 and the interlayer connection conductor 5 become strong. Moreover, since the upper main surface wiring pattern 3 and the interlayer connection conductor 5 are chemically bonded via the intermetallic compound 6, a stable bonding state is obtained as compared with physical contact or adhesion with a conductive adhesive. The mechanical connection and electrical connection between the upper main surface wiring pattern 3 and the interlayer connection conductor 5 are also strong. Therefore, the connection reliability between the upper main surface wiring pattern 3 and the lower main surface wiring pattern 4 is high.
  • FIG. 2 is a schematic diagram showing a manufacturing process of the wiring board 1 according to the first embodiment.
  • a pre-reaction medium forming process is performed.
  • a flat metal plate 11 is prepared, and a pre-reaction medium 12 of an intermetallic compound is formed on one surface of the metal plate 11.
  • the pre-reaction medium 12 is preferably laminated on the metal plate 11 by plating.
  • the pre-reaction medium 12 may be any material as long as it can form an intermetallic compound with the material of the metal plate 11. For example, when copper is used as the metal plate 11, it is preferable to combine the pre-reaction medium 12 with tin or the like that is alloyed with copper by low-temperature heating.
  • the plate-like pre-reaction medium 12 is bonded to the metal plate 11, the liquid pre-reaction medium 12 is applied to the metal plate 11, or the metal 12 is melted or vaporized and vapor-deposited on the metal plate 11.
  • the pre-reaction medium 12 may be laminated on the metal plate 11.
  • an interlayer connection conductor formation process is performed.
  • the laminate of the metal plate 11 and the pre-reaction medium 12 is partially removed from the pre-reaction medium 12 side to form the interlayer connection conductor 5.
  • the interlayer connection conductor 5 is preferably formed by an etching method. In that case, a dry film resist is laminated on both main surfaces of the laminate of the metal plate 11 and the pre-reaction medium 12, and etching is performed after exposure and development.
  • the interlayer connection conductor 5 may be formed using a mechanical processing method such as a cutting method.
  • the insulating layer 2 is laminated on the interlayer connecting conductor 5 side with respect to the laminated body of the metal plate 11 and the pre-reaction medium 12, and on the surface side of the insulating layer 2.
  • Metal foil 13 is joined.
  • the insulating layer 2 has substantially the same thickness as the length of the interlayer connection conductor 5, whereby the interlayer connection conductor 5 is embedded in the insulation layer 2.
  • the insulating layer 2 and the metal foil 13 may be pressure-bonded to the laminate by stacking and pressing a semi-cured insulating resin sheet and a metal foil on the laminate.
  • the lower main surface wiring is formed from the metal plate 11 exposed on the lower surface of the laminate composed of the metal plate 11, the pre-reaction medium 12, the insulating layer 2, and the metal foil 13.
  • the pattern 4 is formed, and the upper main surface wiring pattern 3 is formed from the metal foil 13 exposed on the upper surface of the laminate.
  • the lower main surface wiring pattern 4 and the upper main surface wiring pattern 3 are preferably formed by an etching method. In that case, it is preferable to perform etching after laminating a dry film resist on both main surfaces of the laminate of the metal plate 11 and the pre-reaction medium 12 to form a negative pattern by exposure and development.
  • the heating process as shown in FIG. 2 (S15), the laminated body composed of the lower main surface wiring pattern 4, the interlayer connection conductor 5, the insulating layer 2, and the upper main surface wiring pattern 3 is heated, and the interlayer connection conductor 5 Then, the laminated body composed of the insulating layer 2 and the upper main surface wiring pattern 3 is heated to cause the pre-reaction medium 12 provided at the upper end portion of the interlayer connection conductor 5 to react to form the intermetallic compound 6.
  • the interlayer connection conductor 5 and the upper main surface wiring pattern 3 are joined by the chemical reaction of the pre-reaction medium 12 plated on the upper end portion of the interlayer connection conductor 5. Therefore, no conductive adhesive is required for joining the interlayer connection conductor 5 and the upper main surface wiring pattern 3. Thereby, it is possible to prevent the occurrence of short-circuit failure due to the seepage of the conductive adhesive.
  • the sample of the wiring board 1 is a laminate formed by using a copper plate having a thickness of 0.5 mm as the metal plate 11 and plating a 1 ⁇ m-thick tin film as the pre-reaction medium.
  • a resist having a circular pattern having a diameter of 0.6 mm is provided on the laminate, and the interlayer connection conductor 5 having a height of 0.3 mm is formed by etching.
  • a through hole having a diameter of 0.6 mm is punched at a position overlapping with the interlayer connection conductor 5 using a punching machine such as a mechanical punch in a semi-cured resin sheet, and the resin sheet has a thickness of 0.3 mm. It overlaps with the metal plate 11 so that it becomes.
  • a metal foil 13 having a thickness of 0.2 mm is stacked on the surface of the resin sheet, the resin sheet and the metal foil 13 are thermocompression bonded by a thermocompression press, and the resin sheet is heated and cured in an oven to form the insulating layer 2 It is.
  • the upper main surface wiring pattern 3 and the lower main surface wiring pattern 4 are formed by etching the metal foil 13 and the metal plate 11, and the basis of the heating conditions necessary for forming the intermetallic compound 6 from the pre-reaction medium. Then, the wiring board 1 is manufactured by performing heating again.
  • FIG. 3 is a diagram showing the relationship between the number of heat cycles and the resistance change rate with respect to the sample of the wiring board 1.
  • the relationship between the number of heat cycles and the rate of resistance change is shown for the wiring board according to the comparative example as well as the wiring board according to the example.
  • a substrate that does not use an intermetallic compound or a conductive adhesive is used for bonding between the interlayer connection conductor and the upper main surface wiring pattern.
  • the resistance change rate gradually increased until the number of heat cycles was about 200, and when the number of heat cycles exceeded about 300, the resistance change rate showed a steep increase.
  • the rate of change in resistance showed a steep increase from the stage where the number of heat cycles was less than 100. From this, it can be seen that in the wiring board according to the example, the bonding between the interlayer connection conductor 5 and the upper principal surface wiring pattern 3 is more stable than the wiring board according to the comparative example. That is, it can be confirmed that high connection reliability can be realized by chemically bonding the interlayer connection conductor 5 and the upper main surface wiring pattern 3 via an intermetallic compound.
  • FIG. 4 is a schematic cross-sectional view of a wiring board 21 according to the second embodiment of the present invention.
  • the wiring substrate 21 includes an insulating layer 22 made of an insulating resin, an upper main surface wiring pattern 23 made of a conductive material, a lower main surface wiring pattern 24 made of a conductive material, and an interlayer connection conductor 25 made of a conductive material. It is equipped with.
  • the wiring board 21 has substantially the same configuration as that of the wiring board 1 described above, but the interlayer connection conductor 25 bites into the upper main surface wiring pattern 23 side rather than the bonding interface between the upper main surface wiring pattern 23 and the insulating layer 22. In this state, the intermetallic compound 26 provided at the upper end of the interlayer connection conductor 25 is different from the above-described wiring board 1 in that it is embedded in the upper main surface wiring pattern 23.
  • the bonding interface between the interlayer connection conductor 25 and the upper main surface wiring pattern 23 is located on a different plane from the bonding interface between the insulating layer 22 and the upper main surface wiring pattern 23.
  • the thermal stress accompanying the temperature change of the wiring board 21 is less likely to act on the bonding interface between the interlayer connection conductor 25 and the upper main surface wiring pattern 23. Therefore, the interlayer connection conductor 25 and the upper main surface wiring pattern 23 Peeling of the bonding interface is less likely to occur, and connection reliability is further improved.
  • FIG. 5 is a schematic view showing a manufacturing process of the wiring board 21 according to the second embodiment.
  • a pre-reaction medium forming process is performed.
  • a flat metal plate 31 is prepared, and a pre-reaction medium 32 of an intermetallic compound is formed on one surface of the metal plate 31.
  • an interlayer connection conductor formation process is performed.
  • the laminate of the metal plate 31 and the pre-reaction medium 32 is partially removed from the pre-reaction medium 32 side to form the interlayer connection conductor 25. .
  • the insulating layer 22 is laminated on the interlayer connection conductor 25 side with respect to the laminated body of the metal plate 31 and the pre-reaction medium 32, and on the surface side of the insulating layer 22 The metal foil 33 is joined.
  • the insulating layer 22 is made thinner than the interlayer connection conductor 25, whereby the interlayer connection conductor 25 protrudes from the insulation layer 22 and is embedded in the metal foil 33.
  • the lower main surface wiring is formed from the metal plate 31 exposed on the lower surface of the laminate composed of the metal plate 31, the pre-reaction medium 32, the insulating layer 22, and the metal foil 33.
  • the pattern 24 is formed, and the upper main surface wiring pattern 23 is formed from the metal foil 33 exposed on the upper surface of the laminate.
  • the heating process as shown in FIG. 5 (S25), the laminated body composed of the lower main surface wiring pattern 24, the interlayer connection conductor 25, the insulating layer 22, and the upper main surface wiring pattern 23 is heated, and the interlayer connection conductor 25 is heated.
  • the pre-reaction medium 32 provided at the upper end of the substrate is reacted to form the intermetallic compound 26.
  • the interlayer connection conductor 25 and the upper main surface wiring pattern 23 are joined by the chemical reaction of the pre-reaction medium 32 plated on the upper end portion of the interlayer connection conductor 25. Therefore, a conductive adhesive is not necessary for joining the interlayer connection conductor 25 and the upper main surface wiring pattern 23. Thereby, it is possible to prevent the occurrence of short-circuit failure due to the seepage of the conductive adhesive.
  • the sample of the wiring substrate 21 is a laminate formed by using a copper plate having a thickness of 0.5 mm as the metal plate 31 and plating a tin film having a thickness of 1 ⁇ m as the pre-reaction medium 32. is there.
  • a circular pattern resist having a diameter of 0.6 mm is provided on the laminate, and the interlayer connection conductor 25 having a height of 0.3 mm is formed by etching.
  • a through hole having a diameter of 0.6 mm is punched at a position overlapping the interlayer connection conductor 25 using a punching machine such as a mechanical punch on the semi-cured resin sheet, and the resin sheet has a thickness of 0.25 mm.
  • the interlayer connection conductor 25 is projected from the surface of the metal foil 31 by about 0.05 mm.
  • a metal sheet 33 having a thickness of 0.2 mm is stacked on the surface of the resin sheet, the resin sheet and the metal foil 33 are thermocompression bonded by a thermocompression press, and the resin sheet is heated and cured in an oven to form the insulating layer 22. It is.
  • the upper main surface wiring pattern 23 and the lower main surface wiring pattern 24 are formed by etching the metal foil 33 and the metal plate 31, and the basis of the heating conditions necessary for forming the intermetallic compound 26 from the pre-reaction medium. Then, the heating is performed again to manufacture the wiring board 21.
  • FIG. 6 is a diagram showing the relationship between the number of heat cycles and the rate of resistance change in the sample of the wiring board 21.
  • the relationship between the number of heat cycles and the rate of resistance change is shown for the wiring board according to the comparative example as well as the wiring board according to the example.
  • the wiring substrate according to the comparative example a substrate that does not use an intermetallic compound or a conductive adhesive is used for bonding between the interlayer connection conductor and the upper main surface wiring pattern.
  • the buried amount of the interlayer connection conductor is 5 ⁇ m.
  • the resistance change rate was zero and stable until the number of heat cycles was about 1000 times.
  • the rate of change in resistance gradually changed until the number of heat cycles was about 100, but the rate of change in resistance showed a steep increase from the number of heat cycles of about 200. From this, it can be seen that in the wiring board according to the example, the bonding between the interlayer connection conductor 25 and the upper main surface wiring pattern 23 is extremely stable. That is, the interlayer connection conductor 25 and the upper main surface wiring pattern 23 are chemically bonded via the intermetallic compound 26, and the intermetallic compound 26 is embedded in the upper main surface wiring pattern 23, so that extremely high connection reliability is achieved. It can be confirmed that the performance is realized.
  • the burying amount of the interlayer connection conductor may be inevitably small. Then, when the burying amount is small, thermal stress is likely to act on the connection interface between the interlayer connection conductor and the upper main surface wiring pattern, and connection reliability is lowered. Even in such a case, when the interlayer connection conductor and the upper main surface wiring pattern are joined via the intermetallic compound, the connection reliability is not significantly reduced, and the amount of the embedded interlayer connection conductor is reduced. Even if the pattern shape of the upper main surface wiring pattern is inevitably small, sufficient connection reliability can be ensured.
  • FIG. 7 is a schematic cross-sectional view of a wiring board 41 according to the third embodiment of the present invention.
  • the wiring board 41 includes an insulating layer 42 made of an insulating resin, an upper main surface wiring pattern 43 made of a conductive material, a lower main surface wiring pattern 44 made of a conductive material, and an interlayer connection conductor 45 made of a conductive material. It is equipped with.
  • the wiring board 41 has substantially the same configuration as the wiring board 1 described above, but the surface of the intermetallic compound 46 provided at the upper end of the interlayer connection conductor 45 is roughened.
  • the substantial boundary area between the interlayer connection conductor 45 and the substantial boundary area between the intermetallic compound 46 and the upper main surface wiring pattern 43 are increased, thereby realizing stronger bonding. That is, the connection reliability is further increased.

Abstract

 導電性接着剤を用いることなく、金属箔と突起との電気的接続を確保することができ、層間剥離等による接続信頼性の低下が生じにくい、配線基板の構造と、配線基板の製造方法とを実現する。配線基板(1)は、絶縁層(2)と、絶縁層(2)を挟んで配置されている下主面配線パターン(4)および上主面配線パターン(3)と、絶縁層(2)を厚み方向に貫通して下主面配線パターン(4)と上主面配線パターン(3)とに導通する層間接続導体(5)と、を備えている。層間接続導体(5)は、下主面配線パターン(4)と一体形成されており、上主面配線パターン(3)と金属間化合物(6)を介して接合されている。

Description

配線基板、および、配線基板の製造方法
 本発明は、配線パターンを有する配線基板の構造と製造方法とに関する。
 配線基板では、異なる層間の配線パターンを電気的に接続するために、層間接続導体(ビアホール導体)が設けられる。層間接続導体は、一般的には、配線基板に貫通孔を設けて、貫通孔の内壁にめっきを施すことで形成される。この形成方法は、めっき処理にかかる化学薬品が高価なこと、又は、処理時間が長いことなどから生産性及び経済性等に問題がある。
 このため、めっき処理が不要な配線基板の製造方法として、例えば、金属板の片面に円錐台形の突起を形成し、金属板の突起側に、突起の高さと同程度の厚みで絶縁層を形成し、絶縁層の表面に金属箔を接合し、金属箔と金属板とをパターン成形して、配線基板を形成する方法がある(例えば、特許文献1参照。)。
特開2000-68641号公報
 金属板に設けた突起を層間接続導体として配線基板を製造する場合には、突起の先端(上面)に、導電性接着材を付着させ、金属箔と突起との電気的接続が確保されていた。しかしながら、金属箔を接着する際には、導電性接着剤が平面方向に滲み出す恐れがあり、このことによって、配線基板において不要な導通が引き起こされてショート不良が発生することがあった。
 また、配線基板の温度変化に伴う膨張と収縮とにより、絶縁層と金属箔との膨張率の違いから熱応力が生じて、絶縁層から金属箔が剥離する恐れがあり、このことによって、導電性接着剤による電気的接続が破壊されて導通不良が発生することがあった。
 そこで、本発明の目的は、導電性接着剤を用いることなく、金属箔と突起との電気的接続を確保することができ、層間剥離等による接続信頼性の低下が生じにくい、配線基板の構造と、配線基板の製造方法とを実現することにある。
 本発明に係る配線基板は、絶縁層と、該絶縁層を挟んで配置されている第1の配線パターンおよび第2の配線パターンと、前記絶縁層を厚み方向に貫通して前記第1の配線パターンと前記第2の配線パターンとに導通する層間接続導体と、を備え、前記層間接続導体は、前記第1の配線パターンと一体形成されており、前記第2の配線パターンと金属間化合物を介して接合されている。
 この構成では、第1の配線パターンと層間接続導体とが一つの同じ金属部材として一体形成されているため、第1の配線パターンと層間接続導体との間に接合界面が存在せず、第1の配線パターンと層間接続導体との機械的接続および電気的接続が強固なものになる。また、第2の配線パターンと層間接続導体とが金属間化合物を介して化学的に接合しているため、物理的な接触や導電性接着剤による接着に比べて安定した接合状態となり、第2の配線パターンと層間接続導体との機械的接続および電気的接続も強固なものになる。したがって、第1の配線パターンと第2の配線パターンとの間の接続信頼性が高いものになる。また、導電性接着剤を用いることなく配線基板を形成することができ、導電性接着剤の滲み出しによるショート不良の発生を防ぐことができる。
 上述の配線基板において、前記層間接続導体は、前記第2の配線パターンと前記絶縁層との接合界面よりも前記第2の配線パターン側に食い込んだ状態で、前記第2の配線パターンと接合していると好適である。
 この構成では、層間接続導体と第2の配線パターンとの接合界面が、絶縁層と第2の配線パターンとの接合界面とは異なる平面上に位置することになる。すると、配線基板の温度変化に伴う熱応力が、層間接続導体と第2の配線パターンとの接合界面に作用しにくくなるため、層間接続導体と第2の配線パターンとの接合界面の剥離が生じにくくなり、接続信頼性がさらに高いものになる。
 上述の配線基板において、前記層間接続導体は、前記第2の配線パターンとの接合界面が粗面化されていると好適である。
 この構成では、層間接続導体と第2の配線パターンとの接合面積が増加するため、層間接続導体と第2の配線パターンとをより強固に接続することになる。したがって、接続信頼性がさらに高いものになる。
 この発明の配線基板の製造方法は、上述の配線基板を製造するものであり、反応前媒体形成プロセスと、層間接続導体形成プロセスと、積層プロセスと、配線パターン形成プロセスと、加熱プロセスと、を実施すると好適である。反応前媒体形成プロセスでは、金属板の片面に、前記金属間化合物の反応前媒体が形成される。層間接続導体形成プロセスでは、前記反応前媒体と前記金属板との積層体が、前記層間接続導体となる領域を除いて前記反応前媒体側から部分除去される。積層プロセスでは、前記積層体に、前記層間接続導体を埋設する前記絶縁層と、前記絶縁層の表面に接合する金属箔と、が形成される。配線パターン形成プロセスでは、前記金属板から前記第1の配線パターンが形成され、前記金属箔から前記第2の配線パターンが形成される。加熱プロセスでは、前記積層体を加熱して前記反応前媒体を反応させることで、前記金属間化合物が形成される。
 上述の配線基板の製造方法において、前記積層プロセスは、前記層間接続導体の高さよりも薄い絶縁層を形成し、前記層間接続導体が前記絶縁層から突出する高さよりも厚い金属箔を前記絶縁層に圧着させると好適である。
 本発明によれば、第1の配線パターンと層間接続導体とが一体形成され、第2の配線パターンと層間接続導体とが金属間化合物を介して化学的に接合しているため、第1の配線パターンや第2の配線パターンと層間接続導体との機械的接続および電気的接続が強固なものになる。したがって、第1の配線パターンや第2の配線パターンと絶縁層との間に層間剥離が生じにくくなり、接続信頼性が高いものになる。
 また、金属間化合物の反応前媒体を化学的に反応させることにより第2の配線パターンと層間接続導体とが接合するので、製造時に層間接続導体上に導電性接着剤を付着させる必要が無く、導電性接着剤の滲み出しによるショート不良の発生を防ぐことができる。
第1の実施形態に係る配線基板の模式的な断面図である。 第1の実施形態に係る配線基板の製造過程を示す模式図である。 第1の実施形態に係る配線基板の熱衝撃試験を行った結果を示すグラフである。 第2の実施形態に係る配線基板の模式的な断面図である。 第2の実施形態に係る配線基板の製造過程を示す模式図である。 第2の実施形態に係る配線基板の熱衝撃試験を行った結果を示すグラフである。 第3の実施形態に係る配線基板の製造工程を順に示した模式図である。
≪第1の実施形態≫
 以下、本発明の第1の実施形態に係る配線基板について説明する。
 図1は、本発明の第1の実施形態に係る配線基板1の模式的な断面図である。配線基板1は、絶縁樹脂からなる絶縁層2と、導電性材料からなる上主面配線パターン3と、導電性材料からなる下主面配線パターン4と、導電性材料からなる層間接続導体5と、を備えている。
 絶縁層2は、上主面と下主面とを有する平板状である。絶縁層2は、上主面と下主面とに開口する円筒状の貫通孔2Aが形成されている。
 上主面配線パターン3は、ここでは、図示していない電子部品を搭載するランドや配線パターンである。上主面配線パターン3は、貫通孔2Aを覆うように、絶縁層2の上主面にパターン形成されている。
 下主面配線パターン4は、ここでは、図示していない主基板(例えば、マザーボード)上の電極に接続されたり、基板内での配線パターンとして用いられる。下主面配線パターン4は、貫通孔2Aを覆うように、絶縁層2の下主面にパターン形成されている。
 層間接続導体5は、貫通孔2Aに挿通されて、絶縁層2を貫通している。そして、層間接続導体5は、上端部で上主面配線パターン3に導通し、下端部で下主面配線パターン4に導通している。したがって、電子部品と主基板とは、上主面配線パターン3と、層間接続導体5と、下主面配線パターン4とを介して導通することになる。
 層間接続導体5と下主面配線パターン4とは、一体に成形されている。即ち、下主面配線パターン4は、層間接続導体5と一体成形されている第1の配線パターンであり、層間接続導体5と下主面配線パターン4とは、同じ金属部材で構成されていて、互いの間に接合界面が存在していない。一方、層間接続導体5と上主面配線パターン3とは、別体に成形されている。即ち、上主面配線パターン3は第2の配線パターンであり、層間接続導体5と上主面配線パターン3とは、一体形成されていない金属部材で構成されている。そして、層間接続導体5と上主面配線パターン3との接合界面には、金属間化合物6が形成されている。金属間化合物6は、上主面配線パターン3と化学的に接合しているとともに、層間接続導体5と化学的に接合している。
 このように、下主面配線パターン4と層間接続導体5とが一体成形されているので、下主面配線パターン4と層間接続導体5との機械的接続および電気的接続が強固なものになる。また、上主面配線パターン3と層間接続導体5とが金属間化合物6を介して化学的に接合しているため、物理的な接触や導電性接着剤による接着に比べて安定した接合状態となり、上主面配線パターン3と層間接続導体5との機械的接続および電気的接続も強固なものになる。したがって、上主面配線パターン3と下主面配線パターン4との間の接続信頼性が高いものになる。
 次に、第1の実施形態に係る配線基板1の製造方法について説明する。
 図2は、第1の実施形態に係る配線基板1の製造過程を示す模式図である。
 配線基板1の製造過程において、最初に、反応前媒体形成プロセスが実施される。反応前媒体形成プロセスでは、図2(S11)に示すように、平板状の金属板11が用意され、金属板11の片面に金属間化合物の反応前媒体12が形成される。反応前媒体12はめっき法により金属板11に積層形成されると好適である。反応前媒体12としては、金属板11の材料と金属間化合物を形成することができる材料であれば、どのような材料であってもよい。例えば、金属板11として銅を用いる場合には、反応前媒体12として、低温加熱により銅との合金化が進展するスズなどを組み合わせると好適である。なお、板状の反応前媒体12を金属板11に接着したり、液状の反応前媒体12を金属板11に塗布したり、金属12を溶融あるいは気化して金属板11に蒸着することにより、反応前媒体12を金属板11に積層してもよい。
 次に、層間接続導体形成プロセスが実施される。層間接続導体形成プロセスでは、図2(S12)に示すように、金属板11と反応前媒体12との積層体を、反応前媒体12側から部分的に除去し、層間接続導体5を形成する。層間接続導体5はエッチング法により形成されると好適である。その場合には、金属板11と反応前媒体12との積層体の両主面にドライフィルムレジストをラミネートし、露光および現像の後、エッチングを行うとよい。なお、層間接続導体5は、切削法などの機械的な加工法を用いて形成されてもよい。
 次に、積層プロセスが実施される。積層プロセスでは、図2(S13)に示すように、金属板11と反応前媒体12との積層体に対して、層間接続導体5側に絶縁層2が積層され、絶縁層2の表面側に金属箔13が接合される。絶縁層2は、層間接続導体5の長さとほぼ同じ厚みとし、これにより、層間接続導体5を絶縁層2に埋設する。例えば、半硬化状態の絶縁樹脂シートと金属箔とを積層体に重ね、加圧することにより、積層体に絶縁層2と金属箔13とを圧着させるとよい。
 次に、配線パターン形成プロセスが実施される。配線パターン形成プロセスでは、図2(S14)に示すように、金属板11と反応前媒体12と絶縁層2と金属箔13とからなる積層体の下面に露出する金属板11から下主面配線パターン4を形成し、積層体の上面に露出する金属箔13から上主面配線パターン3を形成する。下主面配線パターン4および上主面配線パターン3は、エッチング法により形成されると好適である。その場合には、金属板11と反応前媒体12との積層体の両主面にドライフィルムレジストをラミネートし、露光および現像によりネガパターンを形成した後、エッチングを行うとよい。
 次に、加熱プロセスが実施される。加熱プロセスでは、図2(S15)に示すように、下主面配線パターン4と層間接続導体5と絶縁層2と上主面配線パターン3とからなる積層体を加熱して、層間接続導体5と絶縁層2と上主面配線パターン3とからなる積層体を加熱して、層間接続導体5の上端部に設けられている反応前媒体12を反応させ、金属間化合物6を形成する。
 以上のような配線基板1の製造方法によれば、層間接続導体5の上端部にめっきした反応前媒体12の化学的な反応により、層間接続導体5と上主面配線パターン3とを接合させるので、層間接続導体5と上主面配線パターン3との接合に導電性接着剤が不要となる。これにより、導電性接着剤の滲み出しによるショート不良の発生を防ぐことができる。
 ここで、配線基板1のサンプルに対して熱衝撃試験(ヒートサイクル試験)を行い、抵抗変化率を測定した結果について説明する。
 配線基板1のサンプルは、反応前媒体形成プロセスにおいて、金属板11として厚さ0.5mmの銅板を用い、反応前媒体として厚み1μmのスズ膜をめっきして、積層体を形成したものである。また、層間接続導体形成プロセスにおいて、積層体に直径0.6mmの円形パターンのレジストを設け、エッチングにより高さ0.3mmの層間接続導体5を形成したものである。また、積層プロセスにおいて、半硬化状態の樹脂シートに対して、メカパンチ等の打ち抜き機を用いて直径0.6mmの貫通孔を層間接続導体5と重なる位置に穿孔し、樹脂シートが厚み0.3mmとなるように金属板11に重ねたものである。そして、樹脂シートの表面に厚み0.2mmの金属箔13を重ね、熱圧着プレスにより樹脂シートと金属箔13とを熱圧着させ、オーブンで樹脂シートを加熱硬化させて絶縁層2を形成したものである。そして、金属箔13と金属板11のエッチングにより上主面配線パターン3と下主面配線パターン4とをパターン形成し、反応前媒体から金属間化合物6を形成するために必要な加熱条件の基で、再度の加熱を行い、配線基板1を製造したものである。
 図3は、配線基板1のサンプルに対する、ヒートサイクル数と抵抗変化率との関係を示す図である。なお、ここでは実施例に係る配線基板とともに、比較例に係る配線基板についても、ヒートサイクル数と抵抗変化率との関係を示している。比較例に係る配線基板としては、層間接続導体と上主面配線パターンとの接合に、金属間化合物や導電性接着剤を用いていないものを用いている。
 実施例に係る配線基板においては、ヒートサイクル数が200回程度までは緩やかに抵抗変化率が増加し、ヒートサイクル数が300回程度を超えると、抵抗変化率が急峻な増加を示した。一方、比較例に係る配線基板においては、ヒートサイクル数が100回よりも小さい段階から、抵抗変化率が急峻な増加を示した。このことから、実施例に係る配線基板においては、比較例に係る配線基板よりも層間接続導体5と上主面配線パターン3との接合が安定していることがわかる。即ち、層間接続導体5と上主面配線パターン3とが金属間化合物を介して化学的に接合することにより、高い接続信頼性を実現できていることが確認できる。
≪第2の実施形態≫
 次に、本発明の第2の実施形態に係る配線基板について説明する。
 図4は、本発明の第2の実施形態に係る配線基板21の模式的な断面図である。配線基板21は、絶縁樹脂からなる絶縁層22と、導電性材料からなる上主面配線パターン23と、導電性材料からなる下主面配線パターン24と、導電性材料からなる層間接続導体25と、を備えている。配線基板21は、前述の配線基板1と略同様な構成であるが、層間接続導体25が、上主面配線パターン23と絶縁層22との接合界面よりも上主面配線パターン23側に食い込んだ状態であり、層間接続導体25の上端部に設けられている金属間化合物26が、上主面配線パターン23に埋設されている点で前述の配線基板1と相違している。
 即ち、層間接続導体25と上主面配線パターン23との接合界面が、絶縁層22と上主面配線パターン23との接合界面とは異なる平面上に位置している。このことにより、配線基板21の温度変化に伴う熱応力が、層間接続導体25と上主面配線パターン23との接合界面に作用しにくくなるため、層間接続導体25と上主面配線パターン23との接合界面の剥離が生じにくくなり、接続信頼性がさらに高いものになる。
 図5は、第2の実施形態に係る配線基板21の製造過程を示す模式図である。
 配線基板21の製造過程においては、最初に、反応前媒体形成プロセスが実施される。反応前媒体形成プロセスでは、図5(S21)に示すように、平板状の金属板31が用意され、金属板31の片面に金属間化合物の反応前媒体32が形成される。
 次に、層間接続導体形成プロセスが実施される。層間接続導体形成プロセスでは、図5(S22)に示すように、金属板31と反応前媒体32との積層体を、反応前媒体32側から部分的に除去し、層間接続導体25を形成する。
 次に、積層プロセスが実施される。積層プロセスでは、図5(S23)に示すように、金属板31と反応前媒体32との積層体に対して、層間接続導体25側に絶縁層22が積層され、絶縁層22の表面側に金属箔33が接合される。絶縁層22は、層間接続導体25よりも薄い厚みとし、これにより、層間接続導体25を絶縁層22から突出させて、金属箔33に埋設させる。
 次に、配線パターン形成プロセスが実施される。配線パターン形成プロセスでは、図5(S24)に示すように、金属板31と反応前媒体32と絶縁層22と金属箔33とからなる積層体の下面に露出する金属板31から下主面配線パターン24を形成し、積層体の上面に露出する金属箔33から上主面配線パターン23を形成する。
 次に、加熱プロセスが実施される。加熱プロセスでは、図5(S25)に示すように、下主面配線パターン24と層間接続導体25と絶縁層22と上主面配線パターン23とからなる積層体を加熱して、層間接続導体25の上端部に設けられている反応前媒体32を反応させ、金属間化合物26を形成する。
 以上のような配線基板21の製造方法によれば、層間接続導体25の上端部にめっきした反応前媒体32の化学的な反応により、層間接続導体25と上主面配線パターン23とを接合させるので、層間接続導体25と上主面配線パターン23との接合に導電性接着剤が不要となる。これにより、導電性接着剤の滲み出しによるショート不良の発生を防ぐことができる。
 ここで、配線基板21に係るサンプルに対するヒートサイクル試験を行い、抵抗変化率を測定した結果について説明する。
 配線基板21のサンプルは、反応前媒体形成プロセスにおいて、金属板31として厚さ0.5mmの銅板を用い、反応前媒体32として厚み1μmのスズ膜をめっきして、積層体を形成したものである。また、層間接続導体形成プロセスにおいて、積層体に直径0.6mmの円形パターンのレジストを設け、エッチングにより高さ0.3mmの層間接続導体25を形成したものである。また、積層プロセスにおいて、半硬化状態の樹脂シートに対して、メカパンチ等の打ち抜き機を用いて直径0.6mmの貫通孔を層間接続導体25と重なる位置に穿孔し、樹脂シートが厚み0.25mmとなるように金属板31に重ね、金属箔31の表面から層間接続導体25を約0.05mm突出させたものである。そして、樹脂シートの表面に厚み0.2mmの金属箔33を重ね、熱圧着プレスにより樹脂シートと金属箔33とを熱圧着させ、オーブンで樹脂シートを加熱硬化させて絶縁層22を形成したものである。そして、金属箔33と金属板31のエッチングにより上主面配線パターン23と下主面配線パターン24とをパターン形成し、反応前媒体から金属間化合物26を形成するために必要な加熱条件の基で、再度の加熱を行い、配線基板21を製造したものである。
 図6は、配線基板21のサンプルにおける、ヒートサイクル数と抵抗変化率との関係を示す図である。なお、ここでは実施例に係る配線基板とともに、比較例に係る配線基板についても、ヒートサイクル数と抵抗変化率との関係を示している。比較例に係る配線基板としては、層間接続導体と上主面配線パターンとの接合に、金属間化合物や導電性接着剤を用いていないものを用いている。なお、実施例と比較例のいずれも、層間接続導体の埋設量を5μmとしている。
 実施例に係る配線基板においては、ヒートサイクル数が1000回程度までは抵抗変化率はゼロで安定していた。一方、比較例に係る配線基板においては、ヒートサイクル数が100回程度までは抵抗変化率は緩やかに変化したが、ヒートサイクル数が200回程度から、抵抗変化率が急峻な増加を示した。このことから、実施例に係る配線基板においては、層間接続導体25と上主面配線パターン23との接合が極めて安定していることがわかる。即ち、層間接続導体25と上主面配線パターン23とが金属間化合物26を介して化学的に接合するとともに、金属間化合物26を上主面配線パターン23に埋設することにより、極めて高い接続信頼性を実現できていることが確認できる。
 なお、実施例および比較例はいずれも、上主面配線パターンのパターン形状によっては、層間接続導体の埋設量が小さくならざるを得ない場合がある。すると、埋設量が小さい場合には、層間接続導体と上主面配線パターンとの接続界面に熱応力が作用し易くなり、接続信頼性が低下してしまう。その場合であっても、層間接続導体と上主面配線パターンとが金属間化合物を介して接合している場合には、接続信頼性が著しく低下することがなく、層間接続導体の埋設量が小さくならざるを得ないような上主面配線パターンのパターン形状であっても、十分な接続信頼性を確保することが可能になる。
≪第3の実施形態≫
 次に、本発明の第3の実施形態に係る配線基板について説明する。
 図7は、本発明の第3の実施形態に係る配線基板41の模式的な断面図である。配線基板41は、絶縁樹脂からなる絶縁層42と、導電性材料からなる上主面配線パターン43と、導電性材料からなる下主面配線パターン44と、導電性材料からなる層間接続導体45と、を備えている。配線基板41は、前述の配線基板1と略同様な構成であるが、層間接続導体45において、上端に備える金属間化合物46の表面が粗面化されており、これにより、金属間化合物46と層間接続導体45との実質的な境界面積、および金属間化合物46と上主面配線パターン43との実質的な境界面積がそれぞれ増大して、より強固な接合が実現されている。即ち、接続信頼性がさらに高いものになっている。
 以上、本発明に係る配線基板について詳述したが、配線基板の具体的構成などは、適宜設計変更可能であり、上述の実施形態に記載された作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、上述の実施形態に記載されたものに限定されるものではない。
1,21,41…配線基板
2,22,42…絶縁層
2A…貫通孔
3,23,43…上主面配線パターン
4,24,44…下主面配線パターン
5,25,45…層間接続導体
6,26,46…金属間化合物
11,31…金属板
12,32…反応前媒体
13,33…金属箔

Claims (5)

  1.  絶縁層と、
     該絶縁層を厚み方向に挟んで配置されている第1の配線パターンおよび第2の配線パターンと、
     前記絶縁層を厚み方向に貫通して前記第1の配線パターンと前記第2の配線パターンとに導通する層間接続導体と、
     を備え、
     前記層間接続導体は、
      前記第1の配線パターンと一体形成されており、
      前記第2の配線パターンと金属間化合物を介して接合されている、
     配線基板。
  2.  前記層間接続導体は、前記第2の配線パターンと前記絶縁層との接合界面よりも、前記第2の配線パターン側に食い込んだ状態で、前記第2の配線パターンと接合されている、請求項1に記載の配線基板。
  3.  前記層間接続導体は、前記第2の配線パターンとの接合界面が粗面化されている、請求項1または2に記載の配線基板。
  4.  請求項1~3のいずれかに記載の配線基板の製造方法であって、
     金属板の片面に、前記金属間化合物の反応前媒体が形成される反応前媒体形成プロセスと、
     前記反応前媒体と前記金属板との積層体が、前記層間接続導体となる領域を除いて前記反応前媒体側から部分除去される層間接続導体形成プロセスと、
     前記積層体に、前記層間接続導体を埋設する前記絶縁層と、前記絶縁層の表面に接合する金属箔と、が形成される積層プロセスと、
     前記金属板から前記第1の配線パターンが形成され、前記金属箔から前記第2の配線パターンが形成される配線パターン形成プロセスと、
     前記積層体を加熱して前記反応前媒体を反応させることで、前記金属間化合物が形成される加熱プロセスと、を実施する、配線基板の製造方法。
  5.  前記積層プロセスは、前記層間接続導体の高さよりも薄い絶縁層を形成し、前記層間接続導体が前記絶縁層から突出する高さよりも厚い金属箔を前記絶縁層に圧着させる、請求項4に記載の配線基板の製造方法。
PCT/JP2013/070841 2012-09-20 2013-08-01 配線基板、および、配線基板の製造方法 WO2014045721A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014536658A JP5928601B2 (ja) 2012-09-20 2013-08-01 配線基板、および、配線基板の製造方法
US14/635,429 US20150173185A1 (en) 2012-09-20 2015-03-02 Circuit board and circuit board manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-206470 2012-09-20
JP2012206470 2012-09-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/635,429 Continuation US20150173185A1 (en) 2012-09-20 2015-03-02 Circuit board and circuit board manufacturing method

Publications (1)

Publication Number Publication Date
WO2014045721A1 true WO2014045721A1 (ja) 2014-03-27

Family

ID=50341047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070841 WO2014045721A1 (ja) 2012-09-20 2013-08-01 配線基板、および、配線基板の製造方法

Country Status (3)

Country Link
US (1) US20150173185A1 (ja)
JP (1) JP5928601B2 (ja)
WO (1) WO2014045721A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110876239A (zh) * 2018-08-31 2020-03-10 庆鼎精密电子(淮安)有限公司 电路板及其制作方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI543685B (zh) * 2014-04-28 2016-07-21 旭德科技股份有限公司 基板結構及其製作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283835A (ja) * 1992-04-01 1993-10-29 Nitto Denko Corp 両面基板
JPH11186728A (ja) * 1997-10-14 1999-07-09 Ibiden Co Ltd 多層プリント配線板
JP2000068641A (ja) * 1998-08-20 2000-03-03 Mitsubishi Gas Chem Co Inc プリント配線板の製造方法
JP2001007533A (ja) * 1999-06-21 2001-01-12 Mitsubishi Gas Chem Co Inc 放熱性に優れたボールグリッドアレイ型プリント配線板の製造方法
WO2011058978A1 (ja) * 2009-11-10 2011-05-19 株式会社フジクラ 配線基板の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150553A (ja) * 2003-11-18 2005-06-09 Ngk Spark Plug Co Ltd 配線基板およびその製造方法
US8238114B2 (en) * 2007-09-20 2012-08-07 Ibiden Co., Ltd. Printed wiring board and method for manufacturing same
US8324511B1 (en) * 2010-04-06 2012-12-04 Amkor Technology, Inc. Through via nub reveal method and structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283835A (ja) * 1992-04-01 1993-10-29 Nitto Denko Corp 両面基板
JPH11186728A (ja) * 1997-10-14 1999-07-09 Ibiden Co Ltd 多層プリント配線板
JP2000068641A (ja) * 1998-08-20 2000-03-03 Mitsubishi Gas Chem Co Inc プリント配線板の製造方法
JP2001007533A (ja) * 1999-06-21 2001-01-12 Mitsubishi Gas Chem Co Inc 放熱性に優れたボールグリッドアレイ型プリント配線板の製造方法
WO2011058978A1 (ja) * 2009-11-10 2011-05-19 株式会社フジクラ 配線基板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110876239A (zh) * 2018-08-31 2020-03-10 庆鼎精密电子(淮安)有限公司 电路板及其制作方法
CN110876239B (zh) * 2018-08-31 2022-01-11 庆鼎精密电子(淮安)有限公司 电路板及其制作方法

Also Published As

Publication number Publication date
JPWO2014045721A1 (ja) 2016-08-18
JP5928601B2 (ja) 2016-06-01
US20150173185A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
JP5151265B2 (ja) 多層配線基板及び多層配線基板の製造方法
JP5161617B2 (ja) フレキシブル回路基板、及びその製造方法
JP2013211519A (ja) 多層配線基板の製造方法
TWI712346B (zh) 復合電路板及其製造方法
JP5163806B2 (ja) 部品内蔵モジュールの製造方法及び部品内蔵モジュール
JP2009290135A (ja) プリント配線板の製造方法および導電性接合剤
WO2013005720A1 (ja) 回路板、および回路板の製造方法
JP5672091B2 (ja) 多層基板
JP2014146650A (ja) 配線基板およびその製造方法
JP5928601B2 (ja) 配線基板、および、配線基板の製造方法
JP6673304B2 (ja) 多層基板
CN104982097A (zh) 内置有零件的基板及其制造方法
JP2011151103A (ja) 電子部品相互の接続構造及び接続方法
JP2014063981A (ja) 配線基板およびその製造方法
JP6536751B2 (ja) 積層コイルおよびその製造方法
JP7031955B2 (ja) 回路基板の製造方法
WO2013137401A1 (ja) 電子部品搭載用基板の製造方法及び電子部品搭載用基板
JP4821276B2 (ja) 多層プリント配線板の製造方法及び多層プリント配線板
CN108353498B (zh) 基板及基板的制造方法
JP3816038B2 (ja) 多層形フレキシブル配線板およびその製造方法
JP4892924B2 (ja) 多層プリント配線基板及びその製造方法
JP7020754B2 (ja) フレキシブルプリント配線板
JP2006120829A (ja) 電子部品内蔵基板及びその製造方法とこれを用いた電子部品内蔵モジュール
JP2015159205A (ja) 多層基板の製造方法
JP5067607B2 (ja) 張合せ基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839231

Country of ref document: EP

Kind code of ref document: A1