WO2014045715A1 - 移動型真空溶接装置 - Google Patents

移動型真空溶接装置 Download PDF

Info

Publication number
WO2014045715A1
WO2014045715A1 PCT/JP2013/070322 JP2013070322W WO2014045715A1 WO 2014045715 A1 WO2014045715 A1 WO 2014045715A1 JP 2013070322 W JP2013070322 W JP 2013070322W WO 2014045715 A1 WO2014045715 A1 WO 2014045715A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
vacuum
seal member
movable
seal
Prior art date
Application number
PCT/JP2013/070322
Other languages
English (en)
French (fr)
Inventor
匠 堀
藤谷 泰之
剛久 奥田
長谷川 修
仙入 克也
渡辺 眞生
貝漕 高明
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to DE112013004531.1T priority Critical patent/DE112013004531B4/de
Priority to US14/428,256 priority patent/US9358638B2/en
Publication of WO2014045715A1 publication Critical patent/WO2014045715A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0053Seam welding
    • B23K15/006Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/04Electron-beam welding or cutting for welding annular seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/06Electron-beam welding or cutting within a vacuum chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/1224Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams
    • B23K26/282Seam welding of curved planar seams of tube sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel

Definitions

  • the present invention relates to a movable vacuum welding apparatus that performs welding while relatively moving a welding target and a welding head.
  • a fixed vacuum welding apparatus in which the entire welding target is covered with a vacuum chamber and evacuated to create a vacuum environment.
  • a welding target such as a pressure vessel
  • the vacuum chamber and the vacuum pump become large, and there is a possibility that a huge equipment cost and a wide installation space are required.
  • a moving vacuum welding apparatus that can move a vacuum chamber is known as a welding apparatus corresponding to a large welding target (see, for example, Patent Document 1).
  • the welding apparatus includes a vacuum chamber that is movable relative to a welding target, and a seal portion interposed between the vacuum chamber and the welding target, and the seal portion is in close contact with the welding target. Thus, the vacuum in the vacuum chamber is maintained.
  • the present invention is to provide a movable vacuum welding apparatus having a vacuum chamber and a seal portion interposed between the objects to be welded in the vacuum chamber, preventing leakage from the seal portion and ensuring a vacuum in the vacuum chamber.
  • a movable vacuum welding apparatus capable of
  • the movable vacuum welding apparatus has an edge portion that opposes the surface of the welding target and defines a vacuum space with the surface of the welding target.
  • a chamber, a seal portion interposed between the edge and the object to be welded over the entire circumference of the edge, a welding head for welding the surface of the object to be welded in the vacuum space, and the object to be welded A moving portion that moves relative to the vacuum chamber, and a preload portion that applies a load to the seal portion in advance, and the seal portion is made of an elastic material and extends along the edge portion;
  • a second seal member that is disposed at least on the rear side in the relative movement direction through which the weld bead passes and is higher in flexibility than the first seal member.
  • the second seal member when the weld bead passes through the second seal member, the second seal member follows the swell of the weld bead, so that leakage from the seal portion is prevented and a vacuum in the vacuum chamber is secured. Can do.
  • an elastic member that urges the second seal member toward the welding target between the edge and the second seal member are preferably provided along the extending direction of the second seal member.
  • the contact surface pressure between the second seal member and the object to be welded can be made equal along the extending direction of the second seal member.
  • undulation of the weld bead of a 2nd seal member can be improved.
  • the shape of the weld bead is on the surface of the edge facing the second seal member and directly above the weld bead. It is preferable that a concave portion is formed.
  • the second seal member is preferably a gland packing having heat resistance.
  • the gland packing has a very small coefficient of friction, the required driving force for moving the moving part relative to each other can be reduced, and the driving source for the moving part for moving the welding object relative to the vacuum chamber can be reduced in size. ⁇ Cost reduction can be achieved.
  • the sealing performance can be maintained for a long time, and it is possible to follow a weld bead having high temperature and waviness.
  • the welding head and the vacuum chamber are movable in a direction perpendicular to the surface of the welding target. It is preferable to be connected via a movable sealing portion that seals between the welding head and the vacuum chamber.
  • the welding accuracy can be maintained even when the seal portion is worn by adjusting the distance between the welding head and the object to be welded.
  • the movable sealing member is preferably a bellows formed of metal.
  • the welding head is supported by a guide unit that makes the distance between the welding head and the welding object constant with respect to the welding object. It is preferable that
  • the distance between the welding head and the object to be welded is kept constant, so that the welding accuracy can be maintained.
  • the second seal member when the weld bead passes through the second seal member, the second seal member follows the swell of the weld bead, thereby preventing leakage from the seal portion.
  • a vacuum in the vacuum chamber can be ensured.
  • FIG. 1 is a schematic configuration diagram of a local vacuum laser device according to a first embodiment of the present invention.
  • FIG. 3 is an AA arrow view of FIG. 2. It is a perspective view of the holder which concerns on 1st embodiment of this invention, and a 2nd seal member. It is a B arrow view of FIG. It is a perspective view of the holder which concerns on 2nd embodiment of this invention, and a 2nd seal member. It is a perspective view of a holder and a 2nd seal member concerning a third embodiment of the present invention. It is C arrow line view of FIG.
  • the movable vacuum welding apparatus 1 of the present embodiment includes a line conveyor 2 (moving unit) that moves a flat plate-shaped welding target T, and a local vacuum laser apparatus 3.
  • the welding target T is placed on a pallet 5 that moves on the line 4 of the line conveyor 2.
  • the welding object T is moved relative to the local vacuum laser device 3.
  • movement direction D the direction of relative movement is simply referred to as movement direction D.
  • the local vacuum laser device 3 has a rectangular parallelepiped shape in which a surface facing the surface of the welding target T is opened, and a vacuum chamber 7 in which a seal portion 8 is provided in the opening, and a vacuum chamber 7, a welding head 9 provided on the upper surface 7 a, which is a surface opposite to the opening portion 7, and an actuator 10 that applies a preload to the seal portion 8.
  • the vacuum chamber 7 is a container that defines a vacuum space with the surface of the welding target T, and has a rectangular parallelepiped shape in which a surface facing the welding target T is opened as described above.
  • a frame-shaped holder 12 (edge) is attached to the opening of the vacuum chamber 7 via a first sealing member 13 such as an O-ring.
  • the seal portion 8 is provided over the entire circumference on the four sides facing the welding target T of the holder 12.
  • the vacuum chamber 7 is arrange
  • the welding head 9 is a device that performs welding on the surface of the welding target T in a vacuum space, and includes a plate-shaped base portion 15, a nozzle portion 16 attached so as to penetrate the base portion 15, and the nozzle portion 16. And a laser head 17 attached to a base end portion (upper side in FIG. 2) opposite to the front end side.
  • the laser head 17 is a laser emission optical unit, and the nozzle unit 16 has a conical shape matching the orbit of the laser beam.
  • the base portion 15 is a member for fixing the nozzle portion 16 to the chamber body, and is attached to the upper surface 7 a of the vacuum chamber 7 via the second sealing member 25.
  • a lens 22 is attached to the proximal end side of the nozzle portion 16.
  • a lens shield gas G is introduced into the nozzle portion 16 via a gas introduction pipe 23 provided on the side portion of the nozzle portion 16.
  • the nozzle portion 16 is a nozzle for preventing metal vapor generated from the welded portion from adhering to the lens 22 and the like.
  • An exhaust hole 18 is provided on one side of the vacuum chamber 7, and a vacuum pump 20 (vacuum exhaust device) is connected to the exhaust hole 18 via an exhaust pipe 19.
  • a nozzle insertion hole 21 into which the nozzle portion 16 is inserted is formed in the upper surface 7a of the vacuum chamber 7.
  • the holder 12 has a rectangular frame shape, and a concave groove 26 into which the seal portion 8 is fitted is formed on the lower surface 12a facing the welding target T.
  • the actuator 10 is a hydraulic cylinder, and functions as a preload portion that applies a preload necessary for sealing to the seal portion 8 when the rod 11 presses the upper surface 7 a of the vacuum chamber 7. That is, a load is applied to the seal portion 8 in advance by the actuator 10.
  • the actuator 10 is not limited to a hydraulic cylinder, and a pneumatic cylinder, an electric cylinder, a rotating screw mechanism, or the like can be adopted as long as the required preload can be applied to the seal portion 8.
  • the seal portion 8 is a sealing material interposed between the holder 12 and the welding target T over the entire circumference of the holder 12, and is made of an elastic material and extends along the four sides of the holder 12. It has the 1st seal member 27 and the 2nd seal member 28 provided in two sides which pass a welding location among the four sides of the holder 12.
  • FIG. the first seal member 27 is provided on two sides along the moving direction D among the four sides facing the surface of the welding target T of the vacuum chamber 7, and the second seal member 28 is moved in the moving direction D. It is provided on two sides orthogonal to.
  • the second seal member 28 does not need to be provided on both sides orthogonal to the movement direction D, and may be provided at least on the rear side in the movement direction through which the weld bead W formed by welding passes.
  • the first seal member 27 is a non-metal type squeeze packing (rubber gasket). Specifically, the first seal member 27 of the present embodiment is an O-ring formed of silicon rubber. In addition, vacuum grease is applied to the first seal member 27 at the contact portion with the welding target T in order to reduce the frictional resistance with the welding target T.
  • the first seal member 27 is not limited to the O-ring, and a non-metal type squeeze packing such as an X ring, a D ring, or a T ring can be employed.
  • the second seal member 28 is a seal member having higher flexibility than the first seal member 27, and the second seal member 28 of the present embodiment is a gland packing having heat resistance.
  • the gland packing can employ, for example, a structure in which graphite fibers are braided (braided packing), or a structure in which graphite fibers are laminated or rolled (stacked packing).
  • the gland packing of the present embodiment is obtained by treating these packings with a special lubricant.
  • the gland packing has, for example, followability to the undulation of the weld bead W having a height of 3 mm, and the heat resistance temperature of the gland packing is 200 ° C. to 600 ° C.
  • the material which comprises a gland packing can also employ
  • the second seal member 28 has a quadrangular cross section, and the concave groove 26 has a shape corresponding to the second seal member 28.
  • the operation of the movable vacuum welding apparatus 1 of this embodiment will be described.
  • focusing is performed so that the focus of the laser beam coincides with the welding location of the welding target T in a state where the preload is applied to the seal portion 8 by the actuator 10.
  • a preload is applied so that the vacuum chamber 7 is brought into contact with the welding location of the welding target T at this welding position, and then the vacuum pump 20 is evacuated so that the welding position in the vacuum chamber 7 is reached.
  • the predetermined drive means of the line conveyor 2 is operated, and the welding object T is moved relative to the local vacuum laser device 3.
  • the second seal member 28 deforms following the swell (shape) of the weld bead W.
  • the second seal member 28 is deformed following the waviness of the weld bead W, thereby preventing leakage from the seal portion 8 and ensuring a vacuum in the vacuum chamber 7.
  • the gland packing has a very small friction coefficient, the required driving force of the line conveyor 2 can be lowered. That is, the drive source of the line conveyor 2 that moves the welding target T relative to the vacuum chamber 7 can be reduced in size and cost. In addition, the sealing performance can be maintained for a long time, and it is possible to follow the weld bead W having high temperature and undulation.
  • FIG. 6 is a perspective view showing the holder 12 and the second seal member 28 according to the second embodiment of the present invention.
  • differences from the above-described first embodiment will be mainly described, and description of similar parts will be omitted.
  • a feature of the holder 12 and the second seal member 28 according to this embodiment is that a leaf spring 29 that is an elastic member is interposed between the second seal member 28 and the holder 12.
  • a leaf spring 29 that is an elastic member is interposed between the second seal member 28 and the holder 12.
  • a plurality (three in this embodiment) of leaf springs 29 are installed at equal intervals along the longitudinal direction of the second seal member 28.
  • the leaf spring 29 is formed of a single rectangular metal plate and is installed so as to urge the second seal member 28 downward, that is, in a direction toward the welding target T. .
  • the elastic modulus of the plate spring 29 located directly above the weld bead W among the plurality of plate springs 29 is reduced. That is, the plate spring 29 facing the weld bead W portion may be configured to have a thin plate thickness.
  • the elastic member is not limited to the leaf spring 29, and a disc spring or a compression coil spring may be employed.
  • the contact surface pressure between the second seal member 28 and the welding target T can be reduced. It can be made equal along the extending direction. Thereby, the followability with respect to the waviness of the weld bead W of the second seal member 28 can be improved. Moreover, when it is set as the structure which makes small the elastic modulus of the leaf
  • a feature of the present embodiment is that a concave portion 30 is formed on a surface 26 a of the concave groove 26 of the holder 12 facing the second seal member 28. Specifically, as shown in FIG. 7, the recess 30 is formed immediately above the weld bead W. Recess 30 is formed to have a cross-sectional shape that conforms to the shape of weld bead W. For example, when the shape of the weld bead W is a smooth mountain shape convex upward, the concave portion 30 is smoothly recessed upward from the surface 26 a of the concave groove 26 facing the second seal member 28. It has a shape.
  • the raised part becomes the recess 30. Since it escapes so that it may enter, the surface pressure applied to the second seal member 28 immediately above the weld bead W can be reduced. Thereby, the wear of the second seal member 28 can be reduced.
  • FIG. 9 shows a holder 12B having a recess 30B corresponding to a larger weld bead W2 compared to FIG.
  • a movable vacuum welding apparatus 1D according to a fourth embodiment of the present invention will be described.
  • the vacuum chamber 7 and the welding head 9 of the local vacuum laser apparatus 3 of the present embodiment support the welding head 9 so as to be movable in a direction V perpendicular to the surface of the welding target T,
  • the welding head 9 and the vacuum chamber 7 are connected via a movable sealing portion 32 that seals between the welding head 9 and the vacuum chamber 7.
  • the movable sealing portion 32 includes a metal bellows 33 (boot), a bellows 33 and the base portion 15 of the welding head 9, and a third sealing member interposed between the bellows 33 and the upper surface 7 a of the vacuum chamber 7. 34.
  • the bellows 33 is a cylindrical member whose peripheral surface is formed of a bellows, and the distance between one end and the other end is variable.
  • One side of the bellows 33 is connected to the lower surface of the base portion 15 of the welding head 9 via a third sealing member 34, and the other side is connected to the upper surface 7 a of the vacuum chamber 7 via the third sealing member 34. Yes. That is, the bellows 33 are sealed so that the airtightness of the vacuum chamber 7 is not impaired.
  • the actuator 10 is arranged to press the extension 35 attached to the vacuum chamber 7. That is, only the vacuum chamber 7 is configured to be pressed against the surface of the welding target T.
  • the welding head 9 is supported by a guide portion 36 that makes the distance between the welding head 9 and the welding target T constant with respect to the welding target T.
  • the guide portion 36 includes an arm portion 37 and a rolling bearing 40 such as a roller follower attached to the lower end portion of the arm portion 37.
  • the arm portion 37 includes a parallel portion 38 that extends parallel to the surface of the welding target T and a vertical portion 39 that extends downward from the end of the parallel portion 38.
  • the rolling bearing 40 is attached to the lower end of the vertical portion 39.
  • the dimensions of the guide portion 36 are set so that the distance between the laser head 17 and the welding target T is optimal. That is, the distance between the laser head 17 and the welding target T is kept constant even when the vacuum chamber 7 approaches the welding target T due to wear of the seal portion 8.
  • the distance between the laser head 17 and the welding target T is kept constant even when the vacuum chamber 7 is close to the welding target T due to wear of the seal portion 8.
  • the finish can be improved.
  • the guide portion 36 is used to make the distance between the laser head 17 and the welding target T constant.
  • the laser head 17 and the welding target T are appropriately selected according to the wear of the seal portion 8. It is also possible to omit the guide unit 36 by changing the distance.
  • the movable sealing portion 32 can employ not only the bellows 33 but also a cylindrical case 41 as shown in FIG. 11, for example.
  • the cylindrical case 41 is made of, for example, metal, and its upper end is joined to the lower surface of the base portion 15 of the welding head 9 by welding or the like.
  • the outer peripheral surface of the cylindrical case 41 is slidable on the fourth sealing member 42 provided on the inner peripheral surface of the nozzle insertion hole 21, thereby maintaining the vacuum in the vacuum chamber 7.
  • the movable vacuum welding apparatus 1E of the present embodiment is configured such that the movable vacuum welding apparatus of the first to fourth embodiments welds a flat plate-shaped welding target T.
  • the second welding target T2 having a cylindrical shape is welded.
  • the second welding target T2 is supported by a predetermined support means so as to be rotatable around the axis. That is, the second welding target T2 is rotatable in the arrow direction (rotation direction R) in FIG.
  • the vacuum chamber 7 of the movable vacuum welding apparatus 1E of the present embodiment is supported via a linear guide 46 (linear motion guide) with respect to the base 45 serving as the foundation of the apparatus, and is attached to the second welding target T2.
  • the second welding object T2 can be moved toward and away from the normal line direction.
  • the actuator 10 is attached to the base portion 45 and is configured to preload the seal portion 8E.
  • the holder 12E and the seal portion 8E of the movable vacuum welding apparatus 1E of the present embodiment have a shape along the cylindrical surface of the second welding target T2.
  • two sides that pass through the welding location and extend in a direction orthogonal to the rotation direction R are linear, and the second seal member 28 is attached to the two sides. It has been.
  • two sides along the rotation direction R are formed along the arc shape of the outer peripheral surface of the second welding object T2, and the first seal member 27 is attached to these two sides. That is, the first seal member 27 extends along the rotation direction R, is curved in an arc shape along the outer peripheral surface of the second welding target T2, and is fixed to the holder 12E.
  • the second welding object T2 is rotated by a predetermined support means, and a preload is applied to the seal portion 8E by the actuator 10, and then vacuum suction is performed. Is done.
  • the gland packing is used as the second seal member 28.
  • the present invention is not limited to this, and a brush seal formed of metal such as SUS304 can also be used. It is also possible to employ a packing made of a sleeve made of a core material made of stainless steel with a mesh structure and a heat-resistant glass fiber, or a packing made of a stainless steel wire made of a mesh structure and a sleeve made of SUS or Inconel.
  • seal portion 8E of the fifth embodiment and the leaf spring 29 of the second embodiment may be provided side by side. Thereby, the surface pressure applied to the second seal member 28 can be lowered.
  • the above-described mobile vacuum welding apparatus prevents leakage from the seal portion because the second seal member follows the swell of the weld bead when the weld bead passes through the second seal member. Can be secured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Laser Beam Processing (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

 溶接対象(T)の表面に対向する縁部(12)を有し、溶接対象(T)の表面との間で真空空間を画成する真空チャンバ(7)と、縁部(12)の全周にわたって縁部(12)と溶接対象(T)との間に介在されるシール部(8)と、真空空間内で溶接対象(T)の表面に溶接を施す溶接ヘッド(9)と、シール部(8)に予め荷重を加える予圧部(10)と、を備え、シール部(8)は、弾性材料からなり縁部(12)に沿って延びる第一シール部材(27)と、少なくとも溶接ビード(W)が通過する相対移動方向の後方側に配置され、第一シール部材(27)よりも可撓性の高い第二シール部材(28)と、を有する移動型真空溶接装置(1)を提供する。

Description

移動型真空溶接装置
 本発明は、溶接対象と溶接ヘッドとが相対的に移動しながら溶接を行う移動型真空溶接装置に関する。
 本願は、2012年9月18日に日本に出願された特願2012-204689号について優先権を主張し、その内容をここに援用する。
 従来、例えば平板状の溶接対象を溶接する場合、溶接対象の全体を真空チャンバで覆い、真空引きすることで真空環境とする固定式の真空溶接装置が知られている。しかしながら、圧力容器など溶接対象が大型である場合、真空チャンバ及び真空ポンプが大きくなり、莫大な設備費と広い設置スペースが必要となる可能性がある。
 大型の溶接対象に対応する溶接装置として、真空チャンバを移動可能とした移動型真空溶接装置が知られている(例えば特許文献1参照)。この溶接装置は、溶接対象に対して相対移動可能とされた真空チャンバと、真空チャンバと溶接対象との間に介在されるシール部とを有しており、シール部が溶接対象に密着することによって、真空チャンバ内の真空を維持している。
日本国実公平7-13912号公報
 しかしながら、溶接を実施することによって溶接対象に形成される溶接ビードのうねりが大きい場合、シール部からの漏れが発生して真空度を保つことができず、溶接に支障をきたす可能性がある。
 この発明は、真空チャンバと真空チャンバとの溶接対象との間に介在されるシール部とを有する移動型真空溶接装置において、シール部からの漏れを防止し、真空チャンバ内の真空を確保することができる移動型真空溶接装置を提供する。
 (1)本発明の第1の態様によれば、移動型真空溶接装置は、溶接対象の表面に対向する縁部を有し、前記溶接対象の表面との間で真空空間を画成する真空チャンバと、前記縁部の全周にわたって該縁部と前記溶接対象との間に介在されるシール部と、前記真空空間内で前記溶接対象の表面に溶接を施す溶接ヘッドと、前記前記溶接対象を前記真空チャンバに対して相対移動させる移動部と、前記シール部に予め荷重を加える予圧部と、を備え、前記シール部は、弾性材料からなり前記縁部に沿って延びる第一シール部材と、少なくとも溶接ビードが通過する前記相対移動方向の後方側に配置され、前記第一シール部材よりも可撓性の高い第二シール部材と、を有することを特徴とする。
 上記構成によれば、溶接ビードが第二シール部材を通過する際、第二シール部材が溶接ビードのうねりに追従するため、シール部からの漏れを防止し、真空チャンバ内の真空を確保することができる。
 (2)上記(1)に記載の移動型真空溶接装置において、上記前記縁部と前記第二シール部材との間には、前記第二シール部材を前記溶接対象に向けて付勢する弾性部材が前記第二シール部材の延在方向に沿って複数設けられていることが好ましい。
 上記構成によれば、複数の弾性部材を設けることによって、第二シール部材と溶接対象との接触面圧を第二シール部材の延在方向に沿って同等にすることができる。これにより、第二シール部材の溶接ビードのうねりに対する追従性を向上させることができる。
 (3)上記(2)に記載の移動型真空溶接装置において、前記縁部の前記第二シール部材に面する面上であって前記溶接ビードの直上部には、前記溶接ビードの形状に対応した凹部が形成されていることが好ましい。
 上記構成によれば、第二シール部材のうち溶接ビードと接する箇所において、第二シール部材の上方が盛り上がった場合においても、盛り上がった箇所が凹部に入り込むように逃げるため、溶接ビードの直上の第二シール部材にかかる面圧を下げることができる。これにより、第二シール部材の摩耗の低減を図ることができる。
 (4)上記(2)又は(3)に記載の移動型真空溶接装置において、前記溶接ビードの直上に配置された前記弾性部材の弾性率が小さくされていることが好ましい。
 上記構成によれば、溶接ビードの直上の第二シール部材にかかる面圧を下げることができる。これにより、第二シール部材の摩耗の低減を図ることができる。
 (5)上記(1)~(4)のいずれかに記載の移動型真空溶接装置において、前記第二シール部材は、耐熱性を有するグランドパッキンであることが好ましい。
 上記構成によれば、グランドパッキンは摩擦係数が極めて小さい為、移動部を相対移動させる要求駆動力を下げることができ、溶接対象を真空チャンバに対して相対移動させる移動部の駆動源の小型化・コストダウンを図ることができる。また、シール性能が長期間維持することができるとともに、高温でかつうねりを有する溶接ビードへの追従が可能となる。
 (6)上記(1)~(5)のいずれかに記載の移動型真空溶接装置において、前記溶接ヘッドと前記真空チャンバとは、前記溶接ヘッドを前記溶接対象の表面に直交する方向に移動自在に支持するとともに、前記溶接ヘッドと前記真空チャンバとの間を封止する可動封止部を介して接続されていることが好ましい。
 上記構成によれば、溶接ヘッドと溶接対象との距離を調節することによって、シール部が摩耗した場合においても、溶接精度を維持することができる。
 (7)上記(6)に記載の移動型真空溶接装置において、前記可動封止部材は、金属によって形成されたベローズであることが好ましい。
 (8)上記(6)又は(7)に記載の移動型真空溶接装置において、前記溶接ヘッドは、前記溶接対象に対して前記溶接ヘッドと前記溶接対象との距離を一定にする案内部によって支持されていることが好ましい。
 上記構成によれば、シール部の摩耗によって真空チャンバが溶接対象に近接した場合においても、溶接ヘッドと溶接対象との間の距離が一定に保たれるため、溶接精度を維持することができる。
 本発明の上記各態様に係る移動型真空溶接装置によれば、溶接ビードが第二シール部材を通過する際、第二シール部材が溶接ビードのうねりに追従するため、シール部からの漏れを防止し、真空チャンバ内の真空を確保することができる。
本発明の第一実施形態に係る移動型真空溶接装置の概略構成図である。 本発明の第一実施形態に係る局所真空式レーザ装置の概略構成図である。 図2のA-A矢視図である。 本発明の第一実施形態に係るホルダーと第二シール部材の斜視図である。 図4のB矢視図である。 本発明の第二実施形態に係るホルダーと第二シール部材の斜視図である。 本発明の第三実施形態に係るホルダーと第二シール部材の斜視図である。 図7のC矢視図である。 図7のC矢視図であり、より大きな溶接ビードに対応した凹部を示す図である。 本発明の第四実施形態に係る局所真空式レーザ装置の概略構成図である。 本発明の第四実施形態の別形態に係る局所真空式レーザ装置の概略構成図である。 本発明の第五実施形態に係る移動型真空溶接装置の概略構成図である。
(第一実施形態)
 以下、本発明の実施形態について図面を参照して詳細に説明する。
 図1に示すように、本実施形態の移動型真空溶接装置1は、平板状の溶接対象Tを移動させるラインコンベア2(移動部)と、局所真空式レーザ装置3とを有している。溶接対象Tは、ラインコンベア2のライン4上を移動するパレット5上に載置される。これにより溶接対象Tは、局所真空式レーザ装置3に対して相対移動される。以下、相対移動の方向を単に移動方向Dと呼ぶ。
 図2に示すように、局所真空式レーザ装置3は、溶接対象Tの表面に対向する面が開口された直方体形状をなし、開口部にシール部8が設けられた真空チャンバ7と、真空チャンバ7の開口部とは反対側の面である上面7aに設けられた溶接ヘッド9と、シール部8に予圧を与えるアクチュエータ10と、を有している。
 真空チャンバ7は、溶接対象Tの表面との間で真空空間を画成する容器であり、上述したように、溶接対象Tに対向する面が開口された直方体形状とされている。真空チャンバ7の開口部には、Oリングなどの第一密封部材13を介して枠形状のホルダー12(縁部)が取り付けられている。シール部8は、ホルダー12の溶接対象Tに対向する四辺に全周にわたって設けられている。
 また、真空チャンバ7は、ホルダー12の対向する一方の二辺の長手方向が、移動方向に沿い、他方の二辺が溶接箇所を跨ぐように配置される。
 溶接ヘッド9は、真空空間内で溶接対象Tの表面に溶接を施す装置であり、板形状のベース部15と、ベース部15を貫通するように取り付けられたノズル部16と、ノズル部16の先端側とは反対側の基端部(図2の上方)に取り付けられたレーザヘッド17と、を有している。
 レーザヘッド17は、レーザの出射光学部であり、ノズル部16は、レーザ光の軌道に合わせた円錐形状とされている。ベース部15は、ノズル部16をチャンバ本体に固定するための部材であり、第二密封部材25を介して真空チャンバ7の上面7aに取り付けられている。ノズル部16の基端側にはレンズ22が取り付けられている。
 また、ノズル部16内には、ノズル部16の側部に設けられたガス導入管23を介してレンズシールドガスGが導入されている。ノズル部16は、溶接部分から発生する金属蒸気がレンズ22などに付着するのを防止するためのノズルである。
 真空チャンバ7の一側部には、排気孔18が設けられており、排気孔18には排気管19を介して真空ポンプ20(真空排気装置)が接続されている。また、真空チャンバ7の上面7aには、ノズル部16が挿入されるノズル挿通孔21が形成されている。
 ホルダー12は、四角枠形状をなし、溶接対象Tに面する下面12aには、シール部8が嵌め込まれる凹条溝26が形成されている。
 アクチュエータ10は油圧シリンダーであり、ロッド11が真空チャンバ7の上面7aを押圧することによって、シール部8に対しシールに必要な予圧を与える予圧部として機能する。即ち、シール部8にはアクチュエータ10によって予め荷重が加えられている。
 なお、アクチュエータ10は、油圧シリンダーに限ることはなく、シール部8に必要な予圧を与えることができれば、空気圧シリンダーや電動シリンダー、回転ねじ機構等を採用することができる。
 図3に示すように、シール部8は、ホルダー12の全周にわたってホルダー12と溶接対象Tとの間に介在される封止材であって、弾性材料からなりホルダー12の四辺に沿って延びる第一シール部材27と、ホルダー12の四辺のうち、溶接箇所を通過する二辺に設けられた第二シール部材28とを有している。換言すれば、第一シール部材27は、真空チャンバ7の溶接対象Tの表面と対向する四辺のうち、移動方向Dに沿う二辺に設けられており、第二シール部材28は、移動方向Dに直交する二辺に設けられている。
 なお、第二シール部材28は、移動方向Dに直交する二辺両方に設ける必要はなく、少なくとも溶接によって形成された溶接ビードWが通過する移動方向の後方側のみに設ける構成としてもよい。
 第一シール部材27は、非金属タイプスクィーズパッキン(ゴムガスケット)であり、具体的には本実施形態の第一シール部材27は、シリコンゴムによって形成されたOリングである。また、第一シール部材27には、溶接対象Tとの摩擦抵抗を低減するために、溶接対象Tとの当接部に真空グリースが塗布されている。なお、第一シール部材27としては、Oリングに限ることはなく、Xリング、Dリング、Tリングなどの非金属タイプスクィーズパッキンを採用することができる。
 第二シール部材28は、第一シール部材27よりも可撓性の高いシール部材とされており、本実施形態の第二シール部材28は、耐熱性を有するグランドパッキンである。グランドパッキンは、例えばグラファイトファイバーを編組した構造(編組パッキン)や、グラファイトファイバーを積層させたり、ロール巻き形とした構造(重ね形パッキン)を採用することがでる。本実施形態のグランドパッキンは、これらのパッキンを特殊潤滑剤で処理したものである。
 グランドパッキンは、例えば、高さ3mmの溶接ビードWのうねりに対する追従性を有しており、グランドパッキンの耐熱温度は、200℃~600℃である。また、グランドパッキンを構成する材料は、グラファイトファイバーのみならず炭素繊維(カーボンファイバー)を採用することもできる。
 図4に示すように、第二シール部材28は、断面四角形状をなしており、凹条溝26は、第二シール部材28に対応した形状とされている。
 次に、本実施形態の移動型真空溶接装置1の作用について説明する。
 まず、アクチュエータ10によってシール部8に予圧が加えられている状態でレーザ光の焦点が溶接対象Tの溶接箇所に一致するように、焦点合わせを行う。次いで、この溶接位置での溶接対象Tの溶接箇所に対して、真空チャンバ7を当接させるように予圧が加えられた後、真空ポンプ20により真空引きすることで、真空チャンバ7内の溶接位置の周囲を真空環境とする。
 次いで、レーザヘッド17よりレーザ光を出射し、溶接対象Tの溶接を実施する。ここで、ラインコンベア2の所定の駆動手段を作動させ、溶接対象Tを局所真空式レーザ装置3に対して相対的に移動させる。この際、図5に示すように、第二シール部材28は、溶接ビードWのうねり(形状)に追従して変形する。
 上記実施形態によれば、第二シール部材28が溶接ビードWのうねりに追従して変形することによって、シール部8からの漏れを防止し、真空チャンバ7内の真空を確保することができる。
 また、グランドパッキンは摩擦係数が極めて小さい為、ラインコンベア2の要求駆動力を下げることができる。即ち、溶接対象Tを真空チャンバ7に対して相対移動させるラインコンベア2の駆動源の小型化・コストダウンを図ることができる。また、シール性能が長期間維持することができるとともに、高温でかつうねりを有する溶接ビードWへの追従が可能となる。
 また、真空チャンバ7の溶接対象Tの表面と対向する四辺のうち、移動方向に沿う二辺においては、溶接ビードWから離れており温度上昇も少なく、うねりも小さいため第二シール部材28よりも可撓性の低い第一シール部材27によってシールすることができる。
 また、第一シール部材27として真空グリースを塗布したOリングを採用したことによって、例えばガスケットと比較して摩擦係数が小さくなるため、溶接対象Tの相対移動に要するラインコンベア2の駆動力を低減することができる。
(第二実施形態)
 次に本発明の第二実施形態に係る移動型真空溶接装置について説明する。図6は、本発明の第二実施形態に係るホルダー12と第二シール部材28を示す斜視図である。なお、以下に示す各実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 本実施形態に係るホルダー12と第二シール部材28の特徴は、第二シール部材28とホルダー12との間に弾性部材である板バネ29が介在していることである。
 具体的には、図6に示すように、板バネ29は、第二シール部材28の長手方向に沿って等間隔に複数(本実施形態では3つ)設置されている。板バネ29は、単一の矩形形状の金属板によって形成されており、第二シール部材28をホルダー12に対して下方、即ち、溶接対象Tに向かう方向に付勢するように設置されている。
 また、好ましくは、複数の板バネ29のうち、溶接ビードWの直上に位置する板バネ29の弾性率は小さくされている。即ち、溶接ビードW部分に相対する板バネ29は、板厚が薄く形成されている構成とすることもできる。
 なお、弾性部材としては、板バネ29に限ることはなく、皿バネや、圧縮コイルバネを採用することも可能である。
 上記実施形態によれば、ホルダー12と第二シール部材28との間に複数の板バネ29を設けることによって、第二シール部材28と溶接対象Tとの接触面圧を第二シール部材28の延在方向に沿って同等にすることができる。これにより、第二シール部材28の溶接ビードWのうねりに対する追従性を向上させることができる。
 また、複数の板バネ29のうち、溶接ビードWの直上に位置する板バネ29の弾性率を小さくする構成とした場合、溶接ビードWの直上の第二シール部材28にかかる面圧を下げることができる。これにより、第二シール部材28の摩耗の低減を図ることができる。
(第三実施形態)
 次に本発明の第三実施形態に係る移動型真空溶接装置について説明する。本実施形態の特徴は、ホルダー12の凹条溝26の第二シール部材28に対向する面26aに凹部30が形成されていることである。
 具体的には、図7に示すように、凹部30は溶接ビードWの直上に形成されている。凹部30は、溶接ビードWの形状に則した断面形状を有するように形成されている。例えば、溶接ビードWの形状が、上方に凸の滑らかな山型形状とされている場合、凹部30は、凹条溝26の第二シール部材28に対向する面26aより、上方に滑らかに凹んだ形状となっている。
 上記実施形態によれば、図8に示すように、第二シール部材28のうち溶接ビードWと接する箇所において、第二シール部材28の上方が盛り上がった場合においても、盛り上がった箇所が凹部30に入り込むように逃げるため、溶接ビードWの直上の第二シール部材28にかかる面圧を下げることができる。これにより、第二シール部材28の摩耗の低減を図ることができる。
 なお、本実施形態の凹部30の形状は、形成される溶接ビードWの大きさに応じた形状とされるが、凹部30の形状の異なる複数のホルダー12を用意し、溶接ビードWの形状に合わせてホルダー12を変更することも可能である。図9は、図8と比較してより大きな溶接ビードW2に対応する凹部30Bを有するホルダー12Bを示している。
(第四実施形態)
 次に本発明の第四実施形態に係る移動型真空溶接装置1Dについて説明する。
 図10に示すように、本実施形態の局所真空式レーザ装置3の真空チャンバ7と溶接ヘッド9とは、溶接ヘッド9を溶接対象Tの表面に直交する方向Vに移動自在に支持するとともに、溶接ヘッド9と真空チャンバ7との間を封止する可動封止部32を介して接続されている。可動封止部32は、金属製のベローズ33(ブーツ)と、ベローズ33と溶接ヘッド9のベース部15、及びベローズ33と真空チャンバ7の上面7aとの間に介在している第三密封部材34とを有している。
 ベローズ33は、周面が蛇腹によって形成されている円筒状の部材であり、一方側の端部と他方側の端部との距離が可変とされている。ベローズ33の一方側は溶接ヘッド9のベース部15の下面に第三密封部材34を介して接続されており、他方側は真空チャンバ7の上面7aに第三密封部材34を介して接続されている。即ち、ベローズ33によって真空チャンバ7の気密が損なわれないように密封されている。
 アクチュエータ10は、真空チャンバ7に取り付けられた延長部35を押圧するように配置されている。即ち、真空チャンバ7のみが溶接対象Tの表面に押し付けられるように構成されている。
 また、溶接ヘッド9は、溶接対象Tに対して溶接ヘッド9と溶接対象Tとの距離を一定にする案内部36によって支持されている。案内部36は、アーム部37とアーム部37の下方側の端部に取り付けられたローラフォロア等の転がり軸受40から構成されている。
 アーム部37は、溶接対象Tの表面に平行に延在する平行部38と、平行部38の端部より下方に延在する垂直部39とからなる。転がり軸受40は垂直部39の下端に取り付けられている。そして、案内部36は、レーザヘッド17と溶接対象Tとの距離が最適となるように寸法が設定されている。即ち、シール部8の摩耗によって真空チャンバ7が溶接対象Tに近接しても、レーザヘッド17と溶接対象Tとの距離が一定に保たれるように形成されている。
 上記実施形態によれば、シール部8の摩耗によって真空チャンバ7が溶接対象Tに近接した場合においても、レーザヘッド17と溶接対象Tとの間の距離が一定に保たれるため、溶接ビードWの仕上がりを向上させることができる。
 なお、上記実施形態においては、案内部36を用いてレーザヘッド17と溶接対象Tとの距離を一定にする構成としたが、シール部8の摩耗に応じて適宜レーザヘッド17と溶接対象Tとの距離を変更するなどして案内部36を省略することもできる。
 また、可動封止部32は、ベローズ33のみならず、例えば図11に示すような、円筒ケース41を採用することもできる。円筒ケース41は、例えば金属によって形成されており、その上端が溶接ヘッド9のベース部15の下面に、溶接等によって接合されている。円筒ケース41の外周面は、ノズル挿通孔21の内周面に設けられた第四密封部材42上を摺動可能とされており、これにより、真空チャンバ7内の真空を維持している。
(第五実施形態)
 次に本発明の第五実施形態に係る移動型真空溶接装置1Eについて説明する。
 図12に示すように、本実施形態の移動型真空溶接装置1Eは、第一実施形態~第四実施形態の移動型真空溶接装置が平板状の溶接対象Tを溶接する構成であることに対して、円筒形状の第二溶接対象T2を溶接することを特徴としている。
 第二溶接対象T2は、所定の支持手段により、軸回りに回転自在に支持されている。即ち、第二溶接対象T2は、図12の矢印方向(回転方向R)に回転自在とされている。
 本実施形態の移動型真空溶接装置1Eの真空チャンバ7は、装置の基礎となる基礎部45に対して、リニアガイド46(直動ガイド)を介して支持されており、第二溶接対象T2にこの第二溶接対象T2の法線方向に接近・離間自在とされている。
 また、アクチュエータ10は、基礎部45に取り付けられており、シール部8Eを予圧するように構成されている。
 本実施形態の移動型真空溶接装置1Eのホルダー12E及びシール部8Eは、第二溶接対象T2の円筒面に沿う形状とされている。具体的には、ホルダー12Eの四辺のうち、溶接箇所を通過し、回転方向Rと直交する方向に延在する二辺が直線形状とされており、この二辺に第二シール部材28が取り付けられている。また、回転方向Rに沿う二辺が第二溶接対象T2の外周面の円弧形状に沿う形状とされており、この二辺に第一シール部材27が取り付けられている。即ち、第一シール部材27は、回転方向Rに沿って延在しており、第二溶接対象T2の外周面に沿うように円弧形状に湾曲してホルダー12Eに固定されている。
 本実施形態の移動型真空溶接装置1Eを用いた溶接の際は、所定の支持手段により第二溶接対象T2が回転されるとともに、アクチュエータ10によってシール部8Eに予圧が加えられた後、真空引きが行われる。
 上記実施形態によれば、ホルダー12が円筒形状の第二溶接対象T2の外周面に沿う形状とされていることによって、平板状のみならず、円筒形状の溶接対象に対しても溶接が可能となる。
 なお、本発明の技術範囲は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の変更を加えることが可能である。また、上述した複数の実施形態は、その内容が相反しない範囲で組み合わせることができる。
 例えば、上記各実施形態においては、第二シール部材28としてグランドパッキンを採用したが、これに限ることはなく、例えばSUS304などの金属によって形成されたブラシシールを採用することもできる。また、メッシュ構造のステンレスワイヤによる芯材と耐熱ガラス繊維によって形成されたスリーブからなるパッキンや、メッシュ構造のステンレスワイヤによる芯材とSUSやインコネルによって形成されたスリーブからなるパッキンも採用可能である。
 また、上記各実施形態においては、シール部8をレーザー溶接装置の真空チャンバ7に適用する例を示したが、これに限ることはなく、電子ビーム溶接装置にも問題なく適用することが可能である。
 また、上述の実施形態は適宜組み合わせてよい。例えば第五実施形態のシール部8Eと、第二実施形態の板バネ29とを併設してもよい。これによって、第二シール部材28にかかる面圧を下げることができる。
 上記した移動型真空溶接装置は、溶接ビードが第二シール部材を通過する際、第二シール部材が溶接ビードのうねりに追従するため、シール部からの漏れを防止し、真空チャンバ内の真空を確保することができる。
 1 移動型真空溶接装置
 2 ラインコンベア(移動部)
 3 局所真空式レーザ装置
 7 真空チャンバ
 8 シール部
 9 溶接ヘッド
 10 アクチュエータ(予圧部)
 11 ロッド
 12 ホルダー(縁部)
 13 第一密封部材
 15 ベース部
 16 ノズル部
 17 レーザヘッド
 25 第二密封部材
 26 凹条溝
 27 第一シール部材
 28 第二シール部材
 29 板バネ
 30 凹部
 32 可動封止部
 33 ベローズ
 34 第三密封部材
 35 延長部
 36 案内部
 37 アーム部
 38 平行部
 39 垂直部
 40 転がり軸受
 41 円筒ケース
 42 第四密封部材
 T,T2 溶接対象
 W 溶接ビード

Claims (8)

  1.  溶接対象の表面に対向する縁部を有し、前記溶接対象の表面との間で真空空間を画成する真空チャンバと、
     前記縁部の全周にわたって該縁部と前記溶接対象との間に介在されるシール部と、
     前記真空空間内で前記溶接対象の表面に溶接を施す溶接ヘッドと、
     前記前記溶接対象を前記真空チャンバに対して相対移動させる移動部と、
     前記シール部に予め荷重を加える予圧部と、を備え、
     前記シール部は、
     弾性材料からなり前記縁部に沿って延びる第一シール部材と、
     少なくとも溶接ビードが通過する前記相対移動方向の後方側に配置され、前記第一シール部材よりも可撓性の高い第二シール部材と、を有することを特徴とする移動型真空溶接装置。
  2.  前記縁部と前記第二シール部材との間には、前記第二シール部材を前記溶接対象に向けて付勢する弾性部材が前記第二シール部材の延在方向に沿って複数設けられていることを特徴とする請求項1に記載の移動型真空溶接装置。
  3.  前記縁部の前記第二シール部材に面する面上であって前記溶接ビードの直上部には、前記溶接ビードの形状に対応した凹部が形成されていることを特徴とする請求項2に記載の移動型真空溶接装置。
  4.  前記溶接ビードの直上に配置された前記弾性部材の弾性率が小さくされていることを特徴とする請求項2又は請求項3に記載の移動型真空溶接装置。
  5.  前記第二シール部材は、耐熱性を有するグランドパッキンであることを特徴とする請求項1から請求項4のいずれか一項に記載の移動型真空溶接装置。
  6.  前記溶接ヘッドと前記真空チャンバとは、前記溶接ヘッドを前記溶接対象の表面に直交する方向に移動自在に支持するとともに、前記溶接ヘッドと前記真空チャンバとの間を封止する可動封止部を介して接続されていることを特徴とする請求項1から請求項5のいずれか一項に記載の移動型真空溶接装置。
  7.  前記可動封止部は、金属によって形成されたベローズであることを特徴とする請求項6に記載の移動型真空溶接装置。
  8.  前記溶接ヘッドは、前記溶接対象に対して前記溶接ヘッドと前記溶接対象との距離を一定にする案内部によって支持されていることを特徴とする請求項6又は請求項7に記載の移動型真空溶接装置。
PCT/JP2013/070322 2012-09-18 2013-07-26 移動型真空溶接装置 WO2014045715A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112013004531.1T DE112013004531B4 (de) 2012-09-18 2013-07-26 Bewegbare Vakuumschweissvorrichtung
US14/428,256 US9358638B2 (en) 2012-09-18 2013-07-26 Movable vacuum welding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012204689A JP6037741B2 (ja) 2012-09-18 2012-09-18 移動型真空溶接装置
JP2012-204689 2012-09-18

Publications (1)

Publication Number Publication Date
WO2014045715A1 true WO2014045715A1 (ja) 2014-03-27

Family

ID=50341041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070322 WO2014045715A1 (ja) 2012-09-18 2013-07-26 移動型真空溶接装置

Country Status (4)

Country Link
US (1) US9358638B2 (ja)
JP (1) JP6037741B2 (ja)
DE (1) DE112013004531B4 (ja)
WO (1) WO2014045715A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2558946A (en) * 2017-01-23 2018-07-25 Aquasium Tech Limited Welding head
CN112108783A (zh) * 2019-06-21 2020-12-22 南京航空航天大学 一种用于蒙皮-桁条t型结构双激光束双侧同步焊接的真空装置
CN117583714A (zh) * 2024-01-19 2024-02-23 中国航空制造技术研究院 一种航空大型板形结构局部高真空电子束焊接装置及方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014210838A1 (de) * 2014-06-06 2015-12-17 Trumpf Laser Gmbh Einkoppeloptik, Laserschweißkopf und Laserschweißvorrichtung mit Vakuumkammer
JP6525127B2 (ja) * 2014-06-09 2019-06-05 株式会社Ihi レーザ溶接装置及びレーザ溶接方法
JP5985011B1 (ja) * 2015-06-30 2016-09-06 三菱重工メカトロシステムズ株式会社 超伝導加速器
DE102015008921A1 (de) * 2015-07-15 2017-01-19 Evobeam GmbH Verfahren zur additiven Herstellung von Bauteilen
CN105252143B (zh) * 2015-11-23 2017-09-29 哈尔滨工业大学 一种大功率真空激光焊接装置
US10639742B2 (en) * 2015-12-18 2020-05-05 Rolls-Royce Corporation Vessel for joining materials
CN105397261B (zh) * 2015-12-28 2017-11-07 中国航空工业集团公司北京航空制造工程研究所 移动式局部低真空冷阴极电子束焊接装置
CN107234348A (zh) * 2016-03-29 2017-10-10 无锡汉力科技有限公司 一种激光焊接用输料装置
DE102016210042B3 (de) * 2016-06-07 2017-10-19 Sauer Gmbh Werkzeugmaschine zum Auftragsschweißen
GB201609995D0 (en) * 2016-06-08 2016-07-20 Aquasium Technology Ltd Shaped welding head
CN106064278B (zh) * 2016-07-11 2018-01-19 长沙理工大学 一种基于局部真空气氛的镀锌钢板激光搭接焊接方法
CN106112280B (zh) * 2016-07-11 2018-03-13 长沙理工大学 一种激光穿孔加工方法
CN106181031B (zh) * 2016-07-11 2018-05-11 长沙理工大学 一种铝合金激光焊接方法
CN106077954B (zh) * 2016-07-11 2018-01-30 长沙理工大学 一种非熔透激光焊接方法
US10471539B2 (en) 2016-09-28 2019-11-12 Bombardier Transportation Gmbh Containment device for a laser head and associated manufacturing method
US11890807B1 (en) 2017-08-31 2024-02-06 Blue Origin, Llc Systems and methods for controlling additive manufacturing processes
DE102019102233A1 (de) * 2018-12-20 2020-06-25 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung eines Bauteilverbunds sowie Kraftfahrzeug
US11819943B1 (en) * 2019-03-28 2023-11-21 Blue Origin Llc Laser material fusion under vacuum, and associated systems and methods
CN110315225B (zh) * 2019-08-07 2024-05-24 重庆市灵龙自动化设备有限公司 板簧自动上料及装配的焊接机
CN111855955B (zh) * 2019-12-24 2022-05-06 山东科技大学 一种用于真空预压软地基加固模拟分析仪的密封机构
US20220055148A1 (en) * 2020-08-19 2022-02-24 Transportation Ip Holdings, Llc Welding window device
CN112792445A (zh) * 2020-12-28 2021-05-14 江阴市博汇机械成套设备有限公司 一种焊接保护套
DE102021107422A1 (de) 2021-03-24 2022-09-29 Mogema BV Vorrichtung und Verfahren zum Schweißen
KR102592155B1 (ko) * 2021-10-28 2023-10-23 한국원자력연구원 레이저 스캐블링 헤드 및 이를 포함하는 로봇
DE102022205845A1 (de) 2022-06-08 2023-12-14 Robert Bosch Gesellschaft mit beschränkter Haftung Bearbeitungskopf für ein Laserbearbeitungssystem, Laserbearbeitungssystem, Verfahren zur Änderung der Fokuslage eines Bearbeitungskopfes für ein Laserbearbeitungssystem, Computerprogramm
CN116423050B (zh) * 2023-06-13 2023-09-19 成都永峰科技有限公司 一种用于航天航空薄壁曲面部件的焊接装置及其方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347670U (ja) * 1989-09-20 1991-05-02
JPH0729881A (ja) * 1993-06-25 1995-01-31 Hitachi Ltd エネルギービーム加工の終点検出方法及びその装置
JP2001047254A (ja) * 1999-08-06 2001-02-20 Toyama Prefecture 可搬型電子ビーム溶接機用局部真空室

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1313195A (fr) * 1961-11-13 1962-12-28 Commissariat Energie Atomique Procédé de soudage à l'arc sous pression gazeuse et dispositif pour la mise en oeuvre du procédé
NL290719A (ja) * 1962-03-28
US3535489A (en) * 1968-05-03 1970-10-20 Smith Corp A O Electron beam welding apparatus
US3529123A (en) * 1968-07-24 1970-09-15 Smith Corp A O Electron beam heating with controlled beam
US3601248A (en) * 1968-08-16 1971-08-24 Rohr Corp Walking seal having liquid sealed sliding connections
FR2061966A5 (ja) * 1969-10-06 1971-06-25 Peyrot Jean Pierre
US3609287A (en) * 1970-01-22 1971-09-28 Smith Corp A O Method and apparatus for electron beam welding
US3702389A (en) * 1970-08-03 1972-11-07 Jean Pierre Peyrot Welding by electron bombardment
US3688075A (en) * 1970-12-21 1972-08-29 John A Cupler Mechanical/nonmechanical machining center
US3806693A (en) * 1972-03-17 1974-04-23 Laval Turbine Repair-welding of heat exchanger tube sheets
DE2363722C3 (de) * 1973-12-21 1978-12-14 Motoren- Und Turbinen-Union Muenchen Gmbh, 8000 Muenchen Verfahren und Vorrichtung zur Herstellung von Ringen durch Zusammenschweißen von segmentartigen Teilstücken
FR2316035A1 (fr) * 1975-07-02 1977-01-28 Sciaky Sa Installation d'usinage sous vide par faisceau electronique
JPS5523746Y2 (ja) * 1976-02-05 1980-06-06
US4162391A (en) * 1977-12-19 1979-07-24 Sciaky Bros., Inc. Sliding vacuum seal means
JPS595076B2 (ja) 1978-06-12 1984-02-02 川崎重工業株式会社 電子ビ−ム溶接用真空シ−ルド装置
JPS55112187A (en) * 1979-02-21 1980-08-29 Nec Corp Electron beam welding machine for pipe welding
US4342900A (en) * 1979-11-13 1982-08-03 Kawasaki Jukogyo Kabushiki Kaisha Vacuum shield device of an electron beam welding apparatus
DE3134018A1 (de) * 1981-08-28 1983-03-10 Leybold-Heraeus GmbH, 5000 Köln Energiestrahl-schweissmaschine
US4607167A (en) * 1982-10-19 1986-08-19 Varian Associates, Inc. Charged particle beam lithography machine incorporating localized vacuum envelope
DE3382460D1 (de) 1982-10-19 1991-12-19 Varian Associates Bearbeitungsgeraet mit einer vorrichtung zur erzeugung eines lokalisierten vakuums.
JPS617080A (ja) * 1984-06-21 1986-01-13 Hitachi Zosen Corp 大型円筒容器の溶接装置
US5170028A (en) * 1989-08-28 1992-12-08 Hitachi, Ltd. Process and apparatus, for electron beam welding of a member partially enclosed in vacuum chamber, and the member formed thereby
JPH0713912Y2 (ja) 1990-01-16 1995-04-05 三菱重工業株式会社 局所真空方式電子ビーム溶接装置
JPH06269956A (ja) * 1993-03-18 1994-09-27 Hitachi Ltd 部分真空電子ビーム溶接装置及び方法
CA2167111A1 (en) * 1996-01-12 1997-07-13 Bob Bishop Method and apparatus for butt welding together sheet blanks
JPH09271979A (ja) * 1996-04-09 1997-10-21 Nec Corp 局所真空式レーザ溶接機
US6530317B2 (en) * 2000-12-05 2003-03-11 Creo Srl Method to engrave surface using particle beam
JP2002257998A (ja) * 2001-02-28 2002-09-11 Sony Corp 電子ビーム照射装置及び電子ビーム照射装置における真空シール方法
JP2005516778A (ja) 2002-02-15 2005-06-09 デンマーク テクニスク ユニヴェルジテイト 電子ビーム処理の方法
JP4028255B2 (ja) * 2002-02-26 2007-12-26 ソニー株式会社 電子ビーム照射装置及び電子ビーム照射方法
KR100790776B1 (ko) * 2006-12-27 2008-01-03 주식회사 성우하이텍 레이저 용접용 지그장치
JP2012149761A (ja) * 2010-12-28 2012-08-09 Kitz Corp ニードルバルブ及びoリング
US8829388B2 (en) * 2011-07-29 2014-09-09 Ipg Photonics Corporation Method for contactless laser welding and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347670U (ja) * 1989-09-20 1991-05-02
JPH0729881A (ja) * 1993-06-25 1995-01-31 Hitachi Ltd エネルギービーム加工の終点検出方法及びその装置
JP2001047254A (ja) * 1999-08-06 2001-02-20 Toyama Prefecture 可搬型電子ビーム溶接機用局部真空室

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2558946A (en) * 2017-01-23 2018-07-25 Aquasium Tech Limited Welding head
CN112108783A (zh) * 2019-06-21 2020-12-22 南京航空航天大学 一种用于蒙皮-桁条t型结构双激光束双侧同步焊接的真空装置
CN117583714A (zh) * 2024-01-19 2024-02-23 中国航空制造技术研究院 一种航空大型板形结构局部高真空电子束焊接装置及方法

Also Published As

Publication number Publication date
US20150258633A1 (en) 2015-09-17
JP6037741B2 (ja) 2016-12-07
US9358638B2 (en) 2016-06-07
DE112013004531B4 (de) 2017-10-19
JP2014057985A (ja) 2014-04-03
DE112013004531T5 (de) 2015-05-28

Similar Documents

Publication Publication Date Title
JP6037741B2 (ja) 移動型真空溶接装置
RU2429393C2 (ru) Зажимной тормоз транспортного средства
US8800956B2 (en) Non-sliding gate valve
JP5289730B2 (ja) シールアセンブリ
US20080105385A1 (en) Anvil for ultrasonic welding and device for ultrasonic welding
EP2033206B1 (en) Slider bearing for use with an apparatus comprising a vacuum chamber
MX2013015337A (es) Metodo y dispositivo de sellado de vidrio al vacio.
EP2538090A1 (en) Fluid pressure cylinder
JP2016037992A (ja) 真空バルブ
JP2011127763A (ja) 真空バルブ
JP2016213042A (ja) X線発生装置
JP2014050877A (ja) レーザ溶接装置およびレーザ溶接方法
JP6797177B2 (ja) バルブ
JP2017116103A (ja) メンブレンベローズ
JP6772440B2 (ja) シール構造、回転駆動装置、搬送装置、工作機械および半導体製造装置
JP6415904B2 (ja) シール装置及びその装置に用いるパッキン
GB2096247A (en) Sliding vacuum seal
WO2011024522A1 (ja) コンタミシール装置
JP2015104729A (ja) レーザ溶接方法及び装置、構造物
JP4642488B2 (ja) ゲートバルブ
CN109794720A (zh) 一种随动压紧装置
KR102390604B1 (ko) 유압실린더용 실링부재 및 결합 방법
US8828164B2 (en) Chamber including a sealed connection assembly sliding inside a translation plane
JP7137385B2 (ja) ゲートバルブ
WO2020250578A1 (ja) 密封装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838970

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14428256

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130045311

Country of ref document: DE

Ref document number: 112013004531

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838970

Country of ref document: EP

Kind code of ref document: A1