WO2014044462A1 - Thermochromes material, dieses enthaltende formkörper und deren verwendung - Google Patents

Thermochromes material, dieses enthaltende formkörper und deren verwendung Download PDF

Info

Publication number
WO2014044462A1
WO2014044462A1 PCT/EP2013/066604 EP2013066604W WO2014044462A1 WO 2014044462 A1 WO2014044462 A1 WO 2014044462A1 EP 2013066604 W EP2013066604 W EP 2013066604W WO 2014044462 A1 WO2014044462 A1 WO 2014044462A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
thermochromic material
thermochromic
material according
shaped body
Prior art date
Application number
PCT/EP2013/066604
Other languages
English (en)
French (fr)
Inventor
Detlef Lötzsch
Ralf Ruhmann
Arno Seeboth
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to EP13745856.8A priority Critical patent/EP2898041B1/de
Priority to CN201380049795.9A priority patent/CN104718272B/zh
Priority to PL13745856T priority patent/PL2898041T3/pl
Priority to KR1020157010799A priority patent/KR20150061652A/ko
Priority to US14/430,419 priority patent/US9193863B2/en
Priority to JP2015532344A priority patent/JP6193378B2/ja
Publication of WO2014044462A1 publication Critical patent/WO2014044462A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/28Non-macromolecular organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/28Non-macromolecular organic substances
    • C08L2666/34Oxygen-containing compounds, including ammonium and metal salts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom

Definitions

  • Thermochromic material this containing moldings and their use
  • the invention relates to a thermochromic material containing at least one biopolymer, at least one natural dye and at least one reaction medium selected from the group of fatty acids and their derivatives, gallic acid and derivatives thereof and mixtures thereof.
  • the thermochromic material according to the invention is based entirely on toxicity-free natural products.
  • the processing into materials or moldings can take place by means of conventional extrusion technology in the form of flat films, blown films or plates or web plates.
  • the thermochromic material is used in particular in the food industry and medical technology.
  • Thermochromism involves the property of a material to reversibly or irreversibly change its color depending on the temperature. This can be done both by changing the intensity and / or the wavelength maximum respectively. Representative examples and theoretical background to the mechanism of temperature controlled color are described in Chromic Phenomena by P. Bamfield and Ml Hutchings (The Royal Society of Chemistry, 2010) and Thermochromic Phenomena in Polymers by A. Seeboth and D. Lötzsch (Smithers Rapra Technology, 2008).
  • thermochromic films with thermochromic properties have been widely patented in the past. Regardless of whether the thermochromic effect is reversible or irreversible, inorganic or organic dyes are used, the latter also in the form of composites with fluxes and / or developers, all systems have in common that they always contain toxic starting materials in some form. The classic example of this is the use of bisphenol as a developer in almost all existing organic thermochromic composites. As dyes, basic structures of triphenylmethane dyes, pyridiniumphenolatebetaines,
  • thermochromic pigments whose color change is based on a temperature-controlled change of the modification are generally based on salts of heavy metals.
  • a well-known example is the use of thermochromic inorganic pigments as hotspot warning for pans or as screen printing for barcode.
  • the capsules of heavy metal salts or organic thermochromic composites also offers no alternative here; Migration effects can not be permanently prevented.
  • the most commonly used melamine resins as a shell for thermochromic capsules are definitely unsuitable as a protective layer and also not for the
  • EP 1 084 860 describes the circuit of a color effect based on a donor-acceptor system, which may also be in the form of microcapsules with a diameter of about 50 ⁇ m.
  • EP 1 323 540 A2 describes a thermochromic material consisting of three components, which is likewise microencapsulated. Lack of light stability of the thermochromic complexes is according to US 5,527,385 by additives How hydrazide, sulfur or phosphorus compounds are counteracted. This means the addition of other toxic compounds.
  • thermochromic materials by means of printing (laminating) a thermochromic ink is a practical solution to some requirements and wishes of the packaging industry, where toxicity plays a minor role.
  • glasses are printed with a color for use for sun protection or coated according to US 4,121,010 polymers having a thermochromic color consisting of sulfates, sulfides, arsenic, bismuth, zinc and other materials, and their oxides.
  • both the field of application is severely limited and prevented by the required additional coating (print technology ⁇ a price-reducing continuous technology.
  • thermochromic flat films which are likewise based on the use of the abovementioned organic dyes.
  • thermochromic pigments are admixed here only in partial regions of the wall thickness of a synthetic material container. This is done by adding a reversible thermochromic pigment in the form of stripe-shaped deposits. The thermochromic pigments also require additional thermostable pigments and are added to or added to the extrudate prior to exiting the extrusion head.
  • thermochromic inks screen printing inks, Coattngs or films have found no use in sensitive areas such as the food industry or medical technology. A key reason is definitely the use of toxic compounds. Even the most recent thermochromic dyes with diazapental structure (G. Qian and Z. Y. Wang, Adv., Mater., 24, 2012, page 1582) offer no solution here,
  • thermochromic material that can be used in many areas of daily life, for example in the food sector.
  • thermal chrome material so that the further processing by means of extrusion technology is possible.
  • thermochromic material having the features of claim 1 and the extruded molded articles having the features of claim 11.
  • Claim 13 specifies uses according to the invention.
  • the other dependent claims show advantageous developments.
  • thermochromic material which contains at least one biopolymer, at least one natural dye and at least one reaction medium selected from the group of fatty acids and their derivatives, gallic acid and derivatives thereof and mixtures thereof. All components contained in the thermochromic material are food approved ingredients or additives, i. All components are not toxic in the dosage used.
  • thermochromic material Preferably, all components of the thermochromic material are approved for foodstuffs according to EU Regulation No. 1333/2008 and corresponding updated appendices and have an E number.
  • the natural dyes used are those having an anthocyanidin structure. These subdivide into sugar-free aglycones and glycosides, whereby both substructures can be used.
  • anthocyanidins are approved under the E-number 163.
  • the pH-dependent color of anthocyanidins in aqueous solution is known, while the thermochromic properties of anthocyanidins have not been known.
  • Preferred anthocyanidins are cyanidin, delphinidin, aurantinidin,
  • Petunidin, peonidin, malvidin, pelargondin, rosinidin, europinidine and luteolinidine The basic structure is shown in FIG. 1.
  • R 3 R 7 to R with -H, -OH, -OCH 3 ⁇ can be varied broadly the features. The formation of dimers, aggregates / chelates both among themselves and with the biopolymer or the reaction medium enables light. If a sugar residue is introduced at position R 3 , glycoside structures are obtained (FIG. 2).
  • Gallic acid and its derivatives in particular gallates, saturated, monounsaturated or polyunsaturated fatty acids and their derivatives, in particular esters, and branched carboxylic acids are preferred as the reaction medium.
  • An essential property feature of carboxylic acids is their self-assembly into dimers.
  • a variety of fatty acids can be used to form the thermochromism.
  • thermochromic properties can be produced in a wide range of applications; this one is u.a. coupled with the melting point of fatty acids and can be controlled between -55 ° C and + 81 ° C by the specific fatty acids. If necessary, the work area can still be expanded.
  • the unsaturated fatty acids are preferably selected from the group consisting of petroselinic acid, palmitoleic acid, myristoleic acid, oleic acid, elaidic acid, doleic acid, undecylenic acid, icosenoic acid, vaccenic acid, cetoleic acid, erucic acid, nervonic acid, cervonic acid, clupanodonic acid, timnodonic acid, linoleic acid, calendic acid, punicic acid, elaeostearic acid, arachidonic acid and mixtures thereof.
  • the saturated fatty acids are preferably selected from the group consisting of formic acid, acetic acid, caprylic acid, pelargonic acid,
  • Capric acid laric acid, myristic acid, palmitic acid, margarine acid, stearic acid, arachidic acid, propionic acid, butyric acid, valeric acid,
  • Caproic acid onan acid, behenic acid, lignoceric acid, cerotic acid, montanic acid, melissic acid and mixtures thereof.
  • esters of stearic acid, palmitic acid, linoleic acid, erucic acid prove to be particularly complex-stabilizing.
  • Fatty acids and fatty acid esters are listed in the food industry under the numbers E 570 and E 304 respectively.
  • gallic acid and its derivatives In addition to fatty acids are gallic acid and its derivatives, especially
  • Ester compounds preferred for use as a reaction medium. Mixtures of fatty acids and galiates are also usable. Gallates are also approved as food fatty acids.
  • E 312 dodecyl gallate, E 311 - octyl gallate and E 310 - propyl gallate.
  • Preferred branched carboxylic acids are phytanic acid, isovaleric acid or ethereal oils.
  • thermochromic material is made possible by the physicochemical interaction between anthocyanidin, biopolymer and fatty acid. Temperature-controlled proton transfer in the anthocyanin structure triggers the change in color. In this case, both the intensity and the wavelength maximum can be switched.
  • the formation or dissolution of hydrogen bonds in the system ii) the formation of domains / aggregates / chelates, controlled preferably by the interaction of the fatty acid or gallates with the polar polymer chain, e.g. with CA / CT A, PHB or PLA, iii) the order of ordered
  • thermochromic Schait can be realized.
  • the process can be reversible or irreversible. Depending on the temperature, reorientations occur at the molecular level, bonds are strengthened or loosened, and a concentration gradient of the natural dye or of the fatty acid and / or galiat in the polymer volume, reversibly or irreversibly, is made possible.
  • the interaction between the fatty acid and the anthocyanidin changes as a function of temperature, while at the same time both compounds either individually or as an interacting complex with the polymer chain change their interaction.
  • all compounds are integrated into the polymer structure via physicochemical interactions, whereby this naturally changes. In this case, a new superordinate polymer structure is formed, which can not be broken down any further.
  • the interactions between the different molecules can be triggered by both the polar and the dispersive structural units. This gives the system an extraordinary thermodynamic stability. As a result, the optical macroscopic properties change.
  • DSC differential scanning calorimetry
  • only one peak is visible in this case, which differs from the peak of the pure polymer; glycosides are particularly suitable for the formation of superordinate structures.
  • the sugar unit in the R 3 position (cyanidin-3-glucoside) can be used to achieve an aggregate structure (chelate complex). This mechanism is used in nature, for example, to increase the light stability of natural color substances.
  • the sugar residues are arranged in layers, which are additionally stabilized by the chair shape. It is obvious that the sugar structure is capable of further interaction with fatty acids and / or gallates.
  • mass ratios are given in terms of processing.
  • mixtures of fatty acids and gallates ratios of 1:99 or 99: 1 can be used.
  • Fatty acid or gallate or their mixture is used in 10 to 50-fold excess with respect to the anthocyanidin dye, preferably with 15 to 35-fold excess.
  • the anthocyanidin-fatty acid (and / or gallate) complex is present at 2-38% in the biopolymer, preferably at 7-15%.
  • thermochromism by interaction of the constituent components, including their long-term stability
  • thermochromic compounds or batch / masterbatches The compound or batch / masterbatch can be processed by extrusion into films, plates, web plates.
  • the layer thickness of the films is between 50 and 300 ⁇ . Plates can be up to 5 mm thick.
  • the thermochromic films and plates can be coextruded with further layers. These additional layers can introduce further functions into the material or the component such as light stability, permanent colors and thus a resulting subtractive color system or increased mechanical stability in the material.
  • Fig. 1 shows by chemical formula the basic structure of
  • Fig. 2 shows the chemical formula of the basic structure of a glycosine.
  • thermochromic BiopolymerfoUe can be prepared as follows.
  • a complex consisting of palmitic acid, lauryl gallate and cyanidinium chloride in a ratio of 1: 1.5: 0.02 prepared at a temperature above 115 ° C and a reaction time of 15 min.
  • a twin-screw compounder 8.5% by weight of the Complex with 91.5 wt .-% PLA 4060 to a compound processed at a screw speed of 20 U / min.
  • the temperatures of the heating zones 1 to 5 are 175 ° C./185 ° C./185 "C./180 ° C./160 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Die Erfindung betrifft ein thermochromes Material enthaltend mindestens ein Biopolymer, mindestens einen Naturfarbstoff sowie mindestens ein Reaktionsmedium, ausgewählt aus der Gruppe der Fettsäuren und deren Derivate, Gallussäure und deren Derivate sowie Mischungen hiervon. Das erfindungsgemäße thermochrome Material basiert dabei vollständig auf toxitätsfreien Naturprodukten. Die Verarbeitung zu Werkstoffen oder Formkörpern kann mittels konventioneller Extrusionstechnik in Form von Flachfolien, Blasfolien oder Platten bzw. Stegplatten erfolgen. Verwendung findet das thermochrome Material insbesondere in der Lebensmittelindustrie und der Medizintechnik.

Description

Thermochromes Material, dieses enthaltende Formkörper und deren Verwendung
Die Erfindung betrifft ein thermochromes Material enthaltend mindestens ein Biopolymer, mindestens einen Naturfarbstoff sowie mindestens ein Reaktionsmedium, ausgewählt aus der Gruppe der Fettsäuren und deren Derivate, Gallussäure und deren Derivate sowie Mischungen hiervon. Das erfindungsgemäße thermochrome Material basiert dabei vollständig auf toxitätsfreien Naturprodukten. Die Verarbeitung zu Werkstoffen oder Formkörpern kann mittels konventioneller Extrusionstechnik in Form von Flachfolien, Blasfolien oder Platten bzw. Stegplatten erfolgen. Verwendung findet das thermochrome Material insbesondere in der Lebensmittelindustrie und der Medizintechnik.
Thermochromie beinhaltet die Eigenschaft eines Materials, in Abhängigkeit der Temperatur reversibel oder irreversibel seine Farbe zu ändern. Dies kann sowohl durch Änderung der Intensität und/oder des Wellenlängenmaximums erfolgen. Repräsentativ werden Beispiele und theoretische Hintergründe zum Mechanismus der temperaturgesteuerten Farbe beschrieben in Chromic Phenomena von P. Bamfield and M.l Hutchings (The Royal Society of Chemist- ry, 2010) und in Thermochromic Phenomena in Polymers von A. Seeboth and D. LÖtzsch (Smithers Rapra Technology, 2008).
Materialien in unterschiedlichster Werkstoffform, darunter auch
Polymerfolien mit thermochromen Eigenschaften, sind in der Vergangenheit vielfältig patentiert worden. Unabhängig, ob der thermochrome Effekt rever- sibler oder irreversibler Natur ist, anorganische oder organische Farbstoffe zum Einsatz kommen, letztere auch in Form von Kompositen mit Schmelzmitteln und/oder Entwicklern, ist allen Systemen gemeinsam, dass sie in irgendeiner Form immer toxische Ausgangsmaterialien enthalten. Klassisch hierfür ist beinahe in allen bestehenden organischen thermochromen Kompositen der Einsatz von Bisphenol als Entwickler. Als Farbstoffe gelangen Grundstrukturen von Triphenylmethanfarbstoffen, Pyridiniumphenolatbetaine,
Sulfophthaleinstrukturen, Thyranine, Azofarbstoffe oder Fluranfarbstoffe zum Einsatz. Anorganische thermochrome Pigmente, deren Farbwechsel auf eine temperaturgesteuerte Änderung der Modifikation beruht, basieren im Allgemeinen auf Salzen von Schwermetailen. Ein bekanntes Beispiel ist der Einsatz thermochromer anorganischer Pigmente als hotspot-Warnung für Pfannen oder als Siebdruck für Barcode. Das Kapseln von Schwermetallsalzen oder organischen thermochromen Kompositen bietet hier ebenfalls keine Alternative; Migrationseffekte können dauerhaft nicht unterbunden werden. Die zumeist verwendeten Melaminharze als Hülle für thermochrome Kapseln sind definitiv als Schutzschicht ungeeignet und zudem nicht für die
Extrusionstechnologie geeignet.
So wird in EP 1 084 860 die Schaltung eines Farbeffektes, basierend auf einem Donator-Akzeptor-System beschrieben, das auch in Form von Mikrokapseln mit einem Durchmesser von ca. 50 μm vorliegen kann. In EP 1 323 540 A2 wird ein thermochromes Material bestehend aus drei Komponenten be- schrieben, welches ebenfalls mikroverkapselt ist. Mangelnde Lichtstabilität der thermochromen Komplexe soll entsprechend US 5,527,385 durch Zusätze wie Hydrazid-, Schwefel- oder Phosphorverbindungen entgegengewirkt werden. Dies bedeutet den Zusatz weiterer toxischer Verbindungen.
Die Herstellung polymerer thermochromer Werkstoffe mit Hilfe von Aufdrucken (Kaschieren) einer thermochromen Farbe ist eine praxisnahe Lösung für einige Anforderungen und Wünsche der Verpackungsindustrie, wo Toxizität eine untergeordnete Rolle spielt. So werden gemäß US 2002037421 Gläser mit einer Farbe zur Nutzung für den Sonnenschutz bedruckt oder entsprechend US 4,121,010 Polymere mit einer thermochromen Farbe, bestehend aus Sulfaten, Sulfiden, Arsen, Wismut, Zink und anderen Materialien, und deren Oxide, überzogen. Hierdurch wird sowohl das Einsatzgebiet stark beschränkt als auch durch das erforderliche zusätzliche Coating (Printtechnik} eine preisreduzierende kontinuierliche Technologie verhindert.
In DE 103 39 442 B4 und US 7,662,466 B2 werden thermochrome Flachfolien beschrieben, die ebenfalls auf den Einsatz der oben genannten organischen Farbstoffe basieren.
Dies gilt auch für die in EP 1 157 802 beschriebene Erfindung. Hier werden beim Extrusionsblasformen nur in Teilbereichen der Wandstärke eines Kunst- Stoffbehältnisses thermochrome Pigmente beigemischt. Dies geschieht durch Zusatz eines reversiblen thermochromen Pigmentes in Form von streifenförmigen Einlagerungen. Die thermochromen Pigmente erfordern zudem zusätzliche thermostabile Pigmente und werden dem Extrudat vor Austritt aus dem Extrusionskopf zugegeben oder aufgegeben.
Bis heute haben thermochrome Tinten, Siebdruckfarben, Coattngs oder Folien keinen Einsatz in sensiblen Bereichen wie der Nahrungsmittelbranche oder Medizintechnik gefunden. Ein wesentlicher Grund ist mit Bestimmtheit der Einsatz von toxischen Verbindungen. Auch neueste thermochrome Farbstoffe mit Diazapentalenstruktur (G. Qian and Z. Y. Wang, Adv. Mater. 24, 2012, Seite 1582) bieten hier keinen Lösungsansatz,
Ausgehend hiervon war es Aufgabe der vorliegenden Erfindung, ein thermo- chromes Material bereitzustellen, dass sich in vielen Bereichen des täglichen Lebens, z.B. im Lebensmittelbereich, einsetzen lässt. Ebenso soll das thermo- chrome Material so beschaffen sein, dass die Weiterverarbeitung mittels Extrusionstechnik möglich ist.
Diese Aufgabe wird durch das thermochrome Material mit den Merkmalen des Anspruchs 1 und die extrudierten Formkörper mit den Merkmalen des Anspruchs 11 gelöst. In Anspruch 13 werden erfindungsgemäße Verwendungen angegeben. Die weiteren abhängigen Ansprüche zeigen vorteilhafte Weiterbildungen auf.
Erfindungsgemäß wird ein thermochromes Material bereitgestellt, das mindestens ein Biopolymer, mindestens einen Naturfarbstoff sowie mindestens ein Reaktionsmedium ausgewählt aus der Gruppe der Fettsäuren und deren Derivate, Gallussäure und deren Derivate sowie Mischungen hiervon enthält. Dabei handelt es sich bei allen im thermochromen Material enthaltenen Komponenten um für Lebensmittel zugelassene Bestandteile oder Zusatzstoffe, d.h. sämtliche Komponenten sind in der verwendeten Dosierung nicht toxisch.
Vorzugsweise sind alle Komponenten des thermochromen Materials gemäß EU-Verordnung Nr. 1333/2008 und entsprechenden aktualisierten Anhängen für Lebensmittel zugelassen sind und besitzen eine E-Nummer.
Es ist bevorzugt, dass als Naturfarbstoffe solche mit einer Anthocyanidin- struktur verwendet werden. Diese unterteilen sich in zuckerfreie Aglykone und Glykoside, wobei beide Unterstrukturen eingesetzt werden können. Als Lebensmittelzusatzstoffe sind Anthocyanidine unter der E-Nummer 163 zugelassen. Die vom pH-Wert abhängige Farbe von Anthocyanidinen in wässriger Lösung ist dabei bekannt, während die thermochromen Eigenschaften von Anthocyanidinen bislang nicht bekannt waren.
Bevorzugte Anthocyanidine sind Cyanidin, Delphinidin, Aurantinidin,
Petunidin, Peonidin, Malvidin, Pelargondin, Rosinidin, Europinidin und Luteolinidin. Die Grundstruktur ist in der Fig. 1 dargestellt. Durch Variation de Reste R3 bis R7 (R mit -H, -OH, -OCH3} können die Eigenschaften breit variiert werden. Die Bildung von Dimeren, Aggregaten/Chelaten sowohl untereinander als auch mit dem Biopolymer oder dem Reaktionsmedium wird ermög- licht. Wird in der Position R3 ein Zuckerrest eingeführt, gelangt man zu Glykosidstrukturen (Fig. 2).
Als Reaktionsmedium sind Gallussäure und deren Derivate, insbesondere Gallate, gesättigte, einfach ungesättigte oder mehrfach ungesättigte Fettsäuren und deren Derivate, insbesondere Ester, sowie verzweigte Carbonsäuren bevorzugt. Ein wesentliches Eigenschaftsmerkmal der Carbonsäuren ist deren Selbstorganisation zu Dimeren. Eine Vielzahl von Fettsäuren kann zur Ausbildung der Thermochromie genutzt werden. Vorteilhafterweise lassen sich thermochrome Eigenschaften in einem breiten Arbeitsbereich herstellen; dieser ist u.a. mit dem Schmelzpunkt der Fettsäuren gekoppelt und lässt sich zwischen -55 °C und + 81 °C durch die spezifischen Fettsäuren steuern. Bei Bedarf kann der Arbeitsbereich noch aus- geweitet werden.
Als Fettsäuren können sowohl ungesättigte wie gesättigte Fettsäuren sowie Mischungen hiervon Anwendung finden. Die ungesättigten Fettsäuren sind vorzugsweise ausgewählt aus der Gruppe bestehend aus Petroselinsäure, Palmitoleinsäure, Myristoleinsäure, Ölsäure, Elaidinsäure, Gedoleinsäure, Undecylensäure, Icosensäure, Vaccensäure, Cetoletnsäure, Erucasäure, Nervonsäure, Cervonsäure, Clupanodonsäure, Timnodonsäure, Linolsäure, Calendulasäure, Punicinsäure, Elaeostearinsäure , Arachidonsäure und Mischungen hiervon.
Die gesättigten Fettsäuren sind vorzugsweise ausgewählt aus der Gruppe bestehend aus Ameisensäure, Essigsäure, Caprylsäure, Pelargonsäure,
Caprinsäure, Larinsäure, Myristinsäure, Palmitinsäure, Margaringsäure, Stea- rinsäure, Arachinsäure, Propionsäure, Buttersäure, Valeriansäure,
Capronsäure, Onanthsäure, Behensäure, Lignocerinsäure, Cerotinsäure, Montansäure, Melissinsäure und Mischungen hiervon.
Für den Fachmann ist leicht erkennbar, dass hier auch eine Vielzahl von Strukturderivaten wie Alpha-, Gamma- oder Beta-Strukturen genutzt werden können oder auch Ester-, Amin- oder Amidstrukturen. Es ist offensichtlich, dass die Fettsäuren oder ihre Derivate auch in Form von Gemischen verwendet werden können. So erweisen sich u.a. Ester der Stearinsäure, Palmitinsäure, Linolsäure, Erucasäure als besonders komplexstabilisierend. Fettsäuren und Fettsäureester werden in der Lebensmittelbranche unter den Nummern E 570 bzw. E 304 geführt.
Neben Fettsäuren sind Gallussäure und deren Derivate, besonders
Esterverbindungen (Gallate), für den Einsatz als Reaktionsmedium bevorzugt. Mischungen aus Fettsäuren und Galiaten sind ebenfalls einsetzbar. Gallate sind auch wie die Fettsäuren für Lebensmittel zugelassen. Beispielhaft sollen
E 312 - Dodecylgallat, E 311 - Octylgallat und E 310 - Propylgallat genannt werden.
Als verzweigte Carbonsäuren sind Phytansäure, Isovalerinsäure oder ätheri- sehe Öle bevorzugt.
Erfindungsgemäß wird das toxizitätsfreie thermochrome Material durch die physikochemische Wechselwirkung zwischen Anthocyanidin, Biopolymer und Fettsäure ermöglicht. Ein temperaturgesteuerter Protonentransfer in der Anthocynidtnstruktur löst die Änderung der Farbe aus. Hierbei kann sowohl die Intensität als auch das Wellenlängenmaximum geschaltet werden. So können über i) der Ausbildung oder Auflösung von Wasserstoffbrücken im System, ii) der Bildung von Domänen/Aggregaten/Chelaten, gesteuert vorzugsweise durch die Wechselwirkung der Fettsäure oder Gallate mit der polaren Polymerkette, z.B. mit CA/CT A, PHB oder PLA, iii) der Ausbildung geordneter
Strukturen zwischen Biopolymer - Naturfarbstoff - Fettsäure und/oder Gallat, wie diese als selbstorientierende Systeme in Biomaterialien gut bekannt sind (siehe H. Ringsdorf, Angew. Chem. 104, 1990, 1310) oder auch iv) durch das Zusammenwirken der oben genannten drei Effekte i, ii und iii ein
thermochromer Schaiteffekt realisiert werden. Der Prozess kann reversibel oder irreversibel gestaltet werden. In Abhängigkeit der Temperatur erfolgen Umorientierungen auf molekularer Ebene, Bindungen werden verstärkt oder gelockert und ein Konzentrationsgradient des Naturfarbstoffes oder der Fettsäure und/oder Galiat im Polymervolumen, reversibel oder irreversibel, wer- den ermöglicht. So ändert sich die Wechselwirkung zwischen der Fettsäure und dem Anthocyanidin in Abhängigkeit der Temperatur, während gleichzeitig beide Verbindungen entweder jeweils einzeln oder als agierender Komplex mit der Polymerkette ihre Wechselwirkung ändern. Im Einzelfall werden alle Verbindungen in die Polymerstruktur über physikochemische Wechselwirkungen integriert, wobei diese sich dabei natürlich verändert. In diesem Fall bildet sich eine neue übergeordnete Poiymerstruktur, die sich nicht weiter herunterbrechen lässt. Die Wechselwirkungen zwischen den unterschiedlichen Molekülen können sowohl über die polaren als auch dispersiven Struktureinheiten ausgelöst werden. Das System erhält dadurch eine außerordentliche thermodynamische Stabilität. Im Resultat ändern sich die optischen makroskopischen Eigenschaften. Bei der Differential Scanning Calorimetry (DSC) ist in diesem Falle nur noch ein Peak sichtbar, der sich vom Peak des reinen Polymers unterscheidet, insbesondere für die Ausbildung übergeordneter Strukturen sind Glykoside geeignet. Durch die Zuckereinheit in R3- Position (Cyanidin-3-glucosid) kann eine Aggregatstruktur (Chelatkomplex) erzielt werden. Dieser Mechanismus wird in der Natur genutzt, um beispielsweise auch die Lichtstabilität der Naturfarb Stoffe zu steigern. Die Zuckerreste sind in Schichten angeordnet, die durch die Sesselform zusätzlich stabilisiert werden. Es ist offensichtlich, dass die Zuckerstruktur zur weiteren Wechselwirkung mit Fettsäuren und/oder Gallaten befähigt ist.
Das molare Verhältnis zwischen den Ausgangsverbindungen Anthocyanidin und Fettsäure und/oder Gallat, einschließlich deren Derivaten und Mischungen, steuert maßgeblich den Protonentransfer im Naturfarbstoff und somit das thermochrome Verhalten. Im Folgenden werden hinsichtlich der Verarbeitung Massenverhältnisse angegeben. Bei Verwendung von Mischungen aus Fettsäuren und Gallaten können Verhältnisse von 1:99 oder 99:1 eingesetzt werden. Fettsäure oder Gallat oder deren Mischung werden in Bezug zum Anthocyanidinfarbstoff im 10-fachen bis 50-fachen Überschuss eingesetzt, vorzugsweise mit 15- bis 35-fachem Überschuss. Der Anthocyanidin- Fettsäure(und/oder Gallat)-Komplex befindet sich mit 2 - 38 % im Biopolymer, vorzugsweise mit 7 - 15 %.
Weitere Einftussgrößen auf das makroskopische optische Verhalten sind die Molmasse, der MFR-Wert und die kristalline/amorphe Struktur der eingesetzten Biopolymere. Für den Fachmann der Extrusionstechnik ist deutlich, dass die verwendeten Technologieparameter wie die Temperaturen der jeweiligen Heizzonen, der Breitschlitzdüse oder Chili-Rolle, die Abzugsgeschwindigkeit, die Schneckengeometrie, Drehzahl und Massedruck oder Verweilzeit einen zusätzlichen Ein- fluss auf das resultierende thermochrome Verhalten der toxizitätsfreien Polymermaterialien besitzen.
Wesentliche Bestandteile der Erfindung sind dementsprechend einerseits die Herstellung von Thermochromie durch Wechselwirkung der Einsatzkomponenten einschließlich deren Langzeitstabilität und andererseits die Entwicklung einer Technologie zur Herstellung thermochromer Compounds bzw. Batchs/Masterbatchs. Das Compound bzw. Batch/Masterbatch kann im Extrusionsverfahren zu Folien, Platten, Stegplatten weiterverarbeitet werden. Die Schichtdicke der Folien liegt zwischen 50 und 300 μιη. Platten können bis zu 5 mm dick sein. Die thermochromen Folien und Platten können mit weiteren Schichten coextrudiert werden. Diese zusätzlichen Schichten können weitere Funktionen in den Werkstoff oder das Bauteil wie Lichtstabilität, permanente Farben und somit ein resultierendes subtraktives Farbsystem oder erhöhte mechanische Stabilität in das Material einbringen.
Anhand der nachfolgenden Figuren und des Beispiels soll der erfindungsgemäße Gegenstand näher erläutert werden, ohne diesen auf die hier gezeigte spezifische Ausführungsform einschränken zu wollen.
Fig. 1 zeigt anhand einer chemischen Formel die Grundstruktur von
Anthocyanidinen.
Fig 2. zeigt die chemische Formel der Grundstruktur eines Glykosins.
Beispiel
Erfindungsgemäß kann eine toxizitätsfreie thermochrome BiopolymerfoUe wie folgt hergestellt werden. In einem ersten Schritt wird ein Komplex bestehend aus Palmitinsäure, Laurylgallat und Cyanidinchlorid im Verhältnis 1:1,5:0,02 präpariert bei einer Temperatur oberhalb 115 °C und einer Reaktionsdauer von 15 min. In einem Zweischnecken-Compounder werden 8,5 Gew.-% des Komplexes mit 91,5 Gew.-% PLA 4060 zu einem Compound verarbeitet bei einer Schneckendrehzahl von 20 U/min. Die Temperaturen der Heizzonen 1 bis 5 betragen 175 °C / 185 °C / 185 "C / 180 °C / 160 °C. Im Ergebnis wird bei Raumtemperatur ein farbloses Compound erhalten, welches bei Erwärmung auf ca. 65 °C in den blauen Zustand wechselt. Der Effekt ist reversibel. In einem Einschneckenextruder wird das Compound nach bekanntem Verfahren in eine thermochrome Mono-PLA-Biopolymerfolie verarbeitet, wobei die Temperatur der Chili-Rolle 45 °C beträgt. Der reversible Farbwechsel der Folie ist wie beim Compound bei ca. 65 °C.

Claims

Patentansprüche 1. Thermochromes Material enthaltend mindestens ein Biopolymer, mindestens einen Naturfarbstoff sowie mindestens ein Reaktionsme- dium ausgewählt aus der Gruppe der Fettsäuren und deren Derivate, Gallussäure und deren Derivate sowie Mischungen hiervon, dadurch gekennzeichnet, dass sich bei allen Komponenten des thermochromen Materials um für Lebensmittel zugelassene Bestandteile oder Zusatzstoffe handelt.
2. Thermochromes Material nach Anspruch 1,
dadurch gekennzeichnet, dass der mindestens eine Naturfarbstoff eine Anthocyanidinstruktur aufweist, insbesondere ausgewählt aus der Gruppe bestehend aus Cyanidin, Delphinidin, Aurantinidin, Petunidin, Peonidtn, Malvidin, Petargondin, Rosinidin, Europinidin, Luteolinidin oder Mischungen hiervon.
3. Thermochromes Material nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das mindestens eine Reaktionsmedium ausgewählt ist aus der Gruppe bestehend aus Petroselinsäure, Palmitoleinsäure, Myristoleinsäure, Ölsäure, Elaidinsäure,
Gadoleinsäure, Undecylensäure, Icosensäure, Vaccensäure,
Cetoleinsäure, Erucasäure, Nervonsäure, Cervonsäure,
Clupanodonsäure, Timnodonsäure, Linolsäure, Calendulasäure, Punicinsäure, Elaeostearinsäure, Archidonsäure, Ameisensäure, Essigsäure, Caprylsäure, Pelargonsäure, Caprinsäure, Laurinsäure,
Myristinsäure, Palmitinsäure, Margarinsäure, Stearinsäure,
Arachinsäure, Propionsäure, Buttersäure, Valeriansäure, Capronsäure, Önanthsäure, Behensäure, Lignocerinsäure, Cerotinsäure, Montansäure, Melissinsäure, Dodecylgaliat, Octylgaliat, Propylgallat, Phytansäure, Isovalerinsäure, ätherische Öle oder Mischungen hiervon.
4. Thermochromes Material nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das mindestens eine Biopolymer zur Flachfolien- oder Blasfolienextrusion oder zur Fertigung von Platten geeignet ist.
5. Thermochromes Material nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das mindestens eine Biopolymer ausgewählt ist aus der Gruppe bestehend aus Poiyhydroxybuttersäure , Celluloseacetat, Polymilchsäure sowie deren Copolymeren und Polymerblends.
6. Thermochromes Material nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass alle Komponenten des thermochromen Materials gemäß EU-Verordnung Nr. 1333/2008 und entsprechenden aktualisierten Anhängen für Lebensmittel zugelassen sind und eine E-Nummer besitzen.
7. Thermochromes Material nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der thermochrome Effekt des Materials reversibel oder irreversibel ist.
8. Thermochromes Material nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der thermochrome Effekt durch physikochemische Wechselwirkungen der Komponenten hervorgerufen wird.
9. Thermochromes Material nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das thermochrome Material extrudierbar ist.
10. Extrudierter Formkörper enthaltend ein thermochromes Material nach einem der vorhergehenden Ansprüche.
11. Formkörper nach Anspruch 10,
dadurch gekennzeichnet, dass der Formkörper eine Flachfolie oder eine Blasfolie ist, insbesondere mit einer Schichtdicke von 50 bis 300 μm.
12. Formkörper nach Anspruch 10,
dadurch gekennzeichnet, dass der Formkörper eine Platte oder eine Stegplatte ist, insbesondere mit einer Dicke von 500 μm bis 5 mm.
13. Verwendung des thermochromen Materials nach einem der Anspruch 1 bis 9 oder der Formkörper nach einem der Ansprüche 10 bis 12 in der Lebensmittelindustrie und Medizintechnik.
PCT/EP2013/066604 2012-09-24 2013-08-08 Thermochromes material, dieses enthaltende formkörper und deren verwendung WO2014044462A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP13745856.8A EP2898041B1 (de) 2012-09-24 2013-08-08 Thermochromes material, dieses enthaltende formkörper und deren verwendung
CN201380049795.9A CN104718272B (zh) 2012-09-24 2013-08-08 热致变色材料、包含所述材料的模型制品及其用途
PL13745856T PL2898041T3 (pl) 2012-09-24 2013-08-08 Materiał termochromowy, kształtki zawierające ten materiał i ich zastosowanie
KR1020157010799A KR20150061652A (ko) 2012-09-24 2013-08-08 열변색재, 상기 재료를 포함하는 성형체 및 이의 용도
US14/430,419 US9193863B2 (en) 2012-09-24 2013-08-08 Thermochromic material, molded article comprising said material and use thereof
JP2015532344A JP6193378B2 (ja) 2012-09-24 2013-08-08 サーモクロミック材料、サーモクロミック材料を含む成形品、及びその利用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012018813.7 2012-09-24
DE102012018813.7A DE102012018813A1 (de) 2012-09-24 2012-09-24 Thermochromes Material, dieses enthaltende Formkörper und deren Verwendung

Publications (1)

Publication Number Publication Date
WO2014044462A1 true WO2014044462A1 (de) 2014-03-27

Family

ID=48948426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/066604 WO2014044462A1 (de) 2012-09-24 2013-08-08 Thermochromes material, dieses enthaltende formkörper und deren verwendung

Country Status (8)

Country Link
US (1) US9193863B2 (de)
EP (1) EP2898041B1 (de)
JP (1) JP6193378B2 (de)
KR (1) KR20150061652A (de)
CN (1) CN104718272B (de)
DE (1) DE102012018813A1 (de)
PL (1) PL2898041T3 (de)
WO (1) WO2014044462A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3026409A1 (de) 2014-11-28 2016-06-01 Netzgesellschaft Düsseldorf mbH Verpackung für ein lebensmittelprodukt

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007061513A1 (de) 2007-12-20 2009-06-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dotierkapseln, diese enthaltende Verbundsysteme sowie deren Verwendung
JP2019069862A (ja) * 2016-03-02 2019-05-09 コニカミノルタ株式会社 金属酸化物粒子、金属酸化物粒子分散液、金属酸化物粒子分散液の製造方法及びサーモクロミックフィルム
JP2019094261A (ja) * 2016-03-29 2019-06-20 国立大学法人 東京大学 アフラトキシン産生阻害剤及びアフラトキシン汚染防除方法
CN106352298B (zh) * 2016-08-18 2019-06-11 长兴金诺机械有限公司 一种图案多变装饰灯具
KR102012036B1 (ko) * 2016-10-11 2019-08-19 인천대학교 산학협력단 바이오 3d 프린팅 지지체용 원료, 및 이를 이용한 3차원 지지체의 제조방법
JP2020515840A (ja) * 2017-03-29 2020-05-28 スリーエム イノベイティブ プロパティズ カンパニー 熱インジケータ、熱表示組成物、及び熱表示構造
CN107082896A (zh) * 2017-05-02 2017-08-22 上海海洋大学 一种智能显色抗菌抗氧化保鲜薄膜制备方法
CN108948431A (zh) * 2018-08-01 2018-12-07 南通醋酸纤维有限公司 一种温致变色醋酸纤维素复合材料及其制备方法和应用
DE102019108456A1 (de) * 2019-04-01 2020-10-01 Alexander Binzel Schweisstechnik Gmbh & Co. Kg Schweißvorrichtung mit einem Schweißbrenner und mit einer Einrichtung sowie einem Verfahren zur Bestimmung und Ausgabe der Oberflächentemperatur des Schweißbrenners

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121010A (en) 1977-07-27 1978-10-17 The United States Of America As Represented By The United States Department Of Energy Thermoluminescent phosphor
US5527385A (en) 1992-08-19 1996-06-18 Sakura Color Products Corporation Thermochromic composition
EP1026221A2 (de) * 1999-02-05 2000-08-09 Toshiba Tec Kabushiki Kaisha Temperaturanzeigezusammensetzung und Temperaturüberwachungselement
EP1084860A2 (de) 1999-09-17 2001-03-21 The Pilot Ink Co., Ltd. Thermochrome mikroverkapselte Pigmente
EP1157802A2 (de) 2000-05-22 2001-11-28 Kautex Textron GmbH & Co. KG. Kunststoffbehältnis
US20020037421A1 (en) 2000-05-23 2002-03-28 Saint-Gobain Glass France Glazing coated with at least one layer having thermochromic properties
EP1323540A2 (de) 2001-12-27 2003-07-02 The Pilot Ink Co., Ltd. Thermisch, reversibel, farbentwickelndes, thermochromisches Pigment
WO2005021627A1 (de) * 2003-08-25 2005-03-10 Fraunhofer-Gesellschaft zur Förderung der Angwandten Forschung E.V. Thermochrome polymerschicht und verfahren zu deren herstellung
US20060166822A1 (en) * 2005-01-27 2006-07-27 The Pilot Ink Co., Ltd. Reversible thermochromic display article
US20110206836A1 (en) * 2010-02-23 2011-08-25 Bin Wen Bio-based coating

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE297433T1 (de) 1999-07-22 2005-06-15 Warner Lambert Co Filmbildende zusammensetzungen aus pullulan
JP2001114823A (ja) * 1999-10-20 2001-04-24 Toyota Motor Corp 変色性高分子材料
JP2004315749A (ja) * 2003-04-18 2004-11-11 Nagoya City 着色生分解性プラスチック
JP2005308713A (ja) * 2004-03-25 2005-11-04 Toppan Forms Co Ltd 温度管理媒体
EP1888705B1 (de) * 2005-06-10 2010-08-18 Basf Se Reversible thermochromische Zusammensetzungen
JP2007106810A (ja) * 2005-10-12 2007-04-26 Pilot Ink Co Ltd 筆記具用水性インキ組成物及びそれを内蔵した筆記具
DE102007017791A1 (de) * 2007-04-16 2008-10-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Komposit mit inversen thermochromen Eigenschaften, dieses enthaltender Verbundwerkstoff sowie dessen Verwendung
WO2011028495A1 (en) * 2009-08-24 2011-03-10 The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations Hot-melt extruded compositions containing plant-derived phenolic materials and processes for the preparation thereof
CN102103276B (zh) * 2009-12-18 2014-07-09 清华大学 热致变色元件及热致变色显示装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121010A (en) 1977-07-27 1978-10-17 The United States Of America As Represented By The United States Department Of Energy Thermoluminescent phosphor
US5527385A (en) 1992-08-19 1996-06-18 Sakura Color Products Corporation Thermochromic composition
EP1026221A2 (de) * 1999-02-05 2000-08-09 Toshiba Tec Kabushiki Kaisha Temperaturanzeigezusammensetzung und Temperaturüberwachungselement
EP1084860A2 (de) 1999-09-17 2001-03-21 The Pilot Ink Co., Ltd. Thermochrome mikroverkapselte Pigmente
EP1157802A2 (de) 2000-05-22 2001-11-28 Kautex Textron GmbH & Co. KG. Kunststoffbehältnis
US20020037421A1 (en) 2000-05-23 2002-03-28 Saint-Gobain Glass France Glazing coated with at least one layer having thermochromic properties
EP1323540A2 (de) 2001-12-27 2003-07-02 The Pilot Ink Co., Ltd. Thermisch, reversibel, farbentwickelndes, thermochromisches Pigment
WO2005021627A1 (de) * 2003-08-25 2005-03-10 Fraunhofer-Gesellschaft zur Förderung der Angwandten Forschung E.V. Thermochrome polymerschicht und verfahren zu deren herstellung
DE10339442B4 (de) 2003-08-25 2006-07-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermochrome Polymerfolie und Verfahren zu deren Herstellung
US7662466B2 (en) 2003-08-25 2010-02-16 Fraunhofer-Gesellschaft Zur Forderung Der Angwandten Forschung E.V. Thermochromic polymer layer and method for production thereof
US20060166822A1 (en) * 2005-01-27 2006-07-27 The Pilot Ink Co., Ltd. Reversible thermochromic display article
US20110206836A1 (en) * 2010-02-23 2011-08-25 Bin Wen Bio-based coating

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A. SEEBOTH; D. LÖTZSCH: "Thermochromic Phenomena in Polymers", 2008, SMITHERS RAPRA TECHNOLOGY
G. QIAN; Z. Y. WANG, ADV. MATER., vol. 24, 2012, pages 1582
H. RINGSDORF, ANGEW. CHEM., vol. 104, 1990, pages 1310
P. BAMFIELD; M.I HUTCHINGS: "Chromic Phenomena", 2010, THE ROYAL SOCIETY OF CHEMIST- RY

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3026409A1 (de) 2014-11-28 2016-06-01 Netzgesellschaft Düsseldorf mbH Verpackung für ein lebensmittelprodukt
DE102014117482A1 (de) 2014-11-28 2016-06-02 Netzgesellschaft Düsseldorf Mbh Verpackung für ein Lebensmittelprodukt

Also Published As

Publication number Publication date
KR20150061652A (ko) 2015-06-04
CN104718272B (zh) 2017-06-16
EP2898041B1 (de) 2018-12-05
US9193863B2 (en) 2015-11-24
JP2015533892A (ja) 2015-11-26
DE102012018813A1 (de) 2014-03-27
PL2898041T3 (pl) 2019-05-31
JP6193378B2 (ja) 2017-09-06
EP2898041A1 (de) 2015-07-29
CN104718272A (zh) 2015-06-17
US20150247001A1 (en) 2015-09-03

Similar Documents

Publication Publication Date Title
EP2898041B1 (de) Thermochromes material, dieses enthaltende formkörper und deren verwendung
EP1658324B1 (de) Thermochrome polymerschicht und verfahren zu deren herstellung
DE3213092A1 (de) Reversibles thermochromes material
DE10126149A1 (de) Gedeckt eingefärbte, hydrolysebeständige, biaxial orientierte Folie aus einem kristallisierbaren Thermoplasten und Verfahren zu ihrer Herstellung
DE102016208908B4 (de) Photochromatische zusammensetzung zum dreidimensionalen drucken, filament, spule und verwendung einer solchen zusammensetzung
DE102007017791A1 (de) Komposit mit inversen thermochromen Eigenschaften, dieses enthaltender Verbundwerkstoff sowie dessen Verwendung
EP2481771B1 (de) Polymerzusammensetzung und Verfahren zur Herstellung von Produkten mit variabler biologischer Abbaubarkeit
DE60223473T2 (de) Biologisch abbbaubare biaxial gereckte Polyesterfolie und Verbundfolie
DE1698092B2 (de) Temperaturempfindliche anzeigevorrichtung
DE19627185A1 (de) Wiederbeschreibbares thermisches Aufzeichnungsmedium
DE2554099C3 (de) Aufzeichnungsmaterial und Verfahren zum Registrieren von Informationen in Form von gefärbten Abdrucken
EP2953797B1 (de) Wärmeempfindliches aufzeichnungsmaterial
DE2410370C2 (de) Neue Pyrazolverbindungen, Verfahren zu ihrer Herstellung und die Verwendung von Pyrazolverbindungen zum Stabilisieren von organischen Materialien
DE1471677C3 (de) Warmeentwickelbares Kopierblatt
EP2222760B1 (de) Verwendung von Dotierkapseln für den Sonnenschutz und die Wärmereflexion
DE2327723A1 (de) Thermochromatischer stoff
DE1213410B (de) Verwendung von 2-(2'-Hydroxy-5'-acylamido-phenyl)-benztriazolverbindungen zum Stabilisieren von licht- und oxydationsempfindlichen organischen Materialien
DE10101902A1 (de) Amorphe, antimikrobiell ausgerüstete, transparente Folie aus einem kristallisierbaren Thermoplast, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10105110A1 (de) Gedeckt eingefärbte, antimikrobielle, biaxial orientierte, teilkristalline Folie aus einem kristallisierbaren Thermoplast mit zusätzlicher Funktionalität, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102015119428B3 (de) Wärmeempfindliches Aufzeichnungsmaterial und Verfahren zu dessen Herstellung
DE102022118851A1 (de) Photochrome polymerzusammensetzung
DE2450786B2 (de) Pigmentzubereitungen
DE2032057A1 (de) Polyesterformmassen
EP3744809A1 (de) Thermochromer kunststoffformkörper mit irreversibler farbänderung sowie gemisch und verfahren zu dessen herstellung
EP2251206A1 (de) Laser- und thermisch beschreibbare Oberflächenbeschichtung für Materialien

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13745856

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14430419

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015532344

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013745856

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157010799

Country of ref document: KR

Kind code of ref document: A