WO2014045590A1 - 電縫溶接部の耐hic性および低温靭性に優れた電縫鋼管およびその製造方法 - Google Patents

電縫溶接部の耐hic性および低温靭性に優れた電縫鋼管およびその製造方法 Download PDF

Info

Publication number
WO2014045590A1
WO2014045590A1 PCT/JP2013/005559 JP2013005559W WO2014045590A1 WO 2014045590 A1 WO2014045590 A1 WO 2014045590A1 JP 2013005559 W JP2013005559 W JP 2013005559W WO 2014045590 A1 WO2014045590 A1 WO 2014045590A1
Authority
WO
WIPO (PCT)
Prior art keywords
erw
steel pipe
electric
electric resistance
resistance
Prior art date
Application number
PCT/JP2013/005559
Other languages
English (en)
French (fr)
Inventor
俊介 豊田
聡太 後藤
岡部 能知
篤志 米本
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020157009433A priority Critical patent/KR101720648B1/ko
Priority to RU2015115469A priority patent/RU2630725C2/ru
Priority to EP13839516.5A priority patent/EP2878696B1/en
Priority to CN201380048260.XA priority patent/CN104641014B/zh
Priority to US14/430,771 priority patent/US9873164B2/en
Publication of WO2014045590A1 publication Critical patent/WO2014045590A1/ja
Priority to IN1228DEN2015 priority patent/IN2015DN01228A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/0006Resistance welding; Severing by resistance heating the welding zone being shielded against the influence of the surrounding atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B23/00Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/06Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles
    • B21D5/10Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles for making tubes
    • B21D5/12Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles for making tubes making use of forming-rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/08Seam welding not restricted to one of the preceding subgroups
    • B23K11/087Seam welding not restricted to one of the preceding subgroups for rectilinear seams
    • B23K11/0873Seam welding not restricted to one of the preceding subgroups for rectilinear seams of the longitudinal seam of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K13/00Welding by high-frequency current heating
    • B23K13/01Welding by high-frequency current heating by induction heating
    • B23K13/02Seam welding
    • B23K13/025Seam welding for tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals

Definitions

  • the present invention is suitable for mining or transporting crude oil, natural gas, etc., or for use in transportation.
  • Tensile strength TS 434 MPa electric resistance steel pipe having strength of 434 MPa or more. steel pipe or steel tube).
  • the present invention relates to a technique for improving hydrogen-induced cracking resistance and low-temperature toughness of an electric resistance welded part.
  • ERW steel pipes have been widely used for mining or transporting crude oil and natural gas.
  • ERW steel pipes have ERW welds, so from the viewpoint of reliability of ERW welds, demand for hydrogen-induced crack resistance (hereinafter also referred to as HIC resistance) and low temperature toughness of ERW welds is required.
  • HIC resistance hydrogen-induced crack resistance
  • low temperature toughness of ERW welds The usage was limited to places where the value was not strict. For this reason, there is a strong demand for an electric resistance welded steel pipe having excellent HIC resistance and excellent low-temperature toughness.
  • Patent Document 1 describes an ERW steel pipe excellent in sour resistance made of Al deoxidized steel containing 0.0012% or more of Ca. Yes.
  • the Ca / Al ratio is set to 0.10 or less, and the ratio of the length in the plate thickness direction (through-thickness direction) to the length in the circumferential direction is set to 2 or more.
  • the density of inclusions having a major axis of 10 ⁇ m or more is adjusted to 5 or less per 1 mm 2 .
  • Patent Document 2 describes a gas shield welding method for an electric resistance welded pipe that can improve the toughness of an electric resistance welded portion.
  • the suspended scale on the inner surface side of the pipe is washed away with mist after fin pass molding (fin pass forming) and before welding, and a local seal (
  • local shielding local gas sealing of the welded portion is performed without contact with the pipe except for the holding roller of the sealing device (shielding arrangement) on the inner surface of the pipe.
  • the remaining of the scale of the ERW welded portion is prevented, and the inertia of the ERW welded portion is markedly improved.
  • Patent Document 3 describes a high tensile strength thin-walled electric resistance welded line pipe or tube of API X80 grade or higher.
  • hot rolling steel coil to cold forming roll forming
  • electric seam welding seam heat treatment
  • seam heat treatment of seam sizer
  • the outer diameter is 200 mm or more and 610 mm or less
  • the thickness / outer diameter ratio (t / D) is 2% or less
  • the metallic structure has an average grain size of 5 ⁇ m or less.
  • the occupied area of the butt part of the ERW weld is less than 0.1% (equivalent to 1000 ppm)
  • An ERW steel pipe having a circumferential tensile strength of 700 N / mm 2 or more after flatning is used as a line pipe.
  • Patent Document 4 describes an electric resistance welded steel pipe or steel tube for boiler that has few defects in an electric seam welded portion and is excellent in creep rupture strength and toughness. ing.
  • the electric resistance welded steel pipe described in Patent Document 4 is C: 0.01 to 0.20%, Si: 0.01 to 1.0%, Mn: 0.10 to 2.0% by mass. Cr: 0.5-3.5%, P: 0.030% or less, S: 0.010% or less, O: 0.020% or less, Nb: 0.001-0.
  • JP-A-60-213366 Japanese Patent Laid-Open No. 4-178281 JP 2008-223134 A JP 2006-77330 A
  • Patent Document 1 can be said to be excellent in HIC resistance in an environment of (0.5% CH 3 COOH + synthetic seawater (3% NaCl) + saturated H 2 S).
  • the technique described in Patent Document 1 is insufficient in controlling inclusions.
  • in the technique described in Patent Document 1 in the environment of Solution A solution (0.5% CH 3 COOH + 5% NaCl + saturated H 2 S) defined in NACE TM0284, which is a more severe corrosion environment, hydrogen induction There is a problem that the occurrence of cracks (HIC) cannot be avoided.
  • the inclusion amount of 5 inclusions having a major axis of 10 ⁇ m or more per 1 mm 2 corresponds to 0.05% (500 ppm) in terms of area ratio, and the ratio of the major axis / minor axis (ratio of the major) Diameter to the minor diameter): Even if 2 is considered, it becomes about 100 ppm.
  • the environment where the ERW steel pipe manufactured by the technique described in Patent Document 1 is applicable is 0.5% CH 3 COOH + artificial seawater (NaCl concentration of about 3%) + saturated H 2 S environment. In a severe corrosive environment beyond that, there is a concern about the occurrence of HIC.
  • the absorbed energy of the Charpy impact test (Charpy impact test) is about 20 kgfm or more in the ERW weld portion.
  • the temperature range obtained is up to ⁇ 50 ° F. (corresponding to ⁇ 45.5 ° C.), and there is a problem that low-temperature toughness decreases at an extremely low temperature of ⁇ 60 ° C. or less.
  • the steel pipe manufactured by the technique described in Patent Document 2 has a problem that it does not maintain good HIC resistance under severe corrosive environment conditions.
  • the weld defect (weld defect) of the ERW weld is reduced, and the creep characteristics ( Creep characteristic) and toughness deterioration can be prevented.
  • the fracture surface transition temperature (fracture transition temperature) of the Charpy impact test of the obtained ERW weld is about 0 to -50 ° C, and the Charpy impact test at -60 ° C is performed.
  • the low temperature toughness of a good ERW weld having an absorbed energy of 120 J or more has not been achieved.
  • the present invention solves the problems of the prior art and provides an ERW steel pipe having a tensile strength TS: 434 MPa or more and having an ERW welded portion having both excellent HIC resistance and excellent low temperature toughness.
  • excellent HIC resistance means a crack area ratio CAR (crack area ratio) after immersion in a NACE Solution A solution (0.5% CH 3 COOH + 5% NaCl + saturated H 2 S) specified in NACE TM0284 for 200 hours. ) Is 3% or less.
  • “Excellent low temperature toughness” is obtained in accordance with the provisions of WES 1108 (1995), the absorption energy vE ⁇ 60 of the Charpy impact test at ⁇ 60 ° C.
  • the crack tip opening displacement value (CTOD value) at ⁇ 20 ° C. of the CTOD test obtained in accordance with the standard is 0.3 mm or more is assumed.
  • the Charpy fracture surface transition temperature vTrs is ⁇ 60 ° C. or lower.
  • the present inventors have determined the influence of the constituent element (constituent element) of oxide, the size of oxide, and the number of oxides on the HIC resistance and low temperature toughness of the ERW weld.
  • the viscosity (viscosity) of the oxide generated at the edge of steel strip during ERW welding greatly affects the HIC resistance and low temperature toughness of the ERW weld.
  • the HIC resistance and low-temperature toughness of an ERW welded part improved notably by adjusting the viscosity of the oxide produced
  • the length direction of the test piece becomes the direction of tube axis, and the ERW welded portion becomes the center in the length direction of the test piece.
  • Size 10 mm thickness x 20 mm width x 100 mm length
  • HIC test was performed.
  • the test piece was immersed in a Solution A solution (0.5% CH 3 COOH + 5% NaCl + saturated H 2 S) defined by NACE TM0284 for 200 hours. After immersion, the surface of the test piece was subjected to ultrasonic flaw detection, and the area ratio (CAR) of the crack was determined by image treatment.
  • Charpy impact test pieces are formed from the obtained electric resistance welded steel pipes in the circumferential direction of the pipe around the ERW welds in accordance with JIS Z 2242. Were collected. The notch was confirmed by etching and centered on the ERW weld. Using the obtained Charpy impact test piece (V-notch test piece), an impact test was carried out to determine the absorbed energy. The test temperature was ⁇ 60 ° C., each ERW steel pipe was tested using three test pieces, and the arithmetic average was the toughness (absorbed energy) value vE ⁇ 60 of the ERW welded portion of each ERW steel pipe. .
  • generated at the time of ERW welding was calculated
  • the viscosity of the oxide generated during ERW welding depends on the liquid steel temperature during ERW welding and the composition of the oxide generated during ERW welding: PVRiboud et..al .: ausber. wolfenprax. Metall noteverrarb. , 19 (1981) 859.
  • Viscosity of oxide 10 ⁇ A R T exp (B R / T) (1)
  • T absolute temperature (K)
  • a R exp ⁇ 19.81 + 1.73 (X CaO + X MnO 3 ) ⁇ 35.75X Al 2 O 3 ⁇
  • B R 31140-23896 ⁇ ⁇ (X CaO + X MnO 2 ) + 68833X Al 2 O 3 ⁇ X CaO , X MnO 3 , X Al 2 O 3 : Mole fractions of CaO, MnO, and Al 2 O 3 in the oxide
  • the temperature at the time of ERW welding the mole fraction obtained at 1550 ° C. was used.
  • generated at the time of ERW welding is decided by the composition of the hot rolled steel plate which is a raw material of an ERW steel pipe, and the time from welding of a steel plate edge part to pressure welding.
  • FIG. 2 shows the relationship with the amount expressed by mass% with respect to the total amount of ERW welds having a width of 2 mm.
  • a plate-shaped test piece for electrolytic extraction (size: thickness pipe thickness x width 2 mm x length 20 mm) was collected centering on the ERW weld.
  • inclusions were electrolytically extracted as 10% AA solution (AA solution means 10 vol% acetylacetone-1 mass% tetramethylammonium chloride-methanol).
  • AA solution means 10 vol% acetylacetone-1 mass% tetramethylammonium chloride-methanol.
  • the obtained electrolytic extract (inclusion) was filtered using a filter mesh having a hole diameter of 8 ⁇ m.
  • the filtered electrolytic extract (referred to as inclusions having an equivalent circle diameter of 8 ⁇ m or more) is further subjected to alkali melting, and ICP analysis (Inductively Coupled Plasma Mass Spectrometry) is performed to include Si, Mn contained in the inclusions. , Al, Ca and Cr were analyzed. By this analysis, the total content of Si, Mn, Al, Ca and Cr in inclusions having an equivalent circle diameter of 8 ⁇ m or more was obtained in mass% with respect to the total amount of ERW welds having a width of 2 mm including the core.
  • ICP analysis Inductively Coupled Plasma Mass Spectrometry
  • the present inventors have adjusted the composition of the steel plate (hot rolled steel plate) that is the raw material to an appropriate range, and further performed electric resistance welding under appropriate conditions, and the viscosity of the oxide generated during electric resistance welding.
  • the amount of alloy elements such as Si, Mn, and Al contained in the inclusions present in the ERW weld by controlling the Pb to 2 poise or less, the EIC weld has excellent HIC resistance. It has been found that ERW welded steel pipes with excellent low temperature toughness can be manufactured.
  • the present invention has been completed with further studies based on the above findings. That is, the gist of the present invention is as follows.
  • Nb 0.001 to 0.060%
  • V 0.001 to 0.060%
  • Ti An electric-welded steel pipe comprising one or more selected from 0.001 to 0.080%.
  • the hot rolled steel strip is continuously roll-formed to form an open tube having a substantially circular cross section, and then the vicinity of the butt portion of the open tube is heated to the melting point or higher and subjected to electro-welding welding pressed with a squeeze roll.
  • a method of manufacturing an electric resistance welded pipe by forming an electric resistance welded portion and then subjecting the electric resistance welded portion to an on-line heat treatment, wherein the hot-rolled steel strip is, by mass%, C: 0.03 to 0.00. 59%, Si: 0.10 to 0.50%, Mn: 0.40 to 2.10% and Al: 0.01 to 0.35%, and Si and Mn have Mn / Si of 6.
  • the oxygen concentration in the atmosphere at the time of the electric resistance welding is determined by the oxidation degree (oxidization) of the molten steel defined by the following formula (1): tendency)
  • a welding method adjusted to 1000 / f oxy ppm or less by volume% and a method for producing an ERW steel pipe.
  • F oxy Mn + 10 (Si + Cr) + 100Al + 1000Ca (1)
  • Mn, Si, Cr, Al and Ca content of each element (mass%) (10)
  • the heat treatment applied to the ERW weld is heated to a heating temperature of 720 to 1070 ° C. at an average temperature in the thickness direction of the ERW weld, Then, an air-cooling or water-cooling treatment, or a heating treatment at an average temperature in the thickness direction of the electric-welded welded portion, which is heated to less than 720 ° C. and air-cooled, is provided. Production method.
  • the method further comprises: Ca: 0.0001 to 0.0040% by mass%, .
  • Nb 0.001 to 0.060%
  • V 0.001 to 0.060%
  • Ti A method for producing an ERW steel pipe, comprising one or more selected from 0.001 to 0.080%.
  • the ERW weld has excellent HIC resistance even in a severe corrosive environment. Furthermore, according to the present invention, the ERW weld has excellent low temperature toughness with an absorbed energy of 120 J or more in the Charpy impact test at ⁇ 60 ° C. And since the ERW steel pipe of this invention has tensile strength TS: 434MPa or more, while the ERW steel pipe of this invention has the outstanding HIC resistance and low temperature toughness, it also has sufficient intensity
  • 3 is a graph showing the influence of the viscosity of an oxide generated during ERW welding on the CAR of an ERW weld and the vE- 60 of the ERW weld.
  • 6 is a graph showing the influence of the total content of Si, Mn, Al, Ca and Cr in inclusions having a circle-equivalent diameter of 8 ⁇ m or more on the CAR of the ERW weld and the vE- 60 of the ERW weld.
  • C 0.03-0.59%
  • C is an element that increases the strength of the steel pipe through the formation of a hard phase such as pearlite, cementite, bainite, martensite.
  • C is an element that lowers the melting point of molten steel during ERW welding.
  • C is an element that affects the formation of oxides during ERW welding through the formation of CO by reaction with O 2 in the air.
  • the C content exceeds 0.59%, the solidification temperature of the molten steel in the ERW weld decreases as the melting point decreases, and the viscosity of the molten steel increases, so that the oxide is difficult to be discharged. Become. For this reason, the C content is limited to the range of 0.03 to 0.59%. Preferably, the content is 0.04 to 0.49%.
  • Si 0.10 to 0.50% Si is an element having an action of increasing the strength of the steel pipe by solute strengthening.
  • Si has a stronger affinity with O (oxygen) than Fe in an ERW weld, and forms a highly viscous eutectic oxide together with Mn oxide. If the Si content is less than 0.10%, the Mn concentration in the eutectic oxide in the ERW weld is increased, the melting point of the oxide is higher than the molten steel temperature, and the oxide remains in the ERW weld. It becomes easy.
  • the total of Si, Mn, Al, Ca, and Cr contained in inclusions having an equivalent circle diameter of 8 ⁇ m or more among inclusions present in the ERW weld easily exceeds 16 ppm.
  • the toughness and HIC resistance of the electro-welded welded portion are reduced.
  • the Si content exceeds 0.50%, the Si concentration in the eutectic oxide in the ERW welded portion increases, the viscosity increases, the amount of oxide generated increases, and the ERW welding is performed. The oxide tends to remain in the part.
  • the Si content is limited to the range of 0.10 to 0.50%. Preferably, the content is 0.15 to 0.35%.
  • Mn 0.40 to 2.10%
  • Mn is an element that contributes to increasing the strength of steel pipes by solid solution strengthening and transformation toughening. Further, Mn has a stronger affinity for O than Fe in the ERW weld, and forms a eutectic oxide having a high viscosity together with the Si oxide.
  • the content of Mn is less than 0.40%, the Si concentration in the eutectic oxide in the ERW weld is increased, the melting point of the oxide is higher than the molten steel temperature, and the viscosity is increased. The oxide tends to remain on the surface. For this reason, the total of Si, Mn, Al, Ca, etc.
  • inclusions having an equivalent circle diameter of 8 ⁇ m or more among the inclusions present in the ERW welded portion tends to be higher than 16 ppm. Toughness and HIC resistance are reduced.
  • Mn content exceeds 2.10%, the Mn concentration in the eutectic oxide in the ERW weld becomes high, the melting point of the oxide becomes higher than the molten steel temperature, and the amount of oxide produced is large. At the same time, oxide tends to remain in the ERW weld.
  • the Mn content is limited to the range of 0.40 to 2.10%.
  • the content is 0.85 to 1.65%.
  • Si and Mn are contained so as to be in the above-described content range and Mn / Si to be in the range of 6.0 to 9.0.
  • Mn / Si represents a mass ratio (Mn content / Si content).
  • the oxide generated during ERW welding is a Si-Mn-based oxide
  • adjusting Mn / Si within a predetermined range is an important factor for keeping the viscosity of the generated oxide below a predetermined value. It becomes.
  • Mn / Si is less than 6.0
  • the Si content is large and a large amount of molten silicate having a network structure is formed, and the viscosity of the oxide generated during the electric resistance welding cannot be reduced to 2 poise or less.
  • Mn / Si increases beyond 9.0, the Mn content increases too much, and the melting point of the oxide exceeds the molten steel temperature.
  • the total of Si, Mn, Al, Ca, and Cr contained in the inclusions of 8 ⁇ m or more is higher than 16 ppm.
  • Mn / Si is adjusted to be in the range of 6.0 to 9.0, and Si and Mn are contained. It is preferably 6.2 to 8.8.
  • Al 0.01 to 0.35%
  • Al is an element that acts as a deoxidizer. Moreover, Al precipitates as AlN, suppresses the growth of austenite grains, and contributes to securing toughness.
  • Al has an affinity for O (oxygen) more than Si and Mn, and forms an oxide in a form of solid solution in a Mn—Si eutectic oxide such as 2MnO ⁇ SiO 2 (Tephroite). If the Al content is less than 0.01%, the deoxidation ability is insufficient, the cleanness of the steel is lowered, and inclusions (oxides) tend to remain in the ERW welds. The total of Si, Mn, Al, etc.
  • the Al content is limited to the range of 0.01 to 0.35%. Note that the content is preferably 0.03 to 0.08%.
  • the ERW steel pipe of the present invention further includes Ca: 0.0001 to 0.0040%, and / or Cr: 0.01 to 1.09%, and / or Cu: One selected from 0.01 to 0.35%, Mo: 0.01 to 0.25%, Ni: 0.01 to 0.20%, B: 0.001 to 0.0030% or 2 or more, and / or one or two selected from Nb: 0.001 to 0.060%, V: 0.001 to 0.060%, Ti: 0.001 to 0.080% More than one species can be selected and contained as necessary.
  • Ca 0.0001 to 0.0040%
  • Ca has a function of controlling the sulfide in the steel in a spherical shape, and improves hydrogen embrittlement resistance and toughness in the vicinity of the ERW weld of the steel pipe. Such an effect is recognized when the Ca content is 0.0001% or more. If the Ca content exceeds 0.0040%, the affinity between Ca and O is strong, so the Ca concentration in the oxide increases, the melting point of the oxide becomes higher than the molten steel temperature, and the amount of oxide produced increases. The oxide tends to remain in the electro-welded weld. For this reason, the total of Si, Mn, Al, Ca, etc.
  • the Ca content is preferably limited to a range of 0.0001 to 0.0040%. More preferably, the content is 0.0002 to 0.0035%.
  • Cr 0.01 to 1.09% Cr, like Mn, is an element that contributes to increasing the strength of steel pipes by solid solution strengthening and transformation strengthening.
  • Cr has an affinity for O (oxygen) higher than that of Fe in the ERW weld, and forms an oxide. Such an effect is recognized when the Cr content is 0.01% or more.
  • the Cr content exceeds 1.09%, the Cr concentration in the oxide increases, the melting point of the oxide becomes higher than the molten steel temperature, and the amount of oxide generated increases, and the oxide is formed in the ERW weld. Tends to remain. For this reason, the total of Si, Mn, Al, Cr, etc.
  • the Cr content is preferably limited to a range of 0.01 to 1.09%. More preferably, it is 0.02 to 0.99%.
  • Species or two or more types Cu, Mo, Ni and B are all elements contained for improving hydrogen embrittlement resistance and increasing steel pipe strength.
  • steel pipe strength means the tensile strength TS and the yield stress YS.
  • the ERW steel pipe of the present invention can contain the above-described elements as necessary. Such effects are such that the Cu content is 0.01% or more, the Mo content is 0.01% or more, the Ni content is 0.01% or more, and the B content is 0.0001% or more. It becomes remarkable by satisfying either.
  • the Cu content exceeds 0.35%
  • the Mo content exceeds 0.25%
  • the Ni content exceeds 0.20%
  • the B content exceeds 0.0030%.
  • the effect obtained by the inclusion of the above elements is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, when the above elements are contained, the Cu content is 0.01 to 0.35%, the Mo content is 0.01 to 0.25%, and the Ni content is It is preferable to limit the content of B to 0.01 to 0.20% and the content of B to 0.0001 to 0.0030%. More preferably, the Cu content is 0.05 to 0.29%, the Mo content is 0.05 to 0.21%, the Ni content is 0.02 to 0.16%, The content is 0.0005 to 0.0020%.
  • Nb 0.001 to 0.060%
  • V 0.001 to 0.060%
  • Ti 0.001 to 0.080% Nb
  • V and Ti are Both are elements that mainly form carbide and increase the strength of the steel pipe by precipitation strengthening.
  • the ERW steel pipe of the present invention can contain the above-described elements as necessary. Such an effect becomes conspicuous when the Nb content is 0.001% or more, the V content is 0.001% or more, and the Ti content is 0.001% or more.
  • the Nb content exceeds 0.060%, the V content exceeds 0.060%, and the Ti content exceeds 0.080%, an undissolved large-sized carbonitride (Carbonitride) remains in the ERW weld and reduces the toughness of the ERW weld. Therefore, when the above elements are contained, the Nb content is 0.001 to 0.060%, the V content is 0.001 to 0.060%, and the Ti content is 0.001. It is preferable to limit to the range of ⁇ 0.080%. More preferably, the Nb content is 0.005 to 0.050%, the V content is 0.005 to 0.050%, and the Ti content is 0.005 to 0.040%.
  • the balance is Fe and inevitable impurities.
  • P 0.020% or less
  • S 0.005% or less
  • N 0.005% or less
  • O 0.003% or less are allowed.
  • the electric resistance welded steel pipe of the present invention has the above-described composition, has a tensile strength TS: 434 MPa or more, and includes inclusions having an equivalent circle diameter of 8 ⁇ m or more among inclusions present in the electric resistance welded portion.
  • the total amount of Si, Mn, Al, Ca, and Cr contained in the steel sheet is 16% or less by mass% with respect to the total amount of the ERW welded portion including the ground iron.
  • the viscosity of the oxide generated during ERW welding is low, and the melting point of the oxide is lower than the molten steel temperature.
  • the total amount of Si, Mn, Al, Ca, and Cr contained in the inclusion which exists in this ERW welding part and whose equivalent circle diameter is 8 ⁇ m or more is 16 ppm or less.
  • the total amount of Si, Mn, Al, Ca and Cr contained in inclusions present in the ERW weld and having an equivalent circle diameter of 8 ⁇ m or more uses the value obtained as follows. To do. From the ERW steel pipe, 2mm wide plate specimens for electrolytic extraction (plate specimen for electrolytic extraction) are collected from the ERW weld, and the inclusions are made with 10% AA solution as the electrolyte solution. The electrolytic extract (inclusion) obtained by electrolytic extraction from the test piece was filtered using a filter having a mesh size of 8 ⁇ m. Next, the filtered electrolytic extract (inclusion with an equivalent circle diameter of 8 ⁇ m or more) is further alkali-fused and subjected to ICP analysis (Inductively Coupled Plasma analysis).
  • ICP analysis Inductively Coupled Plasma analysis
  • Si, Mn, Al, Ca and Cr contained in the sample were analyzed, and the total content of Si, Mn, Al, Ca and Cr in inclusions having an equivalent circle diameter of 8 ⁇ m or more was derived. Elements that are not included in the ERW steel pipe are treated as zero.
  • a steel material (slab) having the above composition is heated and hot-rolled to obtain a steel strip having a predetermined thickness (hot-rolled steel strip).
  • the steel strip is continuously roll-formed to form a substantially cylindrical open tube.
  • the vicinity of the butt portion of the open pipe is heated to a temperature equal to or higher than the melting point, and electric resistance welding is performed by press-contacting with a squeeze roll to form an electric resistance welding portion, thereby forming an electric resistance steel pipe.
  • Roll forming by the cage roll method refers to roll forming of a method in which small rolls called cage rolls are arranged side by side on the tube outer surface side and formed smoothly.
  • CBR type roll forming (chance-free bulgeanceroll forming process) is preferable.
  • CBR roll forming both edges of the steel strip are pre-formed with edge bend rolls, then the center of the steel strip is bent with a center bend roll and a cage roll, and the oblong oval shape is formed.
  • the steel pipe is stretched (stretched) by reducing-rolling. forming) and bending of the overbend part (bend ⁇ ⁇ ⁇ ⁇ and return forming) to form a circular blank (see Kawasaki Steel Technical Report, vol.32 (2000), p49-53).
  • strain applied to the strip (steel strip) during molding can be minimized, and deterioration of material characteristics due to work hardening can be suppressed.
  • the roll forming may be performed by a break-down method.
  • a tapered groove (tapered groove) is applied to both end faces in the width direction of the hot-rolled steel strip.
  • the groove is preferably applied to the width end of the steel strip by forming using a fin pass roll during roll forming.
  • the taper groove to be given is the distance in the thickness direction of the hot-rolled steel strip between the taper start position and the surface that becomes the pipe outer surface (the taper end position (ending location of taper) on the pipe outer surface side) (a in FIG. 3) And the sum of the distance in the thickness direction of the hot-rolled steel strip (b in FIG. 3) between the taper start position and the surface (taper end position on the pipe inner surface side) that becomes the pipe inner surface is the hot-rolled steel strip thickness (steel)
  • the taper groove is preferably 2 to 80% of the thickness of the belt.
  • channel provided to be made into the shape which shows an example in FIG. 3, for example related to the oxidization degree foxy defined by following (1) Formula.
  • the average tilt angle ⁇ (°) shown in FIG. 3 is preferably set to an angle satisfying the following expression (2) in relation to the oxidization degree f oxy of the molten steel.
  • the oxygen concentration in the atmosphere during ERW welding and / or the time from the start of melting to the pressure welding due to heating during ERW welding is set so that the viscosity of the oxide generated during ERW welding is 2 poise or less. adjust.
  • the method for reducing the oxygen concentration in the atmosphere of ERW welding is not particularly limited.
  • a method is conceivable in which an electro-welded weld is sealed with a box structure and a non-oxidizing gas is supplied. It is to be noted that supplying the non-oxidizing gas with a nozzle having a multilayer structure such as three layers (nozzle) so that the gas has a laminar airflow can reduce the oxygen concentration in the atmosphere. Important to keep.
  • the measurement of the oxygen concentration is preferably performed in the vicinity of the ERW weld using an oxygen meter.
  • the time from the end surface in the steel strip width direction to the pressure welding is 0.2 s to 4 s. Is desirable. If the time from the start of melting to pressure welding by heating during electric resistance welding is less than 0.2 s, the molten steel temperature becomes low and the viscosity of the oxide does not become 2 poise or less, so that the generated oxide remains in the electric resistance welding portion. It becomes easy.
  • the time from the start of melting to the pressure welding by heating at the time of ERW welding exceeds 4 s, the amount of oxide generated increases, and the amount of molten silicate in the oxide (amount of molton silicate) increases and is generated. Oxide tends to remain in the ERW weld. For this reason, it is preferable that the time from the start of melting to the pressure welding by heating at the time of electric resistance welding is in the range of 0.2 to 4 s. In addition, the viscosity of the oxide produced
  • the ERW welded portion of the ERW steel pipe obtained by the above method is then subjected to online heat treatment.
  • the toughness of the ERW weld is affected by the base phase (matrix matrix) in addition to the inclusions (oxide) present in the ERW weld.
  • the ERW welded portion is heated under the condition that the average temperature in the thickness direction of the ERW welded portion is in the range of 720 to 1070 ° C., and then air-cooled or water-cooled to a temperature range of 500 ° C. or lower.
  • the heat treatment heat treatment (heating-cooling treatment) is preferably performed online.
  • the on-line heat treatment means, but it is preferable to use induction heating. Thereby, the low temperature toughness of an electric-welding welding part improves.
  • the quenching structure hard structure
  • the low temperature toughness is lowered.
  • the preferable average heating temperature in the thickness direction during the heat treatment is 770 to 1020 ° C.
  • a tempering in which the temperature is lower than 720 ° C. and air-cooled may be performed.
  • heat treatment heat-cooling treatment
  • the low temperature toughness of the ERW weld is further improved.
  • a steel material (slab: thickness 250 mm) having the composition shown in Table 1 is heated to 1260 ° C., soaked for 90 minutes, then subjected to rough rolling, and finish rolling temperature (finish rolling temperature): 850 ° C. Then, finish rolling was performed at a coiling temperature of 580 ° C. to obtain a hot-rolled steel strip (sheet thickness: 19.1 mm).
  • taper portions having an average inclination angle ⁇ ° shown in Table 2 were formed on the outer surface side and the inner surface side using a fin pass roll.
  • the taper portion was formed at a ratio of 20 to 40% with respect to the total thickness from the outer surface and the inner surface (the outer surface side corresponds to “a” in FIG. 3 and the inner surface side corresponds to “b” in FIG. 3). Corresponding to).
  • the tapered portion was not formed.
  • N 2 gas is blown using a nozzle with 3 nozzles to reduce the oxygen concentration in the atmosphere to 30 to 65 ppm by volume, and adjust the atmosphere during ERW welding. It was. In the other ERW steel pipes, the atmosphere in the atmosphere was maintained. The oxygen concentration in the ERW weld was measured by bringing the probe of the oximeter close to the ERW weld.
  • heating-cooling treatment (heat treatment) (Seam QT) of the ERW weld as shown in Table 2 was performed with an online high-frequency heating device (radio-frequency heating-apparatus).
  • the cooling was water cooling.
  • a heating / cooling process (heat treatment: tempering process) was performed by heating to 500 ° C. with an on-line high-frequency heating apparatus and cooling with air.
  • the viscosity (temperature: 1550 ° C.) of the oxide generated during the electric resistance welding was obtained from the oxide composition generated during the electric resistance welding using the formula (1), and was also shown in Table 2.
  • FIG. 4 shows the influence of the relationship between the composition of the hot-rolled steel sheet (Mn / Si) and the time from the start of melting of the steel sheet edge to the pressure welding on the oxide composition.
  • the total amount of Si, Mn, Al, Ca and Cr contained in inclusions having an equivalent circle diameter of 8 ⁇ m or more contained in the ERW welded portion was measured for the obtained ERW steel pipe.
  • a tensile test piece was collected from the base material portion of the obtained ERW steel pipe, and a tensile test was performed to determine the tensile properties (yield strength YS, tensile strength TS) of the base material.
  • the test piece was extract
  • the test method was as follows.
  • the filtered electrolytic extract (inclusions having an equivalent circle diameter of 8 ⁇ m or more) is further melted with alkali and subjected to ICP analysis to analyze Si, Mn, Al, Ca and Cr contained in the inclusions. did.
  • the total amount of these elements was defined as the total content of Si, Mn, Al, Ca and Cr in inclusions having an equivalent circle diameter of 8 ⁇ m or more, and expressed in mass% with respect to the total amount of ERW welds including the base iron. Elements that are not included in the ERW steel pipe are treated as zero.
  • V-notch test The Charpy impact test piece (V-notch test) was conducted from the ERW welded part of the obtained ERW steel pipe in the circumferential direction of the pipe around the ERW welded part in accordance with JIS Z 2242. Piece: Sub-size test piece with tube thickness) was collected. In addition, the notch was confirmed by etching and made the center of the ERW weld. Using the obtained Charpy impact test piece (V-notch test piece), an impact test was carried out to determine the absorbed energy. The test temperature was ⁇ 60 ° C., each of the three was tested, and the arithmetic average was taken as the absorbed energy value of the ERW welded part of each ERW steel pipe.
  • CTOD test A CTOD specimen was collected from the ERW welded portion of the obtained ERW steel pipe in accordance with the provisions of WES 1108 (1995), and fatigue precrack was formed at the center of the ERW welded portion. ), A three-point bending test was conducted at a test temperature of ⁇ 20 ° C., and the critical crack opening displacement (CTOD) value until brittle cracks were generated was determined. (Fracture toughness) was evaluated.
  • HIC resistance test From the ERW welded part of the obtained ERW steel pipe, the test piece length direction is the pipe axis direction, and the L cross section of the ERW welded part is the center in the width direction. (Size: 10 mm thickness x 20 mm width x 100 mm length) was sampled and an HIC test was performed. The HIC test was a test in which the test piece was immersed in Solution A solution (0.5% CH 3 COOH + 5% NaCl + saturated H 2 S) defined by NACE TM0284 for 200 hours. After immersion, the L cross section of the ERW weld was ultrasonically detected, and the area ratio (CAR) of the crack was determined by image processing.
  • Solution A solution (0.5% CH 3 COOH + 5% NaCl + saturated H 2 S
  • the viscosity of oxide generated during ERW welding is 2 poise or less, and the total of Si, Mn, Al, Ca, Cr contained in inclusions having an equivalent circle diameter of 8 ⁇ m or more in ERW welds.
  • a solution environment of ERW welded part is 3% or less, and ERW welded part
  • the absorbed energy vE -60 in the Charpy impact test at ⁇ 60 ° C. exceeds 120 J, and the CTOD value is 0.3 mm or more.
  • the examples of the present invention are ERW steel pipes having excellent HIC resistance, low temperature toughness, and fracture toughness values.
  • the comparative example which is out of the scope of the present invention is an interstitial strength TS: less than 434 MPa, or the viscosity of the oxide generated at the time of ERW welding exceeds 2 poise, and the equivalent circle diameter of the ERW weld is 8 ⁇ m or more.
  • the viscosity of the oxide generated during ERW welding is 2 poise.
  • the total of Si, Mn, Al, Ca, Cr contained in inclusions with an equivalent circle diameter of 8 ⁇ m or more in the ERW part exceeds 16 ppm, and the CAR after 200 h immersion in the NACE Solution A solution environment exceeds 3% , VE- 60 is less than 120 J and CTOD value is less than 0.3 mm.
  • the comparative example (ERW pipe No.6, No.7, No.16, No.17) has not ensured the desired characteristic.
  • the comparative example (electric-resistance-welded steel pipe No. 26) in which the amount of C deviates from the scope of the present invention is low and the tensile strength TS is less than 434 MPa, and the predetermined strength cannot be secured.
  • Comparative examples (ERW pipes No. 27, No. 29, No. 31, No. 33, No. 34, where any one of the contents of C, Si, Mn, Al, Ca, Cr deviates from the scope of the present invention are high.
  • the CAR after 200 h immersion in the NACE Solution A solution environment exceeds 3%, the vE- 60 is less than 120 J, and the CTOD value is less than 0.3 mm.
  • the comparative example (ERW pipe No. 27, No.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

 優れた耐HIC性と、優れた低温靭性を兼備にした電縫溶接部を有する、引張特性TS:434MPa以上の電縫鋼管およびその製造方法を提供する。 質量%で、C:0.03~0.59%、Si:0.10~0.50%、Mn:0.40~2.10%及びAl:0.01~0.35%を含有し、かつSi、MnをMn/Si(質量比)が6.0~9.0の範囲になるように調整して含み、残部Feおよび不可避的不純物からなる組成を有し、引張強さTS:434MPa以上の強度を有する電縫鋼管であって、該電縫鋼管の電縫溶接部に存在する、円相当径8μm以上の介在物に含まれるSi、Mn、Al、CaおよびCrの合計量が、地鉄を含む幅2mmの電縫溶接部全量に対する質量%で16ppm以下であり、該電縫溶接部が優れた耐HIC特性と優れた低温靭性とを兼備することを特徴とする電縫鋼管とする。

Description

電縫溶接部の耐HIC性および低温靭性に優れた電縫鋼管およびその製造方法
 本発明は、原油(crude oil)や天然ガス等(natural gas)の採掘用あるいは、輸送用として好適な、引張強さ(tensile strength)TS:434MPa以上の強度を有する電縫鋼管(electric resistance welded steel pipe or steel tube)に係る。本発明は、とくに、電縫溶接部(electric resistance welded part)の耐水素誘起割れ性(hydrogen induced cracking resistance)および低温靭性(low-temperature toughness)を向上させる技術に関する。
 電縫鋼管は、従来から、原油や天然ガス等の採掘用あるいは、輸送用として多く用いられてきた。しかし、電縫鋼管は、電縫溶接部を有するため、電縫溶接部の信頼性という観点から、電縫溶接部の耐水素誘起割れ性(以下、耐HIC性ともいう)や低温靭性の要求値が厳しくない箇所に、その使途が限定されていた。このため、耐HIC性に優れ、さらに低温靭性にも優れる電縫鋼管が強く要望されている。
 このような要望に対して、例えば特許文献1には、Caを0.0012%以上含有するAl脱酸鋼(Al deoxidized steel)を素材とする耐サワー性に優れた電縫鋼管が記載されている。特許文献1に記載された技術では、Ca/Al比を0.10以下とし、円周方向(circumferential direction)の長さに対する板厚方向(through-thickness direction)の長さの比を2以上とし、かつ長径10μm以上の介在物(inclusion)の密度(density)を1mmあたり5個以下に調整するとしている。これにより、pHが低く厳しい環境においても水素ふくれ割れ(hydrogen induced blister cracking)の発生を防止でき、耐サワー性に優れる電縫鋼管になるとしている。
 また、特許文献2には、電縫溶接部の靭性を向上させることができる、電縫鋼管のガスシールド溶接方法(gas shield welding)が記載されている。特許文献2に記載された技術では、フィンパス成形(fin pass forming)後で溶接前に、パイプ内面側の浮遊スケール(suspended scale)をミスト(mist)で洗浄除去するとともに、溶接部の局部シール(local shielding)に際し、パイプ内面側のシール装置(shielding arrangement)の保持ローラを除きパイプと非接触として、溶接部の局所ガスシール(local gas shielding)を行うことを特徴としている。これにより、電縫溶接部のスケールの残存を防止し、電縫溶接部の勒性が格段に向上するとしている。
 また、特許文献3には、API X80グレード(grade)以上の高強度薄肉電縫ラインパイプ(high tensile strength thin-walled electric resistance welded line pipe or tube)が記載されている。特許文献3に記載された技術では、ホットコイル(hot rolled steel coil)から冷間でのロール成形(roll forming)、電縫溶接、シーム熱処理(heat treatment of seam)、サイザー(sizing treatment)の工程を経て製造された、外径200mm以上610mm以下で、肉厚/外径比(t/D)が2%以下で、金属組織(metallic structure)が平均結晶粒径(average grain size)5μm以下のアシキュラーフェライト組織(acicular ferrite structure)で、電縫溶接の衝合部 (butt part)の酸化物(oxide)の占有面積(occupied area)が0.1%(1000ppmに相当)以下で、偏平(flatning)後の周方向の引張強さが700N/mm以上である電縫鋼管をラインパイプに用いるとしている。これにより、母材の靭性に優れ、電縫溶接の衝合部が母材並みの健全性を確保できるとしている。
 また、特許文献4には、電縫溶接部の欠陥が少なく、クリープ破断強度(creep rupture strength)および靭性に優れたボイラ用電縫鋼管(electric resistance welded steel pipe or steel tube for boiler)が記載されている。特許文献4に記載されたボイラ用電縫鋼管は、質量%で、C:0.01~0.20%、Si:0.01~1.0%、Mn:0.10~2.0%、Cr:0.5~3.5%を含有し、P:0.030%以下、S:0.010%以下、O:0.020%以下に制限し、Nb:0.001~0.5%、V:0.02~1.0%、B:0.0003~0.01%を含有し、(Si%)/(Mn%+Cr%)を0.202~1.5とし、電縫溶接時に生成するSiO、MnO、Crの3元混合酸化物の面積率が0.1%以下であるボイラ用電縫鋼管である。これにより、電縫溶接性(weldability of electric resistance welding)に優れ、クリープ破断強度にも優れた、ボイラ用電縫鋼管になるとしている。
特開昭60-213366号公報 特開平4-178281号公報 特開2008-223134号公報 特開2006-77330号公報
 特許文献1に記載された技術は、(0.5%CHCOOH+人工海水(synthetic seawater)(3%NaCl)+飽和HS)環境における耐HIC性には優れているといえる。しかしながら、特許文献1に記載された技術では、介在物の制御が不十分である。また、特許文献1に記載された技術では、さらに苛酷な腐食環境(corrosion environment)である、NACE TM0284規定のSolutionA液(0.5%CHCOOH+5%NaCl+飽和HS)環境では、水素誘起割れ(HIC)の発生を回避できないという問題がある。というのは、長径10μm以上の介在物の密度が1mmあたり5個という介在物量は、面積率に換算すると、0.05%(500ppm)に相当し、長径/短径比(ratio of the major diameter to the minor diameter):2ということを考慮しても100ppm程度になる。このようなことから、特許文献1に記載された技術で製造された電縫鋼管が適用可能な環境は、0.5%CHCOOH+人工海水(NaCl濃度約3%)+飽和HS環境までであり、それ以上の厳しい腐食環境では、HICの発生が懸念される。とくに、現在、苛酷な環境条件として標準的に用いられているNACE TM0284規定のSolution A溶液(0.5%CHCOOH+5%NaCl+飽和HS環境)でのHIC発生を回避することは困難である。さらに、引用文献1の技術は、低温靭性が不十分で、寒冷地での適用にも問題を残している。
 また、特許文献2に記載された技術では、電縫溶接部において、シャルピー衝撃試験(Charpy impact test)の吸収エネルギー(absorbed energy)が20kgfm程度以上という高い吸収エネルギー(電縫溶接部高靭性)が得られる温度域は、高々-50°F(-45.5℃に相当)までであり、-60℃以下という極低温(extremely-low temperature)では低温靭性が低下するという問題がある。また、特許文献2に記載された技術で製造された鋼管では、苛酷な腐食環境条件下で良好な耐HIC性を保持していないという問題もある。
 また、特許文献3に記載された技術では、電縫溶接部の酸化物の占有面積が0.1%(1000ppmに相当)以下である電縫鋼管が得られる。しかし、この程度の酸化物量の低下では電縫溶接部における-20℃におけるシャルピー衝撃試験の吸収エネルギーが100J未満と低い値しか示さない。このように、特許文献3に記載された技術には、-60℃におけるシャルピー衝撃試験の吸収エネルギーが120J以上という良好な電縫溶接部低温靭性を確保できないという問題がある。
 また、特許文献4に記載された技術では、混合酸化物(mixed oxide)の融点を低下させることにより、電縫溶接部の溶接欠陥(weld defect)を低下させ、電縫溶接部のクリープ特性(creep characteristic)、靭性の劣化を防止できるとしている。引用文献4に記載された技術では、得られる電縫溶接部のシャルピー衝撃試験の破面遷移温度(fracture transition temperature)は約0~-50℃程度であり、-60℃でのシャルピー衝撃試験の吸収エネルギーが120J以上という良好な電縫溶接部の低温靭性を確保するまでに至っていないという問題がある。
 本発明は、かかる従来技術の問題を解決し、優れた耐HIC性と、優れた低温靭性を兼備にした電縫溶接部を有する、引張強度TS:434MPa以上の電縫鋼管を提供することを目的とする。ここでいう「優れた耐HIC性」とは、NACE TM0284規定のNACE Solution A溶液(0.5%CHCOOH+5%NaCl+飽和HS)環境で200h浸漬後の割れ面積率CAR(Crack Area Ratio)が3%以下である場合をいうものとする。また、「優れた低温靭性」は、JIS Z 2242の規定に準拠して得られた、-60℃におけるシャルピー衝撃試験の吸収エネルギーvE-60が120J以上で、かつWES 1108 (1995)の規定に準拠して得られた、CTOD試験の-20℃における限界亀裂開口量(crack tip opening displacement value)(CTOD値)が0.3mm以上である場合をいうものとする。また、本発明はシャルピー破面遷移温度vTrsが-60℃以下である。
 本発明者らは、上記した目的を達成するために、電縫溶接部の耐HIC特性および低温靭性に及ぼす、酸化物の構成元素(constituent element)、酸化物の大きさ、酸化物の数量の影響について鋭意研究した。その結果、まず、電縫溶接時に鋼帯エッジ部(edge of steel strip)に生成する酸化物の粘度(viscosity)が電縫溶接部の耐HIC性、低温靭性に大きく影響することに想到した。そして、電縫溶接時に鋼帯エッジ部に生成する酸化物の粘度を2poise以下に調整することにより、電縫溶接部の耐HIC性および低温靭性が顕著に向上することを見出した。
 電縫溶接時に生成する酸化物の粘度が2poise以下になることによって、耐HIC性および低温靭性が向上する理由については、現在までのところ明確になっているわけではない。本発明者らは、鋼帯エッジ面に形成された溶融金属(molten metal)が電磁的圧力(electromagnetic nature pressure)により排出される際や圧接(upset)(アップセットとも言う)により溶融金属が排出される際に、上記酸化物の粘度が低くなることにより、酸化物が溶接部に残存することなく排出されるためと考えている。
 まず、本発明者らが行った本発明の基礎となった実験結果について説明する。
 質量%で、0.01~0.80%のC、0~2.50%のSi、0.15~3.00%のMn、0.009~0.0125%のS、0.001~0.035%のP、0~0.70%のAl、0~3.50%のCr、0~0.0060%のCa、0~0.085%のNbを含み、残部Feおよび不可避的不純物からなる組成範囲の種々の熱延鋼板(板厚:20.6mm)を用いて、ロールによる連続冷間成形(continuous cold forming)でオープン管(open pipe)とし、オープン管の幅方向端部同士を、雰囲気の酸素濃度(concentration of oxygen)等の電縫溶接条件(welding condition of electric resistance welding)を各種の熱延鋼板(hot rolled steel sheet)毎に種々変化させ、さらにスクイズロール(squeeze roll)による圧接条件を各種の熱延鋼板毎に種々変化させて電縫溶接して、外径660mmΦの電縫鋼管を各種の熱延鋼板毎に得た。なお、一部の電縫鋼管では、ロール成形時にフィンパスロールを用いて、鋼帯幅端部に開先(開先角度:30°)を付与した。一部の電縫鋼管では、電縫溶接部に焼入焼戻処理(quenching and tempering treatment)(シームQT(seam QT))を施した。
 得られた各電縫鋼管の電縫溶接部から、試験片長さ方向が管軸方向(direction of tube axis)となり、しかも電縫溶接部が試験片長さ方向の中央となるように、HIC試験片(大きさ:10mm厚×20mm幅×100mm長さ)を採取し、HIC試験を実施した。HIC試験は、試験片をNACE TM0284規定のSolutionA液(0.5%CHCOOH+5%NaCl+飽和HS)に、200h浸漬する試験とした。浸漬後、試験片板面を超音波探傷(ultrasonic flaw detection)し、割れ部の面積率(CAR)を画像処理(image treatment)により求めた。
 また、得られた各電縫鋼管から、JIS Z 2242の規定に準拠して、電縫溶接部を中心として管円周方向に、シャルピー衝撃試験片(Vノッチ試験片(V notch test piece))を採取した。なお、ノッチはエッチング(etching)により確認し、電縫溶接部を中心とした。得られたシャルピー衝撃試験片(Vノッチ試験片)を用いて、衝撃試験を実施し、吸収エネルギーを求めた。試験温度は-60℃とし、各電縫鋼管について3本の試験片を用いて試験をし、その算術平均を各電縫鋼管の電縫溶接部の靭性(吸収エネルギー)値vE-60とした。
 なお、電縫溶接時に生成する酸化物の粘度を各電縫鋼管ごとに計算で求めた。電縫溶接時に生成する酸化物の粘度は、電縫溶接時の溶鋼温度(liquid steel temperature)、電縫溶接時に生成する酸化物組成から、P.V.Riboud et. al.:Fachber. Heuteenprax. Metall weiterverrarb., 19(1981)859に記載された次式から求まる。
 酸化物の粘度(poise)=10×AT exp(B/T)‥‥(1)
  ここで、T:絶対温度(K),
  A:exp{-19.81+1.73(XCaO+XMnO)-35.75XAl2O3
  B:31140-23896×{(XCaO+XMnO)+68833XAl2O3
  XCaO、XMnO、XAl2O3:酸化物中のCaO、MnO、Alの各々のモル分率
 なお、粘度の算出には電縫溶接時の温度:1550℃について得られたモル分率を用いた。また、電縫溶接時に生成する酸化物の組成は、電縫鋼管の素材である熱延鋼板の組成と、鋼板端部の溶接から圧接までの時間によって決まる。
 得られた結果を、電縫溶接部のCAR、電縫溶接部のvE-60と、電縫溶接時に生成する酸化物の粘度との関係で図1に示す。
 図1から、電縫溶接時に生成する酸化物の粘度が2poise以下となれば、苛酷な腐食環境下でも電縫溶接部のCARが3%以下となり、電縫溶接部の耐HIC性に優れ、vE-60が120J以上と電縫溶接部の低温靭性が向上した電縫鋼管が得られることがわかる。
 本発明者らの更なる検討により、以下の知見を得た。第一に、電縫溶接時に生成する酸化物の粘度が2poise以下に低減できれば、電縫溶接部から容易に酸化物を排出できる。第二に、粘度の低減により、電縫溶接部に存在する、円相当径で8μm以上の介在物に含まれるSi、Mn、Al、CaおよびCrの合計量が、地鉄(base iron)を含む幅2mmの電縫溶接部全量に対する質量%で16質量ppm以下となる。以上の知見に基づき、本発明によれば、電縫溶接部の耐HIC性、低温靭性が向上することを見出した。
 上記した電縫溶接部のCAR、電縫溶接部のvE-60の結果と、円相当径で8μm以上の介在物に含まれるSi、Mn、Al、CaおよびCrの合計量(地鉄を含む幅2mmの電縫溶接部全量に対する質量%で表す量)との関係を図2に示す。
 図2から、円相当径で8μm以上の介在物中のSi、Mn、Al、CaおよびCrの合計が16ppm以下であれば、苛酷な環境下でも電縫溶接部のCARが3%以下となり、電縫溶接部の耐HIC性に優れ、vE-60が120J以上と電縫溶接部の低温靭性が向上した電縫鋼管が得られることがわかる。
 なお、円相当径で8μm以上の介在物に含まれるSi、Mn、Al、CaおよびCrの合計量は次のようにして求めた値を用いた。
 得られた電縫鋼管から、電縫溶接部を中心として、電解抽出用板状試験片(大きさ:厚さ管肉厚×幅2mm×長さ20mm)を採取した。この試験片を用いて、電解液を10%AA液(AA液とは10vol%アセチルアセトン-1質量%塩化テトラメチルアンモニウム-メタノールを意味する。)として介在物を電解抽出した。得られた電解抽出物(介在物)を、穴径8μmのフィルターメッシュを用いて、濾過した。ついで、濾過された電解抽出物(円相当径8μm以上の介在物という)を、さらに、アルカリ融解し、ICP分析(Inductively Coupled Plasma Mass Spectrometry)を実施して、介在物中に含まれるSi、Mn、Al、CaおよびCrを分析した。この分析により、地鉄を含む幅2mmの電縫溶接部全量に対する質量%で、円相当径8μm以上の介在物中のSi、Mn、Al、CaおよびCrの合計含有量を得た。
 このようなことから、本発明者らは、素材である鋼板(熱延鋼板)の組成を適正範囲に調整し、さらに電縫溶接を適正条件で行い、電縫溶接時に生成する酸化物の粘度を2poise以下に調整することにより、電縫溶接部に存在する介在物中に含まれるSi、MnおよびAl等の合金元素量を一定以下に制御すれば、電縫溶接部が優れた耐HIC性と優れた低温靭性とを兼備する電縫溶接鋼管を製造できることを知見した。
 本発明は、上記した知見に基づき、さらに検討を加えて完成したものである。すなわち、本発明の要旨はつぎのとおりである。
 (1)質量%で、C:0.03~0.59%、Si:0.10~0.50%、Mn:0.40~2.10%及びAl:0.01~0.35%を含有し、かつSi、MnをMn/Si(質量比)が6.0~9.0の範囲になるように調整して含み、残部Feおよび不可避的不純物からなる組成を有し、引張強さTS:434MPa以上の強度を有する電縫鋼管であって、該電縫鋼管の電縫溶接部に存在する、円相当径8μm以上の介在物に含まれるSi、Mn、Al、CaおよびCrの合計量が、地鉄を含む幅2mmの電縫溶接部全量に対する質量%で16ppm以下であり、該電縫溶接部が優れた耐HIC特性と優れた低温靭性とを兼備することを特徴とする電縫鋼管。
 (2)(1)において、前記組成に加えてさらに、質量%で、Ca:0.0001~0.0040%を含有することを特徴とする電縫鋼管。
 (3)(1)または(2)において、前記組成に加えてさらに、質量%で、Cr:0.01~1.09%を含有することを特徴とする電縫鋼管。
 (4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、質量%で、Cu:0.01~0.35%、Mo:0.01~0.25%、Ni:0.01~0.20%、B:0.0001~0.0030%のうちから選ばれた1種または2種以上を含有することを特徴とする電縫鋼管。
 (5)(1)ないし(4)のいずれかにおいて、前記組成に加えてさらに、質量%で、Nb:0.001~0.060%、V:0.001~0.060%、Ti:0.001~0.080%のうちから選ばれた1種または2種以上を含有することを特徴とする電縫鋼管。
 (6)熱延鋼帯を、連続的にロール成形して略円形断面のオープン管としたのち、該オープン管の突合せ部近傍を融点以上に加熱しスクイズロールで圧接する電縫溶接を行って電縫溶接部を形成し、ついで該電縫溶接部にオンラインでの熱処理を施す電縫鋼管の製造方法であって、前記熱延鋼帯を、質量%で、C:0.03~0.59%、Si:0.10~0.50%、Mn:0.40~2.10%及びAl:0.01~0.35%を含有し、かつSi、MnをMn/Siが6.0~9.0の範囲になるように調整して含み、残部Feおよび不可避的不純物からなる組成を有し、引張強さTS:434MPa以上の強度を有する熱延鋼帯とし、前記電縫溶接を、該電縫溶接時に生成する酸化物の粘度が2poise以下となるように、電縫溶接時の雰囲気中の酸素濃度および/または前記加熱による溶融開始から前記圧接までの時間を調整して行い、前記電縫溶接部が優れた耐HIC特性と優れた低温靭性とを兼備することを特徴とする電縫鋼管の製造方法。
 (7)(6)において、前記ロール成形のフィンパス成形において、前記熱延鋼帯の幅方向両端面に、テーパー開始位置(starting location of taper)と管外面となる表面あるいは管内面となる表面との熱延鋼帯板厚方向の距離の和が熱延鋼帯板厚の2~80%となるテーパー開先(tapered groove)を付与することを特徴とする電縫鋼管の製造方法。
 (8)(6)または(7)において、前記加熱による溶融開始(melting onset)から前記圧接までの時間を0.2~4sとすることを特徴とする電縫鋼管の製造方法。
 (9)(6)ないし(8)のいずれかにおいて、前記電縫溶接が、前記電縫溶接時の雰囲気中の酸素濃度を、下記(1)式で定義される溶鋼の易酸化度(oxidization tendency)foxyに関連して、体積%で1000/foxy ppm以下に調整した溶接であることを特徴とする電縫鋼管の製造方法。
                  記
    foxy=Mn+10(Si+Cr)+100Al+1000Ca  ‥‥(1)
    ここで、Mn、Si、Cr、AlおよびCa:各元素の含有量(質量%)
 (10)(6)ないし(9)のいずれかにおいて、前記電縫溶接部に施す前記熱処理を、該電縫溶接部の肉厚方向の平均温度で加熱温度:720~1070℃に加熱し、ついで空冷(air cooling)または水冷する処理と、あるいはさらに該電縫溶接部の肉厚方向の平均温度で加熱温度:720℃未満に加熱し空冷する処理とすることを特徴とする電縫鋼管の製造方法。
 (11)(6)ないし(10)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.0001~0.0040%を含有することを特徴とする電縫鋼管の製造方法。
 (12)(6)ないし(11)のいずれかにおいて、前記組成に加えてさらに、質量%で、Cr:0.01~1.09%を含有することを特徴とする電縫鋼管の製造方法。
 (13)(6)ないし(12)のいずれかにおいて、前記組成に加えてさらに、質量%で、Cu:0.01~0.35%、Mo:0.01~0.25%、Ni:0.01~0.20%、B:0.0001~0.0030%のうちから選ばれた1種または2種以上を含有することを特徴とする電縫鋼管の製造方法。
 (14)(6)ないし(13)のいずれかにおいて、前記組成に加えてさらに、質量%で、Nb:0.001~0.060%、V:0.001~0.060%、Ti:0.001~0.080%のうちから選ばれた1種または2種以上を含有することを特徴とする電縫鋼管の製造方法。
 本発明によれば、厳しい腐食環境下においても電縫溶接部は、優れた耐HIC性を有する。さらに、本発明によれば、電縫溶接部は、-60℃でのシャルピー衝撃試験の吸収エネルギーが120J以上という優れた低温靭性を有する。そして、本発明の電縫鋼管は、引張強さTS:434MPa以上を有するため、本発明の電縫鋼管は、優れた耐HIC性、低温靭性を有するとともに、十分な強度も有する。また、本発明によれば上記のような優れた電縫鋼管を容易に製造できるため、本発明は産業上格段の効果を奏する。
電縫溶接部のCAR、電縫溶接部のvE-60に及ぼす、電縫溶接時に生成する酸化物の粘度の影響を示すグラフである。 電縫溶接部のCAR、電縫溶接部のvE-60に及ぼす、円相当径8μm以上の介在物中のSi、Mn、Al、CaおよびCrの合計含有量の影響を示すグラフである。 好ましい開先形状の一例を示す説明図である。 電縫溶接時に生成する酸化物組成に及ぼす熱延鋼板のMn/Siと、鋼板端部溶融から圧接までの時間の関係を示すグラフである。
 まず、本発明電縫鋼管の組成限定理由について説明する。以下、とくに断わらない限り質量%は単に%で記す。
 C:0.03~0.59%
 Cは、パーライト(pearlite)、セメンタイト(cementite)、ベイナイト(bainite)、マルテンサイト(martensite)など硬質相(hard phase)の形成を介して鋼管の強度を増加させる元素である。本発明では所望の強度(引張強さ434MPa以上)を確保するために、Cを0.03%以上含有することが好ましい。また、Cは、電縫溶接時に、溶鋼の融点(melting point)を低下させる元素である。そして、Cは、大気(air)中のOとの反応によるCO形成を通じて、電縫溶接時の酸化物の形成に影響を及ぼす元素である。Cの含有量が0.59%を超えると、融点の低下に伴い、電縫溶接部の溶鋼の凝固温度(solidification temperature)が低下し、溶鋼の粘度が上昇するため、酸化物が排出されにくくなる。このようなことから、Cの含有量は0.03~0.59%の範囲に限定する。なお、好ましくは0.04~0.49%である。
 Si:0.10~0.50%
 Siは、固溶強化(solute strengthening)により、鋼管の強度を増加させる作用を有する元素である。また、Siは、電縫溶接部ではFeよりもO(酸素)との親和力(affinity)が強く、Mn酸化物とともに粘度の高い共晶酸化物(eutectic oxide)を形成する。Siの含有量が0.10%未満では、電縫溶接部における共晶酸化物中のMn濃度が高くなり、酸化物の融点が溶鋼温度より高くなり、酸化物として電縫溶接部に残存しやすくなる。このため、電縫溶接部に存在する介在物のうち、円相当径(equivalent circle diameter)8μm以上の介在物に含まれるSi、Mn、Al、CaおよびCrの合計が16ppmを超えて高くなりやすく、電縫溶接部の靭性および耐HIC性が低下する。一方、Siの含有量が0.50%を超えると、電縫溶接部における共晶酸化物中のSi濃度が高くなり、粘度が高くなり、酸化物の生成量が多くなるとともに、電縫溶接部に酸化物が残存しやすくなる。このため、電縫溶接部に存在する介在物のうち、円相当径8μm以上の介在物に含まれるSi、Mn、Al、CaおよびCrの合計が16ppmを超えて高くなりやすく、電縫溶接部の靭性および耐HIC性が低下する。このようなことから、Siの含有量は0.10~0.50%の範囲に限定する。なお、好ましくは0.15~0.35%である。
 Mn:0.40~2.10%
 Mnは、固溶強化と変態強化(transformation toughening)により、鋼管の強度増加に寄与する元素である。また、Mnは、電縫溶接部ではFeよりもOとの親和力が強く、Si酸化物とともに粘度の高い共晶酸化物を形成する。Mnの含有量が、0.40%未満では、電縫溶接部における共晶酸化物中のSi濃度が高くなり、酸化物の融点が溶鋼温度より高くなり粘度も高くなって、電縫溶接部に酸化物が残存しやすくなる。このため、電縫溶接部に存在する介在物のうち、円相当径8μm以上の介在物に含まれるSi、Mn、Al、Ca等の合計が16ppmを超えて高くなりやすく、電縫溶接部の靭性および耐HIC性が低下する。一方、Mnの含有量が2.10%を超えると、電縫溶接部における共晶酸化物中のMn濃度が高くなり、酸化物の融点が溶鋼温度より高くなり、酸化物の生成量が多くなるとともに電縫溶接部に酸化物が残存しやすくなる。このため、介在物のうち、円相当径8μm以上の介在物に含まれるSi、Mn、AlおよびCa等の合計が16ppmを超えて高くなりやすく、電縫溶接部の靭性および耐HIC性が低下する。このようなことから、Mnの含有量は0.40~2.10%の範囲に限定した。なお、好ましくは0.85~1.65%である。
 本発明電縫鋼管では、Si、Mnを上記した含有範囲でかつ、Mn/Siが6.0~9.0の範囲となるように調整して含有する。なお、Mn/Siは質量比(Mnの含有量/Siの含有量)を表す。
 電縫溶接時に生成する酸化物はSi-Mn系酸化物であるため、Mn/Siを所定範囲内に調整することが、生成する酸化物の粘度を所定値以下とするためには重要な要因となる。Mn/Siが6.0未満では、Si含有量が多く、網目構造を持った溶融シリケートが多く形成され、電縫溶接時に生成する酸化物の粘度を2poise以下とすることができない。一方、Mn/Siが9.0を超えて大きくなると、Mn含有量が多くなりすぎて、酸化物の融点が溶鋼温度を超えるため、電縫溶接部に存在する介在物のうち、円相当径8μm以上の介在物に含まれる、Si、Mn、Al、CaおよびCrの合計が16ppmを超えて高くなる。このために、Mn/Siが6.0~9.0の範囲となるように調整して、Si、Mnを含有することとした。なお、好ましくは6.2~8.8である。
 Al:0.01~0.35%
 Alは、脱酸剤として作用する元素である。また、Alは、AlNとして析出してオーステナイト粒(austenite grain)の成長を抑制し、靭性の確保に寄与する。また、Alは、Si、MnよりもO(酸素)との親和力が強く、2MnO・SiO(Tephroite)などのMn-Si系共晶酸化物に固溶する形で酸化物を形成する。Alの含有量が0.01%未満では、脱酸能(deoxidation ability)が不足し、鋼の清浄度(cleanness)が低下し、電縫溶接部に介在物(酸化物)が残存しやすくなり、電縫溶接部に存在する介在物のうち円相当径で8μm以上の介在物に含まれるSi、Mn、Al等の合計が16ppmを超えて高くなりやすく、電縫溶接部の靭性および耐HIC性が低下する。一方、0.35%を超えて多量にAlを含有すると、共晶酸化物中のAl濃度が高くなり、酸化物の融点が溶鋼温度より高くなり、電縫溶接部に酸化物が残存しやすくなる。このため、電縫溶接部に存在する介在物のうち、円相当径8μm以上の介在物に含まれるSi、Mn、Al等の合計が16ppmを超えて高くなりやすく、電縫溶接部の靭性、耐HIC性が低下する。このようなことから、Alの含有量は0.01~0.35%の範囲に限定した。なお、好ましくは0.03~0.08%である。
 上記した成分が基本の成分である。本発明の電縫鋼管は、これら基本の成分に加えて、さらに、Ca:0.0001~0.0040%、および/または、Cr:0.01~1.09%、および/または、Cu:0.01~0.35%、Mo:0.01~0.25%、Ni:0.01~0.20%、B:0.001~0.0030%のうちから選ばれた1種または2種以上、および/または、Nb:0.001~0.060%、V:0.001~0.060%、Ti:0.001~0.080%のうちから選ばれた1種または2種以上、を必要に応じて選択して含有できる。
 Ca:0.0001~0.0040%
 Caは、鋼中の硫化物(sulfide)を球状に形態制御(morphology control)する作用を有し、鋼管の電縫溶接部近傍の耐水素脆性(hydrogen embrittlement resistance)および靭性を向上させる。このような効果は0.0001%以上のCaの含有で認められる。Caの含有量が0.0040%を超えると、CaとOとの親和力が強いため、酸化物中のCa濃度が増加し、酸化物の融点が溶鋼温度より高くなり酸化物の生成量が増加し電縫溶接部に酸化物が残存しやすくなる。このため、電縫溶接部に存在する介在物のうち円相当径8μm以上の介在物に含まれるSi、Mn、Al、Ca等の合計が16ppmを超えて高くなりやすく、電縫溶接部の靭性、耐HIC性が低下する。このようなことから、Caを含有する場合、Caの含有量は0.0001~0.0040%の範囲に限定することが好ましい。なお、より好ましくは0.0002~0.0035%である。
 Cr:0.01~1.09%
 Crは、Mnと同様に、固溶強化と変態強化により、鋼管の強度増加に寄与する元素である。また、Crは、電縫溶接部ではFeよりもO(酸素)との親和力が強く、酸化物を形成する。このような効果は、Crの含有量が0.01%以上の場合に認められる。一方、Crの含有量が1.09%を超えると、酸化物中のCr濃度が増加し、酸化物の融点が溶鋼温度より高くなり酸化物の生成量が増加し電縫溶接部に酸化物が残存しやすくなる。このため、電縫溶接部に存在する介在物のうち円相当径8μm以上の介在物に含まれるSi、Mn、Al、Cr等の合計が16ppmを超えて高くなりやすく、電縫溶接部の靭性、耐HIC性が低下する。このようなことから、Crを含有する場合、Crの含有量は0.01~1.09%の範囲に限定することが好ましい。なお、より好ましくは0.02~0.99%である。
 Cu:0.01~0.35%、Mo:0.01~0.25%、Ni:0.01~0.20%、B:0.0001~0.0030%のうちから選ばれた1種または2種以上
 Cu、Mo、NiおよびBはいずれも、耐水素脆性の向上と、鋼管強度の増加を図るために含有する元素である。なお、鋼管強度とは引張強さTS及び降伏応力YSを意味する。本発明の電縫鋼管は、必要に応じて上記元素を含有できる。このような効果は、Cuの含有量が0.01%以上、Moの含有量が0.01%以上、Niの含有量が0.01%以上、Bの含有量が0.0001%以上のいずれかを満たすことで顕著となる。一方、Cuの含有量が0.35%超え、Moの含有量が0.25%超え、Niの含有量が0.20%超え、Bの含有量が0.0030%超えのいずれかを満たすと、上記元素の含有により得られる効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このようなことから、上記元素を含有する場合には、それぞれ、Cuの含有量は0.01~0.35%、Moの含有量は0.01~0.25%、Niの含有量は0.01~0.20%、Bの含有量は0.0001~0.0030%の範囲に限定することが好ましい。なお、より好ましくは、Cuの含有量は0.05~0.29%、Moの含有量は0.05~0.21%、Niの含有量は0.02~0.16%、Bの含有量は0.0005~0.0020%である。
 Nb:0.001~0.060%、V:0.001~0.060%、Ti:0.001~0.080%のうちから選ばれた1種または2種以上
 Nb、VおよびTiは、いずれも、主として炭化物(carbide)を形成し、析出強化(precipitation strengthening)により鋼管の強度を増加させる元素である。本発明の電縫鋼管は、必要に応じて上記元素を含有できる。このような効果は、Nbの含有量が0.001%以上、Vの含有量が0.001%以上、Tiの含有量が0.001%以上のいずれかを満たすことで顕著となる。一方、Nbの含有量が0.060%超え、Vの含有量が0.060%超え、Tiの含有量が0.080%超えのいずれかを満たすと、未固溶の大型の炭窒化物(carbonitride)が電縫溶接部に残存し、電縫溶接部の靭性を低下させる。このため、上記元素を含有する場合には、それぞれ、Nbの含有量は0.001~0.060%、Vの含有量は0.001~0.060%、Tiの含有量は0.001~0.080%の範囲に限定することが好ましい。なお、より好ましくはNbの含有量は0.005~0.050%、Vの含有量は0.005~0.050%、Tiの含有量は0.005~0.040%である。
 残部は、Feおよび不可避的不純物である。不可避的不純物としては、P:0.020%以下、S:0.005%以下、N:0.005%以下、O:0.003%以下が許容させる。
 さらに本発明の電縫鋼管は、上記した組成を有し、引張強さTS:434MPa以上を有し、かつ、電縫溶接部に存在する介在物のうち、円相当径で8μm以上の介在物に含まれる、Si、Mn、Al、CaおよびCrの合計量が、地鉄を含む電縫溶接部全量に対する質量%で、16ppm以下である、電縫溶接部を有する。
 本発明の電縫鋼管の電縫溶接部では、電縫溶接時に生成する酸化物の粘度が低くかつ酸化物の融点が溶鋼温度以下である。また、上記電縫溶接部では、該電縫溶接部に存在する、円相当径で8μm以上の介在物に含まれる、Si、Mn、Al、CaおよびCrの合計量が、16ppm以下となる。円相当径で8μm以上の介在物に含まれる、Si、Mn、Al、Ca、Crの合計量が、16ppmを超えて多くなると、電縫溶接部の耐HIC性および低温靭性が低下する。
 なお、電縫溶接部に存在する、円相当径で8μm以上の介在物に含まれる、Si、Mn、Al、CaおよびCrの合計量は、次のようにして得られた値を用いるものとする。当該電縫鋼管から、電縫溶接部を中心として、幅2mmの電解抽出用板状試験片(plate specimen for electrolytic extraction)を採取し、電解液(electrolytic solution)を10%AA液として介在物を上記試験片から電解抽出し、得られた電解抽出物(介在物)を、穴径8μmメッシュ(mesh)のフィルター(filter)を用いて、濾過した。ついで、濾過された電解抽出物(electrolytic extract)(円相当径8μm以上の介在物)を、さらに、アルカリ融解(alkali fusion)し、ICP分析(Inductively Coupled Plasma analysis)を実施して、介在物中に含まれるSi、Mn、Al、CaおよびCrを分析し、円相当径8μm以上の介在物中のSi、Mn、Al、CaおよびCrの合計含有量を導出した。なお、電縫鋼管に含まれない元素は零として扱うものとする。
 つぎに、本発明の電縫鋼管の製造方法について説明する。
 上記した組成を有する鋼素材(スラブ(slab))を加熱し、熱間圧延して所定の厚さの鋼帯(熱延鋼帯)とする。得られた鋼帯を所定の幅にスリティング(slitting)したのち、本発明では、該鋼帯に、連続的にロール成形を施して略円筒形状のオープン管とする。そして、該オープン管の突合せ部近傍を融点以上に加熱しスクイズロールで圧接する電縫溶接を行なって電縫溶接部を形成し、電縫鋼管とする。
 なお、ロール成形では、ケージロール方式(cage roll forming process)による成形とすることが好ましい。ケージロール方式によるロール成形とは、ケージロールと呼ばれる小型ロールを、管外面となる側に並べて、滑らかに成形する方式のロール成形をいう。ケージロール方式によるロール成形のなかでも、CBR方式のロール成形(chance-free bulge roll forming process)とすることが好ましい。CBR方式のロール成形は、鋼帯の両エッジ部をエッジベンドロールにより予め成形したのち、センターベンドロール(center bending roll)とケージロールとにより、鋼帯中央部を曲げ成形し、縦長の小判形の素管をつくり、ついで、フィンパスロールにより、管円周方向の4箇所を一旦オーバーベンド(over bending)したのち、縮径圧延(reducing rolling)することにより、管サイド部の張出し成形(stretch forming)とオーバーベンド部の曲げ戻し成形(bend and return forming)を行い円形素管とする成形方法である(川崎製鉄技報、vol.32(2000)、p49~53参照)。この方式による成形では、成形時に帯板(鋼帯)に付加される歪(strain)を最小限に抑えることができ、加工硬化(work hardening)による材料特性(material characteristic)の劣化を抑制できる。なお、ロール成形は、ブレークダウン方式(break-down method)による成形でもよい。
 本発明では、鋼帯を連続的にロール成形して略円筒形状のオープン管とする際に、熱延鋼帯の幅方向の両端面にテーパ開先(テーパー形状の開先)を付与することが好ましい。開先は、ロール成形時にフィンパスロールを用いた成形で鋼帯の幅端部に付与することが好ましい。付与するテーパ開先は、テーパ開始位置と管外面となる表面(管外面側のテーパー終了位置(ending location of taper))との熱延鋼帯の板厚方向の距離(図3中のa)と、テーパ開始位置と管内面となる表面(管内面側のテーパー終了位置)との熱延鋼帯の板厚方向の距離(図3中のb)の和が熱延鋼帯板厚(鋼帯肉厚)の2~80%となるテーパ開先とすることが好ましい。
 テーパ開始位置と管外面となる表面との熱延鋼帯板厚方向の距離(図3中のa)と、テーパ開始位置と管内面となる表面との熱延鋼帯板厚方向の距離(図3中のb)の和(図3中のa+b)が鋼帯肉厚の2~80%であるとき、鋼帯の上下端部の過加熱(over heating)が抑制され、電縫溶接前に形成された酸化物が圧接に伴い、鋼帯の上下に流動し、排出される。これにより、電縫溶接部の円相当径8μm以上の介在物に含まれるSi、MnおよびAl等の合計量がテーパをつけない場合に比べて、地鉄を含む幅2mmの電縫溶接部全量に対する質量ppmで、約5ppm低下する。
 なお、付与する開先の形状は、次(1)式で定義される易酸化度foxyに関連した、例えば図3に一例を示す形状とすることが好ましい。
 foxy=Mn+10(Si+Cr)+100Al+1000Ca  ‥‥(1)
(ここで、Mn、Si、Cr、AlおよびCa:各元素の含有量(質量%))
 また、図3に示す平均傾斜角(average tilt angle)α(°)は、溶鋼の易酸化度foxyに関連して次(2)式を満足する角度とすることが好ましい。
  10×log(foxy) ≦ α ≦ 40×log(foxy)  ‥‥(2)
 この範囲の平均傾斜角αを有するテーパ部を形成することにより、鋼帯の端部の過加熱が抑制され、形成された介在物(酸化物)が圧接に伴い、鋼帯の上下方向に排出される。このため、電縫溶接部に存在する円相当径で8μm以上の介在物中のSi、MnおよびAl等の合計量が16ppm以下となる。なお、平均傾斜角αが(2)式を外れるテーパ部では、酸化物の排出促進の効果が薄れる。また、テーパ部は、直線に限定されず、任意の曲線としてもよい。
 本発明では、電縫溶接時に生成する酸化物の粘度が2poise以下となるように、電縫溶接時の雰囲気中の酸素濃度および/または電縫溶接時の加熱による溶融開始から圧接までの時間を調整する。
 電縫溶接時の雰囲気中の酸素濃度を調整する場合には、次(1)式で定義される溶鋼の易酸化度foxyに関連して、酸素濃度を1000/foxy体積ppm以下に調整する。
 foxy=Mn+10(Si+Cr)+100Al+1000Ca  ‥‥(1)
(ここで、Mn、Si、Cr、Al、Ca:各元素の含有量(質量%))
 電縫溶接の雰囲気中の酸素濃度を低減する方法は、とくに限定されない。例えば、電縫溶接部を箱型構造でシーリング(sealing)し、非酸化性ガス(non-oxidizing gas)を供給する方法が考えられる。なお、非酸化性ガスの供給を、3層などの多層構造(multilayer structure)のノズル(nozzle)で行い、ガスが層流(laminar airflow)となるようにすることが、雰囲気の酸素濃度を低く保つために、重要となる。酸素濃度の測定は、酸素濃度計(oxygen meter)を用いて、電縫溶接部近傍で行うことが好ましい。一方、電縫溶接時の雰囲気中の酸素濃度が、体積%で、(1000/foxy)ppmを超えて高くなると、電縫溶接時に生成する酸化物の量が多くなり、電縫溶接部に存在する、円相当径8μm以下の介在物中のSi、Mn、Al、Ca、Crの合計含有量が、16ppmを超えて多くなり、耐HIC性、および低温靭性が低下する。このため、電縫溶接時の雰囲気酸素濃度を調整する場合には、体積%で(1000/foxy)ppm以下に調整することとした。
 また、本発明では、電縫溶接時の加熱による溶融開始から圧接までの時間を調整する場合には、鋼帯幅方向の端面が溶融してから圧接されるまでの時間を0.2s~4sとすることが望ましい。電縫溶接時の加熱による溶融開始から圧接までの時間が0.2s未満では、溶鋼温度が低くなり、酸化物の粘度が2poise以下とならないため、生成した酸化物が電縫溶接部に残存しやすくなる。一方、電縫溶接時の加熱による溶融開始から圧接までの時間が4sを超えると、生成する酸化物が多くなり、さらに酸化物中の溶融シリケート量(amount of molton silicate)が多くなり、生成した酸化物が電縫溶接部に残存しやすくなる。このため、電縫溶接時の加熱による溶融開始から圧接までの時間を0.2~4sの範囲とすることが好ましい。なお、電縫溶接時に生成する酸化物の粘度は、さらに望ましくは1poise以下である。また、電縫溶接時の加熱による溶融開始から圧接までの時間は、0.4~3sである。
 上記した方法で得られた電縫鋼管の電縫溶接部には、次いで、オンライン(online)での熱処理を施す。
 電縫溶接部の靭性は、電縫溶接部に存在する介在物(酸化物)に加え、基地相(母材matrix)の影響を受ける。本発明では、電縫溶接後に、電縫溶接部の肉厚方向の平均温度が720~1070℃の範囲の条件で電縫溶接部を加熱し、その後、500℃以下の温度域まで空冷或いは水冷する熱処理(加熱-冷却処理)をオンラインで施すことが好ましい。オンラインでの熱処理の手段については、特に限定する必要はないが、誘導加熱(induction heating)とすることが好ましい。これにより、電縫溶接部の低温靭性が向上する。加熱温度が720℃未満では、電縫溶接時の急冷組織(quenched structure)(硬質組織)が残存するため、低温靭性の向上代が少ない。一方、1070℃を超えて高温となると、結晶粒(grain)が粗大化し、逆に低温靭性が低下する。なお、熱処理の際の、好ましい肉厚方向の平均加熱温度は、770~1020℃である。
 上記した熱処理に加えてさらに、720℃未満の温度に加熱し空冷する焼戻処理(tempering)(熱処理:加熱-冷却処理)を行ってもよい。この焼戻処理(加熱-冷却処理)により、さらに電縫溶接部の低温靭性が向上する。
 以下、実施例に基づいて、さらに本発明について説明する。
 表1に示す組成の鋼素材(スラブ:肉厚250mm)を、1260℃に加熱し、90min均熱したのち、粗圧延(rough rolling)を施し、仕上圧延終了温度(finish rolling temperature):850℃で、巻取温度(coiling temperature):580℃とする仕上圧延を施し、熱延鋼帯(板厚19.1mm)を得た。
 これら熱延鋼帯を所定の幅にスリティングし、表2に示す条件で連続してロール成形を施し略円筒形状のオープン管としたのち、該オープン管の突合せ部近傍を融点以上に加熱しスクイズロールで圧接する電縫溶接を、表2に示す条件で行なって電縫溶接部を形成し、電縫鋼管(外径:304.8mmφ)とした。
 なお、ロール成形では、フィンパスロールを用いて、表2に示す平均傾斜角α°のテーパ部を外表面側、および内表面側に形成した。なお、テーパ部の形成位置は、外表面および内表面からそれぞれ全厚に対する割合で20~40%とした(外表面側が図3の「a」に対応し、内表面側が図3の「b」に対応する)。なお、一部の電縫鋼管では、テーパ部を形成しないままとした。
 なお、一部では、電縫溶接時に、Nガスをノズル数3のノズルを用いて吹きつけ、雰囲気の酸素濃度を体積%で30~65ppmまで低減する、電縫溶接時の雰囲気調整を行った。なお、それ以外の電縫鋼管では大気中の雰囲気のままとした。なお、電縫溶接部の酸素濃度は、酸素濃度計の探触子(probe)を電縫溶接部直近に近づけて測定した。
 また、電縫溶接後に、表2に示すような、電縫溶接部の加熱-冷却処理(熱処理)(シームQT)を、オンラインの高周波加熱装置(radio-frequency heating apparatus)で行った。なお、冷却は水冷とした。一部では、オンラインの高周波加熱装置でさらに500℃に加熱し空冷する加熱冷却処理(熱処理:焼戻処理)を施した。
 なお、電縫溶接時に生成する酸化物の粘度(温度:1550℃)を、電縫溶接時に生成する酸化物組成から(1)式を用いて求め、表2に併記した。
 また、図4に、酸化物組成に及ぼす熱延鋼板の組成(Mn/Si)と鋼板端部の溶融開始から圧接までの時間との関係の影響を示す。
 得られた電縫鋼管について、まず電縫溶接部に含まれる円相当径8μm以上の介在物に含まれるSi、Mn、Al、CaおよびCrの合計量を測定した。また、得られた電縫鋼管の母材部から、引張試験片を採取し、引張試験を実施して、母材の引張特性(降伏強さYS、引張強さTS)を求めた。また、得られた電縫鋼管の電縫溶接部から、試験片を採取して、電縫溶接部の耐HIC性、低温靭性および破壊靭性を評価した。試験方法はつぎのとおりとした。
 (1)電縫溶接部に含まれる円相当径8μm以上の介在物中に含まれるSi、Mn、Al、CaおよびCrの合計量の測定
 得られた電縫鋼管から、電縫溶接部を中心として、幅2mmの電解抽出用板状試験片を採取した。これら板状試験片を、10%AA液中で電解処理し、介在物を電解抽出した。得られた電解抽出物(介在物)を、穴径8μm以下のメッシュのフィルターを用いて、濾過した。ついで、濾過された電解抽出物(円相当径8μm以上の介在物)を、さらに、アルカリ融解し、ICP分析を実施して、介在物中に含まれるSi、Mn、Al、CaおよびCrを分析した。それら元素の合計量を、円相当径8μm以上の介在物中のSi、Mn、Al、CaおよびCrの合計含有量とし、地鉄を含む電縫溶接部全量に対する質量%で表示した。なお、電縫鋼管に含まれない元素は零として扱うものとする。
 (2)引張試験
 得られた電縫鋼管の母材部から、管軸方向が引張方向となるように、JIS Z 2201の規定に準拠して、JIS 12C号試験片(弧状引張試験片)を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(降伏強さYS、引張強さTS)を求めた。
 (3)シャルピー衝撃試験
 得られた電縫鋼管の電縫溶接部から、JIS Z 2242の規定に準拠して、電縫溶接部を中心として管円周方向に、シャルピー衝撃試験片(Vノッチ試験片:管肉厚のサブサイズ試験片)を採取した。なお、ノッチはエッチングにより確認し、電縫溶接部中心とした。得られたシャルピー衝撃試験片(Vノッチ試験片)を用いて、衝撃試験を実施し、吸収エネルギーを求めた。試験温度は-60℃とし、各3本を試験し、その算術平均を、各電縫鋼管の電縫溶接部の吸収エネルギー値とした。
 (4)CTOD試験
 得られた電縫鋼管の電縫溶接部から、WES 1108(1995)の規定に準拠して、CTOD試験片を採取し、電縫溶接部の中央に疲労予亀裂(fatigue precrack)を導入し、試験温度:-20℃で、3点曲げ試験を実施し、脆性亀裂(brittle crack)が発生するまでの限界亀裂開口変位(CTOD)値を求め、電縫溶接部の破壊靭性(fracture toughness)を評価した。
 (5)耐HIC性試験
 得られた電縫鋼管の電縫溶接部から、試験片長さ方向が管軸方向で、電縫溶接部のL断面が、幅方向の中央となるようにHIC試験片(大きさ:10mm厚×20mm幅×100mm長さ)を採取し、HIC試験を実施した。HIC試験は、試験片をNACE TM0284規定のSolution A液(0.5%CHCOOH+5%NaCl+飽和HS)に、200h浸漬する試験とした。浸漬後、電縫溶接部のL断面を超音波探傷し、割れ部の面積率(CAR)を画像処理により求めた。
 得られた結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明例はいずれも、電縫溶接時に生成する酸化物の粘度が2poise以下であり、電縫溶接部の円相当径8μm以上の介在物に含まれるSi、Mn、Al、Ca、Crの合計が16ppm以下であり、引張強さTS:434MPa以上の高母材強度を示し、電縫溶接部のNACE Solution A溶液環境での200h浸漬後のCARが3%以下で、かつ、電縫溶接部の-60℃におけるシャルピー衝撃試験の吸収エネルギーvE-60が120Jを超え、CTOD値が0.3mm以上である。したがって、本発明例は優れた耐HIC特性、低温靭性、破壊靭性値を有する電縫鋼管となっている。一方、本発明の範囲を外れる比較例は、引張強さTS:434MPa未満であるか、電縫溶接時に生成する酸化物の粘度が2poise超えて、電縫溶接部の円相当径8μm以上の介在物に含まれるSi、Mn、Al、Ca、Crの合計が16ppm超えであるか、電縫溶接部のNACE Solution A溶液環境での200h浸漬後のCARが3%超えであるか、電縫溶接部の-60℃におけるシャルピー衝撃試験の吸収エネルギーvE-60が120J未満であるか、-20℃におけるCTOD値が0.3mm未満である。したがって、比較例では所望の特性を確保できていない。
 加熱による溶融開始から圧接までの時間が好適範囲を外れる比較例(電縫鋼管No.6、No.7、No.16、No.17)は、電縫溶接時に生成する酸化物の粘度が2poiseを超え、電縫部の円相当径8μm以上の介在物に含まれるSi、Mn、Al、Ca、Crの合計が16ppmを超え、NACE Solution A溶液環境での200h浸漬後のCARが3%を超え、vE-60が120J未満で、CTOD値が0.3mm未満である。このように、比較例(電縫鋼管No.6、No.7、No.16、No.17)は、所望の特性を確保できていない。また、C量が本発明範囲を低く外れる比較例(電縫鋼管No.26)は、引張強さTSが434MPa未満と所定の強度を確保できていない。C、Si、Mn、Al、Ca、Cr含有量のいずれかが、本発明範囲を高く外れる比較例(電縫鋼管No.27、No.29、No.31、No.33、No.34、No.35)はいずれも、NACE Solution A溶液環境での200h浸潰後のCARが3%を超え、vE-60が120J未満であり、CTOD値が0.3mm未満である。このように、比較例(電縫鋼管No.27、No.29、No.31、No.33、No.34、No.35)は、所望の特性を確保できていない。また、Si、Mn、Al含有量のいずれかが本発明範囲を低く外れる比較例(電縫鋼管No.28、No.30、No.32)はいずれも、NACE Solution A溶液環境での200h浸漬後のCARが3%を超え、vE-60が120J未満であり、CTOD値が0.3mm未満である。このように、比較例(電縫鋼管No.28、No.30、No.32)は、所望の特性を確保できていない。

Claims (14)

  1.  質量%で、C:0.03~0.59%、Si:0.10~0.50%、Mn:0.40~2.10%及びAl:0.01~0.35%を含有し、かつSi、MnをMn/Si(質量比)が6.0~9.0の範囲になるように調整して含み、残部Feおよび不可避的不純物からなる組成を有し、引張強さTS:434MPa以上の強度を有する電縫鋼管であって、
     該電縫鋼管の電縫溶接部に存在する、円相当径8μm以上の介在物に含まれるSi、Mn、Al、Ca、Crの合計量が、地鉄を含む幅2mmの電縫溶接部全量に対する質量%で16ppm以下であり、
     該電縫溶接部が優れた耐HIC特性と優れた低温靭性とを兼備することを特徴とする電縫鋼管。
  2.  前記組成に加えてさらに、質量%で、Ca:0.0001~0.0040%を含有することを特徴とする請求項1に記載の電縫鋼管。
  3.  前記組成に加えてさらに、質量%で、Cr:0.01~1.09%を含有することを特徴とする請求項1または2に記載の電縫鋼管。
  4.  前記組成に加えてさらに、質量%で、Cu:0.01~0.35%、Mo:0.01~0.25%、Ni:0.01~0.20%及びB:0.0001~0.0030%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1ないし3のいずれかに記載の電縫鋼管。
  5.  前記組成に加えてさらに、質量%で、Nb:0.001~0.060%、V:0.001~0.060%及びTi:0.001~0.080%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1ないし4のいずれかに記載の電縫鋼管。
  6.  熱延鋼帯を、連続的にロール成形して略円形断面のオープン管としたのち、該オープン管の突合せ部近傍を融点以上に加熱しスクイズロールで圧接する電縫溶接を行って電縫溶接部を形成し、ついで該電縫溶接部にオンラインでの熱処理を施す電縫鋼管の製造方法であって、
     前記熱延鋼帯を、質量%で、C:0.03~0.59%、Si:0.10~0.50%、Mn:0.40~2.10%及びAl:0.01~0.35%を含有し、かつSi、MnをMn/Siが6.0~9.0の範囲になるように調整して含み、残部Feおよび不可避的不純物からなる組成を有し、引張強さTS:434MPa以上の強度を有する熱延鋼帯とし、
     前記電縫溶接を、該電縫溶接時に生成する酸化物の粘度が2poise以下となるように、電縫溶接時の雰囲気中の酸素濃度および/または前記加熱による溶融開始から前記圧接までの時間を調整して行い、
     前記電縫溶接部が優れた耐HIC特性と優れた低温靭性とを兼備することを特徴とする電縫鋼管の製造方法。
  7.  前記ロール成形のフィンパス成形において、前記熱延鋼帯の幅方向両端面に、テーパー開始位置と管外面となる表面あるいは管内面となる表面との熱延鋼帯板厚方向の距離の和が熱延鋼帯板厚の2~80%となるテーパー開先を付与することを特徴とする請求項6に記載の電縫鋼管の製造方法。
  8.  前記加熱による溶融開始から前記圧接までの時間を0.2~4sとすることを特徴とする請求項6または7に記載の電縫鋼管の製造方法。
  9.  前記電縫溶接が、前記電縫溶接時の雰囲気中の酸素濃度を、下記(1)式で定義される溶鋼の易酸化度foxyに関連して、体積%で1000/foxy ppm以下に調整した溶接であることを特徴とする請求項6ないし8のいずれかに記載の電縫鋼管の製造方法。
                      記
        foxy=Mn+10(Si+Cr)+100Al+1000Ca  ‥‥(1)
        ここで、Mn、Si、Cr、Al、Ca:各元素の含有量(質量%)
  10.  前記電縫溶接部に施す前記熱処理を、該電縫溶接部の肉厚方向平均温度で加熱温度:720~1070℃に加熱し、ついで空冷または水冷する処理と、あるいはさらに該電縫溶接部の肉厚方向平均温度で加熱温度:720℃未満に加熱し空冷する処理とすることを特徴とする請求項6ないし9のいずれかに記載の電縫鋼管の製造方法。
  11.  前記組成に加えてさらに、質量%で、Ca:0.0001~0.0040%を含有することを特徴とする請求項6ないし10のいずれかに記載の電縫鋼管の製造方法。
  12.  前記組成に加えてさらに、質量%で、Cr:0.01~1.09%を含有することを特徴とする請求項6ないし11のいずれかに記載の電縫鋼管の製造方法。
  13.  前記組成に加えてさらに、質量%で、Cu:0.01~0.35%、Mo:0.01~0.25%、Ni:0.01~0.20%及びB:0.0001~0.0030%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項6ないし12のいずれかに記載の電縫鋼管の製造方法。
  14.  前記組成に加えてさらに、質量%で、Nb:0.001~0.060%、V:0.001~0.060%及びTi:0.001~0.080%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項6ないし13のいずれかに記載の電縫鋼管の製造方法。
     
PCT/JP2013/005559 2012-09-24 2013-09-20 電縫溶接部の耐hic性および低温靭性に優れた電縫鋼管およびその製造方法 WO2014045590A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157009433A KR101720648B1 (ko) 2012-09-24 2013-09-20 전봉 용접부의 내hic성 및 저온 인성이 우수한 전봉 강관 및 그의 제조 방법
RU2015115469A RU2630725C2 (ru) 2012-09-24 2013-09-20 Свариваемая электрической контактной сваркой стальная труба, обладающая превосходным сопротивлением водородному растрескиванию (hic) и низкотемпературной ударной вязкостью получаемого электрической контактной сваркой сварного соединения, и способ ее производства
EP13839516.5A EP2878696B1 (en) 2012-09-24 2013-09-20 Electric-resistance-welded steel pipe exhibiting excellent hic resistance and low-temperature toughness at electric-resistance-welded parts, and production method therefor
CN201380048260.XA CN104641014B (zh) 2012-09-24 2013-09-20 电阻焊焊接部的耐hic性和低温韧性优异的电阻焊钢管及其制造方法
US14/430,771 US9873164B2 (en) 2012-09-24 2013-09-20 Electric resistance welded steel pipe or steel tube having excellent HIC resistance and low-temperature toughness in electric resistance welded part, and method for manufacturing the same
IN1228DEN2015 IN2015DN01228A (ja) 2012-09-24 2015-02-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012209158A JP5516680B2 (ja) 2012-09-24 2012-09-24 電縫溶接部の耐hic性および低温靭性に優れた電縫鋼管およびその製造方法
JP2012-209158 2012-09-24

Publications (1)

Publication Number Publication Date
WO2014045590A1 true WO2014045590A1 (ja) 2014-03-27

Family

ID=50340926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005559 WO2014045590A1 (ja) 2012-09-24 2013-09-20 電縫溶接部の耐hic性および低温靭性に優れた電縫鋼管およびその製造方法

Country Status (8)

Country Link
US (1) US9873164B2 (ja)
EP (1) EP2878696B1 (ja)
JP (1) JP5516680B2 (ja)
KR (1) KR101720648B1 (ja)
CN (1) CN104641014B (ja)
IN (1) IN2015DN01228A (ja)
RU (1) RU2630725C2 (ja)
WO (1) WO2014045590A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6394261B2 (ja) * 2014-10-14 2018-09-26 新日鐵住金株式会社 油井用電縫鋼管及びその製造方法
EP3225709A4 (en) 2014-11-27 2017-12-13 JFE Steel Corporation Electric resistance-welded steel pipe and manufacturing method therefor
CA2967902C (en) 2014-12-25 2020-07-21 Jfe Steel Corporation High-strength thick-walled electric-resistance-welded steel pipe for deep-well conductor casing, method for manufacturing the same, and high-strength thick-walled conductor casing for deep wells
US11041223B2 (en) 2014-12-25 2021-06-22 Jfe Steel Corporation High strength thick-walled electric-resistance-welded steel pipe for deep-well conductor casing, method for manufacturing the same, and high strength thick-walled conductor casing for deep wells
CA2973830C (en) * 2015-03-12 2019-10-22 Jfe Steel Corporation Electric-resistance-welded stainless clad steel pipe and method of manufacturing the same
JP6323626B1 (ja) * 2016-09-12 2018-05-16 Jfeスチール株式会社 クラッド溶接管およびその製造方法
CN106987782B (zh) * 2017-03-17 2018-08-07 中国石油天然气集团公司 一种耐少量co2及h2s腐蚀的连续管及其制造方法
JP6808198B2 (ja) * 2018-02-14 2021-01-06 三菱重工業株式会社 損傷状態判定装置、損傷状態判定方法、プログラム
RU2681588C1 (ru) * 2018-05-11 2019-03-11 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Сталь повышенной коррозионной стойкости и электросварные трубы, выполненные из нее
CN110724874A (zh) * 2018-07-17 2020-01-24 宝钢特钢有限公司 具有抗腐蚀磨损性能的高锰奥氏体钢及热轧板制备方法
WO2021009543A1 (en) * 2019-07-16 2021-01-21 Arcelormittal Method for producing a steel part and steel part
CN110819878B (zh) * 2019-10-23 2021-10-29 舞阳钢铁有限责任公司 一种爆炸复合用具备优良低温韧性钢板及其生产方法
CN111101069A (zh) * 2020-02-17 2020-05-05 本钢板材股份有限公司 汽车、发动机传动零件用钢材及其制备方法
JP7469617B2 (ja) 2020-03-17 2024-04-17 日本製鉄株式会社 油井用電縫鋼管およびその製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213366A (ja) 1984-04-09 1985-10-25 Nippon Steel Corp 耐サワ−性の優れた電縫鋼管
JPH02258181A (ja) * 1989-03-31 1990-10-18 Nippon Steel Corp 溶接欠陥の少ない電縫管の製造方法
JPH04178281A (ja) 1990-11-08 1992-06-25 Nkk Corp 電縫管のガスシール溶接方法
JP2000204442A (ja) * 1999-01-14 2000-07-25 Sumitomo Metal Ind Ltd 電縫溶接部靱性に優れた高強度電縫鋼管
JP2004162125A (ja) * 2002-11-13 2004-06-10 Toyota Motor Corp 中空ドライブシャフト
JP2006077330A (ja) 1998-12-14 2006-03-23 Nippon Steel Corp 電縫溶接性に優れたボイラ用鋼およびそれを用いた電縫ボイラ鋼管
JP2006175514A (ja) * 2004-11-24 2006-07-06 Jfe Steel Kk 溶接部欠陥の少ない電縫鋼管およびその製造方法
JP2007000874A (ja) * 2005-06-21 2007-01-11 Jfe Steel Kk 溶接部靭性に優れた高強度厚肉ラインパイプ向け電縫鋼管の製造方法
JP2008223134A (ja) 2007-02-13 2008-09-25 Nippon Steel Corp 高強度電縫ラインパイプ
JP2012246548A (ja) * 2011-05-30 2012-12-13 Jfe Steel Corp 電縫溶接部の耐hic性と低温靭性に優れた電縫鋼管およびその製造方法
JP2012246550A (ja) * 2011-05-30 2012-12-13 Jfe Steel Corp 電縫溶接部の成形性、低温靭性および耐疲労特性に優れた電縫鋼管およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274049A (ja) * 1986-05-22 1987-11-28 Nippon Steel Corp 連鋳製耐サワ−性及び低温靭性の優れた電縫鋼管用鋼
JP2573118B2 (ja) * 1990-11-21 1997-01-22 新日本製鐵株式会社 被削性の優れた機械構造用電気抵抗溶接鋼管
US6254698B1 (en) 1997-12-19 2001-07-03 Exxonmobile Upstream Research Company Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof
US20050034795A1 (en) * 2001-08-17 2005-02-17 Takashi Motoyoshi Highly impact-resistant steel pipe and method for producing the same
JP4305216B2 (ja) 2004-02-24 2009-07-29 Jfeスチール株式会社 溶接部の靭性に優れる耐サワー高強度電縫鋼管用熱延鋼板およびその製造方法
JP2006144109A (ja) * 2004-11-24 2006-06-08 Jfe Steel Kk 溶接部の耐割れ性に優れる電縫鋼管およびその製造方法
WO2008108450A1 (ja) 2007-03-02 2008-09-12 Nippon Steel Corporation 電縫鋼管の製造方法および高Siまたは高Cr含有電縫鋼管
CN101983110B (zh) 2008-03-31 2014-06-25 杰富意钢铁株式会社 用高密度能量束接合的焊接钢管及其制造方法
JP5739619B2 (ja) * 2010-03-30 2015-06-24 日新製鋼株式会社 電縫鋼管のシールボックス溶接装置
JP5660285B2 (ja) 2010-05-31 2015-01-28 Jfeスチール株式会社 拡管性と低温靭性に優れた油井用溶接鋼管の製造方法および溶接鋼管
CN102154593B (zh) * 2011-05-26 2013-01-16 天津钢管集团股份有限公司 X80钢级抗腐蚀低温无缝管线管
CA2869879C (en) * 2012-04-13 2017-08-29 Jfe Steel Corporation High-strength thick-walled electric resistance welded steel pipe having excellent low-temperature toughness and method for manufacturing the same
JP5516659B2 (ja) * 2012-06-28 2014-06-11 Jfeスチール株式会社 中温域の長期耐軟化性に優れた高強度電縫鋼管及びその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213366A (ja) 1984-04-09 1985-10-25 Nippon Steel Corp 耐サワ−性の優れた電縫鋼管
JPH02258181A (ja) * 1989-03-31 1990-10-18 Nippon Steel Corp 溶接欠陥の少ない電縫管の製造方法
JPH04178281A (ja) 1990-11-08 1992-06-25 Nkk Corp 電縫管のガスシール溶接方法
JP2006077330A (ja) 1998-12-14 2006-03-23 Nippon Steel Corp 電縫溶接性に優れたボイラ用鋼およびそれを用いた電縫ボイラ鋼管
JP2000204442A (ja) * 1999-01-14 2000-07-25 Sumitomo Metal Ind Ltd 電縫溶接部靱性に優れた高強度電縫鋼管
JP2004162125A (ja) * 2002-11-13 2004-06-10 Toyota Motor Corp 中空ドライブシャフト
JP2006175514A (ja) * 2004-11-24 2006-07-06 Jfe Steel Kk 溶接部欠陥の少ない電縫鋼管およびその製造方法
JP2007000874A (ja) * 2005-06-21 2007-01-11 Jfe Steel Kk 溶接部靭性に優れた高強度厚肉ラインパイプ向け電縫鋼管の製造方法
JP2008223134A (ja) 2007-02-13 2008-09-25 Nippon Steel Corp 高強度電縫ラインパイプ
JP2012246548A (ja) * 2011-05-30 2012-12-13 Jfe Steel Corp 電縫溶接部の耐hic性と低温靭性に優れた電縫鋼管およびその製造方法
JP2012246550A (ja) * 2011-05-30 2012-12-13 Jfe Steel Corp 電縫溶接部の成形性、低温靭性および耐疲労特性に優れた電縫鋼管およびその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAWASAKI STEEL GIHO, vol. 32, 2000, pages 49 - 53
P.V. RIBOUD: "Fachber. Heuteenprax", METALL WEITERVERRARB., vol. 19, 1981, pages 859
See also references of EP2878696A4

Also Published As

Publication number Publication date
CN104641014A (zh) 2015-05-20
CN104641014B (zh) 2017-03-08
RU2015115469A (ru) 2016-11-20
KR20150055027A (ko) 2015-05-20
RU2630725C2 (ru) 2017-09-12
IN2015DN01228A (ja) 2015-06-26
JP5516680B2 (ja) 2014-06-11
EP2878696A4 (en) 2015-11-11
JP2014062309A (ja) 2014-04-10
US20150251268A1 (en) 2015-09-10
EP2878696A1 (en) 2015-06-03
US9873164B2 (en) 2018-01-23
KR101720648B1 (ko) 2017-03-28
EP2878696B1 (en) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2014045590A1 (ja) 電縫溶接部の耐hic性および低温靭性に優れた電縫鋼管およびその製造方法
US9841124B2 (en) High-strength thick-walled electric resistance welded steel pipe having excellent low-temperature toughness and method of manufacturing the same
KR101247089B1 (ko) 라인 파이프용 강판 및 강관
JP5151008B2 (ja) 耐hic性および溶接部靱性優れる耐サワー高強度電縫鋼管用熱延鋼板およびその製造方法
JP5353156B2 (ja) ラインパイプ用鋼管及びその製造方法
JP6193206B2 (ja) 耐サワー性、haz靭性及びhaz硬さに優れた鋼板およびラインパイプ用鋼管
JP5849438B2 (ja) 電縫溶接部の成形性、低温靭性および耐疲労特性に優れた電縫鋼管の製造方法
JP2005240051A (ja) 溶接部の靭性に優れる耐サワー高強度電縫鋼管用熱延鋼板およびその製造方法
JP6587041B1 (ja) ラインパイプ用電縫鋼管
JP2013032584A (ja) 耐サワー性に優れたラインパイプ用厚肉高強度継目無鋼管およびその製造方法
EP0699773B1 (en) Method for manufacturing electric-resistance-welded steel pipe
JP6160587B2 (ja) 電縫溶接部の中温域のクリープ特性に優れた高強度電縫鋼管の製造方法
JP5919650B2 (ja) 電縫溶接部の耐hic性と低温靭性に優れた電縫鋼管およびその製造方法
JP4193308B2 (ja) 耐硫化物応力割れ性に優れた低炭素フェライト−マルテンサイト二相ステンレス溶接鋼管
JP5799610B2 (ja) 電縫溶接部の耐サワー特性に優れた高強度厚肉電縫鋼管の製造方法
JP5000447B2 (ja) 高強度電縫ラインパイプ
JP2012167336A (ja) 高強度鋼管用鋼板及び高強度鋼管
JP5870664B2 (ja) 高強度溶接鋼管およびその製造方法
JP5870561B2 (ja) 耐硫化物応力腐食割れ性に優れた引張強度600MPa以上の高強度溶接鋼管
WO2024014098A1 (ja) 水素輸送鋼管用高強度鋼板及びその製造方法並びに水素輸送用鋼管
JP2012193446A (ja) 高延性超高強度溶接鋼管用鋼板および鋼管ならびにその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839516

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013839516

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013839516

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14430771

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157009433

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015115469

Country of ref document: RU

Kind code of ref document: A