WO2011058978A1 - 配線基板の製造方法 - Google Patents

配線基板の製造方法 Download PDF

Info

Publication number
WO2011058978A1
WO2011058978A1 PCT/JP2010/069957 JP2010069957W WO2011058978A1 WO 2011058978 A1 WO2011058978 A1 WO 2011058978A1 JP 2010069957 W JP2010069957 W JP 2010069957W WO 2011058978 A1 WO2011058978 A1 WO 2011058978A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating resin
interlayer connection
resin layer
circuit
Prior art date
Application number
PCT/JP2010/069957
Other languages
English (en)
French (fr)
Inventor
孝治 本戸
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2011540513A priority Critical patent/JPWO2011058978A1/ja
Priority to CN2010800508447A priority patent/CN102598881A/zh
Publication of WO2011058978A1 publication Critical patent/WO2011058978A1/ja
Priority to US13/467,726 priority patent/US20120216946A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/205Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a pattern electroplated or electroformed on a metallic carrier
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/207Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a prefabricated paste pattern, ink pattern or powder pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4647Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits by applying an insulating layer around previously made via studs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/0376Flush conductors, i.e. flush with the surface of the printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0353Making conductive layer thin, e.g. by etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • the present invention relates to a method for manufacturing a wiring board on which electronic components are mounted.
  • a concave pattern is transferred to an insulating layer using a stamper (mold) having a convex pattern for forming a wiring pattern, and the transferred concave pattern
  • a stamper having a convex pattern for forming a wiring pattern
  • An imprint method is known in which a wiring pattern is formed by filling a conductive material.
  • Patent Document 1 discloses a method for manufacturing a wiring board in which a concave / convex pattern is transferred to a resin with a stamper and a conductive material is formed in the transferred concave portion to form a conductive circuit.
  • thermosetting epoxy resin is attached to the die.
  • the resin substrate 302 to which the concave / convex pattern composed of the concave portions 303 and the convex portions is transferred is formed by performing transfer molding.
  • the copper plating film 304 is formed.
  • the wiring part 305 is formed by polishing 304 until the resin is exposed.
  • Patent Document 2 discloses that a conductive pattern is formed by transferring a concave / convex pattern to a resin with a mold having a convex portion for forming a conductive circuit and a convex portion for forming a via hole, and filling the transferred concave portion with a conductive material.
  • a method of manufacturing a wiring board to be formed is disclosed.
  • FIGS. 25A to 25C after an interlayer insulating layer 309 is formed on both surfaces of an insulating substrate 308 on which a circuit 306 and a through hole 307 are formed, a convex portion for forming a conductor circuit is formed.
  • the mold 312 having 310 and the via hole forming convex portion 311 is pressed against the interlayer insulating layer 309 to transfer the concave / convex pattern, and then the mold 312 is removed to form the conductor circuit forming groove 313 and the via hole forming groove 314. .
  • a copper plating film 315 is formed so as to fill the conductor circuit forming groove 313 and the via hole forming groove 314 formed on both surfaces of the insulating substrate 308. Thereafter, the copper plating film 315 is polished to form a conductor circuit 316 and an interlayer connection portion 317 that fills the via hole forming groove 314.
  • the resin of the resin substrate 302 adheres to the stamper 301 when the stamper 301 is transferred from the resin substrate 302 after the unevenness of the stamper 301 is transferred to the resin substrate 302. There is a point. As a result, the pattern shape transferred to the resin substrate 302 may be deformed, or a defect may occur when the concave / convex pattern is transferred to another resin substrate using the stamper 301 to which the resin is attached.
  • the resin of the interlayer insulating layer 309 adheres to the mold 312 when the mold 312 is released from the interlayer insulating layer 309 after the unevenness of the mold 312 is transferred to the interlayer insulating layer 309.
  • the pattern shape transferred to the interlayer insulating layer 309 may be deformed, and inconvenience may occur when the uneven pattern is transferred to another interlayer insulating layer using the mold 312 to which the resin is attached. .
  • the present invention is directed to a stamper (mold) for releasing a stamper (mold) from an insulating resin layer after transferring the concave / convex pattern of the stamper (mold) to the insulating resin layer (interlayer insulating layer). It aims at providing the manufacturing method of the wiring board which can prevent the malfunction resulting from adhesion of resin.
  • a step of preparing a first metal circuit layer having a first conductor circuit and a first interlayer connection portion having a height different from the height of the first conductor circuit on one surface Forming a first insulating resin layer that covers one surface of the first metal circuit layer so that the tip of the interlayer connection portion is exposed.
  • a step of forming a metal circuit layer having a first conductor circuit and a first interlayer connection portion having a height different from the height of the first conductor circuit on one surface, and an interlayer connection A step of forming a solder layer on the top of the part, a step of preparing an insulating resin layer, and an interlayer connecting portion on which the first conductor circuit and the solder layer are formed on the top are pressed into one surface of the insulating resin layer, Exposing the solder layer from the other surface, forming a second conductor circuit in contact with the solder layer on the other surface of the insulating resin layer, and dissolving the solder layer between the interlayer connection portion and the second conductor circuit And a method of manufacturing a wiring board including a step of forming an alloy layer.
  • FIG. 1A and 1B are diagrams for explaining a method of manufacturing a wiring board according to a first embodiment of the present invention.
  • FIG. 1A is a mold forming step
  • FIG. 1B is a metal circuit layer forming step
  • FIG. I s a step of removing the metal circuit layer from the mold
  • (D) is a step of applying a liquid insulating resin to the metal circuit layer
  • (E) is an insulation for curing the liquid insulating resin and integrating the insulating resin layer with the metal circuit layer.
  • (F) shows a metal circuit layer polishing step
  • (G) shows a circuit formation step of forming a second conductor circuit on the other surface of the insulating resin layer.
  • 2A and 2B show a metal circuit layer, in which FIG.
  • FIG. 2A is a cross-sectional view thereof
  • FIG. FIG. 3 is a view for explaining a method for manufacturing a multilayer wiring board according to the second embodiment of the present invention, in which (A) is a step of applying a liquid insulating resin to the concavo-convex portion of the second metal circuit layer; (B) is a second insulating resin layer integrated forming step, (C) is a pre-process for superimposing a semi-cured second insulating resin layer integrated metal circuit layer on a double-sided circuit board, and (D) is a double-sided circuit board.
  • FIG. 4 is a view showing another example of a method for manufacturing a multilayer wiring board according to the third embodiment of the present invention.
  • FIG. 4A shows a second metal circuit layer on a double-sided circuit board coated with a liquid insulating resin.
  • B) is a lamination integration step of laminating and integrating the double-sided circuit board and the second metal circuit layer
  • (C) is a step of peeling the adhesive sheet from the second metal circuit layer
  • (D) is the second metal. This is a circuit layer polishing step.
  • FIGS. 5A and 5B are views for explaining a method of manufacturing a wiring board according to the fourth embodiment of the present invention.
  • FIG. 5A is a mold forming step
  • FIG. 5B is a metal circuit layer forming step
  • FIG. I s a step of removing the metal circuit layer from the mold
  • (D) is a previous step of integrating the metal circuit layer and the insulating resin layer
  • (E) is an insulating resin layer integration step of the metal circuit layer and the insulating resin layer
  • (F ) Shows a polishing step of the metal circuit layer
  • (G) shows a circuit formation step of forming the second conductor circuit on the other surface of the insulating resin layer.
  • FIG. 5A is a mold forming step
  • FIG. 5B is a metal circuit layer forming step
  • FIG. I is a step of removing the metal circuit layer from the mold
  • (D) is a previous step of integrating the metal circuit layer and the insulating resin layer
  • (E) is
  • FIG. 6 is a diagram for explaining a method for manufacturing a multilayer wiring board according to a fifth embodiment of the present invention
  • FIG. 6 (A) is a diagram before a semi-cured second insulating resin layer is superimposed on a double-sided circuit board.
  • Step (B) is a step of superimposing a semi-cured second insulating resin layer on a double-sided circuit board
  • (C) is a previous step of integrating the second metal circuit layer on the double-sided circuit board
  • (D) is a double-sided circuit.
  • (E) is a step of peeling the adhesive sheet from the second metal circuit layer
  • (F) is a polishing step of the second metal circuit layer.
  • FIG. 10 is a process cross-sectional view subsequent to FIG. 9 for describing an example of the method for manufacturing the wiring board according to the sixth exemplary embodiment of the present invention. It is a perspective view for demonstrating an example of the manufacturing method of the wiring board which concerns on the 6th Embodiment of this invention. It is process sectional drawing following FIG.
  • FIG. 13 is a process cross-sectional view subsequent to FIG. 12 for describing the example of the method for manufacturing the wiring board according to the sixth embodiment of the present invention.
  • FIG. 14C is a process cross-sectional view subsequent to FIG. 13 for illustrating the example of the manufacturing method of the wiring board according to the sixth embodiment of the invention.
  • FIG. 15 is a process cross-sectional view subsequent to FIG. 14 for illustrating the example of the method for manufacturing the wiring board according to the sixth embodiment of the present invention.
  • FIG. 16 is a process cross-sectional view subsequent to FIG. 15 for describing an example of the manufacturing method of the wiring board according to the sixth embodiment of the present invention.
  • FIG. 17 is a process cross-sectional view subsequent to FIG. 16 for illustrating the example of the method for manufacturing the wiring board according to the sixth embodiment of the present invention.
  • FIG. 18D is a process cross-sectional view subsequent to FIG. 17 for describing the example of the manufacturing method of the wiring board according to the sixth embodiment of the present invention.
  • FIG. 19 is a process cross-sectional view subsequent to FIG. 18 for describing an example of the manufacturing method of the wiring board according to the sixth embodiment of the present invention.
  • FIG. 20 is a process cross-sectional view subsequent to FIG. 19 for describing an example of the manufacturing method of the wiring board according to the sixth embodiment of the present invention. It is sectional drawing which shows an example of the wiring board which concerns on the 7th Embodiment of this invention.
  • FIG. 23 is a process diagram for forming a metal circuit layer having a fine conductor circuit pattern.
  • A is a silicon wafer preparation process
  • B is a concavo-convex pattern forming process using a resist
  • C is a seed layer.
  • D) is a plating process,
  • E is a plating polishing process, and
  • F is a process of taking out a metal circuit layer from a silicon wafer.
  • FIG. 24 is a conventional process diagram showing a manufacturing process of a wiring board in which a concave / convex pattern is transferred to a resin with a stamper and a conductive material is formed by filling the transferred concave portion with a conductive material.
  • a concavo-convex pattern was transferred to a resin with a mold having a convex part for forming a conductor circuit and a convex part for forming a via hole, and the conductive part was filled in the transferred concave part to form a conductive circuit.
  • It is a conventional process figure which shows the manufacturing process of a wiring board.
  • first to seventh embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is the component parts.
  • the material, shape, structure, arrangement, etc. are not specified below.
  • the technical idea of the present invention can be variously modified within the scope of the claims.
  • FIG. 1A and 1B are process diagrams sequentially showing a manufacturing process of a wiring board according to the first embodiment, wherein FIG. 1A shows a mold forming process, FIG. 1B shows a metal circuit layer forming process, and FIG. 1C shows a metal circuit layer.
  • D is a step of applying a liquid insulating resin to the metal circuit layer
  • E is an insulating resin layer integrated forming step of curing the liquid insulating resin and integrating the insulating resin layer with the metal circuit layer.
  • F shows the polishing step of the metal circuit layer
  • (G) shows the circuit formation step of forming the second conductor circuit on the other surface of the insulating resin layer.
  • a mold forming step and a metal circuit layer forming step shown in FIGS. 1 (A) and (B) are performed.
  • a metal mold 1 that has been subjected to a conductive metal material (plating or conductive paste) and a material that can be easily released or a surface treatment is prepared.
  • a conductive metal material plating or conductive paste
  • a material that can be easily released or a surface treatment is prepared.
  • nickel electroforming, silicon, quartz or the like can be used.
  • a silane coupling agent such as fluoride can be used for the surface treatment.
  • a concave portion (hereinafter referred to as a first concave portion) 2 for forming a conductor circuit is formed on one surface 1a of the mold 1, and the depth is deeper than the first concave portion 2.
  • a recess (hereinafter referred to as a second recess) 3 for forming an interlayer connection is formed.
  • These concave portions 2 and 3 can be formed by electron beam processing or femtosecond laser processing capable of fine processing such as several tens of ⁇ m or less. If the recesses 2 and 3 are formed by these processing techniques, the groove processing accuracy of the first recess 2 and the second recess 3 and the CO 2 laser and UV laser processing techniques used in the printed circuit board are reduced.
  • the formation position accuracy can be improved.
  • the 1st recessed part 2 is taken as the recessed part according to the conductor circuit pattern which should be manufactured.
  • the second recess 3 is a recess corresponding to a via that electrically connects the first conductor circuit and the second conductor circuit that are finally formed on both surfaces of the insulating resin layer.
  • the first recess 2 and the second recess 3 are filled with a conductive metal material.
  • the first concave portion 2 and the second concave portion 3 are filled with a conductive metal material by sputtering and plating copper or nickel on the one surface 1a of the mold 1.
  • one side 1a of the mold 1 is subjected to DPP treatment (direct plating process treatment) with carbon, palladium, etc., and then plated with gold, copper, nickel, etc., or printed with copper or silver nano paste (conductive paste).
  • DPP treatment direct plating process treatment
  • gold, copper, nickel, etc. or printed with copper or silver nano paste (conductive paste).
  • the first recess 2 and the second recess 3 are filled with the conductive metal material.
  • a metal circuit layer 4 is formed in which a first conductor circuit 6 to be described later and an interlayer connection portion 7 to be a via are connected by a conductor connection portion 11.
  • an insulating resin layer integrated forming step of integrating the metal circuit layer 4 and the insulating resin layer shown in FIGS. 1C to 1E is performed.
  • the circuit layer take-out member 5 such as an adhesive sheet or an adsorbing sheet is attached to the other surface 4a opposite to the uneven surface of the metal circuit layer 4
  • the circuit layer take-out member 5 is pulled up and shown in FIG.
  • the metal circuit layer 4 is removed from the mold 1 as described above.
  • the metal circuit layer 4 taken out from the mold 1 has a concavo-convex surface having a concavo-convex shape to which the concavo-convex pattern formed on the mold 1 is transferred, and the first conductor circuit 6 and the interlayer connection portion 7 serving as a via, Becomes a circuit layer formed integrally.
  • the first conductor circuit 6 is lower in height than the interlayer connection 7 and is different in height from the interlayer connection 7.
  • the interlayer connection portion 7 is a convex portion having a height higher than that of the first conductor circuit 6.
  • a liquid insulating resin 8 ' is applied so that the uneven portion of the metal circuit layer 4 becomes the upper surface, and the uneven portion is flattened and filled.
  • the liquid insulating resin 8 ′ supplied on the metal circuit layer 4 is flattened with a squeegee S so that the unevenness is eliminated, and the surface 8 a as a surface is flattened.
  • a polyimide varnish can be used for the liquid insulating resin 8 ′.
  • the liquid insulating resin 8 ' is cured by heating or UV irradiation. The heating was performed by heating in the oven at a temperature of 300 ° C. and a heating time of 1 hour. It takes 30 minutes to heat up to a heating temperature of 300 ° C. and 60 minutes to cool to room temperature.
  • the circuit layer take-out member 5 is removed from the metal circuit layer 4.
  • the first conductor circuit 6 does not protrude from the other surface 8 b of the insulating resin layer 8.
  • the interlayer connection portion 7 penetrates the insulating resin layer 8 in the thickness direction, and is exposed so that the front end portion 7a is the same height (so-called flush) as the one surface 8a.
  • the polishing step shown in FIG. That is, the metal circuit layer 4 formed on the other surface 8b opposite to the one surface 8a on the resin application side of the metal circuit layer 4 is polished until the resin is exposed.
  • the metal circuit layer 4 is polished by a polishing grindstone, and the metal circuit layer 4 is melted and polished by etching.
  • the connected conductor connecting portion (conductor portion other than the circuit) 11 is removed and is electrically connected to the first conductor circuit 6 and the first conductor circuit 6 and penetrates the insulating resin layer 8 to the one surface 8a. Interlayer connection 7 that exposes tip 7a is formed.
  • the circuit formation step shown in FIG. That is, the second conductor circuit 9 that is electrically connected to the first conductor circuit 6 formed on the other surface 8 b of the insulating resin layer 8 through the interlayer connection portion 7 is formed on one surface 8 a of the insulating resin layer 8.
  • the second conductor circuit 9 is aligned with the interlayer connection portion 7 and a wiring pattern is formed by photolithography or printing.
  • a resist is applied, the resist is patterned using a photolithography technique, electrolytic copper plating is performed, and then the resist and the seed layer are removed.
  • the second conductor circuit 9 is formed.
  • the second conductor circuit 9 may be formed by printing and sintering a conductive paste on the lower surface of the insulating resin layer 8 using a printing plate.
  • the wiring pattern is formed by a semi-additive method with a wiring width of 10 ⁇ m, a space between wirings of 10 ⁇ m, and a land diameter of 80 ⁇ m.
  • the polishing process shown in FIG. 1 (F) is a process of filling the conductive metal material into the recesses 2 and 3 formed in the mold 1 shown in FIG. If there is no surplus part which is 11, it can be omitted.
  • the metal circuit layer 4 is formed by filling the first recess 2 and the second recess 3 formed in the mold 1 with a conductive metal material and curing the metal circuit layer 4.
  • the insulating resin layer 8 is integrated with the metal circuit layer 4 by applying and curing the liquid insulating resin 8 ′ so as to fill the uneven portions 4. Therefore, the metal circuit layer 4 itself is an interlayer connection portion as a via that electrically connects the first conductor circuit 6 and the first conductor circuit 6 and the second conductor circuit 9 formed on both surfaces of the insulating resin layer 8.
  • the first conductor circuit 6 and the interlayer connection portion 7 can be formed simultaneously in the same process, so the first conductor circuit 6 and the interlayer connection portion 7 are separately provided. Compared with the conventional method to form, the positional accuracy of the 1st conductor circuit 6 and the interlayer connection part 7 can be improved.
  • the insulating resin layer 8 integrated with the metal circuit layer 4 is formed by applying and curing the liquid insulating resin 8 ′ so as to fill the uneven portion of the metal circuit layer 4. Therefore, it is possible to avoid breakage of the concavo-convex portions (the first conductor circuit 6 and the interlayer connection portion 7) formed in the metal circuit layer 4 by applying the liquid insulating resin 8 ′. That is, depending on the application of the liquid insulating resin 8 ′, a large load is not applied to the uneven portion of the metal circuit layer 4, and damage to the uneven portion can be prevented.
  • the conductive paste is used as the conductive metal material that fills the first recess 2 and the second recess 3 formed in the mold 1 without increasing the number of steps.
  • the metal circuit layer 4 can be easily formed.
  • FIGS. 3A and 3B are diagrams for explaining a method of manufacturing the multilayer wiring board according to the second embodiment.
  • FIG. 3A is a step of applying a liquid insulating resin to the uneven portion of the second metal circuit layer, and FIG. 2nd insulating resin layer integrated formation process
  • (C) is a pre-process for superimposing a semi-cured second insulating resin layer integrated metal circuit layer on a double-sided circuit board
  • (D) is a double-sided circuit board and second insulating resin
  • E) a step of peeling the adhesive sheet from the second metal circuit layer, and
  • the second embodiment is an example in which a laminated wiring board is manufactured by further stacking another circuit on the double-sided circuit board 10 manufactured in the first embodiment.
  • the process until the double-sided circuit board 10 is formed is manufactured in the same process as in the first embodiment.
  • the metal circuit layer forming process of the first embodiment is referred to as a first metal circuit layer forming process
  • the metal circuit layer 4 is referred to as a first metal circuit layer 4.
  • the insulating resin layer integrated forming step of the first embodiment is referred to as a first insulating resin layer integrated forming step
  • the insulating resin layer is referred to as a first insulating resin layer.
  • the polishing process of the first embodiment is referred to as a first polishing process
  • the interlayer connection 7 is referred to as a first interlayer connection 7.
  • each manufacturing process (first metal circuit layer forming process, first insulating resin layer integrated forming process, first polishing process, and double-sided circuit board forming process) of the first embodiment is performed to perform the first insulating resin layer 8.
  • a first interlayer circuit having a first conductor circuit 6 and a second conductor circuit 9 on each surface of the first and second conductor circuits 9 and electrically connecting the first conductor circuit 6 and the second conductor circuit 9 through the first insulating resin layer 8.
  • a double-sided circuit board 10 having a portion 7 is prepared.
  • a second metal circuit layer forming step for forming a second metal circuit layer is performed. That is, the same process as the metal circuit layer forming process in which the first metal circuit layer 4 is formed in the first embodiment is performed. Specifically, a concave part for forming a conductor circuit and a concave part for forming an interlayer connection part deeper than the concave part are formed on one surface of the mold, and both the concave parts are filled with a conductive metal material and cured. As a result, the second metal circuit layer is formed.
  • the same mold 1 as that in FIG. 1A is used. When a second metal circuit layer having a shape different from that of the first metal circuit layer 4 is produced, a mold different from that shown in FIG.
  • FIG. 3A shows the second metal circuit layer 20 to which the circuit layer extraction member 19 is attached.
  • the second metal circuit layer 20 is integrally formed with a third conductor circuit 21 and a second interlayer connection 22 serving as a via.
  • the height of the second interlayer connection portion 22 is higher than that of the third conductor circuit 21.
  • a second insulating resin layer integrated formation step is performed. That is, as shown in FIG. 3A, the liquid insulating resin 23 ′ is applied so that the uneven portion of the second metal circuit layer 20 becomes the upper surface and the uneven portion is flattened and filled.
  • the liquid insulating resin 23 ′ supplied on the second metal circuit layer 20 is flattened with a squeegee S so that the unevenness is eliminated, and the one surface 23 a as a surface is flattened.
  • the state after the planarization of the liquid insulating resin 23 ' is shown in FIG.
  • the planarized liquid insulating resin 23 ′ becomes the semi-cured second insulating resin layer 23.
  • liquid insulating resin 23 ′ used here the polyimide varnish used in the first embodiment can be used.
  • the flattened liquid insulating resin 23 ′ may be used as the second insulating resin layer 23 in a semi-cured state by heating as necessary to advance the degree of curing.
  • a lamination integration process is performed in which the double-sided circuit board 10 and the second insulating resin layer integrated second metal circuit layer 20 are laminated and integrated. That is, as shown in FIG. 3C, the double-sided circuit board 10 is formed on the surface of the double-sided circuit board 10 on which the first conductor circuit 6 is formed with the one surface 23a of the semi-cured second insulating resin layer 23 as an overlapping surface.
  • the substrate 10 and the second metal circuit layer 20 are aligned. The alignment is performed by image recognition or pin alignment.
  • the double-sided circuit board 10 attached to the molds 24 and 25 and the second metal circuit layer 20 integrated with the second insulating resin layer are heated and pressurized, and are in a semi-cured state.
  • the second insulating resin layer 23 is cured, and both are laminated and integrated.
  • the second interlayer connection portion 22 contacts the land of the first conductor circuit 6, and the second conductor circuit 9 and the third conductor circuit 21 are connected via the first interlayer connection portion 7 and the second interlayer connection portion 22. Electrically connected.
  • FIG. 3E shows a state where the circuit layer extraction member 19 is removed.
  • the second metal circuit layer 20 is turned upside down so as to face upward.
  • a second polishing step for polishing the second metal circuit layer 20 is performed.
  • the second polishing step as in the first polishing step of the first embodiment, the second metal circuit layer 20 is polished by a polishing grindstone or etching until the resin is exposed.
  • the connected conductor connecting portion 11 (conductor portion other than the circuit) is removed, and the third conductor circuit 21 is electrically connected to the third conductor circuit 21 and the second conductor circuit 21 is connected.
  • a second interlayer connection portion 22 that penetrates the insulating resin layer 23 and is electrically connected to the first conductor circuit 6 is formed.
  • the first conductor circuit 6 and the second conductor circuit 9 are electrically connected by the first interlayer connection portion 7 that is a via, and the first conductor circuit 6 and the third conductor circuit 9
  • the conductor circuit 21 is electrically connected by the second interlayer connection portion 22 that is also a via.
  • the second metal circuit is formed on the double-sided circuit board 10 formed by using the step of simultaneously forming the first conductor circuit 6 and the first interlayer connection portion 7 together with a mold.
  • the second insulating resin layer 23 in a semi-cured state which is semi-cured by applying the liquid insulating resin 23 'so as to fill the uneven portions of the layer 20, is overlapped, and then pressed and heated to be integrated.
  • the conductor circuit can be multi-layered without performing a simple process.
  • the metal circuit layer itself constitutes an interlayer connection portion as a conductor circuit and a via. It is no longer necessary to form the conductor circuit and the interlayer connection portion by plating or the like after transferring the concavo-convex pattern, and the stamper (mold) manufacturing process can be eliminated. As a result, when the stamper (mold) is released from the insulating resin layer, the resin does not adhere to the stamper (mold), and problems caused by the resin adhering to the stamper (mold) can be prevented. . Furthermore, a plating process for filling the concave portion of the insulating resin layer to which the concave / convex pattern of the stamper (mold) is transferred becomes unnecessary, and the manufacturing process can be greatly simplified and the cost can be reduced accordingly.
  • the first conductor circuit 6 and the first interlayer connection portion 7, the third conductor circuit 21 and the second interlayer connection portion 22 are simultaneously formed in a lump. can do. Therefore, compared with the conventional method in which the first conductor circuit 6 and the first interlayer connection 7 and the third conductor circuit 21 and the second interlayer connection 22 are separately formed, the first conductor circuit 6 and the first interlayer connection 7. And the positional accuracy of the 3rd conductor circuit 21 and the 2nd interlayer connection part 22 can be improved.
  • FIG. 4A is a process of superimposing a second metal circuit layer on a double-sided circuit board coated with a liquid insulating resin
  • (C) is a step of peeling the adhesive sheet from the second metal circuit layer
  • (D) is a polishing step of the second metal circuit layer.
  • the liquid insulating resin 23 ′ performed in FIGS. 3A to 3C of the second embodiment is applied to the second metal circuit layer 20, and then the double-sided circuit board 10 is laminated.
  • the integration step as shown in FIG. 4A, after applying the liquid insulating resin 23 'to the surface of the double-sided circuit board 10 on which the first conductor circuit 6 is formed, the liquid insulating resin The second metal circuit layer 20 is disposed opposite to the double-sided circuit board 10 coated with 23 ′.
  • the double-sided circuit board 10 and the second metal circuit layer 20 attached to the dies 24 and 25 are superposed and heated and pressurized via a liquid insulating resin 23 '.
  • the liquid insulating resin 23 ′ is cured and the two are laminated and integrated.
  • the circuit layer take-out member 19 that is an adhesive sheet is removed from the laminated wiring board that is laminated and integrated.
  • the second metal circuit layer 20 is polished until the resin is exposed.
  • the connected conductor connecting portion 11 (conductor portion other than the circuit) is removed, and the third conductor circuit 21 and the third conductor circuit 21 are electrically connected to each other and liquid insulation is provided.
  • a second interlayer connection portion 22 that penetrates through the second insulating resin layer 23 in which the resin 23 ′ is cured and is electrically connected to the land of the first conductor circuit 6 is formed.
  • FIG. 5 shows a fourth embodiment, and is a process chart sequentially showing a manufacturing process of a wiring board to which the present invention is applied.
  • a mold forming step and a metal circuit layer forming step shown in FIGS. 5A and 5B are performed.
  • a metal mold 1 that has been subjected to a conductive metal material (plating or conductive paste) and a material that can be easily released or a surface treatment is prepared.
  • a conductive metal material plating or conductive paste
  • a material that can be easily released or a surface treatment is prepared.
  • nickel electroforming, silicon, quartz or the like can be used.
  • a silane coupling agent such as fluoride can be used for the surface treatment.
  • a concave portion (hereinafter referred to as a first concave portion) 2 for forming a conductor circuit is formed on one surface 1a of the mold 1 and is deeper than the first concave portion 2.
  • a recess (hereinafter referred to as a second recess) 3 for forming an interlayer connection is formed.
  • These recesses 2 and 3 can be formed by fine processing such as electron beam processing or femtosecond laser processing. If the recesses 2 and 3 are formed by these processing techniques, the groove processing accuracy of the first recess 2 and the second recess 3 and the CO 2 laser and UV laser processing techniques used in the printed circuit board are reduced. The formation position accuracy can be improved.
  • the 1st recessed part 2 is taken as the recessed part according to the conductor circuit pattern which should be manufactured.
  • the second recess 3 is a recess corresponding to a via that electrically connects the first conductor circuit and the second conductor circuit that are finally formed on both surfaces of the insulating resin layer.
  • the first recess 2 and the second recess 3 are filled with a conductive metal material.
  • the first concave portion 2 and the second concave portion 3 are filled with a conductive metal material by sputtering and plating copper or nickel on the one surface 1a of the mold 1.
  • one side 1a of the mold 1 is subjected to DPP treatment (direct plating process treatment) with carbon, palladium, etc., and then plated with gold, copper, nickel, etc., or printed with copper or silver nano paste (conductive paste).
  • DPP treatment direct plating process treatment
  • gold, copper, nickel, etc. or printed with copper or silver nano paste (conductive paste).
  • the first recess 2 and the second recess 3 are filled with the conductive metal material.
  • the conductive metal material filled in the first recess 2 and the second recess 3 is cured.
  • the metal circuit layer 4 in which the first conductor circuit 6 shown in FIG. 2 and the interlayer connection portion 7 serving as a via are connected by the conductor connection portion 11 is formed.
  • an insulating resin layer integration step of integrating the insulating resin layer with the metal circuit layer 4 shown in FIGS. 5 (C) to (E) is performed.
  • the circuit layer extracting member 5 such as an adhesive sheet or an adsorbing sheet is attached to the other surface 4a opposite to the concave and convex surface of the metal circuit layer 4
  • the circuit layer extracting member 5 is pulled up and shown in FIG.
  • the metal circuit layer 4 is removed from the mold 1 as described above.
  • the metal circuit layer 4 taken out from the mold 1 has a concavo-convex surface having a concavo-convex shape to which the concavo-convex pattern formed on the mold 1 is transferred, and the first conductor circuit 6 and the interlayer connection portion 7 are integrated at the same time. It is a form that is formed automatically.
  • the interlayer connection portion 7 is a convex portion having a height higher than that of the first conductor circuit 6.
  • the insulating resin layer 8 shown in FIG. 5 (D) is prepared, and the insulating resin layer 8 is disposed opposite to the uneven surface of the metal circuit layer 4.
  • a liquid crystal polymer film thermoplastic resin
  • thermosetting resin is used as the insulating resin layer 8 instead of a thermoplastic resin
  • a semi-curing thermosetting resin is used.
  • a liquid crystal polymer film is used for the insulating resin layer 8. Then, the insulating resin layer 8 is superimposed on the uneven surface of the metal circuit layer 4 and pressed and heated.
  • the pressurization and heating conditions were as follows: the metal circuit layer 4 and the insulating resin layer 8 were pressurized at a temperature of 270 ° C. and a pressure of 10 MPa for 10 minutes. It takes 30 minutes for the heating temperature to reach 270 ° C., and 60 minutes for cooling to room temperature.
  • the metal circuit layer 4 is integrated with the insulating resin layer 8 so as to bite into the insulating resin layer 8 as shown in FIG.
  • the first conductor circuit 6 is embedded in the one surface 8 a of the insulating resin layer 8.
  • the interlayer connection part 7 penetrates the insulating resin layer 8 and is exposed so that the tip 7a is the same height (so-called flush) as the other surface 8b.
  • the polishing step shown in FIG. That is, the metal circuit layer 4 superimposed on the one surface 8a on the overlapping side of the insulating resin layer 8 is polished until the resin of the insulating resin layer 8 is exposed.
  • the metal circuit layer 4 is polished by a polishing grindstone, and the metal circuit layer 4 is melted and polished by etching.
  • the connected conductor connecting portion (conductor portion other than the circuit) 11 is removed and is electrically connected to the first conductor circuit 6 and the first conductor circuit 6 and penetrates the insulating resin layer 8 to the other surface 8b.
  • An interlayer connection 7 that exposes the tip 7a is formed.
  • the circuit formation process shown in FIG. That is, the second conductor circuit 9 that is electrically connected to the first conductor circuit 6 formed on the one surface 8a of the insulating resin layer 8 through the interlayer connecting portion 7 is formed on the other surface 8b of the insulating resin layer 8 that is polished and exposed.
  • the second conductor circuit 9 is aligned with the interlayer connection portion 7 and a wiring pattern is formed by photolithography or printing.
  • the wiring pattern is formed by the semi-additive method with the wiring being 10 ⁇ m, the inter-wiring space is 10 ⁇ m, and the land diameter is 80 ⁇ m.
  • the double-sided circuit board 10 in which the first conductor circuit 6 is connected to the second conductor circuit 9 via the interlayer connection portion 7 is obtained. And the solder resist and coverlay are provided in the surface of this double-sided circuit board 10 as needed.
  • polishing step shown in FIG. 5F is omitted if it is possible to optimize the filling conditions in the filling step of the conductive metal material in FIG. Can do.
  • the metal circuit layer 4 is formed by filling the first recess 2 and the second recess 3 formed in the mold 1 with a conductive metal material and curing the metal circuit layer 4.
  • the insulating resin layer 8 is superimposed on the uneven surface 4 and pressed and heated to integrate the insulating resin layer 8 with the metal circuit layer 4. Therefore, the metal circuit layer 4 itself is the first conductor circuit 6 and the interlayer connection portion 7 as a via that electrically connects the first conductor circuit 6 and the second conductor circuit 9 formed on both surfaces of the insulating resin layer 8. It becomes.
  • the plating process for filling the concave portion of the insulating resin layer to which the concave / convex pattern of the stamper (mold) is transferred with a conductive material is not necessary, and the manufacturing process can be greatly simplified and the cost can be reduced accordingly. it can.
  • the first conductor circuit 6 and the interlayer connection portion 7 can be formed simultaneously at the same time, the first conductor circuit 6 and the interlayer connection portion 7 are formed separately. Compared to the method, the positional accuracy of the first conductor circuit 6 and the interlayer connection portion 7 can be improved.
  • the conductive paste is used as the conductive metal material filled in the first recess 2 and the second recess 3 formed in the mold 1 without increasing the number of steps.
  • the metal circuit layer 4 can be easily formed.
  • the first conductor circuit 6 is formed on the one surface 8a of the insulating resin layer 8, and the interlayer connection portion serving as a via connected to the first conductor circuit 6 7 has a structure in which the insulating resin layer 8 passes through and the tip thereof is exposed to the other surface 8b.
  • the first conductor circuit 6 and the interlayer connection portion 7 are simultaneously formed from the same conductive metal material. There is no interface between the interlayer connections 7.
  • the conductor circuit and the interlayer connection part are formed in separate steps, an interface always exists between them.
  • the strength between them is increased, and electrical loss at the interface can be reduced, and the telecommunication state is improved.
  • the strength is weak when an external force is applied to the wiring board, and the electric communication state may be lowered.
  • the first conductor circuit 6 formed on one surface 8a of the insulating resin layer 8 and the one surface 8a have the same height (level).
  • tip 7a of the interlayer connection part 7 exposed to the other surface 8b of the insulating resin layer 8 and the other surface 8b become the same height (surface flush).
  • the fifth embodiment is an example in which another circuit is stacked on the double-sided circuit board 10 manufactured in the fourth embodiment to manufacture a multilayer wiring board.
  • the process until the double-sided circuit board 10 is formed is manufactured by the same process as that of the fourth embodiment.
  • the metal circuit layer forming step of the fourth embodiment is referred to as a first metal circuit layer forming step
  • the metal circuit layer 4 is referred to as a first metal circuit layer 4.
  • the insulating resin layer integration step of the fourth embodiment is referred to as a first insulating resin layer integration step and the insulating resin layer is referred to as a first insulating resin layer.
  • the polishing process of the fourth embodiment is referred to as a first polishing process
  • the interlayer connection 7 is referred to as a first interlayer connection 7.
  • each manufacturing process (first metal circuit layer forming process, first insulating resin layer integrating process, first polishing process and double-sided circuit board forming process) of the fourth embodiment is performed to form the first insulating resin layer 8.
  • a double-sided circuit board 10 having a portion 7 is prepared.
  • a semi-cured second insulating resin layer 19 ' is overlaid on the surface 8a of the double-sided circuit board 10 on which the first conductor circuit 6 is formed.
  • the semi-cured second insulating resin layer 19 ' for example, an epoxy-based semi-cured resin film is used.
  • a second metal circuit layer forming step which is the same step as the first metal circuit layer forming step of the fourth embodiment, is performed to form the second metal circuit layer 20.
  • the mold 1 used in FIG. 5A is used.
  • the mold 1 may use another mold. As shown in FIG.
  • the second metal circuit layer 20 includes a third conductor circuit 21 corresponding to the first conductor circuit 6 formed in the fourth embodiment, and a first interlayer connection portion 7. Corresponding second interlayer connection portions 22 are formed simultaneously at the same time. Further, on the second metal circuit layer 20, a circuit layer take-out member 23 made of an adhesive sheet, an adsorbing sheet or the like for taking out the second metal circuit layer 20 from the mold is attached to the other surface 20a opposite to the uneven surface. It is attached.
  • the second metal circuit layer 20, the double-sided circuit board 10, And heated to form a cured second insulating resin layer 19, and the second metal circuit layer 20 and the double-sided circuit board 10 are integrated.
  • these second metal circuit layers 20 are connected so that the second interlayer connection portion 22 can be connected to the land formed in the first conductor circuit 6.
  • the double-sided circuit board 10 are aligned by image recognition, pin alignment, or the like for matching the indexes formed on the second metal circuit layer 20 and the double-sided circuit board 10, respectively.
  • the uneven portion of the second metal circuit layer 20 bites into the semi-cured second insulating resin layer 19 ′, and the third conductor circuit 21 becomes the second insulating resin.
  • the second interlayer connecting portion 22 is embedded in the layer 19 ′ and penetrates through the second insulating resin layer 19 ′, and the tip thereof is in contact with the land of the first conductor circuit 6.
  • the third conductor circuit 21 is electrically connected to the second conductor circuit 9 via the second interlayer connection portion 22 and the first interlayer connection portion 7.
  • the second metal circuit layer 20 and the double-sided circuit board 10 are integrated by the second insulating resin layer 19 that is cured by heating.
  • the circuit layer extraction member 23 is removed from the second metal circuit layer 20.
  • a second polishing step for polishing the second metal circuit layer 20 is performed.
  • the second polishing step as in the first polishing step of the fourth embodiment, the second metal circuit layer 20 is polished by a polishing grindstone or etching until the resin is exposed.
  • the connected conductor connecting portion 11 (conductor portion other than the circuit) is removed, and the third conductor circuit 21 and the third conductor circuit 21 are electrically connected and the second conductor circuit 21 is connected.
  • a second interlayer connection portion 22 that penetrates the insulating resin layer 19 and is electrically connected to the land of the first conductor circuit 6 is formed.
  • the laminated wiring board manufactured in this way is electrically connected to the first conductor circuit 6 and the second conductor circuit 9 via the first interlayer connection portion 7 which is a via,
  • the third conductor circuit 21 is electrically connected through a second interlayer connection portion 22 that is also a via.
  • the first conductor circuit 6 and the first interlayer connection portion 7 are simultaneously formed in a mold at the same time and formed into a semi-cured state on one surface of the double-sided circuit board 10 formed.
  • a second metal circuit layer 20 in which another third conductor circuit 21 and a second interlayer connection portion 22 are simultaneously formed is added to the second insulating resin layer 19 ′.
  • the insulating resin is formed by a stamper (mold) as in the prior art. It is no longer necessary to form the conductor circuit and the interlayer connection portion by plating or the like after transferring the concavo-convex pattern, and the stamper (mold) manufacturing process can be eliminated. As a result, when the stamper (mold) is released from the insulating resin layer, the resin does not adhere to the stamper (mold) or the like, thereby preventing problems caused by the resin adhering to the stamper (mold). it can.
  • the plating process for filling the concave portion of the insulating resin layer to which the concave / convex pattern of the stamper (mold) is transferred with a conductive material is not necessary, and the manufacturing process can be greatly simplified and the cost can be reduced accordingly. it can.
  • the first conductor circuit 6 and the first interlayer connection portion 7, the third conductor circuit 21 and the second interlayer connection portion 22 are simultaneously formed in a lump. can do. Therefore, compared with the conventional method in which the first conductor circuit 6 and the first interlayer connection 7 and the third conductor circuit 21 and the second interlayer connection 22 are separately formed, the first conductor circuit 6 and the first interlayer connection 7. And the positional accuracy of the 3rd conductor circuit 21 and the 2nd interlayer connection part 22 can be improved.
  • the wiring board according to the sixth embodiment of the present invention is a multilayer board including a first board 101 and a second board 102 laminated on the upper surface of the first board 101. is there.
  • the first substrate 101 includes a first insulating resin layer 106, first conductor circuits 113 to 119 embedded in the upper portion of the first insulating resin layer 106, and a second conductor disposed on the lower surface of the first insulating resin layer 106.
  • Circuits 121 and 122, and first interlayer connection portions 111 and 112 that connect the first conductor circuits 114 and 118 and the second conductor circuits 121 and 122 are provided. There is no interface between the first conductor circuits 114 and 118 and the first interlayer connection portions 111 and 112, and the first conductor circuits 114 and 118 and the first interlayer connection portions 111 and 112 are integrally formed.
  • the second substrate 102 includes a second insulating resin layer 107 laminated on the first insulating resin layer 106, third conductor circuits 133 to 139 embedded in the upper portion of the second insulating resin layer 107, and a third conductor circuit. And second interlayer connection portions 131 and 132 connected to 134 and 138. There is no interface between the third conductor circuits 134 and 138 and the second interlayer connection portions 131 and 132, and the third conductor circuits 134 and 138 and the second interlayer connection portions 131 and 132 are integrally formed.
  • thermosetting resin such as an epoxy resin or a thermoplastic resin such as a liquid crystal polymer
  • the material of the first conductor circuits 113 to 119, the second conductor circuits 121 and 122, the third conductor circuits 133 to 139, the first interlayer connection portions 111 and 112, and the second interlayer connection portions 131 and 132 is copper (Cu). Or silver (Ag) can be used.
  • alloy layers 151 and 152 are formed between the second interlayer connection portions 131 and 132 and the first conductor circuits 114 and 118.
  • the alloy layers 151 and 152 are formed by dissolving a solder layer containing copper (Cu), silver (Ag), tin (Sn), and the like, so that the material of the second interlayer connection parts 131 and 132 and the material of the first conductor circuits 114 and 118 are obtained. And includes copper (Cu), silver (Ag), tin (Sn), and the like.
  • the alloy layers 151 and 152 are provided between the second interlayer connection portions 131 and 132 and the first conductor circuits 114 and 118, so that the second It is possible to suppress the occurrence of cracks at the interfaces between the interlayer connection portions 131 and 132 and the first conductor circuits 114 and 118, and to reduce signal loss. Therefore, the connection reliability between the second interlayer connection parts 131 and 132 and the first conductor circuits 114 and 118 can be improved.
  • the first substrate 101 shown in FIG. 7 is manufactured by the steps shown in FIGS.
  • a metal mold 104 is prepared which is easily separated from the conductive material or is subjected to surface treatment.
  • the mold 104 includes a base 140, recesses 143 to 149 provided on the top of the base 140, and holes 141 and 142 communicating with the recesses 143 to 149.
  • the mold 104 can be manufactured by various methods. However, in particular, when a fine size is required, a resist is applied on a silicon (Si) substrate on which a seed layer is formed, and the resist is applied to an electron beam (EB). ), Ultraviolet rays (UV) or laser to draw and develop and pattern.
  • EB electron beam
  • UV Ultraviolet rays
  • the mold 104 can be manufactured by repeating this series of steps, filling the patterned uneven portion with a conductive material by plating using nickel (Ni), copper (Cu), or the like, and then removing the resist.
  • the surface of the mold 104 can be subjected to mold release treatment with a commercially available fluorine silane coupling agent as necessary.
  • a first metal circuit layer 108 having first interlayer connection portions 111 and 112 made of a conductive material is formed.
  • the resist is patterned by i-line exposure to produce a mold 104, whereby the first interlayer connection portions 111 and 112 have a shape of about 10 ⁇ m in diameter and about 25 ⁇ m in height.
  • a line-and-space portion having a wiring width of about 5 ⁇ m, a wiring interval of about 5 ⁇ m, and a land diameter of about 30 ⁇ m is obtained.
  • FIG. 11 is a perspective view of the first support part 110, the first conductor circuit 118, and the first interlayer connection part 112, which are part of the first metal circuit layer 108, as viewed from the lower surface side.
  • a first insulating resin layer 106 made of a thermosetting resin such as an epoxy resin or a thermoplastic resin such as a liquid crystal polymer is prepared.
  • the upper surface of the first insulating resin layer 106 is opposed to the surface of the first metal circuit layer 108 on which the first conductor circuits 113 to 119 and the first interlayer connection portions 111 and 112 are formed.
  • the first conductor circuits 113 to 119 and the first interlayer connection portions 111 and 112 are press-fitted into the first insulating resin layer 106 heated to the softening temperature, and heated and pressed in the stacking direction.
  • a liquid crystal polymer film is used as the first insulating resin layer 106 and pressed at 270 ° C. and 10 MPa for 10 minutes. At this time, it takes 30 minutes as the time to raise the temperature separately to 270 ° C. and 1 hour as the time to cool to room temperature. Thereafter, the support 105 is removed from the first metal circuit layer 108 as shown in FIG.
  • the first support part 110 of the first metal circuit layer 108 becomes an excessive part, the first support part 110 is removed by polishing or etching as shown in FIG. Note that this polishing or etching step can be omitted by optimizing the conductive material filling conditions when filling the conductive material shown in FIG. 9 so as not to form the first support portion 110.
  • the second conductor circuits 121 and 122 are formed on the lower surface of the first insulating resin layer 106 by photolithography and printing, and the first substrate 101 is completed.
  • the line width of the second conductor circuits 121 and 122 is about 10 ⁇ m
  • the wiring interval is about 10 ⁇ m
  • the land diameter is about 80 ⁇ m.
  • a second insulating resin layer 107 is prepared as shown in FIG. 17, and a sheet-like material made of a thermosetting resin such as an epoxy resin or a thermoplastic resin such as a liquid crystal polymer on the first substrate 101 is prepared.
  • the second insulating resin layer 107 is overlaid and laminated (laminated) as shown in FIG.
  • a second metal circuit layer having third conductor circuits 133 to 139 and second interlayer connection portions 131 and 132 is prepared.
  • the second metal circuit layer can be formed by a process similar to the process of forming the first metal circuit layer 108 shown in FIGS.
  • the second metal circuit layer optimizes the filling condition of the conductive material, forms the third conductor circuits 133 to 139 and the second interlayer connection portions 131 and 132, and the first support portion 110 of the mold 104 shown in FIG.
  • the surplus part is not formed.
  • the second metal circuit layer may be formed using the mold 104 and having the same pattern shape as the first metal circuit layer 108, and the first metal circuit layer may be formed using a mold different from the mold 104.
  • the metal circuit layer 108 may have the same pattern shape or a different pattern shape.
  • solder layers 161 and 162 are formed on the tops of the second interlayer connection portions 131 and 132 by plating, printing, or the like.
  • an alloy of tin (Sn), silver (Ag), and copper (Cu) can be used as a material for the solder layers 161 and 162.
  • a solder paste made of tin (Sn) -1 silver (Ag) -0.5 copper (Cu) and a flux is used as a material for the solder layers 161 and 162, and printing is performed at about 1 ⁇ m. Sinter in a reflow furnace.
  • the third conductor circuits 133 to 139 and the second interlayer connection portions 131 and 132 are made to face the upper surface of the second insulating resin layer 107 using the support 105.
  • the third conductor circuits 133 to 139 and the second interlayer connection portions 131 and 132 are aligned with the opposing first conductor circuits 113 to 119 by image recognition, pin alignment, or the like.
  • the third conductor circuits 133 to 139 and the second interlayer connection portions 131 and 132 are press-fitted into the second insulating resin layer 107 heated to the softening temperature, and the first substrate 101 and the first substrate 101 The two insulating resin layers 107 are heated and pressed in the stacking direction.
  • the solder layers 161 and 162 are in contact with the first conductor circuits 114 and 118.
  • the second insulating resin layer 107 is a thermosetting resin by this heating, it is completely cured. If the second insulating resin layer 107 is thermoplastic, it is cured by cooling later. Furthermore, the solder layers 161 and 162 are melted by this heating, and alloy layers 151 and 152 are formed between the second interlayer connection portions 131 and 132 and the first conductor circuits 114 and 118, and the multilayer substrate shown in FIG. Is completed.
  • an excess part of a 2nd metal circuit layer an excess part is removed by grinding
  • the stamper (mold) since the third conductor circuits 133 to 139 and the second interlayer connection portions 131 and 132 are embedded in the second insulating resin layer 107, the stamper (mold) is separated from the insulating resin layer.
  • the resin does not adhere to the stamper (mold), and it is possible to prevent problems caused by the resin adhering to the stamper (mold).
  • cracks may occur at the interface between the interlayer connection portion and the conductor circuit, or signal loss may occur, maintaining the connection reliability between the interlayer connection portion and the conductor circuit. Is difficult.
  • the alloy layers 151 and 152 are formed between the second interlayer connection portions 131 and 132 and the first conductor circuits 113 to 119.
  • the alloy layers 151 and 152 are formed between the second interlayer connection portions 131 and 132 and the first conductor circuits 113 to 119.
  • the wiring board according to the seventh embodiment of the present invention includes an insulating resin layer 200, first conductor circuits 213 to 219 embedded in the upper part of the insulating resin layer 200, and an insulating resin layer 200.
  • Second conductor circuits 221 and 222 disposed on the lower surface of the first conductor circuit, interlayer connection portions 211 and 212 connecting the first conductor circuits 214 and 218 and the second conductor circuits 221 and 222, the interlayer connection portions 211 and 212, and the second It is a double-sided board provided with alloy layers 251 and 252 formed between the conductor circuits 221 and 222.
  • alloy layers 251 and 252 formed between the conductor circuits 221 and 222.
  • the second conductor circuit is provided by providing the alloy layers 251 and 252 between the second conductor circuits 221 and 222 and the interlayer connection portions 211 and 212. Connection reliability between 221 and 222 and the interlayer connection portions 211 and 212 can be improved.
  • the manufacturing method of the wiring board according to the seventh embodiment of the present invention performs the same process as the process shown in FIGS. 19 to 20 so that the process is performed on the insulating resin layer 200 as shown in FIG.
  • the one conductor circuits 213 to 219 are embedded, the interlayer connection portions 211 and 212 penetrate the insulating resin layer 200, and the solder layers 261 and 262 are exposed from the lower surface of the insulating resin layer 200.
  • second conductor circuits 221 and 222 are formed on the lower surface of the insulating resin layer 200 by photolithography and printing, as shown in FIG.
  • solder layers 261 and 262 are dissolved by heating, and the material of the solder layers 261 and 262, the interlayer connection portions 211 and 212, and the second conductor are interposed between the interlayer connection portions 211 and 212 and the second conductor circuits 221 and 222. Alloy layers 251 and 252 made of the materials of the circuits 221 and 222 are formed.
  • the seventh embodiment of the present invention since the first conductor circuits 213 to 219 and the interlayer connection portions 211 and 212 are embedded from the upper surface of the insulating resin layer 200, a stamper (mold) is used as in the conventional case. When releasing from the mold, the resin does not adhere to the stamper (mold), and it is possible to prevent problems caused by the resin adhering to the stamper (mold). Further, by forming alloy layers 251 and 252 between the second conductor circuits 221 and 222 and the interlayer connection portions 211 and 212, connection between the second conductor circuits 221 and 222 and the interlayer connection portions 211 and 212 is achieved. A highly reliable double-sided substrate can be manufactured.
  • FIG. 23 shows another embodiment, and is a process diagram for forming a metal circuit layer having a fine conductor circuit pattern.
  • A is a silicon wafer preparation process
  • B is an uneven pattern formation by a resist.
  • Step is a seed layer forming step
  • D is a plating step
  • E is a plating polishing step
  • F is a step of taking out the metal circuit layer from the silicon wafer.
  • the metal circuit layer 17 is manufactured by the process shown in FIG. First, as shown in FIG. 23A, a silicon wafer 12 is prepared.
  • the resist is subjected to photolithography by exposure and development to form a through hole reaching the one surface 12a, and then a resist is further applied on the resist
  • the second photolithography is performed and the cured resist layer 13 has a first recess 14 and a second depth that is deeper than the first recess 14 and reaches the surface 12a.
  • a recess 15 is formed.
  • a seed layer 16 is formed by sputtering copper, nickel, or the like on the resist layer 13 which is made uneven by the first recess 14 and the second recess 15.
  • the metal circuit layer 17 is formed by plating copper or the like on the seed layer 16 so that the first recess 14 and the second recess 15 are filled together. Then, as shown in FIG. 23E, the one surface 17a which is the surface of the metal circuit layer 17 is polished to smooth the surface.
  • the metal circuit layer 17 is taken out from the resist layer 13 as shown in FIG.
  • the metal circuit layer 17 taken out from the resist layer 13 has a concavo-convex surface having a concavo-convex shape to which the concavo-convex pattern formed in the resist layer 13 is transferred, and the first conductor circuit 6 and the interlayer connection portion 7 are integrated. It will be formed into a shape.
  • wiring board according to the seventh embodiment of the present invention shown in FIG. 21 may be employed instead of the first board 101 shown in FIG.
  • solder layers 161 and 162 on the tops of the interlayer connection parts 131 and 132 shown in FIG. 19, the top part of the interlayer connection part 7 shown in FIG.
  • the top of the interlayer connection 22 shown, the top of the interlayer connection 22 shown in FIG. 4A, the top of the interlayer connection 7 shown in FIG. 5C, and the interlayer connection shown in FIG. 6C A solder layer may be formed on the top of 22.
  • the double-sided circuit board 10 shown in FIG. 3C in the second embodiment and the double-sided circuit board 10 shown in FIG. 4A in the third embodiment are the same as those in the first embodiment.
  • the double-sided circuit board 10 shown in FIG. 1G manufactured by applying a liquid insulating resin the conductor circuit 6 and the interlayer connection portion 7 are connected to the insulating resin layer 8 in the fourth embodiment.
  • the double-sided circuit board 10 shown in FIG. 5G manufactured by press-fitting may be used.
  • the double-sided circuit board 10 shown in FIG. 6A in the fifth embodiment is manufactured by press-fitting the conductor circuit 6 and the interlayer connection portion 7 into the insulating resin layer 8 in the fourth embodiment.
  • the double-sided circuit board 10 shown in FIG. 5G is used. May be used.
  • the double-sided circuit board 10 shown in FIG. 1 (G) manufactured by applying the liquid insulating resin in the first embodiment the double-sided circuit board 10 shown in FIG. 1 (G) manufactured by applying the liquid insulating resin in the first embodiment
  • the double-sided circuit board 10 shown in FIG. 5G manufactured by press-fitting the conductor circuit 6 and the interlayer connection portion 7 into the insulating resin layer 8 in the fourth embodiment may be used.
  • the present invention can be used for a wiring board in which a conductor circuit formed on at least one surface of an insulating substrate is connected by an interlayer connection portion that is a via.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

 配線基板の製造方法であって、第1導体回路6と、第1導体回路6の高さと異なる高さを有する第1層間接続部7とを一面に有する第1金属回路層4を用意する工程と、第1層間接続部7の先端が露出するように第1金属回路層4の一面を覆う第1絶縁樹脂層8を形成する工程とを含む。

Description

配線基板の製造方法
 本発明は、電子部品を実装する配線基板の製造方法に関する。
 電子機器の小型化に伴い電子機器に内蔵される電子部品及びその電子部品に実装される配線板も小型化の傾向にあり、多くの信号を伝送させるために配線板に構成される配線の微細化が不可欠になっている。
 従来、配線を形成するためにフォトリソグラフィ技術を利用してきたが、プリント配線レベルで用いられているフォトリソグラフィでは配線幅が10μm以下の微細化が難しく、より微細な配線幅を形成する方法が求められている。
 微細な配線幅を形成する方法の一つとして、配線パターンを形成するための凸型のパターンを有するスタンパー(モールド)を用いて絶縁層に凹型のパターンを転写し、その転写された凹型のパターンに導電材料を充填することにより配線パターンを形成するインプリント法が知られている。
 例えば、特許文献1には、スタンパーで樹脂に凹凸パターンを転写し、その転写された凹部に導電材料を充填して導体回路を形成するようにした配線基板の製造方法が開示されている。
 具体的には、図24(A)~(C)に示すように、配線パターンに応じた凹凸部を有したスタンパー301を成型用金型に取り付けた後、この金型に熱硬化性エポキシ樹脂を注入してトランスファー成型を行うことで、凹部303と凸部からなる凹凸パターンを転写した樹脂基板302を形成する。
 次に、図24(D)及び(E)に示すように、樹脂基板302に電解めっきを行って凹部303が銅めっきで充填されるように銅めっき膜304を形成した後、その銅めっき膜304を樹脂が露出するまで研磨することで配線部305を形成している。
 また、特許文献2には、導体回路形成用の凸部とビアホール形成用の凸部を有したモールドで樹脂に凹凸パターンを転写し、その転写された凹部に導電材料を充填して導体回路を形成するようにした配線基板の製造方法が開示されている。
 具体的には、図25(A)~(C)に示すように、回路306とスルーホール307を形成した絶縁基板308の両面に層間絶縁層309を形成した後、導体回路形成用の凸部310とビアホール形成用の凸部311を有したモールド312を層間絶縁層309に押し付けて凹凸パターンを転写させた後、モールド312を取り外して導体回路形成用溝313とビアホール形成用溝314を形成する。
 次に、図25(D)及び(E)に示すように、絶縁基板308の両面に形成された導体回路形成用溝313及びビアホール形成用溝314を充填するように銅めっき膜315を形成した後、その銅めっき膜315を研磨して導体回路316とビアホール形成用溝314を埋める層間接続部317とを形成している。
特開2001-320150号公報 特開2005-108924号公報
 しかし、特許文献1に記載の方法では、スタンパー301の凹凸を樹脂基板302に転写した後、スタンパー301を樹脂基板302から離型する際に、樹脂基板302の樹脂がスタンパー301に付着するという問題点がある。これにより、樹脂基板302に転写されたパターン形状が変形したり、樹脂が付着したスタンパー301を用いて、凹凸パターンを別な樹脂基板に転写する際に不具合が生じたりする場合がある。
 一方、特許文献2に記載の方法では、モールド312の凹凸を層間絶縁層309に転写した後、モールド312を層間絶縁層309から離型する際に、層間絶縁層309の樹脂がモールド312に付着する問題点がある。これにより、層間絶縁層309に転写されたパターン形状が変形したり、且つ樹脂が付着したモールド312を用いて、凹凸パターンを別な層間絶縁層に転写する際に不具合が生じたりする場合がある。
 上記問題点を鑑み、本発明は、スタンパー(モールド)の凹凸パターンを絶縁樹脂層(層間絶縁層)に転写後、スタンパー(モールド)を絶縁樹脂層から離型する際のスタンパー(モールド)への樹脂の付着に起因する不具合を防止することができる配線基板の製造方法を提供することを目的とする。
 本発明の一態様によれば、第1導体回路と、第1導体回路の高さと異なる高さを有する第1層間接続部とを一面に有する第1金属回路層を用意する工程と、第1層間接続部の先端が露出するように第1金属回路層の一面を覆う第1絶縁樹脂層を形成する工程とを含む配線基板の製造方法が提供される。
 本発明の他の一態様によれば、第1導体回路と、第1導体回路の高さと異なる高さを有する第1層間接続部とを一面に有する金属回路層を形成する工程と、層間接続部の頂部に半田層を形成する工程と、絶縁樹脂層を用意する工程と、第1導体回路及び半田層が頂部に形成された層間接続部を絶縁樹脂層の一面に圧入し、絶縁樹脂層の他面から半田層を露出させる工程と、絶縁樹脂層の他面に半田層と接する第2導体回路を形成する工程と、半田層を溶解させて層間接続部と第2導体回路との間に合金層を形成する工程とを含む配線基板の製造方法が提供される。
図1は本発明の第1の実施の形態に係る配線基板の製造方法を説明するための図であり、(A)は金型形成工程、(B)は金属回路層形成工程、(C)は金属回路層を金型から取り出す工程、(D)は金属回路層に液状絶縁樹脂を塗布する工程、(E)は液状絶縁樹脂を硬化させて金属回路層に絶縁樹脂層を一体化させる絶縁樹脂層一体形成工程、(F)は金属回路層の研磨工程、(G)は絶縁樹脂層の他面に第2導体回路を形成する回路形成工程を示す。 図2は金属回路層を示し、(A)はその断面図、(B)は層間接続部が形成される部位の要部拡大斜視図である。 図3は本発明の第2の実施の形態に係る積層配線基板の製造方法を説明するための図であり、(A)は第2金属回路層の凹凸部に液状絶縁樹脂を塗布する工程、(B)は第2絶縁樹脂層一体形成工程、(C)は両面回路基板に半硬化状態の第2絶縁樹脂層一体型の金属回路層を重ね合わせる前工程、(D)は両面回路基板と第2絶縁樹脂層一体型の金属回路層を積層一体化する積層一体化工程、(E)は第2金属回路層から粘着シートを剥がす工程、(F)は第2金属回路層の研磨工程である。 図4は本発明の第3の実施の形態に係る積層配線基板の製造方法の他の例を示す図であり、(A)は液状絶縁樹脂を塗布した両面回路基板に第2金属回路層を重ね合わせる工程、(B)は両面回路基板と第2金属回路層を積層一体化する積層一体化工程、(C)は第2金属回路層から粘着シートを剥がす工程、(D)は第2金属回路層の研磨工程である。 図5は本発明の第4の実施の形態に係る配線基板の製造方法を説明するための図であり、(A)は金型形成工程、(B)は金属回路層形成工程、(C)は金属回路層を金型から取り出す工程、(D)は金属回路層と絶縁樹脂層を一体化する前工程、(E)は金属回路層と絶縁樹脂層の絶縁樹脂層一体化工程、(F)は金属回路層の研磨工程、(G)は絶縁樹脂層の他面に第2導体回路を形成する回路形成工程を示す。 図6は本発明の第5の実施の形態に係る積層配線基板の製造方法を説明するための図であり、(A)は両面回路基板に半硬化状態の第2絶縁樹脂層を重ね合わせる前工程、(B)は両面回路基板に半硬化状態の第2絶縁樹脂層を重ね合わせる工程、(C)は両面回路基板に第2金属回路層を一体化する前工程、(D)は両面回路基板に第2金属回路層を積層する積層工程、(E)は第2金属回路層から粘着シートを剥がす工程、(F)は第2金属回路層の研磨工程である。 本発明の第6の実施の形態に係る配線基板の一例を示す断面図である。 本発明の第6の実施の形態に係る配線基板の製造方法の一例を説明するための工程断面図である。 本発明の第6の実施の形態に係る配線基板の製造方法の一例を説明するための図8に引き続く工程断面図である。 本発明の第6の実施の形態に係る配線基板の製造方法の一例を説明するための図9に引き続く工程断面図である。 本発明の第6の実施の形態に係る配線基板の製造方法の一例を説明するための斜視図である。 本発明の第6の実施の形態に係る配線基板の製造方法の一例を説明するための図10に引き続く工程断面図である。 本発明の第6の実施の形態に係る配線基板の製造方法の一例を説明するための図12に引き続く工程断面図である。 本発明の第6の実施の形態に係る配線基板の製造方法の一例を説明するための図13に引き続く工程断面図である。 本発明の第6の実施の形態に係る配線基板の製造方法の一例を説明するための図14に引き続く工程断面図である。 本発明の第6の実施の形態に係る配線基板の製造方法の一例を説明するための図15に引き続く工程断面図である。 本発明の第6の実施の形態に係る配線基板の製造方法の一例を説明するための図16に引き続く工程断面図である。 本発明の第6の実施の形態に係る配線基板の製造方法の一例を説明するための図17に引き続く工程断面図である。 本発明の第6の実施の形態に係る配線基板の製造方法の一例を説明するための図18に引き続く工程断面図である。 本発明の第6の実施の形態に係る配線基板の製造方法の一例を説明するための図19に引き続く工程断面図である。 本発明の第7の実施の形態に係る配線基板の一例を示す断面図である。 本発明の第7の実施の形態に係る配線基板の製造方法の一例を説明するための工程断面図である。 図23は微細な導体回路パターンを有した金属回路層を形成するための工程図であり、(A)はシリコンウエハー準備工程、(B)はレジストによる凹凸パターン形成工程、(C)はシード層形成工程、(D)はめっき工程、(E)はめっき研磨工程、(F)は金属回路層をシリコンウエハーから取り出す工程を示す。 図24はスタンパーで樹脂に凹凸パターンを転写し、その転写した凹部に導電材料を充填して導体回路を形成する配線基板の製造工程を示す従来工程図である。 図25は導体回路形成用の凸部とビアホール形成用の凸部を有したモールドで樹脂に凹凸パターンを転写し、その転写された凹部に導電材料を充填して導体回路を形成するようにした配線基板の製造工程を示す従来工程図である。
 次に、図面を参照して、本発明の第1~第7の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。
 また、以下に示す第1~第7の実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。
(第1の実施の形態)
 図1は第1の実施の形態の配線基板の製造工程を順次示す工程図であり、(A)は金型形成工程、(B)は金属回路層形成工程、(C)は金属回路層を金型から取り出す工程、(D)は金属回路層に液状絶縁樹脂を塗布する工程、(E)は液状絶縁樹脂を硬化させて金属回路層に絶縁樹脂層を一体化させる絶縁樹脂層一体形成工程、(F)は金属回路層の研磨工程、(G)は絶縁樹脂層の他面に第2導体回路を形成する回路形成工程を示す。
 配線基板を製造するには、先ず、図1(A)及び(B)で示す金型形成工程と金属回路層形成工程を行う。初めに、導電性金属材料(めっきや導電性ペースト)と離型し易い材質若しくは表面処理を施した金型1を用意する。金型1には、例えばニッケル電鋳、シリコン、石英等を使用することができる。また、表面処理には、フッ化物等のシランカップリング剤が使用できる。
 次に、図1(A)に示すように、金型1の一面1aに導体回路形成用の凹部(以下、第1の凹部という)2と、この第1の凹部2よりも深さが深い層間接続部形成用の凹部(以下、第2の凹部という)3を形成する。これら凹部2、3は、例えば数十μm以下といった微細加工が可能な電子線加工やフェムト秒レーザー加工によって形成することができる。これらの加工技術で凹部2、3を形成すれば、プリント配線基板で使用されるCOレーザーやUVレーザー加工技術に比較して、第1の凹部2と第2の凹部3の溝加工精度及び形成位置精度を向上させることができる。第1の凹部2は、製造すべき導体回路パターンに応じた凹部とする。第2の凹部3は、最終的に絶縁樹脂層の両面に形成する第1導体回路と第2導体回路を電気的に接続するビアに応じた凹部とする。
 次に、図1(B)に示すように、第1の凹部2及び第2の凹部3に導電性金属材料を充填する。具体的には、金型1の一面1aに銅やニッケル等をスパッタした後めっきすることによって、第1の凹部2及び第2の凹部3に導電性金属材料を充填する。または、金型1の一面1aにカーボンやパラジウム等をDPP処理(ダイレクト・プレーティング・プロセス処理)した後、金や銅やニッケル等をめっきし或いは銅や銀ナノペースト(導電性ペースト)を印刷することで、第1の凹部2及び第2の凹部3に導電性金属材料を充填する。そして、第1の凹部2及び第2の凹部3に充填した導電性金属材料を硬化させる。これにより、図2に示すように、後述する第1導体回路6とビアとなる層間接続部7とが導体連結部11にて連結された金属回路層4が形成される。
 次に、図1(C)~(E)で示す金属回路層4と絶縁樹脂層を一体化させる絶縁樹脂層一体形成工程を行う。粘着シートや吸着シート等の回路層取出し部材5を金属回路層4の凹凸面とは反対側の他面4aに貼り付けた後、この回路層取出し部材5を引き上げて図1(C)に示すように金属回路層4を金型1から取り出す。金型1から取り出された金属回路層4は、金型1に形成された凹凸パターンが転写された凹凸形状をなす凹凸面を有し、第1導体回路6とビアとなる層間接続部7とが一体的に形成された回路層となる。第1導体回路6は、層間接続部7よりも高さが低く、層間接続部7とは高さが異なっている。別の見方をすると、層間接続部7は、第1導体回路6よりも高さの高い凸部とされる。
 次に、図1(D)で示すように、金属回路層4の凹凸部が上面となるようにして、この凹凸部を平坦化して埋めるように液状絶縁樹脂8’を塗布する。液状絶縁樹脂8’を塗布するには、金属回路層4上に供給された液状絶縁樹脂8’をスキージSで凹凸が無くなるよう平らにして表面である一面8aを平坦化する。液状絶縁樹脂8’には、例えばポリイミドワニスを使用することができる。次に、この液状絶縁樹脂8’を加熱若しくはUV照射して硬化させる。加熱は、オーブンにて温度を300℃とし加熱時間を1時間として大気加熱した。なお、加熱温度300℃になるまで加熱するのに30分かかり、常温まで冷却するのに60分かかる。
 そして、液状絶縁樹脂8’が硬化したら金属回路層4から回路層取出し部材5を取り外す。その結果、図1(E)に示すように、液状絶縁樹脂8’が硬化した絶縁樹脂層8と金属回路層4とが一体化される。第1導体回路6は、絶縁樹脂層8の他面8bから突出しないようになっている。層間接続部7は、絶縁樹脂層8を厚み方向に貫通し、その先端部7aが一面8aと同じ高さ(いわゆる面一)となるように露出している。
 次に、図1(F)で示す研磨工程を行う。すなわち、金属回路層4の樹脂塗布側の一面8aとは反対側の他面8bに形成される金属回路層4を樹脂が露出するまで研磨する。研磨は、研磨砥石により金属回路層4を研磨する他、エッチングにより金属回路層4を溶かして研磨するようにする。その結果、連結されていた導体連結部(回路以外の導体部位)11が除去されて第1導体回路6、及び第1導体回路6と導通し且つ絶縁樹脂層8を貫通して一面8aにその先端部7aを露出させる層間接続部7が形成される。
 次に、図1(G)で示す回路形成工程を行う。すなわち、絶縁樹脂層8の一面8aに、層間接続部7を介して絶縁樹脂層8の他面8bに形成された第1導体回路6と導通する第2導体回路9を形成する。第2導体回路9を形成するには、層間接続部7に第2導体回路9を連結するように位置合わせしてフォトリソグラフィまたは印刷等によって配線パターンを形成する。例えば、セミアディティブ工法では、絶縁樹脂層8の下面にシード層を形成した後にレジストを塗布し、フォトリソグラフィ技術を用いてレジストをパターニングし、電解銅めっきを施した後、レジスト及びシード層を除去することにより、第2導体回路9を形成する。又は、印刷版を用いて絶縁樹脂層8の下面に導電性ペーストを印刷・焼結することにより第2導体回路9を形成しても良い。本発明の第1の実施の形態では、セミアディティブ工法により、配線幅を10μmとし且つ配線間スペースを10μmとし更にランド径を80μmとして配線パターンを形成した。このように形成することで、第1導体回路6は層間接続部7を介して第2導体回路9と接続された両面回路基板10が得られる。そして、この両面回路基板10の表面には、必要に応じてソルダーレジストやカバーレイが設けられる。
 なお、図1(F)に示した研磨工程は、図1(B)の金型1に形成した凹部2、3への導電性金属材料の充填工程で、充填条件を最適化して導体連結部11である余剰部位が無いようにできれば省略することができる。
 第1の実施の形態では、金型1に形成した第1の凹部2と第2の凹部3に導電性金属材料を充填して硬化させることで金属回路層4を形成し、その金属回路層4の凹凸部を埋めるように液状絶縁樹脂8’を塗布し硬化させて絶縁樹脂層8を金属回路層4に一体化する。そのため、この金属回路層4自体が、第1導体回路6と、絶縁樹脂層8の両面に形成される第1導体回路6と第2導体回路9を電気的に接続するビアとしての層間接続部7となる。したがって、従来のようにスタンパー(モールド)で絶縁樹脂に凹凸パターンを転写した後にめっき等をして導体回路及び層間接続部を形成する必要が無くなり、スタンパー(モールド)製造工程を無くすことができる。この結果、スタンパー(モールド)を絶縁樹脂層から離型する際にスタンパー(モールド)に樹脂が付着することがなく、スタンパー(モールド)に樹脂が付着することに起因する不具合を防止することができる。さらに、絶縁樹脂層に転写された凹部に導電材料を充填するためのめっき工程も不要となり、製造工程の大幅な簡略化とそれに伴う低コスト化を実現することができる。
 また、第1の実施の形態によれば、第1導体回路6と層間接続部7を同一工程で同時に一括して形成することができるため、第1導体回路6と層間接続部7を別々に形成する従来方法に比べて、第1導体回路6と層間接続部7の位置精度を向上させることができる。
 また、第1の実施の形態によれば、金属回路層4の凹凸部を埋めるように液状絶縁樹脂8’を塗布し硬化させることで金属回路層4と一体化した絶縁樹脂層8を形成しているので、この液状絶縁樹脂8’の塗布によって金属回路層4に形成される凹凸部(第1導体回路6と層間接続部7)の破損を回避することができる。つまり、液状絶縁樹脂8’の塗布によっては、金属回路層4の凹凸部に大きな負荷が掛からず、その凹凸部の破損を防ぐことができる。
 また、第1の実施の形態によれば、金型1に形成した第1の凹部2と第2の凹部3に充填する導電性金属材料として導電性ペーストを用いることで、工数を増やすことなく簡単に金属回路層4を形成することができる。
(第2の実施の形態)
 図3は第2の実施の形態の積層配線基板の製造方法を説明するための図であり、(A)は第2金属回路層の凹凸部に液状絶縁樹脂を塗布する工程、(B)は第2絶縁樹脂層一体形成工程、(C)は両面回路基板に半硬化状態の第2絶縁樹脂層一体型の金属回路層を重ね合わせる前工程、(D)は両面回路基板と第2絶縁樹脂層一体型の金属回路層を積層一体化する積層一体化工程、(E)は第2金属回路層から粘着シートを剥がす工程、(F)は第2金属回路層の研磨工程である。
 第2の実施の形態は、第1の実施の形態で製造された両面回路基板10に更に別の回路を積層して積層配線基板を製造する例である。両面回路基板10を形成するまでの工程は、第1の実施の形態と同じ工程で製造する。ここでは、第1の実施の形態の金属回路層形成工程を第1金属回路層形成工程と称すると共に金属回路層4を第1金属回路層4と称する。また、第1の実施の形態の絶縁樹脂層一体形成工程を第1絶縁樹脂層一体形成工程と称すると共に絶縁樹脂層を第1絶縁樹脂層と称する。また、第1の実施の形態の研磨工程を第1研磨工程と称すると共に層間接続部7を第1層間接続部7と称する。
 先ず、第1の実施の形態の各製造工程(第1金属回路層形成工程、第1絶縁樹脂層一体形成工程、第1研磨工程及び両面回路基板形成工程)を行って第1絶縁樹脂層8の各面に第1導体回路6と第2導体回路9を有し、第1絶縁樹脂層8を貫通して第1導体回路6と第2導体回路9を電気的に接続する第1層間接続部7とを有した両面回路基板10を用意する。
 次に、第2金属回路層を形成する第2金属回路層形成工程を行う。すなわち、第1の実施の形態で第1金属回路層4を形成した金属回路層形成工程と同一工程を行う。具体的には、金型の一面に導体回路形成用の凹部とこの凹部よりも深さが深い層間接続部形成用の凹部とを形成し、それら両凹部に導電性金属材料を充填して硬化させることで第2金属回路層を形成する。ここでは、第2金属回路層は、第1の実施の形態で作製した第1金属回路層4と同一形状であるので、図1(A)と同じ金型1を使用する。第1金属回路層4と異なる形状の第2金属回路層を作製する場合は、図1(A)とは異なる金型を用意する。
 次に、第2金属回路層を粘着シート等の回路層取出し部材で貼り付けて金型から取り出す。図3(A)には、回路層取出し部材19が貼り付けられた第2金属回路層20を示す。第2金属回路層20には、第3導体回路21とビアとなる第2層間接続部22とが一体的に形成されている。第2層間接続部22の方が第3導体回路21よりもその高さが高くなっている。
 次に、第2絶縁樹脂層一体形成工程を行う。すなわち、図3(A)に示すように、第2金属回路層20の凹凸部が上面となるようにして、この凹凸部を平坦化して埋めるように液状絶縁樹脂23’を塗布する。液状絶縁樹脂23’を塗布するには、第2金属回路層20上に供給された液状絶縁樹脂23’をスキージSで凹凸が無くなるよう平らにして表面である一面23aを平坦化する。液状絶縁樹脂23’の平坦化後の状態を図3(B)に示す。平坦化された液状絶縁樹脂23’は、半硬化状態の第2絶縁樹脂層23となる。ここで使用する液状絶縁樹脂23’には、第1の実施の形態で使用したポリイミドワニスを使用することができる。なお、平坦化された液状絶縁樹脂23’は、必要に応じて加熱して硬化度合いを進めることで半硬化状態の第2絶縁樹脂層23としてもよい。
 次に、両面回路基板10と第2絶縁樹脂層一体型の第2金属回路層20を積層一体化する積層一体化工程を行う。すなわち、図3(C)に示すように、両面回路基板10の第1導体回路6が形成される面に、半硬化状態の第2絶縁樹脂層23の一面23aを重ね合わせ面としてこれら両面回路基板10と第2金属回路層20とを位置合わせする。位置合わせには、画像認識やピンアライメント等によって行う。
 そして、図3(D)に示すように、金型24、25に取り付けた両面回路基板10と第2絶縁樹脂層一体型の第2金属回路層20を加熱して加圧し、半硬化状態の第2絶縁樹脂層23を硬化させて両者を積層一体化する。その結果、第2層間接続部22が第1導体回路6のランドに接触し、第1層間接続部7及び第2層間接続部22を介して第2導体回路9と第3導体回路21とが電気的に接続される。
 次に、回路層取出し部材19を第2金属回路層20から取り外す。回路層取出し部材19を取り外した状態を図3(E)に示す。図3(E)では、第2金属回路層20が上向きとなるように上下反転させた状態としている。次いで、第2金属回路層20を研磨する第2研磨工程を行う。第2研磨工程では、第1の実施の形態の第1研磨工程と同様、研磨砥石或いはエッチングにより第2金属回路層20を研磨して樹脂が露出するまで研磨を行う。その結果、図3(F)に示すように、連結されていた導体連結部11(回路以外の導体部位)が除去されて第3導体回路21と、第3導体回路21と導通し且つ第2絶縁樹脂層23を貫通して第1導体回路6に電気的に接続する第2層間接続部22が形成される。
 このようにして製造された積層配線基板は、第1導体回路6と第2導体回路9がビアである第1層間接続部7で電気的に接続されると共に、第1導体回路6と第3導体回路21が同じくビアである第2層間接続部22で電気的に接続される。
 第2の実施の形態では、金型で第1導体回路6と第1層間接続部7とを同時に一括して形成する工程を使用して形成した両面回路基板10に対して、第2金属回路層20の凹凸部を埋めるように液状絶縁樹脂23’を塗布して半硬化させた半硬化状態の第2絶縁樹脂層23を重ね合わせた後、加圧し加熱して一体化することで、複雑な工程を行うことなく導体回路を多層化することができる。また、第2の実施の形態の製造方法によれば、4層以上の導体回路を積層形成することが可能となる。
 また、第2の実施の形態では、第1の実施の形態と同様、金属回路層自体が導体回路及びビアとしての層間接続部を構成するため、従来のようにスタンパー(モールド)で絶縁樹脂に凹凸パターンを転写後めっき等して導体回路及び層間接続部を形成する必要が無くなり、スタンパー(モールド)製造工程を無くすことができる。この結果、スタンパー(モールド)を絶縁樹脂層から離型する際にスタンパー(モールド)に樹脂が付着することがなく、スタンパー(モールド)に樹脂が付着することに起因する不具合を防止することができる。さらに、スタンパー(モールド)の凹凸パターンが転写された絶縁樹脂層の凹部を充填するためのめっき工程も不要となり、製造工程の大幅な簡略化とそれに伴う低コスト化を実現することができる。
 また、第2の実施の形態では、第1の実施の形態と同様、第1導体回路6及び第1層間接続部7、第3導体回路21及び第2層間接続部22を同時に一括して形成することができる。そのため、第1導体回路6と第1層間接続部7、第3導体回路21と第2層間接続部22を別々に形成する従来方法に比べて、第1導体回路6と第1層間接続部7及び第3導体回路21と第2層間接続部22の位置精度を向上させることができる。
(第3の実施の形態)
 図4は第3の実施の形態の積層配線基板の製造方法を示す図であり、(A)は液状絶縁樹脂を塗布した両面回路基板に第2金属回路層を重ね合わせる工程、(B)は両面回路基板と第2金属回路層を積層一体化する積層一体化工程、(C)は第2金属回路層から粘着シートを剥がす工程、(D)は第2金属回路層の研磨工程である。
 第3の実施の形態は、第2の実施の形態の図3(A)~(C)で行った液状絶縁樹脂23’を第2金属回路層20に塗布した後、両面回路基板10を積層一体化させる工程の代わりに、図4(A)に示すように、両面回路基板10のうち第1導体回路6が形成された面に、液状絶縁樹脂23’を塗布した後、この液状絶縁樹脂23’を塗布した両面回路基板10に第2金属回路層20を対向配置する。
 次に、図4(B)に示すように、金型24、25に取り付けた両面回路基板10と第2金属回路層20を、液状絶縁樹脂23’を介して重ね合わせて加熱して加圧することで、液状絶縁樹脂23’を硬化させて両者を積層一体化する。次に、図4(C)に示すように、積層一体化させた積層配線基板から粘着シートである回路層取出し部材19を取り外す。そして、第2金属回路層20を樹脂が露出するまで研磨する。その結果、図4(D)に示すように、連結されていた導体接続部11(回路以外の導体部位)が除去されて第3導体回路21と、第3導体回路21と導通し且つ液状絶縁樹脂23’が硬化した第2絶縁樹脂層23を貫通して第1導体回路6のランドと電気的に接続する第2層間接続部22が形成される。
(第4の実施の形態)
 図5は第4の実施の形態を示し、本発明を適用した配線基板の製造工程を順次示す工程図である。配線基板を製造するには、先ず図5(A)及び(B)で示す金型形成工程と金属回路層形成工程を行う。初めに、導電性金属材料(めっきや導電性ペースト)と離型し易い材質若しくは表面処理を施した金型1を用意する。金型1には、例えばニッケル電鋳、シリコン、石英等を使用することができる。また、表面処理には、フッ化物等のシランカップリング剤が使用できる。
 次に、図5(A)に示すように、金型1の一面1aに導体回路形成用の凹部(以下、第1の凹部という)2と、この第1の凹部2よりも深さが深い層間接続部形成用の凹部(以下、第2の凹部という)3を形成する。これら凹部2、3は、例えば電子線加工やフェムト秒レーザー加工等の微細加工によって形成することができる。これらの加工技術で凹部2、3を形成すれば、プリント配線基板で使用されるCOレーザーやUVレーザー加工技術に比較して、第1の凹部2と第2の凹部3の溝加工精度及び形成位置精度を向上させることができる。第1の凹部2は、製造すべき導体回路パターンに応じた凹部とする。第2の凹部3は、最終的に絶縁樹脂層の両面に形成する第1導体回路と第2導体回路を電気的に接続するビアに応じた凹部とする。
 次に、図5(B)に示すように、第1の凹部2及び第2の凹部3に導電性金属材料を充填する。具体的には、金型1の一面1aに銅やニッケル等をスパッタした後めっきすることによって、第1の凹部2及び第2の凹部3に導電性金属材料を充填する。または、金型1の一面1aにカーボンやパラジウム等をDPP処理(ダイレクト・プレーティング・プロセス処理)した後、金や銅やニッケル等をめっきし或いは銅や銀ナノペースト(導電性ペースト)を印刷することで、第1の凹部2及び第2の凹部3に導電性金属材料を充填する。そして、第1の凹部2及び第2の凹部3に充填した導電性金属材料を硬化させる。これにより、図2に示した第1導体回路6とビアとなる層間接続部7とが導体連結部11にて連結された金属回路層4が形成される。
 次に、図5(C)~(E)で示す金属回路層4に絶縁樹脂層を一体化する絶縁樹脂層一体化工程を行う。粘着シートや吸着シート等の回路層取出し部材5を金属回路層4の凹凸面とは反対側の他面4aに貼り付けた後、この回路層取出し部材5を引き上げて図5(C)に示すように金属回路層4を金型1から取り出す。金型1から取り出された金属回路層4は、金型1に形成された凹凸パターンが転写された凹凸形状をなす凹凸面を有し、第1導体回路6と層間接続部7とが同時に一体的に形成される形となる。層間接続部7は、第1導体回路6よりも高さの高い凸部とされる。
 次に、図5(D)で示す絶縁樹脂層8を用意し、金属回路層4の凹凸面に絶縁樹脂層8を対向配置させる。絶縁樹脂層8には、例えば液晶ポリマーフィルム(熱可塑性樹脂)を使用することができる。熱可塑性樹脂ではなく、熱硬化性樹脂を絶縁樹脂層8として使用する場合は、半硬化性の熱硬化性樹脂を用いる。本発明の第4の実施の形態では、絶縁樹脂層8に液晶ポリマーフィルムを使用した。そして、金属回路層4の凹凸面に絶縁樹脂層8を重ね合わせて加圧すると共に加熱する。加圧及び加熱条件は、金属回路層4と絶縁樹脂層8を温度270℃で加圧力10MPaにて10分間加圧すると共に加熱した。なお、加熱温度270℃になるまで30分かかり、常温まで冷却するのに60分かかる。
 その結果、金属回路層4は、図5(E)に示すように絶縁樹脂層8に食い込むようにして絶縁樹脂層8と一体化される。この時、第1導体回路6は、絶縁樹脂層8の一面8aに埋め込まれる。層間接続部7は、絶縁樹脂層8を貫通し、その先端7aを他面8bと同じ高さ(いわゆる面一)となるように露出する。金属回路層4と絶縁樹脂層8を一体化させた後は、金属回路層4から回路層取出し部材5を取り外す。
 次に、図5(F)で示す研磨工程を行う。すなわち、絶縁樹脂層8の重ね合わせ側の一面8aに重ね合わされた金属回路層4を絶縁樹脂層8の樹脂が露出するまで研磨する。研磨は、研磨砥石により金属回路層4を研磨する他、エッチングにより金属回路層4を溶かして研磨するようにする。その結果、連結されていた導体連結部(回路以外の導体部位)11が除去されて第1導体回路6、及び第1導体回路6と導通し且つ絶縁樹脂層8を貫通して他面8bにその先端7aを露出させる層間接続部7が形成される。
 次に、図5(G)で示す回路形成工程を行う。すなわち、研磨されて露出した絶縁樹脂層8の他面8bに、層間接続部7を介して絶縁樹脂層8の一面8aに形成された第1導体回路6と導通する第2導体回路9を形成する。第2導体回路9を形成するには、層間接続部7に第2導体回路9を連結するように位置合わせしてフォトリソグラフィまたは印刷等によって配線パターンを形成する。本発明の第4の実施の形態では、セミアディティブ工法により、配線を10μmとし配線間スペースを10μmとしてランド径を80μmとして配線パターンを形成した。このように形成することで、第1導体回路6は層間接続部7を介して第2導体回路9と接続された両面回路基板10が得られる。そして、この両面回路基板10の表面には、必要に応じてソルダーレジストやカバーレイが設けられる。
 なお、図5(F)で示した研磨工程は、図5(B)の導電性金属材料の充填工程で充填条件を最適化して導体連結部11である余剰部位が無いようにできれば省略することができる。
 第4の実施の形態では、金型1に形成した第1の凹部2と第2の凹部3に導電性金属材料を充填して硬化させることで金属回路層4を形成し、その金属回路層4の凹凸面に絶縁樹脂層8を重ね合わせて加圧すると共に加熱して金属回路層4に絶縁樹脂層8を一体化する。そのため、この金属回路層4自体が第1導体回路6と、絶縁樹脂層8の両面に形成される第1導体回路6と第2導体回路9を電気的に接続するビアとしての層間接続部7となる。したがって、従来のようにスタンパー(モールド)で絶縁樹脂に凹凸パターンを転写後めっき等して導体回路及び層間接続部を形成する必要が無くなり、スタンパー(モールド)製造工程を無くすことができる。この結果、スタンパー(モールド)を絶縁樹脂層から離型する際にスタンパー(モールド)に樹脂が付着することがなく、スタンパー(モールド)に樹脂が付着することに起因する不具合を防止することができる。さらに、スタンパー(モールド)の凹凸パターンが転写された絶縁樹脂層の凹部を導電材料で充填するためのめっき工程も不要となり、製造工程の大幅な簡略化とそれに伴う低コスト化を実現することができる。
 また、第4の実施の形態によれば、第1導体回路6と層間接続部7を同時に一括して形成することができるため、第1導体回路6と層間接続部7を別々に形成する従来方法に比べて、第1導体回路6と層間接続部7の位置精度を向上させることができる。
 また、第4の実施の形態によれば、金型1に形成した第1の凹部2と第2の凹部3に充填する導電性金属材料として導電性ペーストを用いることで、工数を増やすことなく簡単に金属回路層4を形成することができる。
 第4の実施の形態の製造方法により製造された配線基板は、絶縁樹脂層8の一面8aに第1導体回路6が形成されると共に第1導体回路6と接続されるビアとなる層間接続部7が絶縁樹脂層8を貫通してその先端を他面8bに露出させた構造とされる。そして、この配線基板においては、図5(G)で示すように、第1導体回路6と層間接続部7とが同一の導電性金属材料から同時に形成されるため、それら第1導体回路6と層間接続部7の間に界面が存在しない。従来の製造方法で得られた配線基板では、導体回路と層間接続部は別工程で形成されるため、これらの間には必ず界面が存在する。
 第1導体回路6と層間接続部7の間に界面が存在しない場合は、これらの間の強度が高くなり、界面での電気的損失を低減させることができ電気通信状態が向上する。これに対して、第1導体回路6と層間接続部7間に界面が存在する場合は、配線基板に外力が作用した時に強度が弱く、電気通信状態が低下するおそれがある。
 また、第4の実施の形態の製造方法により製造された配線基板は、絶縁樹脂層8の一面8aに形成された第1導体回路6と一面8aとが同じ高さ(面一)であり、且つ、絶縁樹脂層8の他面8bに露出させた層間接続部7の先端7aと他面8bとが同じ高さ(面一)となる。このように、絶縁樹脂層8の両面8a、8bから第1導体回路6と層間接続部7が飛び出さないので、配線基板を薄型化することができる。
(第5の実施の形態)
 第5の実施の形態は、第4の実施の形態で製造された両面回路基板10に更に別の回路を積層して積層配線基板を製造する例である。両面回路基板10を形成するまでの工程は、第4の実施の形態と同じ工程で製造する。ここでは、第4の実施の形態の金属回路層形成工程を第1金属回路層形成工程と称すると共に金属回路層4を第1金属回路層4と称する。また、第4の実施の形態の絶縁樹脂層一体化工程を第1絶縁樹脂層一体化工程と称すると共に絶縁樹脂層を第1絶縁樹脂層と称する。さらに、第4の実施の形態の研磨工程を第1研磨工程と称すると共に層間接続部7を第1層間接続部7と称する。
 先ず、第4の実施の形態の各製造工程(第1金属回路層形成工程、第1絶縁樹脂層一体化工程、第1研磨工程及び両面回路基板形成工程)を行って第1絶縁樹脂層8の各面に第1導体回路6と第2導体回路9を有し、第1絶縁樹脂層8を貫通して第1導体回路6と第2導体回路9を電気的に接続する第1層間接続部7とを有した両面回路基板10を用意する。
 次に、図6(A)及び(B)に示すように、両面回路基板10の第1導体回路6が形成される面8aに半硬化状態の第2絶縁樹脂層19’を重ね合わせる。半硬化状態の第2絶縁樹脂層19’には、例えばエポキシ系の半硬化樹脂フィルムを使用する。次に、第4の実施の形態の第1金属回路層形成工程と同一工程である第2金属回路層形成工程を行って第2金属回路層20を形成する。第5の実施の形態では、第4の実施の形態で形成した金属回路層4と同一形状の第2金属回路層20とするので、図5(A)で使用した金型1を使用する。なお、金型1は、別の金型を使用してもよい。第2金属回路層20には、図6(C)に示すように、第4の実施の形態で形成した第1導体回路6に相当する第3導体回路21と、第1層間接続部7に相当する第2層間接続部22とが同時に一括して形成されている。また、第2金属回路層20には、金型から第2金属回路層20を取り出すための粘着シートや吸着シート等からなる回路層取出し部材23が凹凸面とは反対側の他面20aに貼り付けられている。
 次に、図6(D)に示すように、第2金属回路層20の凹凸面に半硬化状態の第2絶縁樹脂層19’を重ね合わせて第2金属回路層20と両面回路基板10とを加圧すると共に加熱して、硬化した第2絶縁樹脂層19とし、これら第2金属回路層20と両面回路基板10を一体化する。第2金属回路層20と両面回路基板10とを加圧する際には、第2層間接続部22が第1導体回路6に形成されているランドと接続できるように、これら第2金属回路層20と両面回路基板10を、それぞれ第2金属回路層20と両面回路基板10に形成された指標を合致させる画像認識やピンアライメント等によって位置合わせしておく。
 第2金属回路層20と両面回路基板10を加圧すると、第2金属回路層20の凹凸部が半硬化状態の第2絶縁樹脂層19’に食い込み、第3導体回路21が第2絶縁樹脂層19’に埋め込まれると共に第2層間接続部22が第2絶縁樹脂層19’を貫通してその先端が第1導体回路6のランドと接触する。その結果、第3導体回路21は、第2層間接続部22と第1層間接続部7を介して第2導体回路9と電気的に接続される。そして、第2金属回路層20と両面回路基板10は、加熱して硬化された第2絶縁樹脂層19により一体化される。
 次に、図6(E)に示すように、回路層取出し部材23を第2金属回路層20から取り外す。次いで、第2金属回路層20を研磨する第2研磨工程を行う。第2研磨工程では、第4の実施の形態の第1研磨工程と同様、研磨砥石或いはエッチングにより第2金属回路層20を研磨して樹脂が露出するまで研磨を行う。その結果、図6(F)に示すように、連結されていた導体連結部11(回路以外の導体部位)が除去されて第3導体回路21、及び第3導体回路21と導通し且つ第2絶縁樹脂層19を貫通して第1導体回路6のランドと電気的に接続する第2層間接続部22が形成される。
 このようにして製造された積層配線基板は、第1導体回路6と第2導体回路9がビアである第1層間接続部7を介して電気的に接続されると共に、第1導体回路6と第3導体回路21が同じくビアである第2層間接続部22を介して電気的に接続されている。
 第5の実施の形態では、金型で第1導体回路6と第1層間接続部7とを同時に一括して形成する工程を使用して形成した両面回路基板10の一面に半硬化状態の第2絶縁樹脂層19’を重ね合わせた後に、さらに別の第3導体回路21と第2層間接続部22を同時に一括して形成した第2金属回路層20を第2絶縁樹脂層19’に加圧し加熱して一体化することで、複雑な工程を行うことなく導体回路を多層化することができる。また、第5の実施の形態の製造方法によれば、4層以上の導体回路を積層形成することが可能となる。
 また、第5の実施の形態では、第4の実施の形態と同様、金属回路層自体が導体回路及びビアとしての層間接続部を構成するため、従来のようにスタンパー(モールド)で絶縁樹脂に凹凸パターンを転写後めっき等して導体回路及び層間接続部を形成する必要が無くなり、スタンパー(モールド)製造工程を無くすことができる。この結果、スタンパー(モールド)を絶縁樹脂層から離型する際にスタンパー(モールド)等に樹脂が付着することがなく、スタンパー(モールド)に樹脂が付着することに起因する不具合を防止することができる。さらに、スタンパー(モールド)の凹凸パターンが転写された絶縁樹脂層の凹部を導電材料で充填するためのめっき工程も不要となり、製造工程の大幅な簡略化とそれに伴う低コスト化を実現することができる。
 また、第5の実施の形態では、第4の実施の形態と同様、第1導体回路6及び第1層間接続部7、第3導体回路21及び第2層間接続部22を同時に一括して形成することができる。そのため、第1導体回路6と第1層間接続部7及び第3導体回路21と第2層間接続部22を別々に形成する従来方法に比べて、第1導体回路6と第1層間接続部7及び第3導体回路21と第2層間接続部22の位置精度を向上させることができる。
(第6の実施の形態)
 本発明の第6の実施の形態に係る配線基板は、図7に示すように、第1の基板101と、第1の基板101の上面に積層された第2の基板102を備える多層基板である。
 第1の基板101は、第1絶縁樹脂層106と、第1絶縁樹脂層106の上部に埋設した第1導体回路113~119と、第1絶縁樹脂層106の下面に配置された第2導体回路121,122と、第1導体回路114,118と第2導体回路121,122とを接続する第1層間接続部111,112とを備える。第1導体回路114,118と第1層間接続部111,112との間に界面はなく、第1導体回路114,118及び第1層間接続部111,112は一体として形成されている。
 第2の基板102は、第1絶縁樹脂層106上に積層された第2絶縁樹脂層107と、第2絶縁樹脂層107の上部に埋設した第3導体回路133~139と、第3導体回路134,138に接続した第2層間接続部131,132とを備える。第3導体回路134,138と第2層間接続部131,132との間に界面はなく、第3導体回路134,138及び第2層間接続部131,132は一体として形成されている。
 第1及び第2絶縁樹脂層106,107の材料としては、例えばエポキシ樹脂等の熱硬化性樹脂や液晶ポリマー等の熱可塑性樹脂が使用可能である。第1導体回路113~119、第2導体回路121,122、第3導体回路133~139、第1層間接続部111,112及び第2層間接続部131,132の材料としては、銅(Cu)や銀(Ag)等が使用可能である。
 本発明の第6の実施の形態では、第2層間接続部131,132と第1導体回路114,118との間に合金層151,152が形成されている。合金層151,152は、銅(Cu)、銀(Ag)及び錫(Sn)等を含む半田層が溶解して第2層間接続部131,132の材料及び第1導体回路114,118の材料との合金で形成されており、銅(Cu)、銀(Ag)及び錫(Sn)等を含む。
 本発明の第6の実施の形態に係る配線基板によれば、第2層間接続部131,132と第1導体回路114,118との間に合金層151,152を設けたことにより、第2層間接続部131,132と第1導体回路114,118との界面にクラックが発生するのを抑制でき、信号の損失を低減することができる。したがって、第2層間接続部131,132と第1導体回路114,118との間の接続信頼性を向上することができる。
 次に、本発明の第6の実施の形態に係る配線基板の製造方法の一例を、図8~図20を用いて説明する。
 (イ)まず、図7に示した第1の基板101を図8~図16に示す工程により作製する。図8に示すように、導電材料と離型し易い材質又は表面処理が施された金型104を用意する。金型104は、基体140と、基体140の上部に設けられた凹部143~149と、凹部143~149に連通した穴141,142とを備える。金型104は種々の方法で作製可能であるが、特に微細なサイズが要求される場合には、シード層が形成されたシリコン(Si)基板上にレジストを塗布し、レジストを電子線(EB)、紫外線(UV)又はレーザーを用いて描画・現像してパターニングする。この一連の工程を繰り返し、パターニングした凹凸部にニッケル(Ni)や銅(Cu)等を用いためっきにより導電材料を充填した後、レジストを除去することにより金型104を作製可能である。金型104の表面には、必要に応じて市販のフッ素シランカップリング剤で離型処理をすることができる。
 (ロ)図9に示すように、金型104の穴141,142及び凹部143~149に、銅(Cu)やニッケル(Ni)等によるスパッタリングや、炭素(C)やパラジウム(Pd)等を用いたダイレクト・プレーティング・プロセス(DPP)処理後、銅(Cu)やニッケル(Ni)等のめっき又は銅(Cu)や銀(Ag)等のナノペーストを印刷及び焼結して導電材料を充填する。この結果、金型104上に形成された導電材料からなる第1の支持部110、凹部143~149に充填された導電材料からなる第1導体回路113~119、及び穴141,142に充填された導電材料からなる第1層間接続部111,112を有する第1金属回路層108が形成される。本発明の第6の実施の形態では、レジストをi線露光でパターニングして金型104を作製することにより、第1層間接続部111,112は直径10μm程度、高さ25μm程度の形状であり、第1導体回路113~119のうちライン・アンド・スペース部分の配線幅が5μm程度、配線間隔が5μm程度、ランド径が30μm程度の形状を得る。なお、導電材料充填条件を最適化することにより、第1の支持部110を形成せずに第1導体回路113~119及び第1層間接続部111,112のみ形成しても良い。粘着シートや吸着ステージ等の支持具105を用いて第1金属回路層108を金型104から図10に示すように取り外す。第1金属回路層108の一部である第1の支持部110、第1導体回路118及び第1層間接続部112を下面側からみた斜視図を図11に示す。
 (ハ)図12に示すように、エポキシ樹脂等の硬化前の熱硬化性樹脂や液晶ポリマー等の熱可塑性樹脂からなる第1絶縁樹脂層106を用意する。支持具105を用いて、第1絶縁樹脂層106の上面と、第1金属回路層108の第1導体回路113~119及び第1層間接続部111,112が形成された面とを対向させる。図13に示すように、軟化する温度まで加熱された第1絶縁樹脂層106に第1導体回路113~119及び第1層間接続部111,112を圧入し、積層方向に加熱プレスする。本発明の第6の実施の形態では、第1絶縁樹脂層106として液晶ポリマーフィルムを使用し、270℃、10MPaで10分間プレスする。この際、別途270℃まで昇温する時間として30分間、常温まで冷却する時間として1時間かかる。その後、支持具105を第1金属回路層108から図14に示すように取り外す。
 (ニ)第1金属回路層108の第1の支持部110は余剰部分となるので、研磨又はエッチング等により第1の支持部110を図15に示すように除去する。なお、図9に示した導電材料の充填時に導電材料充填条件を最適化することにより第1の支持部110を形成しないことで、この研磨又はエッチング工程を省略することもできる。
 (ホ)図16に示すように、フォトリソグラフィ技術及び印刷等により第1絶縁樹脂層106の下面に第2導体回路121,122を形成し、第1の基板101が完成する。本発明の第6の実施の形態では、セミアディティブ工法により、第2導体回路121,122のうちライン・アンド・スペース部分の配線幅を10μm程度、配線間隔を10μm程度、ランド径を80μm程度で形成する。
 (ヘ)図17に示すように第2絶縁樹脂層107を用意し、第1の基板101上にエポキシ樹脂等の硬化前の熱硬化性樹脂や液晶ポリマー等の熱可塑性樹脂からなるシート状の第2絶縁樹脂層107を重ね合わせ、図18に示すように積層(ラミネート)する。第2絶縁樹脂層107としては、図7に示した合金層151,152となる半田層の融点である220℃より低い軟化点を有する材料を採用する。
 (ト)図19に示すように第3導体回路133~139及び第2層間接続部131,132を有する第2金属回路層を用意する。第2金属回路層は、図8~図10に示した第1金属回路層108の形成工程と同様の工程により形成可能である。第2金属回路層は、導電材料充填条件を最適化し、第3導体回路133~139及び第2層間接続部131,132を形成し、図9に示した金型104の第1の支持部110のような余剰部分を形成していない。なお、第2金属回路層としては、金型104を用いて第1金属回路層108と同一のパターン形状を有するものを形成しても良く、金型104とは異なる金型を用いて第1金属回路層108と同一のパターン形状又は異なるパターン形状を有していても良い。更に、図19に示すように、めっきや印刷等により第2層間接続部131,132の頂部に半田層161,162をそれぞれ形成する。半田層161,162の材料としては、錫(Sn)、銀(Ag)及び銅(Cu)の合金等が使用可能である。本発明の第6の実施の形態では、半田層161,162の材料として錫(Sn)-1銀(Ag)-0.5銅(Cu)とフラックスからなる半田ペーストを用い、1μm程度印刷し、リフロー炉にて焼結させる。
 (チ)支持具105を用いて第3導体回路133~139及び第2層間接続部131,132を第2絶縁樹脂層107の上面に対向させる。画像認識やピンアライメント等により、第3導体回路133~139及び第2層間接続部131,132を対向する第1導体回路113~119と位置合わせする。そして、図20に示すように、軟化する温度まで加熱された第2絶縁樹脂層107に第3導体回路133~139及び第2層間接続部131,132を圧入し、第1の基板101及び第2絶縁樹脂層107を積層方向に加熱プレスする。この結果、半田層161,162が第1導体回路114,118と接触する。この加熱により第2絶縁樹脂層107が熱硬化性樹脂の場合は完全硬化する。また、第2絶縁樹脂層107が熱可塑性の場合は後に冷却することにより硬化する。更に、この加熱により半田層161,162が溶解し、第2層間接続部131,132と第1導体回路114,118との間に合金層151,152が形成され、図7に示した多層基板が完成する。なお、支持具105を取り外した後、第2金属回路層の余剰部分がある場合には、研磨又はエッチング等により余剰部分を除去する。
 本発明の第6の実施の形態によれば、第2絶縁樹脂層107に第3導体回路133~139及び第2層間接続部131,132を埋め込むので、スタンパー(モールド)を絶縁樹脂層から離型する際にスタンパー(モールド)に樹脂が付着することがなく、スタンパー(モールド)に樹脂が付着することに起因する不具合を防止することができる。更に、従来の配線基板においては、層間接続部と導体回路との界面においてクラックが発生したり、信号の損失が生じたりする場合があり、層間接続部と導体回路との接続信頼性を維持することが困難である。本発明の第6の実施の形態に係る配線基板の製造方法によれば、第2層間接続部131,132と第1導体回路113~119との間に合金層151,152を形成することにより、第2層間接続部131,132と第1導体回路113~119との接続信頼性を向上させることができる配線基板を製造可能となる。
(第7の実施の形態)
 本発明の第7の実施の形態として、配線基板の他の一例を説明する。本発明の第7の実施の形態に係る配線基板は、図21に示すように、絶縁樹脂層200と、絶縁樹脂層200の上部に埋設した第1導体回路213~219と、絶縁樹脂層200の下面に配置された第2導体回路221,222と、第1導体回路214,218と第2導体回路221,222を接続する層間接続部211,212と、層間接続部211,212と第2導体回路221,222との間に形成された合金層251,252を備える両面基板である。第1導体回路214,218と層間接続部211,212との間に界面はなく、第1導体回路214,218及び層間接続部211,212は一体として形成されている。
 本発明の第7の実施の形態に係る配線基板によれば、第2導体回路221,222と層間接続部211,212との間に合金層251,252を設けたことにより、第2導体回路221,222と層間接続部211,212との接続信頼性を向上することができる。
 本発明の第7の実施の形態に係る配線基板の製造方法は、図19~図20に示した工程と同様の工程を経ることにより、図22に示すように絶縁樹脂層200の上部に第1導体回路213~219を埋設し、層間接続部211,212が絶縁樹脂層200を貫通し、半田層261,262が絶縁樹脂層200の下面から露出する。その後、フォトリソグラフィ技術及び印刷等により、図21に示すように絶縁樹脂層200の下面に第2導体回路221,222を形成する。その後、加熱により半田層261,262を溶解させ、層間接続部211,212と第2導体回路221,222との間に、半田層261,262の材料、層間接続部211,212及び第2導体回路221,222の材料からなる合金層251,252が形成される。
 本発明の第7の実施の形態によれば、絶縁樹脂層200の上面から第1導体回路213~219及び層間接続部211,212を埋め込むので、従来のようにスタンパー(モールド)を絶縁樹脂層から離型する際にスタンパー(モールド)に樹脂が付着することがなく、スタンパー(モールド)に樹脂が付着することに起因する不具合を防止することができる。更に、第2導体回路221,222と層間接続部211,212との間に合金層251,252を形成することにより、第2導体回路221,222と層間接続部211,212との間の接続信頼性の高い両面基板を製造可能となる。
(その他の実施の形態)
 上記のように、本発明は第1~第7の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 図23はその他の実施の形態を示し、微細な導体回路パターンを有した金属回路層を形成するための工程図であり、(A)はシリコンウエハー準備工程、(B)はレジストによる凹凸パターン形成工程、(C)はシード層形成工程、(D)はめっき工程、(E)はめっき研磨工程、(F)は金属回路層をシリコンウエハーから取り出す工程を示す。
 第1導体回路6と層間接続部7に微細な導体回路パターンが要求される場合には、図23に示す工程で金属回路層17を製造する。先ず、図23(A)に示すように、シリコンウエハー12を用意する。
 次に、シリコンウエハー12の一面12aにレジストを塗布した後、このレジストに対して露光現像によるフォトリソグラフィを行って一面12aに達する貫通孔を形成した後、レジストの上に更にレジストを塗布した後、2度目のフォトリソグラフィを行って図23(B)に示す如く、硬化したレジスト層13に第1の凹部14と、第1の凹部14よりも深さが深く且つ一面12aに達する第2の凹部15を形成する。次に、図23(C)に示すように、第1の凹部14及び第2の凹部15によって凹凸とされたレジスト層13上に、銅やニッケル等をスパッタしてシード層16を形成する。
 次に、図23(D)に示すように、第1の凹部14及び第2の凹部15が共に埋まるようにシード層16上に銅等のめっきをして金属回路層17を形成する。そして、図23(E)に示すように、金属回路層17の表面である一面17aを研磨してその表面を平滑化する。
 次に、粘着シートや吸着シート等の回路層取出し部材18を金属回路層17の凹凸面とは反対側の一面17aに貼り付けた後、この回路層取出し部材18を引き上げて図23(F)に示すように金属回路層17をレジスト層13から取り出す。レジスト層13から取り出された金属回路層17は、レジスト層13に形成された凹凸パターンが転写された凹凸形状をなす凹凸面を有し、第1導体回路6と層間接続部7とが一体的に形成される形となる。
 また、図21に示した本発明の第7の実施の形態に係る配線基板を、図7に示した第1の基板101の代わりに採用しても良い。
 また、図19で示した層間接続部131,132の頂部に半田層161,162を形成するのと同様に、図1(F)に示した層間接続部7の頂部、図3(B)に示した層間接続部22の頂部、図4(A)に示した層間接続部22の頂部、図5(C)に示した層間接続部7の頂部、図6(C)に示した層間接続部22の頂部に半田層を形成しても良い。
 また、第2の実施の形態における図3(C)で示した両面回路基板10及び第3の実施の形態における図4(A)で示した両面回路基板10として、第1の実施の形態で液状絶縁樹脂を塗布することにより製造された図1(G)に示した両面回路基板10を使用する代わりに、第4の実施の形態で導体回路6及び層間接続部7を絶縁樹脂層8へ圧入することにより製造された図5(G)に示した両面回路基板10をそれぞれ使用しても良い。
 また、第5の実施の形態における図6(A)に示した両面回路基板10として、第4の実施の形態において導体回路6及び層間接続部7を絶縁樹脂層8へ圧入することにより製造された図5(G)に示した両面回路基板10を使用する代わりに、第1の実施の形態で液状絶縁樹脂の塗布することにより製造された図1(G)に示した両面回路基板10を使用しても良い。
 また、第6の実施の形態における図17に示した両面回路基板として、第1の実施の形態で液状絶縁樹脂を塗布することにより製造された図1(G)に示した両面回路基板10、又は第4の実施の形態で導体回路6及び層間接続部7を絶縁樹脂層8へ圧入することにより製造された図5(G)に示した両面回路基板10を使用しても良い。
 このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
 本発明は、少なくとも絶縁基板の片面に形成された導体回路をビアである層間接続部で接続させた配線基板に利用することができる。

Claims (10)

  1.  第1導体回路と、前記第1導体回路の高さと異なる高さを有する第1層間接続部とを一面に有する第1金属回路層を用意する工程と、
     前記第1層間接続部の先端が露出するように前記第1金属回路層の前記一面を覆う第1絶縁樹脂層を形成する工程
     とを含むことを特徴とする配線基板の製造方法。
  2.  前記第1絶縁樹脂層を形成する工程は、前記第1金属回路層の前記一面に液状絶縁樹脂を塗布して硬化させることで、前記第1絶縁樹脂層の一面に前記第1導体回路を埋設すると共に前記第1絶縁樹脂層の他面から前記第1層間接続部の先端を露出させることを含むことを特徴とする請求項1に記載の配線基板の製造方法。
  3.  前記第1絶縁樹脂層を形成する工程は、前記第1金属回路層の前記一面に前記第1絶縁樹脂層の一面を重ね合わせて加圧すると共に加熱して、前記第1導体回路を前記第1絶縁樹脂層の前記一面に埋設すると共に前記第1層間接続部の先端を前記第1絶縁樹脂層の他面から露出させることを含むことを特徴とする請求項1に記載の配線基板の製造方法。
  4.  前記第1絶縁樹脂層の前記他面に、前記第1層間接続部を介して前記第1導体回路と導通する第2導体回路を形成する工程を更に含むことを特徴とする請求項2又は3に記載の配線基板の製造方法。
  5.  前記第1金属回路層を用意する工程は、
     前記第1導体回路形成用の第1の凹部と前記第1の凹部よりも深さが深い第1層間接続部形成用の第2の凹部とを有する金型を用意し、
     前記第1及び第2の凹部に導電性金属材料を充填して硬化させることで前記第1金属回路層を形成し、
     前記第1金属回路層を前記金型から取り出す
     ことを含むことを特徴とする請求項1~4のいずれか1項に記載の配線基板の製造方法。
  6.  前記導電性金属材料として導電性ペーストを使用することを特徴とする請求項5に記載の配線基板の製造方法。
  7.  第3導体回路と、前記第3導体回路の高さと異なる高さを有する第2層間接続部とを一面に有する第2金属回路層を用意する工程と、
     前記第2金属回路層の前記一面に液状絶縁樹脂を塗布して半硬化させることで、第2絶縁樹脂層の一面に前記第3導体回路を埋設し、且つ前記第2絶縁樹脂層の他面から前記第2層間接続部の先端を露出させる工程と、
     前記第1絶縁樹脂層の前記第1導体回路が埋設された前記一面に、前記第2絶縁樹脂層の前記第2層間接続部の先端が露出した前記他面を重ね合わせて加熱すると共に加圧することにより前記第2絶縁樹脂層を硬化させ、前記第1導体回路と前記第2層間接続部とを接触させる工程
     とを更に含むことを特徴とする請求項4に記載の配線基板の製造方法。
  8.  第3導体回路と、前記第3導体回路の高さと異なる高さを有する第2層間接続部とを一面に有する第2金属回路層を用意する工程と、
     前記第1絶縁樹脂層の前記第1導体回路が埋設された前記一面に、半硬化状態の第2絶縁樹脂層の一面を重ね合わせる工程と、
     前記第2金属回路層の前記一面に前記第2絶縁樹脂層の他面を重ね合わせ加圧すると共に加熱して、前記半硬化状態の第2絶縁樹脂層を硬化させると共に前記第3導体回路を前記第2絶縁樹脂層の前記他面に埋設し、前記第2層間接続部の先端を前記第1導体回路に接触させる工程
     とを更に含むことを特徴とする請求項4に記載の配線基板の製造方法。
  9.   前記第1絶縁樹脂層の前記第1導体回路が埋設された前記一面に、第2絶縁樹脂層の一面を積層する工程と、
     第3導体回路と、前記第3導体回路の高さと異なる高さを有する第2層間接続部とを一面に有する第2金属回路層を用意する工程と、
     前記第2層間接続部の頂部に半田層を形成する工程と、
     前記第2金属回路層の前記第3導体回路及び前記第2層間接続部を前記第2絶縁樹脂層の他面に圧入し、前記半田層を前記第1導体回路に接触させる工程と、
     前記半田層を溶解させて前記第2層間接続部と前記第1導体回路との間に合金層を形成する工程
     とを更に含むことを特徴とする請求項4に記載の配線基板の製造方法。
  10.  第1導体回路と、前記第1導体回路の高さと異なる高さを有する層間接続部とを一面に有する金属回路層を形成する工程と、
     前記層間接続部の頂部に半田層を形成する工程と、
     絶縁樹脂層を用意する工程と、
     前記第1導体回路及び前記半田層が頂部に形成された前記層間接続部を前記絶縁樹脂層の一面に圧入し、前記絶縁樹脂層の他面から前記半田層を露出させる工程と、
     前記絶縁樹脂層の前記他面に前記半田層と接する第2導体回路を形成する工程と、
     前記半田層を溶解させて前記層間接続部と前記第2導体回路との間に合金層を形成する工程
     とを含むことを特徴とする配線基板の製造方法。
PCT/JP2010/069957 2009-11-10 2010-11-09 配線基板の製造方法 WO2011058978A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011540513A JPWO2011058978A1 (ja) 2009-11-10 2010-11-09 配線基板の製造方法
CN2010800508447A CN102598881A (zh) 2009-11-10 2010-11-09 布线基板的制造方法
US13/467,726 US20120216946A1 (en) 2009-11-10 2012-05-09 Method of manufacturing wiring substrate

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-256922 2009-11-10
JP2009-257166 2009-11-10
JP2009257166 2009-11-10
JP2009256922 2009-11-10
JP2010019146 2010-01-29
JP2010-019146 2010-01-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/467,726 Continuation US20120216946A1 (en) 2009-11-10 2012-05-09 Method of manufacturing wiring substrate

Publications (1)

Publication Number Publication Date
WO2011058978A1 true WO2011058978A1 (ja) 2011-05-19

Family

ID=43991636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069957 WO2011058978A1 (ja) 2009-11-10 2010-11-09 配線基板の製造方法

Country Status (5)

Country Link
US (1) US20120216946A1 (ja)
JP (2) JPWO2011058978A1 (ja)
CN (1) CN102598881A (ja)
TW (1) TW201146114A (ja)
WO (1) WO2011058978A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045721A1 (ja) * 2012-09-20 2014-03-27 株式会社村田製作所 配線基板、および、配線基板の製造方法
WO2022202552A1 (ja) * 2021-03-22 2022-09-29 パナソニックIpマネジメント株式会社 配線転写版、配線付き配線転写版、配線体用中間材、及び、配線体の製造方法
WO2022202553A1 (ja) * 2021-03-22 2022-09-29 パナソニックIpマネジメント株式会社 配線体、実装基板、配線付き配線転写版、配線体用中間材、及び、配線体の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3000598B1 (fr) * 2012-12-27 2016-05-06 Commissariat Energie Atomique Procede ameliore de realisation d'une structure de reprise de contact
TW201440592A (zh) * 2013-04-02 2014-10-16 Kinsus Interconnect Tech Corp 用於細線寬之多層載板結構
TW201440591A (zh) * 2013-04-02 2014-10-16 Kinsus Interconnect Tech Corp 用於細線寬之多層載板結構的製作方法
US10159989B2 (en) * 2013-08-09 2018-12-25 Weir Minerals Australia Ltd. Cyclone separator apparatus and methods of production
KR102268781B1 (ko) 2014-11-12 2021-06-28 삼성전자주식회사 인쇄회로기판 및 이를 포함하는 반도체 패키지
JP6368657B2 (ja) 2015-02-02 2018-08-01 日本発條株式会社 金属ベース回路基板及びその製造方法
CN106034373B (zh) * 2015-03-10 2018-09-25 上海量子绘景电子股份有限公司 高密度多层铜线路板及其制备方法
JP6779087B2 (ja) * 2016-10-05 2020-11-04 株式会社ディスコ 配線基板の製造方法
JP6829057B2 (ja) * 2016-11-22 2021-02-10 京セラ株式会社 配線基板
CN112397669B (zh) * 2020-11-26 2024-01-23 武汉天马微电子有限公司 显示模组及其制作方法、显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195560A (ja) * 1995-01-12 1996-07-30 Oki Purintetsudo Circuit Kk プリント回路基板の製造方法
JP2000068641A (ja) * 1998-08-20 2000-03-03 Mitsubishi Gas Chem Co Inc プリント配線板の製造方法
JP2000228580A (ja) * 1999-02-05 2000-08-15 Internatl Business Mach Corp <Ibm> 層間接続構造体、多層配線基板およびそれらの形成方法
JP2000323838A (ja) * 1999-03-04 2000-11-24 Soshin Electric Co Ltd 多層基板の製造方法
JP2003198130A (ja) * 2001-12-27 2003-07-11 Matsushita Electric Ind Co Ltd セラミック多層基板の製造方法
JP2004319980A (ja) * 2003-03-31 2004-11-11 Sumitomo Bakelite Co Ltd 多層配線板の製造方法
JP2008270745A (ja) * 2007-04-23 2008-11-06 Samsung Electro Mech Co Ltd 印刷回路基板の製造方法
JP2009212099A (ja) * 2008-02-07 2009-09-17 Namics Corp 多層配線板用の部材、及び、多層配線板の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148828A (ja) * 1994-11-18 1996-06-07 Hitachi Ltd 薄膜多層回路基板およびその製造方法
JP3050807B2 (ja) * 1996-06-19 2000-06-12 イビデン株式会社 多層プリント配線板
WO1999034654A1 (fr) * 1997-12-29 1999-07-08 Ibiden Co., Ltd. Plaquette a circuits imprimes multicouche
WO2006129734A1 (ja) * 2005-06-01 2006-12-07 Mitsui Mining & Smelting Co., Ltd. 配線基板形成用モールドおよびその製造方法、配線基板およびその製造方法、多層積層配線基板の製造方法並びにビアホールの形成方法
JP2006339365A (ja) * 2005-06-01 2006-12-14 Mitsui Mining & Smelting Co Ltd 配線基板およびその製造方法、多層積層配線基板の製造方法並びにビアホールの形成方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195560A (ja) * 1995-01-12 1996-07-30 Oki Purintetsudo Circuit Kk プリント回路基板の製造方法
JP2000068641A (ja) * 1998-08-20 2000-03-03 Mitsubishi Gas Chem Co Inc プリント配線板の製造方法
JP2000228580A (ja) * 1999-02-05 2000-08-15 Internatl Business Mach Corp <Ibm> 層間接続構造体、多層配線基板およびそれらの形成方法
JP2000323838A (ja) * 1999-03-04 2000-11-24 Soshin Electric Co Ltd 多層基板の製造方法
JP2003198130A (ja) * 2001-12-27 2003-07-11 Matsushita Electric Ind Co Ltd セラミック多層基板の製造方法
JP2004319980A (ja) * 2003-03-31 2004-11-11 Sumitomo Bakelite Co Ltd 多層配線板の製造方法
JP2008270745A (ja) * 2007-04-23 2008-11-06 Samsung Electro Mech Co Ltd 印刷回路基板の製造方法
JP2009212099A (ja) * 2008-02-07 2009-09-17 Namics Corp 多層配線板用の部材、及び、多層配線板の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045721A1 (ja) * 2012-09-20 2014-03-27 株式会社村田製作所 配線基板、および、配線基板の製造方法
JP5928601B2 (ja) * 2012-09-20 2016-06-01 株式会社村田製作所 配線基板、および、配線基板の製造方法
WO2022202552A1 (ja) * 2021-03-22 2022-09-29 パナソニックIpマネジメント株式会社 配線転写版、配線付き配線転写版、配線体用中間材、及び、配線体の製造方法
WO2022202553A1 (ja) * 2021-03-22 2022-09-29 パナソニックIpマネジメント株式会社 配線体、実装基板、配線付き配線転写版、配線体用中間材、及び、配線体の製造方法

Also Published As

Publication number Publication date
JPWO2011058978A1 (ja) 2013-04-04
US20120216946A1 (en) 2012-08-30
CN102598881A (zh) 2012-07-18
TW201146114A (en) 2011-12-16
JP2014042080A (ja) 2014-03-06
JP5647724B2 (ja) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5647724B2 (ja) 配線基板及びその製造方法
JP4434315B2 (ja) 多層配線基板の製造方法
CN101175378B (zh) 制造电路板的方法
TWI413475B (zh) 電氣結構製程及電氣結構
JP2006135277A (ja) 配線基板と、その製造方法
JP2011159855A (ja) 局所多層回路基板、および局所多層回路基板の製造方法
JP2008172076A (ja) 多層配線基板の製造方法
JP2008016817A (ja) 埋立パターン基板及びその製造方法
JP4413522B2 (ja) 配線転写シートとその製造方法、および配線基板とその製造方法
TW201141338A (en) Printed circuit board and method of manufacturing the same
JP2006245213A (ja) 配線基板の製造方法
JP4598140B2 (ja) 部品内蔵配線板、部品内蔵配線板の製造方法
JP2007005815A (ja) 多層印刷回路基板およびその製造方法
JP4161604B2 (ja) プリント配線板とその製造方法
JP2010278379A (ja) 配線基板およびその製造方法
JP2012169486A (ja) 基材、配線板、基材の製造方法及び配線板の製造方法
KR101205464B1 (ko) 인쇄회로기판 제조방법
JP4684454B2 (ja) プリント配線基板の製造方法及びプリント配線基板
JP5406241B2 (ja) 配線板の製造方法
JP5439165B2 (ja) 多層配線板及びその製造方法
JP2007266165A (ja) 多層配線基板の製造方法
JP2011159883A (ja) 配線板及びその製造方法
JP2012028462A (ja) 配線板の製造方法
JP2005109188A (ja) 回路基板、多層基板、回路基板の製造方法および多層基板の製造方法
KR101924458B1 (ko) 전자 칩이 내장된 회로기판의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080050844.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829937

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011540513

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10829937

Country of ref document: EP

Kind code of ref document: A1