WO2024014098A1 - 水素輸送鋼管用高強度鋼板及びその製造方法並びに水素輸送用鋼管 - Google Patents

水素輸送鋼管用高強度鋼板及びその製造方法並びに水素輸送用鋼管 Download PDF

Info

Publication number
WO2024014098A1
WO2024014098A1 PCT/JP2023/017743 JP2023017743W WO2024014098A1 WO 2024014098 A1 WO2024014098 A1 WO 2024014098A1 JP 2023017743 W JP2023017743 W JP 2023017743W WO 2024014098 A1 WO2024014098 A1 WO 2024014098A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel plate
steel
temperature
content
Prior art date
Application number
PCT/JP2023/017743
Other languages
English (en)
French (fr)
Inventor
大地 泉
佳宏 西原
拓史 岡野
純二 嶋村
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023547357A priority Critical patent/JP7424550B1/ja
Publication of WO2024014098A1 publication Critical patent/WO2024014098A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a high-strength steel plate for hydrogen transport steel pipes, and in particular to a high-strength steel plate for hydrogen transport pipes suitable for use in line pipes used for transporting high-pressure hydrogen gas, and a method for manufacturing the same.
  • the present invention also relates to a steel pipe for hydrogen transportation using the above-mentioned high-strength steel plate for hydrogen transportation.
  • line pipes are manufactured by forming steel plates manufactured by a plate mill or hot rolling mill into steel pipes by UOE forming, press bend forming, roll forming, or the like.
  • line pipes used for transporting high-pressure hydrogen gas are required to have hydrogen embrittlement resistance in addition to strength, toughness, and weldability.
  • line pipes are subject to repeated stress due to pressure fluctuations during operation, so resistance to fatigue crack growth in a high-pressure hydrogen gas environment is required in order to extend their service life.
  • hydrogen induced stress cracking resistance HISC (Hydrogen Induced Stress Cracking) resistance
  • HISC Hydro induced stress cracking resistance
  • the hydrogen pressure is about 15 MPa, low alloy steel with sufficient wall thickness is used.
  • austenitic stainless steel such as SUS316L, which is less susceptible to hydrogen embrittlement than low alloy steel, is used. .
  • austenitic stainless steel has low strength, so if it is designed to withstand high hydrogen pressure, the wall thickness will be thick, making the hydrogen transport line pipe itself expensive. . Therefore, there has been a demand for steel materials for hydrogen transportation line pipes that are lower in cost and can withstand high-pressure hydrogen gas environments.
  • Patent Document 1 proposes an austenitic steel material with a high Mn content.
  • Patent Document 1 makes it possible to provide a steel material that is lower in cost than austenitic stainless steels such as SUS316L, but since the steel material described in Patent Document 1 is an austenitic alloy, it is generally The cost is high compared to standard low alloy steel. Further, in the steel material described in Patent Document 1, HISC resistance and fatigue crack growth resistance in a high-pressure hydrogen gas environment are not taken into consideration.
  • an object of the present invention is to provide a high-strength steel plate for hydrogen transport pipes that has excellent HISC resistance and fatigue crack propagation resistance in a high-pressure hydrogen environment, together with an advantageous manufacturing method thereof.
  • Another object of the present invention is to provide a steel pipe for hydrogen transport using the above-mentioned high-strength steel plate for hydrogen transport steel pipes.
  • the present inventors In order to ensure HISC resistance and fatigue crack growth resistance in a high-pressure hydrogen gas environment, the present inventors repeatedly conducted numerous experiments and studies regarding the chemical composition, microstructure, and manufacturing conditions of the steel material. As a result, we found the following. That is, when the standard deviation of Vickers hardness at 0.25 mm below the surface of the steel plate is ⁇ , the average value of Vickers hardness +3 ⁇ at 0.25 mm below the surface of the steel plate is controlled to be 225 HV or less, and the upper layer in the structure at the center of the plate thickness is 20% particle size is 30 ⁇ m or less. This improves HISC resistance and fatigue crack growth resistance. Furthermore, in order to achieve such a steel structure, it is necessary to strictly control rolling conditions and cooling conditions, and we succeeded in finding these conditions. The present invention has been made based on these findings.
  • the gist of the present invention is as follows. [1] In mass%, C: 0.030-0.060%, Si: 0.01 to 0.50%, Mn: 0.80 to 1.80%, P: 0.015% or less, S: 0.0015% or less, Al: 0.010-0.080%, Cr: 0.05-0.50%, Nb: 0.005-0.080%, Ti: 0.005 to 0.020%, A component composition containing N: 0.0020 to 0.0080% and Ca: 0.0005 to 0.0050%, the remainder being Fe and inevitable impurities; When the standard deviation of Vickers hardness at 0.25 mm below the surface of the steel plate is ⁇ , the average value of Vickers hardness +3 ⁇ at 0.25 mm below the surface of the steel plate is 225 HV or less, and the upper 20% grain size at the center of the plate thickness is has a structure that is 30 ⁇ m or less, Hydrogen which has a fatigue crack growth rate of less than 2.0 ⁇ 10 -2 (mm/cycle) when the stress intensity factor range ⁇ K is
  • the component composition further comprises, in mass%, Cu: 0.50% or less, Ni: 0.50% or less, Mo: 0.50% or less, V: 0.1% or less, Zr: 0.02% or less,
  • the high strength steel sheet for hydrogen transport steel pipes of the present invention and the steel pipe for hydrogen transport using the high strength steel sheet for hydrogen transport steel pipes have excellent HISC resistance and fatigue crack growth resistance in a high pressure hydrogen environment.
  • the steel pipe has excellent HISC resistance in a high-pressure hydrogen environment even in the region including the welded portion of the steel pipe.
  • high-strength steel plate for hydrogen transport steel pipes of the present invention will be specifically explained. Note that, hereinafter, the high-strength steel plate for hydrogen transport steel pipes of the present invention is also simply referred to as high-strength steel plate.
  • C 0.030-0.060% C effectively contributes to improving strength, but if the C content is less than 0.030%, sufficient strength cannot be ensured, so the C content is set to 0.030% or more.
  • the C content is preferably 0.035% or more.
  • the C content is set to 0.060% or less.
  • the C content is preferably 0.050% or less.
  • Si 0.01 ⁇ 0.50% Si is added for deoxidation, but if the Si content is less than 0.01%, the deoxidation effect will not be sufficient, so the Si content should be 0.01% or more.
  • the Si content is preferably 0.05% or more.
  • the Si content is set to 0.50% or less.
  • the Si content is preferably 0.45% or less.
  • Mn 0.80-1.80% Although Mn effectively contributes to improving strength, the effect is not fully expressed when the Mn content is less than 0.80%. Therefore, the Mn content is set to 0.80% or more.
  • the Mn content is preferably 1.00% or more.
  • the Mn content is more preferably 1.20% or more.
  • the Mn content is set to 1.80% or less.
  • the Mn content is preferably 1.70% or less.
  • the Mn content is more preferably 1.60% or less.
  • P 0.015% or less
  • P is an unavoidable impurity element, and increases hardness, thereby degrading HISC resistance. If the P content exceeds 0.015%, this tendency becomes noticeable, so the upper limit of the P content is set to 0.015%.
  • the P content is preferably 0.008% or less. Note that the lower the P content, the better; however, excessive P removal causes an increase in refining cost, so from the viewpoint of refining cost, the P content is preferably 0.001% or more.
  • S 0.0015% or less
  • S is an unavoidable impurity element that forms MnS inclusions in steel and deteriorates low-temperature toughness, so the S content is preferably small, but up to 0.0015%. is allowed. Therefore, the S content is set to 0.015% or less.
  • the S content is preferably 0.0010% or less. Note that the lower the S content, the better; however, excessive removal of S causes an increase in refining cost, so from the viewpoint of refining cost, the S content is preferably 0.0002% or more.
  • Al 0.010-0.080% Al is added as a deoxidizing agent, but its effect is not fully expressed if the Al content is less than 0.010%. Therefore, the Al content is set to 0.010% or more.
  • the Al content is preferably 0.015% or more.
  • the Al content is more preferably 0.025% or more.
  • the Al content is set to 0.080% or less.
  • the Al content is preferably 0.070% or less.
  • the Al content is more preferably 0.040% or less.
  • Cr 0.05-0.50%
  • Cr is an effective element for obtaining sufficient strength even in steel with a low C content, but its effect is not fully expressed when the Cr content is less than 0.05%. Therefore, the Cr content is set to 0.05% or more.
  • the Cr content is preferably 0.10% or more.
  • the Cr content is more preferably 0.15% or more.
  • the Cr content is set to 0.50% or less.
  • the Cr content is preferably 0.45% or less.
  • the Cr content is more preferably 0.35% or less.
  • Nb 0.005-0.080%
  • Nb 0.005-0.080%
  • the Nb content is preferably 0.010% or more.
  • the Nb content is more preferably 0.025% or more.
  • the Nb content is set to 0.080% or less.
  • the Nb content is preferably 0.060% or less.
  • the Nb content is more preferably 0.055% or less.
  • Ti 0.005-0.020%
  • Ti has the effect of pinning austenite grains during heating and suppressing grain growth. If the Ti content is less than 0.005%, TiN will not be sufficiently generated, so the Ti content is set to 0.005% or more. The Ti content is preferably 0.008% or more. Furthermore, if the Ti content exceeds 0.020%, the generated TiN becomes coarse and sufficient toughness of the weld heat affected zone cannot be obtained, so the Ti content is set to 0.020% or less. The Ti content is preferably 0.017% or less. The Ti content is more preferably 0.015% or less.
  • N 0.0020-0.0080%
  • the N content is set to 0.0020% or more.
  • the N content is preferably 0.0025% or more.
  • the N content is more preferably 0.0030% or more.
  • the N content is set to 0.0080% or less.
  • the N content is preferably 0.0070% or less.
  • the N content is more preferably 0.0050% or less.
  • Ca 0.0005-0.0050%
  • Ca is an effective element for improving hydrogen-induced cracking resistance by controlling the morphology of sulfide-based inclusions, but if the Ca content is less than 0.0005%, the effect of its addition is not sufficient. Therefore, the Ca content is set to 0.0005% or more.
  • the Ca content is preferably 0.0008% or more.
  • the Ca content is more preferably 0.0015% or more.
  • the Ca content exceeds 0.0050%. 0050% or less.
  • the Ca content is preferably 0.0045% or less.
  • the Ca content is more preferably 0.0035% or less.
  • components in the high-strength steel sheet of the present invention can be Fe and unavoidable impurities.
  • the high-strength steel sheet of the present invention optionally contains one or more selected from Cu, Ni, Mo, V, Zr, Mg, and REM within the following range. be able to.
  • Cu 0.50% or less
  • Cu is an element effective in improving low-temperature toughness and increasing strength, and to obtain this effect, the Cu content is preferably 0.05% or more.
  • the Cu content is more preferably 0.10% or more. However, if the Cu content exceeds 0.50%, surface flaws will easily occur on the steel plate, so when Cu is contained, the Cu content should be 0.50% or less.
  • the Cu content is preferably 0.45% or less.
  • Ni 0.50% or less
  • Ni is an element effective in improving low-temperature toughness and increasing strength, and in order to obtain this effect, it is preferable that the Ni content is 0.05% or more.
  • the Ni content is more preferably 0.10% or more.
  • Ni is an expensive element, when Ni is contained, the Ni content is set to 0.50% or less.
  • the Ni content is preferably 0.45% or less.
  • Mo 0.50% or less
  • Mo is an element effective in improving low-temperature toughness and increasing strength, and in order to obtain this effect, it is preferable that the Mo content is 0.05% or more.
  • Mo content is set to 0.50% or less. Mo content is preferably 0.45% or less.
  • V 0.1% or less
  • V is an element that can be optionally added to increase the strength and low-temperature toughness of steel sheets, but its effect will not be fully expressed if the V content is less than 0.005%. . Therefore, when V is contained, it is preferable that the V content is 0.005% or more. On the other hand, if the V content exceeds 0.1%, the toughness of the welded part will deteriorate, so when V is contained, the V content is preferably 0.1% or less.
  • the V content is more preferably 0.050% or less, and even more preferably 0.010% or less.
  • Zr 0.02% or less
  • Mg 0.02% or less
  • REM 0.02% or less
  • Zr, Mg, and REM rare earth metals
  • REM is a general term for Sc, Y, and 15 elements from lanthanum (La) with atomic number 57 to lutetium (Lu) with atomic number 71, and the REM content here refers to the total content of these elements. It is quantity.
  • the remainder other than the above-mentioned elements consists of Fe and inevitable impurities.
  • other trace elements may be included as long as they do not impair the effects of the present invention.
  • O is an element that is unavoidably contained in steel, but it is permissible in the present invention as long as its content is 0.0050% or less, preferably 0.0040% or less.
  • the high-strength steel plate of the present invention has an average Vickers hardness (HV0.5) at 0.25 mm below the steel plate surface, where ⁇ is the standard deviation of Vickers hardness (HV0.5) at 0.25 mm below the steel plate surface. It is important that the value +3 ⁇ is 225HV or less. By satisfying this condition, excellent HISC resistance can be obtained in a high-pressure hydrogen environment. If the average value +3 ⁇ of Vickers hardness (HV0.5) at 0.25 mm below the surface of the steel plate exceeds 225 HV, there is a large variation in hardness within the steel plate, and hydrogen accumulates locally. HISC resistance deteriorates at the site where hydrogen accumulates.
  • Vickers hardness (HV0.5) at 0.25 mm below the surface of the steel plate is defined as the position 0.25 mm below the surface of the steel plate from the tip and tail end of the steel plate in the rolling direction (at the center of the plate thickness from the surface of the steel plate).
  • the Vickers hardness (HV 0.5) at a depth of 0.25 mm in the width direction was measured at 100 points equally spaced along the board width direction. Note that the tip of the steel plate in the rolling direction is located 1 m downstream from the tip of the steel plate in the rolling direction. The tail end of the steel plate in the rolling direction is located 1 m upstream in the rolling direction from the tailmost end of the steel plate.
  • the reason why the hardness of the steel plate is measured at 0.5 kgf instead of the normally used 10 kgf is that the indentation is smaller by measuring at 0.5 kgf, so the hardness information at a position closer to the surface, This is because it becomes possible to obtain hardness information that is more sensitive to the microstructure.
  • Measuring Vickers hardness with a test force smaller than 0.5 kgf is not preferable because the indentation size is too small and measurement variations become large.
  • the average value of Vickers hardness +3 ⁇ at 0.25 mm below the surface of the steel plate is preferably 220 HV or less. Further, as an example, the average value of Vickers hardness +3 ⁇ at 0.25 mm below the surface of the steel plate is 200 HV or more.
  • Fatigue crack propagation resistance is improved by making the average crystal grain size finer, but there is a limit to making the average grain size finer when cooling is started at a temperature higher than the Ar 3 transformation temperature.
  • it is important to suppress the formation of coarse crystal grains. That is, if the top 20% grain size is large, fatigue crack growth resistance deteriorates. In particular, in a structure in which the top 20% of the grain size distribution exceeds 30 ⁇ m at the center of the plate thickness, cracks are likely to propagate, resulting in a significant deterioration in fatigue crack propagation resistance.
  • the upper 20% grain size at the center of the plate thickness (at the 1/2 position of the plate thickness) is 30 ⁇ m or less.
  • the upper 20% particle size is preferably 25 ⁇ m or less.
  • the top 20% particle size is 15 ⁇ m or more.
  • the upper 20% grain size is a grain size that corresponds to the 20% position from the largest crystal grain size when the crystal grain sizes are arranged in descending order in the crystal grain size distribution.
  • the measurement range of the crystal grain size was 1 mm x 1 mm at the center of the plate thickness.
  • the grain size is determined by determining the grain boundary by determining that the boundary with an orientation difference of 15° or more is a grain boundary.
  • the equivalent circle diameter was calculated as the crystal grain size from the area of the crystal grain.
  • a frequency distribution table is created for all the crystal grains to be measured, and the crystal grain size that corresponds to 20% of the cumulative relative frequency from the larger calculated grain size is defined as the "top 20% grains”. It is called "diameter”.
  • the high-strength steel sheet of the present invention has a fatigue crack growth rate of 2.0 ⁇ 10 when the stress intensity factor range ⁇ K is 45 (MPa ⁇ m 1/2 ) in a fatigue crack growth test in 21 MPa high-pressure hydrogen gas. -2 (mm/cycle) or less.
  • the fatigue crack growth rate is 1.5 ⁇ 10 ⁇ 2 (mm/cycle) or less.
  • the fatigue crack growth rate is preferably as low as possible. Further, as an example, the fatigue crack growth rate is 1.0 ⁇ 10 ⁇ 2 (mm/cycle) or more.
  • the high-strength steel plate of the present invention is mainly intended for use as a steel plate for steel pipes having a strength of API 5L X65 grade or higher, and therefore has a tensile strength of 535 MPa or higher.
  • the upper limit of the tensile strength of the high-strength steel plate of the present invention is not particularly limited, but as an example, the tensile strength of the high-strength steel plate of the present invention is 760 MPa or less.
  • the tensile strength of the high-strength steel plate of the present invention may be 600 MPa or less.
  • the thickness of the high-strength steel plate of the present invention is not particularly limited, but is preferably 12 mm or more. Furthermore, the thickness of the high-strength steel plate of the present invention is not particularly limited, but is preferably 39 mm or less.
  • the method for producing a high-strength steel plate of the present invention involves heating a steel slab having the above-mentioned composition, hot rolling the steel slab to form a steel plate (hot rolling process), and then rolling the steel slab into a steel plate.
  • the sample is cooled under predetermined conditions (cooling process).
  • Heating temperature of steel billet 1000-1250°C If the heating temperature of the steel piece (slab) is less than 1000° C., the solid solution of carbides will be insufficient, and the amount of solid solution strengthening due to solid solution C etc. will be reduced, so that the necessary strength will not be obtained. On the other hand, if the heating temperature of the steel slab exceeds 1250°C, the crystal grains will become extremely coarse and fatigue crack propagation resistance will deteriorate, so the heating temperature of the steel slab should be 1000 to 1250°C.
  • the heating temperature of the steel piece is preferably 1030°C or higher. Further, the heating temperature of the steel piece is preferably 1200°C or less. Note that the steel piece (slab) is heated to the heating temperature up to the center.
  • Total reduction rate in recrystallization temperature range 35% or more and 55% or less
  • the total reduction rate in the recrystallization temperature range is set to 35% or more, preferably 38% or more.
  • the total rolling reduction in the recrystallization temperature range should be 55% or less, preferably 52% or less.
  • the reduction ratio in the final rolling pass in the recrystallization temperature range is set to 10% or more, preferably 11% or more.
  • the upper limit of the rolling reduction of the final rolling pass in the recrystallization temperature range is not particularly limited, and the higher the rolling ratio, the more preferable. As an example, the reduction ratio of the final rolling pass in the recrystallization temperature range is 20% or less.
  • the reduction ratio of the final rolling pass in the temperature range above (lower limit temperature of the recrystallization temperature range -80°C) and below the lower limit temperature of the recrystallization temperature range is set to be 15% or more, preferably 16% or more.
  • the upper limit of the rolling reduction ratio of the final rolling pass in the above temperature range is not particularly limited, and the higher it is, the more preferable it is. As an example, the reduction ratio of the final rolling pass in the temperature range is 25% or less.
  • Rolling at a temperature lower than is more effective for grain refinement because rolling at a lower temperature introduces more strain. For this reason, it is preferable to roll at a low temperature below (lower limit temperature of the recrystallization temperature range -80° C.) within a range where the cooling start temperature for cooling can be observed.
  • the lower the rolling end temperature In the hot rolling process, in order to make the grains finer, the lower the rolling end temperature, the better.
  • the Ar 3 transformation point means the temperature at which ferrite transformation starts during cooling, and can be determined, for example, from the composition of the steel using the following formula. Note that the surface temperature of the steel plate can be measured with a radiation thermometer or the like.
  • Ar 3 transformation point (°C) 910-310 [%C] -80 [%Mn] -20 [%Cu] -15 [%Cr] -55 [%Ni] -80 [%Mo]
  • [%X] indicates the content (mass%) of element X in the steel, and 0 is used for elements that are not contained.
  • Cooling start temperature Ar 3 transformation point (°C) or higher at steel plate surface temperature Cooling (controlled cooling) is performed on the steel plate after the hot rolling process. If the steel sheet surface temperature at the start of cooling is below the Ar 3 transformation point (° C.), ferrite is generated before cooling, resulting in a large decrease in strength. For this reason, the steel plate surface temperature at the start of cooling is set to be equal to or higher than the Ar 3 transformation point (° C.). Note that the steel plate surface temperature at the start of cooling is the temperature of the steel plate surface region where the cooling start temperature is the lowest.
  • the steel plate surface temperature at the start of cooling is, for example, the steel plate surface temperature at the tail end of the steel plate when the steel plate is cooled while traveling in one direction with respect to the cooling device. Further, for example, if the entire steel plate is cooled in certain areas and the time to start cooling is different between the areas, the temperature is the steel plate surface temperature of the area cooled last.
  • the upper limit of the steel plate surface temperature at the time of starting cooling is the above-mentioned rolling end temperature.
  • the difference in cooling start time for the entire steel plate is set to within 50 seconds, preferably within 45 seconds. Specifically, for example, when cooling a steel plate while traveling in one direction with respect to the cooling device, the difference between the cooling start time of the leading end of the steel plate and the cooling start time of the tail end of the steel plate is set to within 50 seconds.
  • the difference between the cooling start time of the first area and the cooling start time of the last area is determined. within 50 seconds. Note that if the entire steel plate can be cooled at once, the cooling start time difference for the entire steel plate may be 0 seconds.
  • Average cooling rate from 750°C to 550°C at 0.25mm below the surface of the steel plate 15-50°C/s It is important to make the average cooling rate from 750° C. to 550° C. at a temperature of 0.25 mm below the surface of the steel sheet as slow as possible, and to build in granular bainite. Since the temperature range from 750°C to 550°C is an important temperature range for bainite transformation, it is important to control the cooling rate in this temperature range. If the average cooling rate in the temperature range exceeds 50° C./s, there is a risk that variations in hardness will occur, and the HISC resistance after pipe formation will deteriorate. Therefore, the average cooling rate is set to 50° C./s or less.
  • the average cooling rate in the above temperature range should be 15°C/s or more, and 17°C/s or more. It is preferable.
  • cooling in a temperature range of 550°C or less at a temperature of 0.25 mm below the surface of the steel plate if the cooling rate is slow, cooling will not occur in a stable nucleate boiling state, and the hardness will increase at the extreme surface layer of the steel plate. There is a risk that it will vary.
  • the average cooling rate from 550°C to the cooling stop temperature at the steel plate temperature 0.25 mm below the steel plate surface is preferably 150°C/s or more. In order to more easily suppress variations in hardness, the average cooling rate is preferably 250° C./s or less.
  • Average cooling rate from 750°C to 550°C at the center of plate thickness 15-50°C/s If the average cooling rate from 750° C. to 550° C. at the center of the plate thickness is less than 15° C./s, a granular bainite structure cannot be obtained, resulting in a decrease in strength. Therefore, the average cooling rate from 750°C to 550°C at the center of the plate thickness is set to 15°C/s or more. From the viewpoint of suppressing variations in structure, the average cooling rate is preferably 17° C./s or more. On the other hand, in order to suppress variations in particle size, the average cooling rate is preferably 50° C./s or less, and preferably 45° C./s or less.
  • cooling in a temperature range of 550°C or less at the steel plate temperature at the center of the plate thickness is not particularly limited, but from the perspective of suppressing variations in structure and grain size, the average cooling rate in the above temperature range is 15°C/s. It is preferable to set it as above. Moreover, from the above-mentioned viewpoint, it is preferable that the average cooling rate in the above-mentioned temperature range is 50° C./s or less.
  • the steel plate temperature 0.25 mm below the steel plate surface and at the center of the plate thickness cannot be directly physically measured. However, based on the surface temperature at the start of cooling measured by a radiation thermometer and the target surface temperature at the end of cooling, the temperature distribution within the plate thickness cross section is calculated by differential calculation using, for example, a process computer. The results can be obtained in real time.
  • the temperature at 0.25 mm below the surface of the steel plate in this temperature distribution is referred to as the “steel plate temperature at 0.25 mm below the surface of the steel plate” in this specification, and the temperature at the center of the plate thickness in the temperature distribution is referred to as "the temperature at the center of the plate thickness" in this specification.
  • Step plate temperature The temperature at 0.25 mm below the surface of the steel plate in this temperature distribution.
  • Cooling stop temperature 250 to 550°C at the steel plate temperature 0.25 mm below the steel plate surface and at the center of the plate thickness If the cooling stop temperature exceeds 550°C at the steel plate temperature 0.25 mm below the surface of the steel plate and at the center of the plate thickness, bainite transformation will be incomplete and sufficient strength will not be obtained. For this reason, the cooling stop temperature is set to 550°C or lower, preferably 500°C or lower. Further, if the cooling stop temperature is less than 250° C., the hardness increases and the HISC resistance deteriorates. For this reason, the cooling stop temperature is set to 250°C or higher, preferably 300°C or higher.
  • Step pipes for hydrogen transportation After forming the high-strength steel plate of the present invention into a tubular shape by press bending, roll forming, UOE forming, etc., the butted portions are welded to form a hydrogen transport steel pipe (UOE steel pipe, electric Sewn steel pipes, spiral steel pipes, etc.) can be manufactured. Further, by manufacturing a steel pipe using the high-strength steel plate of the present invention, a steel pipe with excellent HISC resistance can be manufactured even if a high hardness region exists in the welded portion.
  • high-pressure hydrogen means, for example, a hydrogen gas environment of 15 MPa or more.
  • UOE steel pipes are made by groove-processing the ends of a steel plate, forming them into a steel pipe shape using a C press, a U press, or an O press, and then seam welding the butt portions using internal and external welding, and then welding the joints as necessary. Manufactured through a tube expansion process.
  • any welding method may be used as long as sufficient joint strength and joint toughness can be obtained, but from the viewpoint of excellent welding quality and manufacturing efficiency, it is preferable to use submerged arc welding.
  • expansion can also be performed on a steel pipe that has been formed into a tubular shape by press bending and then seam-welded at the butt portions.
  • Steel (steel types A to W) having the composition shown in Table 1 is made into a slab by a continuous casting method, heated to the heating temperature shown in Table 2, and then hot rolled and cooled under the conditions shown in Table 2. was applied to obtain a steel plate having the final thickness shown in Table 2.
  • controlled cooling was performed using a water-cooled controlled cooling device while running the steel plate in one direction. After that, the edges of the steel plate were grooved and formed into a steel pipe shape using a C press, a U press, and an O press, and then the inner and outer butt parts were seam welded using submerged arc welding, and the steel pipe was made into a steel pipe through a pipe expansion process. .
  • the Ar 3 transformation point and the lower limit temperature Tnr of the recrystallization temperature range in Table 1 were determined from the above-mentioned formulas, respectively.
  • a CT test piece conforming to ASTM E 647 was taken from the steel plate obtained as described above so that the load direction was parallel to the rolling direction.
  • the CT test piece is a test piece with a thickness of 10 mm taken from the 1/2 position of the plate thickness. Then, the length of the fatigue crack was measured by the compliance method using a clip gauge, and the growth rate of the fatigue crack in 21 MPa high-pressure hydrogen gas was determined. Then, the fatigue crack growth rate (mm/cycle) in a stress intensity factor range ⁇ K of 45 (MPa ⁇ m 1/2 ) was evaluated. The results are shown in Table 3.
  • HISC resistance For the HISC resistance, as shown in FIG. 1, a test piece (coupon) cut out from the obtained steel pipe was flattened, and then a test piece measuring 3 mm x 10 mm x 50 mm was taken from the inner surface of the steel pipe. At this time, in addition to a test piece containing only the base metal without the welded part, a test piece containing both the welded part and the base metal was collected. The inner surface, which is the surface to be tested, was left with a black crust to preserve the outermost layer. That is, 0.25 mm below the surface of the steel plate was included in the test piece.
  • the target range of the present invention was set as follows.
  • the top 20% grain size in the structure at the center of the plate thickness is 30 ⁇ m or less.
  • the fatigue crack growth rate when the stress intensity factor range ⁇ K is 45 (MPa ⁇ m 1/2 ) is less than 2.0 ⁇ 10 ⁇ 2 (mm/cycle).
  • the tensile strength is 535 MPa or more. Furthermore, no cracks were observed in the HISC resistance evaluation (4-point bending test).
  • No. 1 ⁇ No. 9, No. 33 ⁇ No. No. 35 is an invention example in which the component composition and manufacturing conditions satisfy the appropriate range of the present invention.
  • No. 1 ⁇ No. 9, No. 33 ⁇ No. No. 35 was a high-strength steel plate, and the average value of Vickers hardness +3 ⁇ at 0.25 mm below the surface of the steel plate was 225 HV or less.
  • the top 20% grain size in the structure at the center of the plate thickness was 30 ⁇ m or less.
  • the fatigue crack growth rate was less than 2.0 ⁇ 10 ⁇ 2 (mm/cycle) when the stress intensity factor range ⁇ K was 45 (MPa ⁇ m 1/2 ).
  • the tensile strength was 535 MPa or more. Furthermore, the HISC resistance was also good.
  • No. 10 ⁇ No. In No. 20 the composition of the steel sheet is outside the scope of the present invention.
  • No. 10, No. 12, No. 15 and no. No. 19 had insufficient solid solution strengthening and lacked strength.
  • No. 11, No. 13, No. 14, No. 16 and no. No. 20 had poor HISC resistance because the Vickers hardness increased 0.25 mm below the surface of the steel plate.
  • No. 21 ⁇ No. Sample No. 32 is a comparative example in which the component composition is within the scope of the present invention, but the manufacturing conditions are outside the scope of the present invention.
  • No. 21 the heating temperature of the steel slab was low, so the solid solution of carbides was insufficient and the strength was low.
  • the heating temperature of the steel piece was high, so the crystal grains became coarse and the fatigue crack growth resistance deteriorated.
  • No. 23 the total rolling reduction in the recrystallization temperature range was insufficient, so coarse grains remained and the fatigue crack growth resistance deteriorated.
  • No. In No. 21 ⁇ No. Sample No. 32 is a comparative example in which the component composition is within the scope of the present invention, but the manufacturing conditions are outside the scope of the present invention.
  • No. 21 the heating temperature of the steel slab was low, so the solid solution of carbides was insufficient and the strength was low.
  • No. 22 the heating temperature of the steel piece was high, so the crystal grains became coarse and the fatigue crack growth resistance deteriorated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

高圧水素環境下において、耐HISC性および疲労き裂進展抵抗に優れた水素輸送鋼管用高強度鋼板を提供する。 本発明の水素輸送鋼管用高強度鋼板は、質量%で、C:0.030~0.060%、Si:0.01~0.50%、Mn:0.80~1.80%、P:0.015%以下、S:0.0015%以下、Al:0.010~0.080%、Cr:0.05~0.50%、Nb:0.005~0.080%、Ti:0.005~0.020%、N:0.0020~0.0080%およびCa:0.0005~0.0050%を含有し、鋼板表面下0.25mmにおけるビッカース硬さの平均値+3σが225HV以下であり、板厚中央組織における上位20%粒径が30μm以下であり、応力拡大係数範囲ΔKが45(MPa・m1/2)の時の疲労き裂進展速度が2.0×10-2(mm/cycle)未満であり、引張強さが535MPa以上である。

Description

水素輸送鋼管用高強度鋼板及びその製造方法並びに水素輸送用鋼管
 本発明は、水素輸送鋼管用高強度鋼板に関し、特に、高圧水素ガスの輸送に用いられるラインパイプに供して好適な、水素輸送鋼管用高強度鋼板およびその製造方法に関するものである。また、本発明は、上記の水素輸送用高強度鋼板を用いた水素輸送用鋼管に関するものである。
 一般に、ラインパイプは、厚板ミルや熱延ミルによって製造された鋼板を、UOE成形、プレスベンド成形およびロール成形等によって、鋼管に成形することで製造される。
 ここに、高圧水素ガスの輸送に用いられるラインパイプは、強度、靭性、溶接性などの他に、耐水素脆化特性が必要とされる。中でも、操業中の圧力変動でラインパイプに繰返し応力がかかるため、使用寿命を長期化する上で、高圧水素ガス環境下での疲労き裂進展抵抗が必要とされる。また、高圧水素ガス環境下での耐水素誘起応力割れ性(耐HISC(Hydrogen Induced Stress Cracking)性)が必要とされる。水素圧が15MPa程度であれば、十分な肉厚を有する低合金鋼が用いられている。しかし、それ以上の圧力では使用中に水素脆化破壊する危険性が高まるため、低合金鋼は使用されず、低合金鋼よりも水素脆化し難いSUS316L等のオーステナイト系ステンレス鋼が用いられている。
 オーステナイト系ステンレス鋼は、鋼材のコストが高いことに加えて、強度が低いため、高い水素圧に耐えうるように設計すると、肉厚が厚くなり、水素輸送用ラインパイプ自体の価格も高価となる。そのため、水素輸送用ラインパイプ向けとして、より低コストで、かつ高圧水素ガス環境にも耐えうる鋼材が要望されてきた。
 上記の問題を解決するために、例えば特許文献1には、Mnの含有量が多いオーステナイト系鋼材が提案されている。
特許第6703608号公報
 特許文献1に記載の技術によって、SUS316L等のオーステナイト系ステンレス鋼と比較し、低コストである鋼材の提供が可能であるが、特許文献1に記載の鋼材は、オーステナイト系合金であるため、一般的な低合金鋼と比べると高コストである。また、特許文献1に記載の鋼材においては、高圧水素ガス環境下における耐HISC性や疲労き裂進展抵抗は考慮されていない。
 そこで本発明は、上記課題に鑑み、高圧水素環境下において、耐HISC性および疲労き裂進展抵抗に優れる水素輸送鋼管用高強度鋼板を、その有利な製造方法と共に提供することを目的とする。
また、本発明は、上記水素輸送鋼管用高強度鋼板を用いた水素輸送用鋼管を提供することを目的とする。
 本発明者らは、高圧水素ガス環境下における、耐HISC性、および疲労き裂進展抵抗を確保するべく、鋼材の成分組成、ミクロ組織および製造条件について、数多くの実験と検討を繰り返した。その結果、以下のことを知見した。すなわち、鋼板表面下0.25mmにおけるビッカース硬さの標準偏差をσとしたときに、鋼板表面下0.25mmにおけるビッカース硬さの平均値+3σを225HV以下に制御し、板厚中央の組織における上位20%粒径を30μm以下にする。これにより、耐HISC性および疲労き裂進展抵抗が向上する。さらに、このような鋼組織を実現するためには、圧延条件および冷却条件を厳密にコントロールする必要があり、その条件を見出すことに成功した。本発明は、これら知見に基づいてなされたものである。
 すなわち、本発明の要旨構成は次のとおりである。
[1]質量%で、
C:0.030~0.060%、
Si:0.01~0.50%、
Mn:0.80~1.80%、
P:0.015%以下、
S:0.0015%以下、
Al:0.010~0.080%、
Cr:0.05~0.50%、
Nb:0.005~0.080%、
Ti:0.005~0.020%、
N:0.0020~0.0080%、および
Ca:0.0005~0.0050%を含有し、残部がFeおよび不可避的不純物である成分組成と、
鋼板表面下0.25mmにおけるビッカース硬さの標準偏差をσとしたときに、鋼板表面下0.25mmにおけるビッカース硬さの平均値+3σが225HV以下であり、板厚中央における上位20%粒径が30μm以下である組織を有し、
応力拡大係数範囲ΔKが45(MPa・m1/2)の時の疲労き裂進展速度が2.0×10-2(mm/cycle)未満であり、引張強さが535MPa以上である、水素輸送鋼管用高強度鋼板。
[2]前記成分組成が、さらに、質量%で、
Cu:0.50%以下、
Ni:0.50%以下、
Mo:0.50%以下、
V:0.1%以下、
Zr:0.02%以下、
Mg:0.02%以下、および
REM:0.02%以下
のうちから選んだ1種以上を含有する、[1]に記載の水素輸送鋼管用高強度鋼板。
[3]上記[1]または[2]に記載の成分組成を有する鋼片を1000~1250℃の温度に加熱したのち、
再結晶温度域での総圧下率:35%以上55%以下、
再結晶温度域での最終圧延パスの圧下率:10%以上、
(再結晶温度域の下限温度-80℃)以上、再結晶温度域の下限温度未満の温度域における最終圧延パスの圧下率:15%以上
である熱間圧延を施して鋼板とし、
その後、前記鋼板に対して、
冷却開始時の鋼板表面温度:Ar変態点(℃)以上、
鋼板全体における冷却開始時間差:50秒以内、
鋼板表面下0.25mmにおける鋼板温度で750℃から550℃までの平均冷却速度:15~50℃/s、
板厚中央における鋼板温度で750℃から550℃までの平均冷却速度:15~50℃/s、
鋼板表面下0.25mmおよび板厚中央における鋼板温度で冷却停止温度:250~550℃
である冷却を施す、水素輸送鋼管用高強度鋼板の製造方法。
[4]上記[1]または[2]に記載の水素輸送鋼管用高強度鋼板を用いた水素輸送用鋼管。
 本発明の水素輸送鋼管用高強度鋼板および該水素輸送鋼管用高強度鋼板を用いた水素輸送用鋼管は、高圧水素環境下における耐HISC性、および疲労き裂進展抵抗に優れる。前記鋼管は、該鋼管において溶接部を含む領域においても、高圧水素環境下における耐HISC性に優れる。また、本発明の水素輸送鋼管用高強度鋼板の製造方法によれば、高圧水素環境下における耐HISC性、および疲労き裂進展抵抗に優れた水素輸送鋼管用高強度鋼板を製造することができる。
実施例における耐HISC性の評価のための試験片の採取方法を説明する模式図である。
 以下、本発明の水素輸送鋼管用高強度鋼板について、具体的に説明する。なお、以下、本発明の水素輸送鋼管用高強度鋼板を、単に、高強度鋼板ともいう。
 [成分組成]
 まず、本発明の高強度鋼板の成分組成とその限定理由について説明する。以下の説明において%で示す単位は、特に断らない限り全て質量%である。
 C:0.030~0.060%
 Cは、強度の向上に有効に寄与するが、C含有量が0.030%未満では十分な強度が確保できないので、C含有量は0.030%以上とする。C含有量は、好ましくは0.035%以上とする。一方、C含有量が0.060%を超えると、加速冷却時に硬さが上昇するため、耐HISC性が劣化する。このため、C含有量は0.060%以下とする。C含有量は、好ましくは0.050%以下とする。
 Si:0.01~0.50%
 Siは、脱酸のため添加するが、Si含有量が0.01%未満では脱酸効果が十分でないので、Si含有量は0.01%以上とする。Si含有量は、好ましくは0.05%以上とする。一方、Si含有量が0.50%を超えると、溶接性が劣化するため、Si含有量は0.50%以下とする。Si含有量は、好ましくは0.45%以下とする。
 Mn:0.80~1.80%
 Mnは、強度の向上に有効に寄与するが、Mn含有量が0.80%未満ではその効果が十分には発現しない。このためMn含有量は0.80%以上とする。Mn含有量は、好ましくは1.00%以上とする。Mn含有量は、より好ましくは1.20%以上とする。一方、Mn含有量が1.80%を超えると加速冷却時に硬さが上昇するため、耐HISC性が劣化する。このため、Mn含有量は1.80%以下とする。Mn含有量は、好ましくは1.70%以下とする。Mn含有量は、より好ましくは1.60%以下とする。
 P:0.015%以下
 Pは、不可避不純物元素であり、硬さを上昇させることで、耐HISC性を劣化させる。P含有量が0.015%を超えるとその傾向が顕著となるため、P含有量の上限を0.015%とする。P含有量は、好ましくは0.008%以下とする。なお、P含有量は低いほどよいが、過度の脱Pは精錬コストの増加を招くので、精錬コストの観点からは、P含有量は0.001%以上とすることが好ましい。
 S:0.0015%以下
 Sは、不可避不純物元素であり、鋼中においてはMnS介在物を生成して低温靭性を劣化させるため、S含有量は、少ないことが好ましいが、0.0015%までは許容される。そのため、S含有量は0.015%以下とする。S含有量は、好ましくは0.0010%以下である。なお、S含有量は低いほどよいが、過度の脱Sは精錬コストの増加を招くので、精錬コストの観点からは、S含有量は0.0002%以上とすることが好ましい。
 Al:0.010~0.080%
 Alは、脱酸剤として添加するが、Al含有量が0.010%未満ではその効果が十分には発現しない。このためAl含有量は0.010%以上とする。Al含有量は、好ましくは0.015%以上とする。Al含有量は、より好ましくは0.025%以上とする。一方、Al含有量が0.080%を超えると連続鋳造時の浸漬ノズルのアルミナ詰まりが生じるため、Al含有量は0.080%以下とする。Al含有量は、好ましくは0.070%以下とする。Al含有量は、より好ましくは0.040%以下とする。
 Cr:0.05~0.50%
 Crは、Mnと同様、低C含有量の鋼でも十分な強度を得るために有効な元素であるが、Cr含有量が0.05%未満ではその効果が十分には発現しない。このためCr含有量は0.05%以上とする。Cr含有量は、好ましくは0.10%以上とする。Cr含有量は、より好ましくは0.15%以上とする。しかし、Cr含有量が0.50%を超えると、焼入れ性が過剰になるため、加速冷却時に硬さが上昇し、耐HISC性が劣化する。このため、Cr含有量は0.50%以下とする。Cr含有量は、好ましくは0.45%以下とする。Cr含有量は、より好ましくは0.35%以下とする。
 Nb:0.005~0.080%
 Nbは、固溶Nbとして存在すると熱間圧延時の未再結晶温度域を拡大し、結晶粒の粒径微細化に寄与するが、Nb含有量が0.005%未満ではその効果が十分には発現しない。このためNb含有量は0.005%以上とする。Nb含有量は、好ましくは0.010%以上とする。Nb含有量は、より好ましくは0.025%以上とする。一方、Nb含有量が0.080%を超えると凝固時に粗大な炭化物を晶出するため、耐水素誘起割れ性が劣化する。このため、Nb含有量は0.080%以下とする。Nb含有量は、好ましくは0.060%以下とする。Nb含有量は、より好ましくは0.055%以下とする。
 Ti:0.005~0.020%
 Tiは、TiNとして加熱時にオーステナイト粒をピンニングし、粒の成長を抑制する効果がある。Ti含有量が0.005%未満ではTiNが十分に生成しないため、Ti含有量は0.005%以上とする。Ti含有量は、好ましくは0.008%以上とする。また、Ti含有量が0.020%を超えると、生成したTiNが粗大化して、溶接熱影響部の十分な靱性が得られないため、Ti含有量は0.020%以下とする。Ti含有量は、好ましくは0.017%以下とする。Ti含有量は、より好ましくは0.015%以下とする。
 N:0.0020~0.0080%
 Nは、強度の向上に有効に寄与するが、N含有量が0.0020%未満では十分な強度が確保できない。このためN含有量は0.0020%以上とする。N含有量は、好ましくは0.0025%以上とする。N含有量は、より好ましくは0.0030%以上とする。一方、N含有量が0.0080%を超えると、加速冷却時に硬さが上昇するため、耐HISC性が劣化する。このため、N含有量は0.0080%以下とする。N含有量は、好ましくは0.0070%以下とする。N含有量は、より好ましくは0.0050%以下とする。
 Ca:0.0005~0.0050%
 Caは、硫化物系介在物の形態制御による耐水素誘起割れ性向上に有効な元素であるが、Ca含有量が0.0005%未満ではその添加効果が十分でない。このためCa含有量は0.0005%以上とする。Ca含有量は、好ましくは0.0008%以上とする。Ca含有量は、より好ましくは0.0015%以上とする。一方、Ca含有量が0.0050%を超えた場合、上述の効果が飽和するだけでなく、鋼の清浄度が低下することにより耐水素誘起割れ性が劣化するので、Ca含有量は0.0050%以下とする。Ca含有量は、好ましくは0.0045%以下とする。Ca含有量は、より好ましくは0.0035%以下とする。
 以上、本発明の高強度鋼板における基本成分(必須成分)について説明した。本発明の高強度鋼板における成分組成のうち、上記以外の成分(残部)はFeおよび不可避的不純物とすることができる。
 本発明の高強度鋼板の成分組成は、上記成分に加えて、さらに、Cu、Ni、Mo、V、Zr、MgおよびREMのうちから選んだ1種以上を、以下の範囲で任意に含有させることができる。
 Cu:0.50%以下
 Cuは、低温靭性の改善と強度の上昇に有効な元素であり、この効果を得るにはCu含有量を0.05%以上とすることが好ましい。Cu含有量は、0.10%以上がより好ましい。しかし、Cu含有量が0.50%を超えると、鋼板の表面疵が発生しやすくなるため、Cuを含有する場合は、Cu含有量を0.50%以下とする。Cu含有量は、好ましくは0.45%以下とする。
 Ni:0.50%以下
 Niは、低温靭性の改善と強度の上昇に有効な元素であり、この効果を得るにはNi含有量を0.05%以上とすることが好ましい。Ni含有量は、0.10%以上がより好ましい。一方で、Niは高価な元素であるため、Niを含有する場合は、Ni含有量を0.50%以下とする。Ni含有量は、好ましくは0.45%以下とする。
 Mo:0.50%以下
 Moは、低温靭性の改善と強度の上昇に有効な元素であり、この効果を得るにはMo含有量を0.05%以上とすることが好ましい。一方で、Moは高価な元素であるため、Moを含有する場合は、Mo含有量を0.50%以下とする。Mo含有量は、好ましくは0.45%以下とする。
 V:0.1%以下
 Vは、鋼板の強度および低温靭性を高めるために任意に添加することができる元素であるが、V含有量が0.005%未満ではその効果が十分には発現しない。このためVを含有する場合には、V含有量を0.005%以上とすることが好ましい。一方、V含有量が0.1%を超えると溶接部の靭性が劣化するので、Vを含有する場合は、V含有量を0.1%以下とするのが好ましい。V含有量は、0.050%以下がより好ましく、0.010%以下がさらに好ましい。
 Zr:0.02%以下、Mg:0.02%以下、REM:0.02%以下
 Zr、MgおよびREM(希土類金属)は、結晶粒微細化を通じて疲労き裂進展抵抗を高めたり、介在物性状のコントロールを通して耐割れ性を高めたりするために任意に添加することができる元素である。各元素とも、含有量が0.0005%未満ではその効果が十分には発現しない。このためこれらの元素を含有する場合には、各元素の含有量をそれぞれ0.0005%以上とすることが好ましい。一方、各元素の含有量がそれぞれ0.02%を超えるとその効果が飽和するので、Zr、MgおよびREMを含有する場合は、各元素の含有量をそれぞれ0.02%以下とするのが好ましい。前記各元素の含有量は、それぞれ、0.0050%以下がより好ましく、0.0030%以下がさらに好ましい。なお、REMは、Sc、Yと、原子番号57のランタン(La)から原子番号71のルテチウム(Lu)までの15元素の総称であり、ここでいうREM含有量は、これらの元素の合計含有量である。
 なお、上記した元素以外の残部は、Feおよび不可避的不純物からなる。ただし、本発明の作用効果を害しない限り、他の微量元素の含有を妨げない。例えば、Oは鋼中に不可避的に含まれる元素であるが、その含有量が0.0050%以下、好ましくは0.0040%以下であれば、本発明においては許容される。
 [鋼板表面下0.25mmの硬さ]
 本発明の高強度鋼板は、鋼板表面下0.25mmにおけるビッカース硬さ(HV0.5)の標準偏差をσとしたときに、鋼板表面下0.25mmにおけるビッカース硬さ(HV0.5)の平均値+3σが225HV以下であることが重要である。この条件を満たすことにより、高圧水素環境下において、優れた耐HISC性を得ることができる。鋼板表面下0.25mmにおけるビッカース硬さ(HV0.5)の平均値+3σが225HV超えの場合、鋼板内の硬さのばらつきが大きいため、局所的に水素が集積することにより、当該局所的に水素が集積した部位における耐HISC性の劣化が生じてしまう。ここで、「鋼板表面下0.25mmにおけるビッカース硬さ(HV0.5)」は、鋼板の圧延方向の先端と尾端からそれぞれ、鋼板表面下0.25mmの位置(鋼板の表面から板厚中央方向に0.25mmの深さ位置)のビッカース硬さ(HV0.5)を、板幅方向に沿って等間隔に100点測定した。なお、前記鋼板の圧延方向の先端は、鋼板の最先端から圧延方向に1m下流側の位置である。前記鋼板の圧延方向の尾端は、鋼板の最尾端から圧延方向に1m上流側の位置である。測定は、板幅方向端部近傍の非定常部を除いた領域について行った。ここで、通常用いられる10kgfに代えて0.5kgfで鋼板の硬さを測定するのは、0.5kgfで測定することにより圧痕が小さくなるので、より表面に近い位置での硬さ情報や、よりミクロ組織に敏感な硬さ情報を得ることが可能となるからである。0.5kgfよりも小さな試験力でビッカース硬さを測定すると、圧痕サイズが過度に小さく、測定ばらつきが大きくなるため好ましくない。鋼板表面下0.25mmにおけるビッカース硬さの平均値+3σは220HV以下が好ましい。また、一例として、鋼板表面下0.25mmにおけるビッカース硬さの平均値+3σは200HV以上である。
 [板厚中央における上位20%粒径]
 平均結晶粒径を微細化することで、疲労き裂進展抵抗が向上するが、Ar変態点温度以上で冷却を開始する場合においては、平均結晶粒径の微細化に限界がある。本発明においては、粗大な結晶粒の形成を抑制することが肝要である。すなわち、上位20%粒径が大きいと、疲労き裂進展抵抗が劣化する。特に、板厚中央において、結晶粒径の分布における上位20%が30μm超である組織は、き裂が伝播しやすいので、疲労き裂進展抵抗が著しく劣化する。よって、板厚中央(板厚1/2位置)における上位20%粒径が30μm以下である組織とする必要がある。前記上位20%粒径は25μm以下が好ましい。また、一例として、前記上位20%粒径は15μm以上である。なお、上位20%粒径とは、結晶粒径の分布において、結晶粒径を大きい順に整理した際、結晶粒径の大きいほうから20%位置にあたる粒径である。結晶粒径の測定範囲は、板厚中央位置の1mm×1mmとした。より具体的には、結晶粒径は、板厚中央位置における組織をEBSD(Electron Backscatter Diffraction)法により解析した結果、15°以上の方位差を有する境界を結晶粒界と判断して、個々の結晶粒の面積から円相当径の直径を結晶粒径として算出した。また、本発明においては、測定対象の全結晶粒について、度数分布表を作成し、算出した結晶粒径の大きいほうからの累積相対度数が20%に相当する結晶粒径を「上位20%粒径」と称する。
 [疲労き裂進展速度]
 本発明の高強度鋼板は、21MPa高圧水素ガス中の疲労き裂進展試験において、応力拡大係数範囲ΔKが45(MPa・m1/2)の時の疲労き裂進展速度が2.0×10-2(mm/cycle)未満である。好ましくは、前記疲労き裂進展速度は1.5×10-2(mm/cycle)以下である。前記疲労き裂進展速度は、低いほど好ましい。また、一例として、前記疲労き裂進展速度は、1.0×10-2(mm/cycle)以上である。
 [引張強さ]
 本発明の高強度鋼板は、主にAPI 5LのX65グレード以上の強度を有する鋼管用の鋼板に向けられたものであることから、535MPa以上の引張強さを有するものとする。なお、本発明の高強度鋼板の引張強さの上限は特に限定されないが、一例として、本発明の高強度鋼板の引張強さは、760MPa以下である。また、本発明の高強度鋼板の引張強さは、600MPa以下としてもよい。
 [高強度鋼板の厚さ]
 本発明の高強度鋼板の板厚は、特に限定されないが、12mm以上であることが好ましい。また、本発明の高強度鋼板の板厚は、特に限定されないが、39mm以下であることが好ましい。
 [製造方法]
 以下、上記高強度鋼板を製造するための製造方法および製造条件について、具体的に説明する。
本発明の高強度鋼板の製造方法は、上記成分組成を有する鋼片(スラブ)を加熱したのち、当該鋼片に熱間圧延を施して鋼板とし(熱間圧延工程)、その後、当該鋼板に対して所定条件下での冷却を行う(冷却工程)。
 [鋼片の加熱温度]
 鋼片の加熱温度:1000~1250℃
 鋼片(スラブ)の加熱温度が1000℃未満では、炭化物の固溶が不十分となり、固溶C等による固溶強化量が少なくなるため、必要な強度が得られない。一方、鋼片の加熱温度が、1250℃を超えると、結晶粒が極端に粗大化し、疲労き裂進展抵抗が劣化するため、鋼片の加熱温度は1000~1250℃とする。鋼片の加熱温度は、好ましくは1030℃以上とする。また、鋼片の加熱温度は、好ましくは1200℃以下とする。なお、鋼片(スラブ)は中心部まで前記加熱温度に加熱される。
 [再結晶温度域での総圧下率:35%以上55%以下]
 板厚中央の組織における上位20%粒径を微細にするためには、再結晶温度域での熱間圧延で、結晶粒の再結晶を促進し、粗大粒の形成を抑制する必要がある。再結晶温度域での総圧下率が35%未満の場合、再結晶が不十分であるため、粗大粒が残存する。よって、再結晶温度域での総圧下率は35%以上とし、好ましくは38%以上とする。一方、再結晶温度域での総圧下率が55%を超えると、結晶粒の粗大化は抑制できるが、未再結晶域での圧下が不足するため、結晶粒の微細化ができない。よって、再結晶温度域での総圧下率は55%以下とし、好ましくは52%以下とする。ここで、再結晶温度域の下限温度Tnr(℃)は、例えば、鋼の成分から以下の式で求めることができる。なお、熱間圧延における温度は、被圧延材(鋼片ないし鋼板)の表面温度とし、前記表面温度は放射温度計等で測定することができる。
Tnr(℃)=174×log[%Nb][%C+(12/14)%N]+1444
ただし、上記式中の[%X]は、X元素の鋼中含有量(質量%)を示す。
 [再結晶温度域での最終圧延パスの圧下率:10%以上]
 再結晶温度域での総圧下率を35%以上55%以下にするのに加えて、再結晶温度域での最終圧延パスの圧下率を十分に確保し、再結晶を十分に促進させることで、粗大粒が存在しない均一粒の状態で部分再結晶域圧延を開始する必要がある。再結晶温度域での最終圧延パスの圧下率が10%未満の場合、再結晶が不十分であるため、粗圧延後仕上げ圧延開始までの保持時間の間に粗大粒に成長する。よって、再結晶温度域での最終圧延パスの圧下率は10%以上とし、好ましくは11%以上とする。再結晶温度域での最終圧延パスの圧下率の上限は特に限定されず、高いほど好ましい。一例として、再結晶温度域での最終圧延パスの圧下率は20%以下である。
 [(再結晶温度域の下限温度-80℃)以上、再結晶温度域の下限温度未満の温度域における最終圧延パスの圧下率:15%以上]
 再結晶温度域での圧延完了後も部分的には再結晶するため、(再結晶温度域の下限温度-80℃)以上、再結晶温度域の下限温度未満の温度域における圧下率をさらに高めることで、再結晶を促進することが可能である。これにより、板厚中央の組織における上位20%粒径を有効に微細化することができる。よって、(再結晶温度域の下限温度-80℃)以上、再結晶温度域の下限温度未満の温度域における最終圧延パスの圧下率は15%以上とし、好ましくは16%以上とする。前記温度域における最終圧延パスの圧下率の上限は特に限定されず、高いほど好ましい。一例として、前記温度域における最終圧延パスの圧下率は25%以下である。
 (再結晶温度域の下限温度-80℃)未満における圧延は、低温で圧延した方が、歪みが多く導入されるため、結晶粒微細化に有効である。このため、冷却の冷却開始温度を遵守できる範囲内で、(再結晶温度域の下限温度-80℃)未満の低温で圧延するのが好ましい。
 [圧延終了温度]
 熱間圧延工程において、結晶粒を微細にするためには、圧延終了温度は低いほどよい。その反面、高圧水素環境下において、耐HISC性を確保する観点からは、熱間圧延工程後の冷却工程における冷却開始温度を、鋼板表面温度でAr変態点以上とする必要があることを踏まえて、圧延終了温度を設定する必要がある。ここで、Ar変態点とは、冷却中におけるフェライト変態開始温度を意味し、例えば、鋼の成分から以下の式で求めることができる。なお、鋼板の表面温度は放射温度計等で測定することができる。
Ar変態点(℃)=910-310[%C]-80[%Mn]-20[%Cu]-15[%Cr]-55[%Ni]-80[%Mo]
ただし、上記式中、[%X]は、X元素の鋼中含有量(質量%)を示し、含有しない元素は0とする。
 [冷却の冷却開始温度]
 冷却開始温度:鋼板表面温度でAr変態点(℃)以上
 熱間圧延工程後の鋼板に、冷却(制御冷却)を施す。冷却開始時の鋼板表面温度がAr変態点(℃)未満の場合、冷却前にフェライトが生成して、強度低下が大きくなる。このため、冷却開始時の鋼板表面温度はAr変態点(℃)以上とする。なお、冷却開始時の鋼板表面温度は、冷却開始温度が最も低くなる鋼板表面領域の温度である。具体的には、冷却開始時の鋼板表面温度は、例えば、冷却装置に対して鋼板を一方向に走行させながら冷却する場合には、鋼板尾端部の鋼板表面温度である。また、例えば、鋼板全体について、一定の領域ごとに冷却を行い、前記領域の間で冷却を開始する時間が異なる場合には、最後に冷却した領域の鋼板表面温度である。なお、一例として、冷却開始時の鋼板表面温度の上限は、上記圧延終了温度である。
 [冷却の冷却開始時間]
 鋼板全体における冷却開始時間差:50秒以内
 鋼板全体における冷却開始時間差が50秒超えの場合、鋼板内において温度差が大きくなるため、冷却停止時の鋼板温度のばらつきが大きくなり、鋼板表面下0.25mmにおけるビッカース硬さのばらつきが大きくなると共に耐HISC性が劣化する。このため、鋼板全体における冷却開始時間差は50秒以内とし、好ましくは45秒以内とする。具体的には、例えば、冷却装置に対して鋼板を一方向に走行させながら冷却する場合には、鋼板先端の冷却開始時間と鋼板尾端の冷却開始時間の差を50秒以内とする。また、例えば、鋼板全体について、一定の領域ごとに冷却を行い、前記領域の間で冷却を開始する時間が異なる場合には、最初の領域の冷却開始時間と最後の領域の冷却開始時間の差を50秒以内とする。なお、鋼板全体を一度に冷却できる場合には、鋼板全体における冷却開始時間差は0秒であってもよい。
 [冷却の冷却速度]
 優れた耐HISC性を得つつ、高強度化を図るためには、鋼板表面下0.25mmおよび板厚中央における冷却速度を制御する必要がある。
 鋼板表面下0.25mmにおける750℃から550℃までの平均冷却速度:15~50℃/s
 鋼板表面下0.25mmにおける鋼板温度で750℃から550℃までの平均冷却速度を極力遅くし、グラニュラーベイナイトを造り込むことが重要である。750℃から550℃までの温度域がベイナイト変態において重要な温度域となるので、この温度域における冷却速度を制御することが重要になる。前記温度域における平均冷却速度が50℃/s超では、硬さのばらつきが生じる恐れがあり、造管後の耐HISC性が劣化する。そのため、当該平均冷却速度は50℃/s以下とする。好ましくは45℃/s以下である。一方、冷却速度が過度に小さくなるとフェライトやパーライトが生成して強度不足となるため、これを防ぐ観点から、前記温度域における平均冷却速度は15℃/s以上とし、17℃/s以上とすることが好ましい。なお、鋼板表面下0.25mmにおける鋼板温度で550℃以下の温度域での冷却については、冷却速度が遅い場合、安定した核沸騰状態での冷却にならず、鋼板の極表層部で硬さがばらつく恐れがある。そのため、鋼板表面下0.25mmにおける鋼板温度で550℃から冷却停止温度までの平均冷却速度は150℃/s以上が好ましい。硬さのばらつきをより抑制しやすくなる点から、当該平均冷却速度は250℃/s以下が好ましい。
 板厚中央における750℃から550℃までの平均冷却速度:15~50℃/s
 板厚中央における750℃から550℃までの平均冷却速度が15℃/s未満では、グラニュラーベイナイト組織が得られずに強度低下が生じる。このため、板厚中央における750℃から550℃までの平均冷却速度は15℃/s以上とする。組織のばらつき抑制の観点からは、前記平均冷却速度は17℃/s以上とすることが好ましい。一方、粒径のばらつきを抑制するために、前記平均冷却速度は、50℃/s以下とし、45℃/s以下とすることが好ましい。なお、板厚中央における鋼板温度で550℃以下の温度域での冷却については、特に限定されないが、組織や粒径のばらつき抑制の観点から、前記温度域での平均冷却速度は15℃/s以上とすることが好ましい。また、前記観点から、前記温度域での平均冷却速度は50℃/s以下とすることが好ましい。
 なお、鋼板表面下0.25mmおよび板厚中央における鋼板温度は、物理的に直接測定することはできない。しかし、放射温度計にて測定された冷却開始時の表面温度と目標の冷却停止時の表面温度をもとに、例えばプロセスコンピューターを用いて差分計算により板厚断面内の温度分布を計算し、その結果からリアルタイムに求めることができる。当該温度分布における鋼板表面下0.25mmでの温度を本明細書における「鋼板表面下0.25mmにおける鋼板温度」とし、当該温度分布における板厚中央の温度を本明細書における「板厚中央における鋼板温度」とする。
 [冷却停止温度]
 冷却停止温度:鋼板表面下0.25mmおよび板厚中央における鋼板温度で250~550℃
 鋼板表面下0.25mmおよび板厚中央における鋼板温度で冷却停止温度が550℃を超えると、ベイナイト変態が不完全になり、十分な強度が得られない。このため、前記冷却停止温度は550℃以下とし、500℃以下とすることが好ましい。また、前記冷却停止温度が250℃未満では、硬さが上昇するため、耐HISCが劣化する。このため、前記冷却停止温度は250℃以上とし、300℃以上とすることが好ましい。
 [水素輸送用鋼管]
 本発明の高強度鋼板を、プレスベンド成形、ロール成形、UOE成形等で管状に成形した後、突き合わせ部を溶接することにより、高圧水素ガスの輸送に好適な水素輸送用鋼管(UOE鋼管、電縫鋼管、スパイラル鋼管等)を製造することができる。また、本発明の高強度鋼板を用いて鋼管を製造することにより、溶接部に高硬度域が存在しても、耐HISC性に優れる鋼管を製造することができる。なお、本発明において、高圧水素とは、一例として、15MPa以上の水素ガス環境を意味する。
 例えば、UOE鋼管は、鋼板の端部を開先加工し、Cプレス、Uプレス、Oプレスで鋼管形状に成形した後、内面溶接および外面溶接で突き合わせ部をシーム溶接し、さらに必要に応じて拡管工程を経て製造される。また、溶接方法は十分な継手強度と継手靭性が得られる方法であれば、いずれの方法でも良いが、優れた溶接品質と製造能率の観点から、サブマージアーク溶接を用いることが好ましい。また、プレスベンド成形により管状に成形した後、突き合せ部をシーム溶接した鋼管に対しても、拡管を実施することができる。
 表1に示す成分組成からなる鋼(鋼種A~W)を、連続鋳造法により鋼片(スラブ)とし、表2に示す加熱温度に加熱したのち、表2に示す条件で熱間圧延と冷却を施し、表2に示す最終板厚の鋼板とした。冷却工程では、鋼板を一方向に走行させながら水冷型の制御冷却装置を用いて制御冷却を行った。その後、鋼板の端部を開先加工し、Cプレス、Uプレス、Oプレスで鋼管形状に成形した後、内面および外面の突き合わせ部をサブマージアーク溶接でシーム溶接し、拡管工程を経て鋼管にした。なお、表1中のAr変態点、再結晶温度域の下限温度Tnrは、それぞれ上述した式から求めた。
 [ビッカース硬さの測定]
 鋼板の圧延方向の先端と尾端からそれぞれ、圧延方向に垂直な断面について、JIS Z 2244(2009年)に準拠して、鋼板表面下0.25mmの位置において、板幅方向に沿って等間隔に100点のビッカース硬さ(HV0.5)を測定した。そして、計200点のビッカース硬さ(HV0.5)の平均値および標準偏差σを求めた。なお、前記鋼板の圧延方向の先端は、鋼板の最先端から圧延方向に1m下流側の位置である。前記鋼板の圧延方向の尾端は、鋼板の最尾端から圧延方向に1m上流側の位置である。また、測定は、板幅方向端部近傍の非定常部を除いた領域について行った。鋼板表面下0.25mmにおけるビッカース硬さの平均値+3σの値を表3に示す。
 [上位20%粒径の算出]
 上記に従って得られた鋼板の板幅中央部より金属組織観察用サンプルを採取した。このサンプルについて板幅方向に垂直な断面を鏡面研磨したあと、コロイダルシリカでエッチングを行った。その後、板厚中央の位置で1mm×1mmの視野でEBSD(Electron Backscatter Diffraction)法にて結晶データを収集した(測定ステップ:0.8μm)。データ収集後、OIM-Analysis(EDAX社製、OIM Analysisソフトウェア)を用いて、15°以上の方位差を有する境界を結晶粒界と判断して、個々の結晶粒の面積から円相当径の直径を結晶粒径として算出した。また、測定対象の全結晶粒について、度数分布表を作成し、算出した結晶粒径の大きいほうからの累積相対度数が20%に相当する結晶粒径を「上位20%粒径」とした。測定の結果を表3に示す。
 [疲労き裂進展速度の導出]
 上記に従って得られた鋼板から、荷重負荷方向が圧延方向と平行になるようASTM E 647に準拠したCT試験片を採取した。前記CT試験片は、板厚1/2位置から採取した厚さ10mmの試験片である。そして、クリップゲージを用いて、コンプライアンス法で疲労き裂の長さを測定して、21MPa高圧水素ガス中における疲労き裂進展速度を求めた。そして、応力拡大係数範囲ΔKが45(MPa・m1/2)での疲労き裂進展速度(mm/cycle)を評価した。その結果を表3に示す。
 [引張強さの測定]
 圧延方向に垂直な方向の全厚試験片を引張試験片として、JIS Z2241(2011年)の規定に準拠した引張試験を行い、引張強さおよび降伏強さを測定した。その結果を表3に示す。
 [耐HISC性の評価]
 耐HISC性は、図1に示すように、得られた鋼管から切り出した試験片(クーポン;coupon)を平坦化した後、3mm×10mm×50mmの試験片を鋼管内面より採取した。このとき、溶接部を含まない母材だけの試験片のほかに、溶接部と母材の両方を含む試験片を採取した。被検面である内面は、最表層の状態を残すために黒皮付きのままとした。すなわち、鋼板表面下0.25mmは試験片に含まれている。かくして採取した試験片に、各鋼管の実際の降伏強度(0.5%YS)の90%の応力を負荷し、21MPa高圧水素ガス中にて、4点曲げ試験を行った。720時間の暴露後に、溶接部を含まない母材だけの試験片と、溶接部と母材の両方を含む試験片との両方において、割れが認められない場合を耐HISC性に優れる(良好)と判断して○とした。また、少なくとも一方の試験片において割れが発生した場合を不良と判断して×とした。結果を表3に示す。
 本発明の目標範囲は、以下のとおりとした。水素輸送鋼管用高強度鋼板として、鋼板表面下0.25mmにおけるビッカース硬さの平均値+3σが225HV以下である。板厚中央の組織における上位20%粒径が30μm以下である。応力拡大係数範囲ΔKが45(MPa・m1/2)の時の疲労き裂進展速度が2.0×10-2(mm/cycle)未満である。引張強さが535MPa以上である。さらに、上記耐HISC性の評価(4点曲げ試験)で割れが認められないことである。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 表2に示したように、No.1~No.9、No.33~No.35は、成分組成および製造条件が本発明の適正範囲を満足する発明例である。表3に示したように、No.1~No.9、No.33~No.35は、いずれも、高強度鋼板として鋼板表面下0.25mmにおけるビッカース硬さの平均値+3σが225HV以下であった。板厚中央の組織における上位20%粒径が30μm以下であった。応力拡大係数範囲ΔKが45(MPa・m1/2)の時の疲労き裂進展速度が2.0×10-2(mm/cycle)未満であった。引張強さが535MPa以上であった。さらに、耐HISC性も良好であった。
 これに対し、No.10~No.20は、鋼板の成分組成が本発明の範囲外である。No.10、No.12、No.15およびNo.19は固溶強化が十分でなく、強度が不足した。No.11、No.13、No.14、No.16およびNo.20は、鋼板表面下0.25mmにおけるビッカース硬さが上昇したため、耐HISC性が劣っていた。No.17およびNo.18は析出物による粒成長抑制が不十分であり、疲労き裂進展抵抗が劣っていた。
 No.21~No.32は、成分組成は本発明の範囲内であるが、製造条件が本発明の範囲外の比較例である。No.21は、鋼片(スラブ)の加熱温度が低いため、炭化物の固溶が不十分であり低強度であった。No.22は、鋼片の加熱温度が高いため、結晶粒が粗大化し、疲労き裂進展抵抗が劣化した。No.23は、再結晶温度域での総圧下率が不足したため、粗大粒が残存し、疲労き裂進展抵抗が劣化した。No.24は、再結晶温度域での総圧下率が過多のため、板厚中央の組織における上位20%粒径が大きく、疲労き裂進展抵抗が劣化した。No.25は、再結晶温度域の最終圧延パスでの圧下率が不足したため、粗大粒が残存し、疲労き裂進展抵抗が劣化した。No.26は、(再結晶温度域の下限温度-80℃)以上、再結晶温度域の下限温度未満の温度域の最終圧延パスでの圧下率が不足したため、板厚中央の組織における上位20%粒径が大きく、疲労き裂進展抵抗が劣化した。No.27は、冷却開始温度が低く、フェライトが一部生成したため、低強度であった。No.28は、鋼板全体における冷却開始時間差が大きかったため、鋼板表面下0.25mmにおけるビッカース硬さのばらつきが大きくなり、耐HISC性が劣化した。No.29は、750℃から550℃までの平均冷却速度が低く、フェライトが一部生成したため、低強度であった。No.30は、750℃から550℃までの平均冷却速度が高く、鋼板表面下0.25mmにおけるビッカース硬さのばらつきが大きくなったため、耐HISC性が劣っていた。No.31は、冷却停止温度が低く、鋼板表面下0.25mmにおけるビッカース硬さのばらつきが大きくなったため、耐HISC性が劣化した。No.32は、冷却停止温度が高く、フェライトが一部生成したため、低強度であった。
 本発明によれば、高圧水素環境下において、耐HISC性および疲労き裂進展抵抗に優れた水素輸送鋼管用高強度鋼板を供給することができる。

 

Claims (4)

  1.  質量%で、
    C:0.030~0.060%、
    Si:0.01~0.50%、
    Mn:0.80~1.80%、
    P:0.015%以下、
    S:0.0015%以下、
    Al:0.010~0.080%、
    Cr:0.05~0.50%、
    Nb:0.005~0.080%、
    Ti:0.005~0.020%、
    N:0.0020~0.0080%、および
    Ca:0.0005~0.0050%を含有し、残部がFeおよび不可避的不純物である成分組成と、
    鋼板表面下0.25mmにおけるビッカース硬さの標準偏差をσとしたときに、鋼板表面下0.25mmにおけるビッカース硬さの平均値+3σが225HV以下であり、板厚中央における上位20%粒径が30μm以下である組織を有し、
    応力拡大係数範囲ΔKが45(MPa・m1/2)の時の疲労き裂進展速度が2.0×10-2(mm/cycle)未満であり、引張強さが535MPa以上である、水素輸送鋼管用高強度鋼板。
  2.  前記成分組成が、さらに、質量%で、
    Cu:0.50%以下、
    Ni:0.50%以下、
    Mo:0.50%以下、
    V:0.1%以下、
    Zr:0.02%以下、
    Mg:0.02%以下、および
    REM:0.02%以下
    のうちから選んだ1種以上を含有する、請求項1に記載の水素輸送鋼管用高強度鋼板。
  3.  請求項1または2に記載の成分組成を有する鋼片を1000~1250℃の温度に加熱したのち、
    再結晶温度域での総圧下率:35%以上55%以下、
    再結晶温度域での最終圧延パスの圧下率:10%以上、
    (再結晶温度域の下限温度-80℃)以上、再結晶温度域の下限温度未満の温度域における最終圧延パスの圧下率:15%以上
    である熱間圧延を施して鋼板とし、
    その後、前記鋼板に対して、
    冷却開始時の鋼板表面温度:Ar変態点(℃)以上、
    鋼板全体における冷却開始時間差:50秒以内、
    鋼板表面下0.25mmにおける鋼板温度で750℃から550℃までの平均冷却速度:15~50℃/s、
    板厚中央における鋼板温度で750℃から550℃までの平均冷却速度:15~50℃/s、
    鋼板表面下0.25mmおよび板厚中央における鋼板温度で冷却停止温度:250~550℃
    である冷却を施す、水素輸送鋼管用高強度鋼板の製造方法。
  4.  請求項1または2に記載の水素輸送鋼管用高強度鋼板を用いた水素輸送用鋼管。

     
PCT/JP2023/017743 2022-07-14 2023-05-11 水素輸送鋼管用高強度鋼板及びその製造方法並びに水素輸送用鋼管 WO2024014098A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023547357A JP7424550B1 (ja) 2022-07-14 2023-05-11 水素輸送鋼管用高強度鋼板及びその製造方法並びに水素輸送用鋼管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-112910 2022-07-14
JP2022112910 2022-07-14

Publications (1)

Publication Number Publication Date
WO2024014098A1 true WO2024014098A1 (ja) 2024-01-18

Family

ID=89536368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017743 WO2024014098A1 (ja) 2022-07-14 2023-05-11 水素輸送鋼管用高強度鋼板及びその製造方法並びに水素輸送用鋼管

Country Status (2)

Country Link
JP (1) JP7424550B1 (ja)
WO (1) WO2024014098A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067209A1 (ja) * 2018-09-28 2020-04-02 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
WO2020137812A1 (ja) * 2018-12-26 2020-07-02 Jfeスチール株式会社 高圧水素ガス環境用鋼材および高圧水素ガス環境用鋼構造物ならびに高圧水素ガス環境用鋼材の製造方法
WO2021020220A1 (ja) * 2019-07-31 2021-02-04 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067209A1 (ja) * 2018-09-28 2020-04-02 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
WO2020137812A1 (ja) * 2018-12-26 2020-07-02 Jfeスチール株式会社 高圧水素ガス環境用鋼材および高圧水素ガス環境用鋼構造物ならびに高圧水素ガス環境用鋼材の製造方法
WO2021020220A1 (ja) * 2019-07-31 2021-02-04 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管

Also Published As

Publication number Publication date
JP7424550B1 (ja) 2024-01-30

Similar Documents

Publication Publication Date Title
TWI392748B (zh) Pipeline steel and steel pipe
EP3042976B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP6047947B2 (ja) 耐サワー性に優れたラインパイプ用厚肉高強度継目無鋼管およびその製造方法
JP5223511B2 (ja) 高強度耐サワーラインパイプ用鋼板およびその製造方法および鋼管
CN111094610B9 (zh) 钢管和钢板
JP5353156B2 (ja) ラインパイプ用鋼管及びその製造方法
CN110462080B (zh) 耐酸性管线管用高强度钢板及其制造方法和使用耐酸性管线管用高强度钢板的高强度钢管
JP5141073B2 (ja) X70グレード以下の低降伏比高強度高靱性鋼管およびその製造方法
JP5499731B2 (ja) 耐hic性に優れた厚肉高張力熱延鋼板及びその製造方法
JP5418251B2 (ja) 耐hic性に優れた厚肉高張力熱延鋼板の製造方法
JP6825748B2 (ja) 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
JP7155702B2 (ja) 耐サワーラインパイプ用厚鋼板およびその製造方法
JP5884202B2 (ja) 高強度ラインパイプ用熱延鋼板
WO2014115548A1 (ja) 引張強さ540MPa以上の高強度ラインパイプ用熱延鋼板
WO2021020220A1 (ja) 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
TW202122601A (zh) 電焊鋼管及其製造方法、輸送管以及建築構造物
WO2021193383A1 (ja) 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
CN114846163B (zh) 钢板和钢管
JP2007138210A (ja) バウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板およびその製造方法
TWI758956B (zh) 電焊鋼管用熱軋鋼板及其製造方法、電焊鋼管及其製造方法、輸送管、建築構造物
JP7424550B1 (ja) 水素輸送鋼管用高強度鋼板及びその製造方法並びに水素輸送用鋼管
JPWO2019064459A1 (ja) 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
JP7226102B2 (ja) 耐サワーラインパイプ用溶接鋼管の製造方法
JP7200588B2 (ja) 油井用電縫鋼管およびその製造方法
JP7396551B1 (ja) 耐サワーラインパイプ用高強度鋼板及びその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839276

Country of ref document: EP

Kind code of ref document: A1