WO2014041757A1 - 駐車支援装置 - Google Patents

駐車支援装置 Download PDF

Info

Publication number
WO2014041757A1
WO2014041757A1 PCT/JP2013/005162 JP2013005162W WO2014041757A1 WO 2014041757 A1 WO2014041757 A1 WO 2014041757A1 JP 2013005162 W JP2013005162 W JP 2013005162W WO 2014041757 A1 WO2014041757 A1 WO 2014041757A1
Authority
WO
WIPO (PCT)
Prior art keywords
approach
parking space
parking
host vehicle
section
Prior art date
Application number
PCT/JP2013/005162
Other languages
English (en)
French (fr)
Inventor
大塚 秀樹
啓子 秋山
Original Assignee
株式会社デンソー
株式会社日本自動車部品総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 株式会社日本自動車部品総合研究所 filed Critical 株式会社デンソー
Priority to DE112013004443.9T priority Critical patent/DE112013004443B4/de
Publication of WO2014041757A1 publication Critical patent/WO2014041757A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • B62D15/0285Parking performed automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements

Definitions

  • This disclosure relates to a parking assistance device that presents a forward approach to a parking space.
  • Patent Document 1 discloses a parking assist device that calculates a backward approach when parking backwards and automatically drives a steered wheel (front wheel) according to the calculation result. Further, Patent Document 2 discloses a parking assist device that calculates a forward approach for forward-facing parking and displays the calculation result on a display device.
  • the parking space when parking backward, the parking space moves forward from the current position. It is an approach to pass in front of the car and then move backward to enter the parking space. Therefore, when passing in front of the parking space, the parking space can be detected by an in-vehicle camera, a sonar, or the like, and based on the detection result, an approach for retreating and entering the parking space can be set. In other words, in the case of backward-facing parking, the parking space can be detected when passing in front of the parking space before entering the parking space, so that the detection can be performed with high accuracy, and thus the reverse approach can be set with high accuracy. .
  • the purpose of the present disclosure is to provide a parking assist device that can set a forward approach when parking forwardly with high accuracy.
  • a parking assist device that presents a forward approach that is a vehicle path for advancing and entering a parking space is provided as follows.
  • the traveling direction of the host vehicle is the X direction and the direction perpendicular to the X direction is the Y direction, it exists on the front side of the parking space in the X direction.
  • a target acquisition section for acquiring an X-direction position and a Y-direction position of the target to be detected, and an X-direction position and a Y-direction position of the parking space based on the position of the target acquired by the target acquisition section.
  • a parking space estimation section to be estimated; and an approach setting section for setting the forward approach based on the position of the parking space estimated by the parking space estimation section.
  • the X direction position and the Y direction position of the target existing in the X direction front side of the parking space are acquired, and the X direction position and the Y direction position of the parking space are estimated based on the acquired target position. Therefore, the position of the parking space can be estimated without directly detecting the parking space, and the forward approach is set based on the estimated position, so the forward approach can be set with high accuracy.
  • the figure which shows the parking assistance apparatus concerning one Embodiment of this indication The figure explaining the estimation method of the edge part Ve, A diagram illustrating the direct and turnaround approaches, A diagram explaining how to set the direct approach, A diagram explaining the setting method of the reversal approach, A diagram showing the situation of resetting the approach based on the estimated deviation of the parking space position, A diagram showing the situation where the approach is re-established if the parking space was not present at the estimated location, A flowchart showing the steps to set the approach, The flowchart which shows the procedure which resets an approach.
  • FIG. 1 shows a vehicle V (also referred to as a host vehicle V) on which an electronic control device (ECU 10) that functions as a parking assistance device is mounted, and also, in the front-rear direction of a plurality of parked vehicles adjacent to the parking space PS or It is a top view which shows the condition which parks so that a longitudinal direction may adjoin and parallel (vehicle front-and-rear length parallel parking or vehicle length parallel parking).
  • the ECU 10 includes a microcomputer including a CPU, a ROM, and a RAM.
  • the vehicle V has a structure in which the steered wheels 11 (front wheels) are driven by the electric motor 12, and the ECU 10 controls the drive of the electric motor 12 so that the steering angle is in accordance with the steering operation amount of the driver during normal driving. To control the steering angle.
  • the ECU 10 functions as a parking assistance device by performing automatic steering described below. That is, when the driver turns on the operation switch 16 to activate the parking assist system, the electric motor 12 is driven to automatically bring the steered wheels 11 to the optimum steering angle even when the driver is not operating the steering. Operate (automatic steering). Therefore, if the driver depresses the accelerator pedal and runs without operating the steering, the vehicle can be parked in the parking space PS with the minimum number of times of turning.
  • a plurality of sonars 13, 14, 15 are attached to the vehicle V. These sonars 13 to 15 detect the distance to the obstacle by transmitting the exploration wave and receiving the reflected wave of the exploration wave reflected by the obstacle.
  • the dotted lines in FIG. 1 indicate the obstacle detectable range for each of the sonars 13-15.
  • the sonar indicated by reference numerals 13 and 14 corresponds to a “side sensor” that detects an obstacle located on the side of the vehicle V.
  • the ECU 10 estimates the position of the parking space PS (strictly speaking, the relative position of the parking space PS with respect to the host vehicle V) based on the detection results of the sonars 13-15. Then, based on the estimated position, an optimal parking approach for calculating the vehicle V into the parking space PS is calculated.
  • This parking approach includes a backward approach when the vehicle is moved backward and parked backward, and a forward approach where the vehicle is moved forward and parked forward.
  • the operation switch 16 is comprised so that back-facing parking and forward-facing parking can be selected. That is, the driver selects whether to automatically steer backward or forward, and the ECU 10 calculates either a reverse approach or a forward approach according to the selection.
  • FIG. 1A shows the layout of the parking space PS and the host vehicle V when the parking assist system is activated by the operation of the operation switch 16, and FIG. 1B shows the layout from the position of FIG. The state after going straight.
  • the traveling direction of the host vehicle V at this time is defined as the X direction, and the direction perpendicular to the X direction is defined as the Y direction.
  • the ECU 10 functions as a target acquisition section, device, or means, and based on the detection results of the sonars 13 to 15 during the period in which the host vehicle V moves forward from the position (a) to the position (b), the parking space PS
  • the X direction position and the Y direction position of the target existing on the near side in the X direction are acquired.
  • another vehicle V1 parked next to the front side of the parking space PS is the target.
  • the position of the edge portion Ve on the front side in the X direction of the other vehicle V1 is estimated based on the detection results of the sonars 13-15.
  • the target detected by the sonars 13 to 15 is a general vehicle (another vehicle V1).
  • the X-direction length W1 of the target is the vehicle width of the general vehicle (for example, about 1.8 m). (See FIG. 1B).
  • the position advanced by 1.8 m in the X direction from the edge portion Ve is the front corner portion PS1 of the parking space PS.
  • the width dimension W2 of the parking space PS is a specific value (for example, 3.2 m)
  • the position advanced 1.8 m + 3.2 m in the X direction from the edge portion Ve is the rear corner of the parking space. That means PS2. Therefore, if the position of the edge portion Ve of the target (another vehicle V1) is acquired, the positions of the corners PS1 and PS2 of the parking space PS can be accurately estimated based on the position.
  • FIG. 2 (a1), (a2), and (a3) are diagrams for explaining an estimation method of the edge portion Ve, and a dotted line 13a in (a1) indicates that the position of the vehicle V in the X direction is the position of FIG. 1 (a).
  • a detection distance of the sonar 13 at a certain time is shown, and a dotted line 13b indicates a detectable range of the sonar 13 at that time.
  • Vf in (a2) indicates the position of the edge portion Vf on the far side in the X direction of the other vehicle V1.
  • the detectable range and the detection distance of the sonar 13 when the sonar 13 is positioned forward (back side) from the near side edge portion Ve and backward (front side) from the back side edge portion Vf are shown. Show. As shown in (a2), even if the vehicle V is moved forward during this period, the detection distance does not change.
  • a dotted line 13e in (a3) indicates the detection distance of the sonar 13 when the position of the vehicle V in the X direction is further advanced than in FIG. 1B, and a dotted line 13f indicates a detectable range of the sonar 13 at that time. Indicates. Then, when the vehicle V moves forward toward the parking space PS (see the arrow in the figure) and the position of the sonar 13 in the X direction changes, the sonar 13 is moved away from the back edge portion Vf by the sonar 13. The detection distance becomes longer.
  • the inflection point Ve (x) position of the sonar 13 output shown in (b1) is the X-direction position of the near-side edge portion Ve.
  • the detection distance calculated based on the output of the sonar 13 at the inflection point Ve (x) is the Y-direction position of the near-side edge portion Ve.
  • the sonar 13 is positioned between the front edge portion Ve and the back edge portion Vf. It can be detected.
  • the inflection point Vf (x) position of the sonar 13 output shown in (b3) is the X-direction position of the back edge portion Vf.
  • the detection distance calculated based on the sonar 13 output at the inflection point Vf (x) is the Y-direction position of the back edge portion Vf.
  • the ECU 10 can grasp the relative positional relationship between the vehicle V and the edge portions Ve and Vf based on the transition of the detection distance that occurs as the vehicle V moves forward, and determines the X-direction position and the Y-direction position of the edge portions Ve and Vf. You can get it.
  • the positions of the corners PS1 and PS2 of the parking space PS can be estimated. Note that when the position of the inflection point Ve (x) shown in (b2) is detected, the position of the front edge portion Ve can be acquired, and the positions of the corners PS1 and PS2 of the parking space PS can be estimated.
  • the vehicle width for example, about 1.8 m
  • the inflection point Vf (x) position shown in (b2) moves forward to a detectable position, the positions of the corners PS1 and PS2 can be estimated with higher accuracy.
  • the direct approach is an approach in which a forward advance parking is performed directly in the parking space PS by operating the steering angle toward the parking space PS and moving forward.
  • the turn-back approach first advances from the current position shown in (b1) and passes in front of the parking space PS ( (Refer to (b2)).
  • the steering angle is operated toward the position where direct approach is possible (see (b3)). Thereafter, the vehicle advances into the parking space PS by operating the steering angle to enter the parking space PS (see (b4)).
  • the direct approach is also called the One-path approach.
  • the switching approach is also called a multi-path approach.
  • the ECU 10 calculates the Y-direction distance L1 (see FIGS. 3A1 and 3B1) between the host vehicle V and the separate vehicle V1 when the parking space PS position can be estimated as the position of the front edge portion Ve is acquired. To do. If the calculated distance L1 (first distance) is equal to or greater than the threshold th1 (predetermined value), the optimum steering angle is calculated so that automatic steering is performed by a direct approach. On the other hand, if the distance L1 is less than the threshold value th1, the optimum steering angle is calculated so that automatic steering is performed by the turning-back approach.
  • FIG. 4 is a diagram illustrating a method for setting the threshold th1.
  • An alternate long and short dash line K ⁇ b> 1 in the drawing indicates a trajectory of the vehicle V in the left-right direction center portion of the non-steering wheel 11 r (rear wheel) (hereinafter referred to as “vehicle center”).
  • Dotted lines K2 and K3 indicate the outer locus and the inner locus of the vehicle V in the case of the direct approach.
  • the radius R1 of the vehicle center locus K1 is minimized when the steering angle is maximized. Therefore, when the center of the radius R1 is located on the parking space side (lower side in FIG. 4) with respect to the predetermined position P1 in the Y direction, direct approach cannot be performed. Therefore, the above-described threshold th1 is set to the value of the Y-direction distance L1 when the center of the radius R1 coincides with the predetermined position P1.
  • the center of the radius R1 is located on the parking space side (left side in FIG. 4) in the X direction from the predetermined position P1, direct approach is not possible even if L1 ⁇ th1. Therefore, the fact that the center of the radius R1 is located on the right side in the X direction with respect to the predetermined position P1 is also one of the conditions that enable direct approach. Further, the ECU 10 directly sets the approach (vehicle center locus K1) so that the outer locus K2 of the vehicle V does not interfere with an obstacle (another vehicle V2) that is adjacent to the back side of the parking space PS.
  • FIG. 5 shows a reverse approach as shown in FIG. 3 (b3) in the situation where an obstacle (a wall W in the example of FIG. 5) exists on the opposite side of the parking space PS with respect to the host vehicle V in the Y direction.
  • An alternate long and short dash line K4 in the drawing indicates the vehicle center locus at the time of reverse, and the radius R2 of the vehicle center locus K4 is minimum when the steering angle is maximized. If the trajectory K4 at the time of reverse approach of the turn-back approach is in a state where it touches or intersects the trajectory K1 when the direct approach is possible, it switches to the forward direction shown in FIG. It means that the vehicle can be parked forward in the parking space PS as in the approach.
  • the ECU 10 directly sets an approach (vehicle center locus K1) so that the outer locus K5 of the vehicle V does not interfere with an obstacle (another vehicle V2) that is adjacent to the back side of the parking space PS.
  • the position of the parking space PS is as much as possible in the Y direction so that the locus K4 can touch or intersect the locus K1, and the outer locus K5 is different.
  • the ECU 10 sets a turn-back approach so that the vehicle 10 is guided to a position that does not interfere with the vehicle V2 (a dotted line position in FIG. 5).
  • the ECU 10 sets the turn-back approach so that the locus K4 is in contact with the locus K1. Note that when both the trajectories K4 and K1 cannot contact, the ECU 10 sets the turning approach so that the trajectory K4 intersects the trajectory K1.
  • the ECU 10 sets the approach so that the outer locus K2 of the vehicle V does not interfere with an obstacle (another vehicle V2) existing on the back side of the parking space PS.
  • the host vehicle V cannot interfere with the other vehicle V2 and move backward. Therefore, if the Y-direction distance L2 (second distance) between the host vehicle V and the wall W is not less than the threshold th2, the number of turnovers performed by the turnback approach is two or more. In this case, the approach is set so that (b3) and (b4) in FIG. 3 are repeated twice or more. Note that the above-described threshold th2 is set to the value of the Y-direction distance L2 when the center of the radius R2 coincides with the predetermined position P2.
  • FIG. 6A shows the layout of the parking space PS and the host vehicle V when the edge portion Ve of the separate vehicle V1 is detected and the parking space position is estimated
  • FIG. The state which advanced by the direct approach from the position of a) is shown.
  • the ECU 10 continuously executes obstacle search by the sonars 13 to 15.
  • the position of the separate vehicle V2 is detected during the direct approach, and when the detected position interferes with the estimated parking space position, the estimated position of the parking space PS is corrected.
  • FIG. 6 (b) is an example in which it is detected that another vehicle V2 that is estimated to be present at the dotted line position is present at the solid line position, and the positional deviation is found as indicated by the arrow A.
  • the position in the X direction of the back corner portion PS2 of the parking space PS is corrected to the near side as indicated by the arrow B by the amount of the positional deviation.
  • the ECU 10 resets the vehicle center locus K1 related to the direct approach, and the ECU 10 calculates the optimum steering angle based on the reset locus K1.
  • FIG. 6 shows a situation where an estimated shift of the parking space position has occurred
  • FIG. 7 shows a situation where the parking space PS does not exist at the estimated position. That is, when it is estimated that the parking space PS is present at the position indicated by the alternate long and short dash line in the drawing due to the detection of the edge portion Ve of the separate vehicle V1, the obstacle vehicle is continuously searched.
  • FIG. 7 shows a situation where the presence of V3 is detected.
  • FIG. 8 is a flowchart showing a procedure for setting an approach used for calculating an optimum steering angle related to automatic steering, and the processing of FIG. 8 is repeatedly executed at a predetermined cycle by the microcomputer of the ECU 10.
  • each section is expressed as S10, for example.
  • each section can be divided into a plurality of subsections, while a plurality of sections can be combined into one section.
  • each section configured in this manner can be referred to as a device, module, or means.
  • each of the above sections or a combination thereof includes not only (i) a section of software combined with a hardware unit (eg, a computer), but also (ii) hardware (eg, an integrated circuit, As a section of (wiring logic circuit), it can be realized with or without the function of related devices.
  • the hardware section can be configured inside the microcomputer.
  • S10 of FIG. 8 it is determined whether or not the operation switch 16 is turned on and the parking support system is activated. If activated (S10: YES), in the next S11 (target acquisition section, device, or means), detection of the edge portion Ve of the target (another vehicle V1) is executed as shown in FIG. Until this edge detection is completed, the host vehicle V continues to move forward in the X direction. When the edge detection is completed (S12: YES), in the subsequent S13 (parking space estimation section, device, or means), the corners PS1, PS2 of the parking space PS are determined based on the X-direction position and the Y-direction position of the edge portion Ve. X-direction position and Y-direction position are estimated.
  • the separation distance L1 (Y-direction distance L1 shown in FIG. 3) between the host vehicle V and the target V1 calculated from the Y-direction position of the edge portion Ve is set. It is determined whether or not it is less than the above-described threshold th1. If it is determined that L1 ⁇ th1 (S14: NO), it is considered that a direct approach is possible, and in the subsequent S15, a direct approach (trajectories Ka, Kb shown in FIG. 3) is set based on the parking space positions PS1, PS2. .
  • the locus Ka is set according to K1 in FIG. Then, until the vehicle V becomes parallel to the Y direction, automatic steering is performed according to the locus Ka. After the vehicle V becomes parallel, the locus of direct approach is to switch to the locus Kb that goes straight with the steering angle set to 0 degree.
  • the direct approach is regarded as impossible, and the trajectory related to the return approach is calculated according to whether or not the obstacle W exists on the return side. That is, if it is determined that the obstacle W does not exist based on the detection results of the sonars 13 to 15 (S16: NO), the process proceeds to the subsequent S17, and the vehicle center locus Kc related to the turn-back approach based on the parking space positions PS1 and PS2. , Kd, Ke (see FIG. 3).
  • a turn-back approach is set so as not to interfere with the obstacle W and another vehicle V2 when reversing.
  • S18 it is determined whether or not the separation distance L2 between the host vehicle V and the obstacle W (Y-direction distance L2 shown in FIG. 5) is less than the above-described threshold th2. If it is determined that L2 ⁇ th1 (S18: NO), it is considered that the return approach is possible by one return, and in S19, the return approach is performed based on the parking space positions PS1, PS2 and the separation distances L1, L2.
  • the vehicle center trajectories Kc, Kd, and Ke are calculated.
  • FIG. 9 is a flowchart showing a procedure for resetting the approach set in FIG. 8, and the processing in FIG. 9 is repeatedly executed by the microcomputer of the ECU 10 at a predetermined cycle.
  • the parking space PS estimated in S13 of FIG. 8 is estimated in the subsequent S31 (exploration section, device, or means). Whether or not it exists at the position is determined based on the result of the obstacle search. If it is determined that it does not exist (S31: NO), the process proceeds to S32 (resetting section, device, or means), and the direct approach set in S15 of FIG. 8 is changed to a locus K6 that advances in the X direction ( (See FIG. 7). Then, the approach is reset according to the processing of FIG.
  • S37 If it is determined that the obstacle W exists (S37: YES), the process proceeds to S39 (resetting section, device, or means), the direct approach is changed to the turn-back approach, and the host vehicle V is added to the other vehicle V5 and the obstacle W. Is set based on the actual PS position and the separation distances L1 and L2.
  • the position of the front edge portion Ve of the target existing on the front side in the X direction of the parking space PS is acquired, and the parking space position (PS position) is based on the acquired target position. Is estimated. Therefore, the PS position can be estimated without directly detecting the parking space PS, and the forward approach (direct approach or turnback approach) is set based on the estimated position, so that the forward approach can be set with high accuracy.
  • the host vehicle V is equipped with side sensors 13 and 14 for detecting obstacles located on the side of the host vehicle, and the target acquisition section S11 determines the detection result of the side sensors 13 and 14. Based on the target, the position of the edge portion Ve on the near side in the X direction is acquired. And parking space estimation section S13 estimates a parking space position based on the position of acquired edge part Ve.
  • the probability that the target is a general vehicle is high, and in this case, the length of the target in the X direction is the vehicle width of the general vehicle (for example, about 1.8 m). Then, a position that is advanced 1.8 m in the X direction from the edge portion Ve on the near side in the X direction in the target object is the near side corner PS1 of the parking space. And since the probability that the width dimension of the parking space PS is a specific value (for example, 3.2 m) is high, the position advanced 1.8 m + 3.2 m in the X direction from the edge portion Ve is the back side of the parking space PS. This is the corner PS2. Therefore, if the position of the edge portion Ve is acquired, the position of the parking space PS can be accurately estimated based on the position.
  • the width dimension of the parking space PS is a specific value (for example, 3.2 m)
  • the position of the parking space PS is estimated based on the acquired position of the edge portion Ve, even if the parking space PS does not pass in front of the parking space PS, The position can be estimated with high accuracy.
  • the approach setting section includes a direct approach determination section S14 that determines whether or not a direct approach is possible based on the estimated parking space position. That is, the ECU 10 has functions as an approach setting section and a direct approach determination section. According to this, an appropriate approach can be set as the forward approach among the direct approach and the turnback approach.
  • the presence or absence of erroneous estimation such as the parking space position estimated before the start of forward parking deviates from the actual position (S33: YES), or the parking space does not exist (S31: NO) Can be confirmed by exploring during forward parking.
  • the parking approach is reset based on the exploration results, it is possible to recover when there is an erroneous estimation.
  • the approach setting section has the first distance L1
  • the direct approach is set as the forward approach on condition that it is equal to or greater than the predetermined value th1 (S14: NO).
  • the forward approach cannot be parked in the parking space PS by the direct approach.
  • the direct approach is selected on condition that the first distance L1 is equal to or greater than the predetermined value th1 (S14: NO), the optimum approach can be set with high accuracy. .
  • the parking space PS and the host vehicle are in a situation where the parking space PS is located obliquely forward in the direction of travel of the host vehicle V and there is an obstacle W diagonally forward of the opposite side of the parking space PS when viewed from the host vehicle V.
  • the Y-direction separation distance from V is referred to as a first distance L1
  • the Y-direction separation distance between the obstacle W and the host vehicle V is referred to as a second distance L2.
  • the approach setting section sets the turning approach based on the first distance L1 and the second distance L2 when the turning approach is set as the forward approach.
  • the direct approach cannot be parked as described above, so the turnaround approach is selected.
  • the host vehicle V interferes with the obstacle in the process of reversing to the position where the direct approach is possible (reverse process) in the process of turning back.
  • the second distance is not sufficiently secured, in setting the approach of passing in front of the parking space (passing process) and the approach of the retreating process in the turning approach process, in view of avoiding the interference Need to be set.
  • the turning approach is set based on the first distance and the second distance, the optimum approach for avoiding the interference can be set with high accuracy.
  • the position of the edge portion Ve of the target V1 is detected, and the parking space position is estimated based on the detected position.
  • the ECU 10 target acquisition section
  • the X direction position of the target is acquired based on the instruction of the host vehicle driver. For example, in the X direction, when the distance between the edge portion Ve of the target V1 or the front corner portion PS1 of the parking space (predetermined position) and a specific part of the host vehicle V becomes a predetermined distance, or When the predetermined position coincides with the specific portion, the driver is prompted to turn on the operation switch 16. And a parking space position is estimated based on the ON operation timing.
  • the target V1 is a general vehicle.
  • the length of the target V1 in the X direction is the vehicle width (for example, about 1.8 m) of the general vehicle.
  • the probability that the width dimension of the parking space PS is a specific value (for example, 3.2 m) is high. Therefore, if the X direction position of the target V1 can be acquired, the X direction position of the parking space PS can be accurately estimated based on the position.
  • the Y direction position of the parking space PS is highly likely to be the same as the Y direction position of the target V1
  • the Y direction position of the parking space can be determined based on that position. It can be estimated accurately.
  • the X direction position of the target V1 is acquired according to the driver's instruction, and the Y direction distance L1 between the target V1 and the host vehicle V based on the detection results of the sonars 13-15. (Y direction position) is acquired. And the position of parking space PS is estimated based on the X direction position and Y direction position of the acquired target V1. Therefore, even if it is a case where it does not pass in front of parking space PS per forward parking, a parking space position can be estimated accurately.
  • an instruction by temporarily stopping the vehicle at a specific position of the target V1 in the X direction, or the driver operates the switch 16 at the specific position For example.
  • the obstacle detection sensor does not have to use a sound wave like the sonars 13 to 15, and may use, for example, a light wave or a radio wave.
  • a sensor such as an ultrasonic sensor, a laser radar, or a millimeter wave radar can be used.
  • the surroundings of the vehicle V may be imaged with a camera mounted on the vehicle V, and the ECU 10 may acquire the position of the target V1 based on the captured image.
  • a forward approach that is a vehicle path for advancing and entering the parking space PS by automatically steering with an optimum steering angle based on the approach set by the processing of FIG. 8 is presented.
  • the forward approach may be presented to the driver of the vehicle V by displaying the set approach on the display, or the forward approach to the driver of the vehicle V is provided by voice guidance according to the set approach. May be presented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Traffic Control Systems (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

 ホスト車両(V)の進行方向斜め前方に前記駐車スペース(PS)が位置する。ホスト車両の進行方向をX方向、前記X方向に垂直な方向をY方向とする。駐車支援装置は、駐車スペースのX方向手前側に存在する目標物の、X方向位置およびY方向位置を取得する(S11)。取得された目標物の位置に基づき、駐車スペースのX方向位置およびY方向位置を推定する(S13)。推定された駐車スペース位置に基づき前進アプローチを設定する(S17、S19、S20)。

Description

駐車支援装置 関連出願の相互参照
 本開示は、2012年9月12日に出願された日本出願番号2012-200700号に基づくもので、ここにその記載内容を援用する。
 本開示は、駐車スペースへの前進アプローチを提示する、駐車支援装置に関する。
 駐車スペースに車両を駐車する際のアプローチには、車両を後退させて後ろ向きで駐車させる場合と、車両を前進させて前向きで駐車させる場合とがある。
 そして、特許文献1には、後ろ向き駐車させる際の後退アプローチを演算し、その演算結果にしたがって操舵輪(前輪)を自動で駆動させる駐車支援装置が開示されている。また、特許文献2には、前向き駐車させる際の前進アプローチを演算し、その演算結果を表示装置に表示する駐車支援装置が開示されている。
特開平11-1177号公報 特開2011-93495号公報
 ここで、駐車支援装置を搭載するホスト車両の走行方向斜め前方に位置する駐車スペースへ駐車する状況(図3(b1)参照)において、後ろ向き駐車する場合には、現在位置から前進して駐車スペースの前を通過し、その後、後退して駐車スペースへ進入するアプローチとなる。そのため、駐車スペースの前を通過する時に、車載カメラやソナー等により駐車スペースを検知することができ、その検知結果に基づき、駐車スペースへ後退して進入する際のアプローチを設定できる。つまり、後ろ向き駐車の場合には、駐車スペースへ進入するに先立ち、駐車スペースの前を通過する時に駐車スペースを検知できるので、当該検知を高精度で実施でき、ひいては後退アプローチを高精度で設定できる。
 これに対し、前記状況(図3(b1)参照)で前向き駐車する場合には、駐車スペースへ向けて舵角操作しながら、現在位置から前進して駐車スペースへ進入するアプローチとなる場合がある(図3(b1)~(b4)参照)。したがって、この場合には駐車スペースへ進入するに先立ち駐車スペースの前を通過することがないので、駐車スペースを高精度で検知することが容易でないこともあり、前進アプローチを高精度で設定することが容易でないこともある。
 本開示の目的は、前向き駐車する際の前進アプローチを高精度で設定することを可能にした駐車支援装置を提供することにある。
 上記目的を達成するために、本開示の一つの観点では、駐車スペースへ前進して進入するための車両経路である前進アプローチを提示する駐車支援装置は次のように提供される。ホスト車両の斜め前方に前記駐車スペースが位置する状況下で、ホスト車両の進行方向をX方向、前記X方向に垂直な方向をY方向とした場合において、前記駐車スペースのX方向手前側に存在する目標物の、X方向位置およびY方向位置を取得する目標物取得セクションと、前記目標物取得セクションにより取得された前記目標物の位置に基づき、前記駐車スペースのX方向位置およびY方向位置を推定する駐車スペース推定セクションと、前記駐車スペース推定セクションにより推定された前記駐車スペースの位置に基づき、前記前進アプローチを設定するアプローチ設定セクションと、を備える。
 これによれば、駐車スペースのX方向手前側に存在する目標物のX方向位置およびY方向位置を取得し、取得した目標物位置に基づき駐車スペースのX方向位置およびY方向位置を推定する。そのため、駐車スペースを直接検知することなく駐車スペース位置を推定でき、その推定位置に基づき前進アプローチを設定するので、前進アプローチを高精度で設定することが可能となる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
本開示の一実施形態にかかる駐車支援装置を示す図、 エッジ部分Veの推定手法を説明する図、 直接アプローチおよび切返しアプローチを説明する図、 直接アプローチの設定手法を説明する図、 切返しアプローチの設定手法を説明する図、 駐車スペース位置の推定ずれに基づき、アプローチを再設定する状況を示す図、 駐車スペースが推定位置に存在していなかった場合に、アプローチを再設定する状況を示す図、 アプローチを設定する手順を示すフローチャート、 アプローチを再設定する手順を示すフローチャート。
 以下、本開示にかかる駐車支援装置の各実施形態について、図面を参照しつつ説明する。
 (第1実施形態)
 図1は、駐車支援装置として機能する電子制御装置(ECU10)が搭載された車両V(ホスト車両Vとも言う)を示すとともに、駐車スペースPSへ車両Vを隣り合う複数の駐車車両の前後方向あるいは長手方向が隣合って並列するように駐車(車両前後長さ並列駐車あるいは車長さ並列駐車)する状況を示す平面図である。ECU10は、CPU、ROM、RAMを含むマイクロコンピュータを含む。この車両Vは、操舵輪11(前輪)を電動モータ12で駆動させる構造であり、通常走行時には、運転者のステアリング操作量に応じた操舵角となるよう、ECU10は電動モータ12の駆動を制御して操舵角を制御する。
 さらにECU10は、以下に説明する自動操舵を実施することで、駐車支援装置として機能する。すなわち、操作スイッチ16を運転者がオン操作して駐車支援システムを起動させると、運転者がステアリングを操作していなくても、電動モータ12を駆動させて操舵輪11を最適操舵角に自動で作動(自動操舵)させる。したがって、運転者がステアリングを操作することなくアクセルペダルを踏み込んで走行させると、最小の切返し回数で駐車スペースPSへ駐車できる。
 車両Vには、複数のソナー13、14、15(障害物検知センサ)が取り付けられている。これらのソナー13~15は、探査波を送信し、障害物で反射されるその探査波の反射波を受信することで障害物までの距離を検知する。図1中の点線は、ソナー13~15の各々に対する障害物の検知可能範囲を示す。なお、符号13、14に示すソナーは、車両Vの側方に位置する障害物を検知する「側方センサ」に相当する。
 ECU10は、ソナー13~15による検知結果に基づき、駐車スペースPSの位置(厳密には、ホスト車両Vに対する駐車スペースPSの相対位置)を推定する。そして、その推定位置に基づき、駐車スペースPSへ車両Vを進入させるのに最適な駐車アプローチを演算する。この駐車アプローチには、車両を後退させて後ろ向きで駐車させる場合の後退アプローチと、車両を前進させて前向きで駐車させる前進アプローチとがある。そして、操作スイッチ16は、後ろ向き駐車と前向き駐車とを選択できるように構成されている。つまり、後ろ向きおよび前向きのいずれで自動操舵させるかが運転者により選択され、その選択に応じてECU10は後退アプローチまたは前進アプローチのいずれかを演算する。
 以下、ホスト車両Vの斜め前方に駐車スペースPSが位置する図1の状況下で、前進アプローチが選択された場合における、駐車スペース位置の推定手法および前進アプローチの設定手法について説明する。
 <駐車スペース位置の推定手法>
 図1(a)は、操作スイッチ16の操作により駐車支援システムが起動された時の、駐車スペースPSおよびホスト車両Vのレイアウトを示し、図1(b)は、(a)の位置から前方へ直進した後の状態を示す。この時のホスト車両Vの進行方向をX方向とし、X方向に垂直な方向をY方向とする。
 ECU10は目標物取得セクション、デバイス、あるいはミーンズとして機能し、(a)の位置から(b)の位置までホスト車両Vが前進する期間中におけるソナー13~15の検知結果に基づき、駐車スペースPSのX方向手前側に存在する目標物の、X方向位置およびY方向位置を取得する。図1の例では、駐車スペースPSの手前側隣に駐車されている別車両V1が目標物となっている。そして、別車両V1のうちX方向手前側のエッジ部分Veの位置を、ソナー13~15の検知結果に基づき推定している。
 ソナー13~15で検知された目標物が一般車両(別車両V1)である蓋然性は高く、その場合には、目標物のX方向長さW1は一般車両の車幅(例えば約1.8m)ということになる(図1(b)参照)。すると、エッジ部分VeからX方向に1.8m前進した位置が、駐車スペースPSの手前側角部PS1ということになる。
 そして、駐車スペースPSの幅寸法W2は特定の値(例えば3.2m)である蓋然性が高いため、エッジ部分VeからX方向に1.8m+3.2m前進した位置が、駐車スペースの奥側角部PS2ということになる。したがって、目標物(別車両V1)のエッジ部分Veの位置を取得すれば、その位置を基準にして駐車スペースPSの角部PS1、PS2の位置を精度よく推定できる。
 図2(a1)(a2)(a3)は、エッジ部分Veの推定手法を説明する図であり、(a1)中の点線13aは、車両VのX方向位置が図1(a)の位置にある時のソナー13の検知距離を示し、点線13bは、その時のソナー13の検知可能範囲を示す。そして、駐車スペースPSへ向けて車両Vが前進して(図中の矢印参照)ソナー13のX方向位置が変化すると、ソナー13がエッジ部分Veに近づくことに伴い、ソナー13による検知距離が短くなっていく。
 (a2)中の符号Vfは、別車両V1のうちX方向奥側のエッジ部分Vfの位置を示す。そして、(a2)では、手前側エッジ部分Veより前方(奥側)、かつ奥側エッジ部分Vfより後方(手前側)にソナー13が位置する時の、ソナー13の検知可能範囲および検知距離を示す。(a2)に図示されるように、この期間中は車両Vを前進させても検知距離は変化しない。
 (a3)中の点線13eは、車両VのX方向位置が図1(b)よりさらに前進した位置にある時のソナー13の検知距離を示し、点線13fは、その時のソナー13の検知可能範囲を示す。そして、駐車スペースPSへ向けて車両Vが前進して(図中の矢印参照)ソナー13のX方向位置が変化すると、ソナー13が奥側エッジ部分Vfから離れていくことに伴い、ソナー13による検知距離が長くなっていく。
 したがって、(a1)に示す如く、車両Vを前進させることに伴い検知距離が短くなっていく場合には、手前側エッジ部分Veに近づいていることを検知できる。具体的には、(b1)に示すソナー13出力の変曲点Ve(x)位置が、手前側エッジ部分VeのX方向位置である。また、変曲点Ve(x)でのソナー13出力に基づき演算される検知距離が、手前側エッジ部分VeのY方向位置である。
 (a2)および(b2)に示す如く、車両Vを前進させても検知距離が変化しない場合には、手前側エッジ部分Veと奥側エッジ部分Vfの間にソナー13が位置していることを検知できる。
 (a3)に示す如く、車両Vを前進させることに伴い検知距離が長くなっていく場合には、奥側エッジ部分Vfから離れていることを検知できる。具体的には、(b3)に示すソナー13出力の変曲点Vf(x)位置が、奥側エッジ部分VfのX方向位置である。また、変曲点Vf(x)でのソナー13出力に基づき演算される検知距離が、奥側エッジ部分VfのY方向位置である。
 以上により、ECU10は、車両V前進に伴い生じる検知距離の推移に基づき、車両Vとエッジ部分Ve、Vfとの相対位置関係を把握でき、エッジ部分Ve、VfのX方向位置およびY方向位置を取得できる。そして、先述したように、駐車スペースPSの角部PS1、PS2位置を推定できる。なお、(b2)に示す変曲点Ve(x)位置を検知した時点で、手前側エッジ部分Veの位置を取得でき、駐車スペースPSの角部PS1、PS2位置を推定できる。
 ちなみに、手前側エッジ部分Veの位置を取得した後、車両Vがさらに前進して奥側エッジ部分Vfの位置を取得できた時点で、別車両V1の車幅(例えば約1.8m)が検知されることになる。そのため、(b2)に示す変曲点Vf(x)位置が検知可能な位置まで前進すれば、角部PS1、PS2位置をより高精度で推定できるようになる。
 ところで、図1に示す如く車両Vの斜め前方に駐車スペースPSが位置する状況下で前向き駐車する場合には、以下に説明する直接アプローチおよび切返しアプローチのいずれかのアプローチで駐車することとなる。直接アプローチとは、図3(a1)(a2)(a3)に示すように、駐車スペースPSへ向けて舵角操作して前進することにより、駐車スペースPSへ直接的に前進駐車するアプローチである。切返しアプローチとは、図3(b1)に示す如く駐車スペースPSが車両Vの斜め前方に位置する場合において、先ず、(b1)に示す現在位置から前進して駐車スペースPSの前を通過する((b2)参照)。その後、直接アプローチが可能な位置へ向けて舵角操作して後退する((b3)参照)。その後、駐車スペースPSへ向けて舵角操作して前進することにより、駐車スペースPSへ進入する((b4)参照)。直接アプローチは、One-pathアプローチとも言う。切返しアプローチは、Multi-pathアプローチとも言う。
 ECU10は、手前側エッジ部分Veの位置取得に伴い駐車スペースPS位置を推定できた時点で、ホスト車両Vと別車両V1とのY方向距離L1(図3(a1)(b1)参照)を算出する。そして、算出した距離L1(第1距離)が閾値th1(所定値)以上であれば、直接アプローチで自動操舵するように最適操舵角を演算する。一方、距離L1が閾値th1未満であれば、切返しアプローチで自動操舵するように最適操舵角を演算する。
 図4は、閾値th1の設定手法を説明する図である。図中の一点鎖線K1は、車両Vのうち非操舵輪11r(後輪)の車両左右方向中央部分(以下、「車両中心」と記載)の軌跡を示す。一点鎖線K2、K3は、直接アプローチの場合における車両Vの外側軌跡と内側軌跡を示す。
 車両中心軌跡K1の半径R1は、操舵角を最大にした時が最小となる。したがって、半径R1の中心が、Y方向において所定位置P1よりも駐車スペース側(図4の下側)に位置していると、直接アプローチができない。したがって、先述した閾値th1は、半径R1の中心が所定位置P1に一致する場合におけるY方向距離L1の値に設定されている。
 また、半径R1の中心が、所定位置P1よりもX方向において駐車スペース側(図4の左側)に位置していると、L1≧th1であっても直接アプローチができない。そのため、半径R1の中心が所定位置P1よりもX方向右側に位置していることも、直接アプローチが可能となる条件の1つである。また、駐車スペースPSの奥側隣に存在する障害物(別車両V2)に、車両Vの外側軌跡K2が干渉しないよう、ECU10は直接アプローチ(車両中心軌跡K1)を設定する。
 図5は、Y方向のうちホスト車両Vに対して駐車スペースPSの反対側に障害物(図5の例では壁W)が存在する状況下で、図3(b3)の如く切返しアプローチで後退する場合の説明図である。図中の一点鎖線K4は、前記後退時の車両中心軌跡を示し、車両中心軌跡K4の半径R2は、操舵角を最大にした時が最小となる。そして、切返しアプローチの後退時の軌跡K4が、直接アプローチが可能である場合の軌跡K1に接する状態、或いは交差する状態になるまで後退すれば、図3(b4)に示す前進に切り替えて、直接アプローチと同様に駐車スペースPSへ前向き駐車できることを意味する。
 また、駐車スペースPSの奥側隣に存在する障害物(別車両V2)に、車両Vの外側軌跡K5が干渉しないよう、ECU10は直接アプローチ(車両中心軌跡K1)を設定する。
 したがって、図3(b2)のアプローチを設定するにあたり、軌跡K4が軌跡K1に接するまたは交差することが可能となるよう、Y方向においてできるだけ駐車スペースPSの位置であり、かつ、外側軌跡K5が別車両V2に干渉しない位置(図5の点線位置)へ誘導するよう、ECU10は切返しアプローチを設定する。
 図3(b3)のアプローチを設定するにあたり、軌跡K4が軌跡K1に接するよう、ECU10は切返しアプローチを設定する。なお、両軌跡K4、K1が接することができない場合には軌跡K4が軌跡K1に交差するよう、ECU10は切返しアプローチを設定する。
 図3(b4)のアプローチを設定するにあたり、駐車スペースPSの奥側隣に存在する障害物(別車両V2)に、車両Vの外側軌跡K2が干渉しないよう、ECU10はアプローチを設定する。
 また、半径R2の中心が、Y方向において所定位置P2よりも駐車スペース側(図5の下側)に位置していると、ホスト車両Vが別車両V2に干渉して後退できない。そのため、ホスト車両Vと壁WとのY方向距離L2(第2距離)が閾値th2未満でなければ、切返しアプローチで実施する切返し回数が2回以上となる。この場合には、図3の(b3)(b4)を2回以上繰り返すよう、アプローチを設定する。なお、先述した閾値th2は、半径R2の中心が所定位置P2に一致する場合におけるY方向距離L2の値に設定されている。
 図6(a)は、別車両V1のエッジ部分Veが検知されて駐車スペース位置の推定が為された時の、駐車スペースPSおよびホスト車両Vのレイアウトを示し、図1(b)は、(a)の位置から直接アプローチにより前進した状態を示す。(a)にて駐車スペース位置が推定された後においても、ソナー13~15による障害物探査をECU10は継続して実行する。その結果、直接アプローチの途中で別車両V2の位置が検知され、その検知位置が、推定した駐車スペース位置に干渉する場合には、駐車スペースPSの推定位置を補正する。
 図6(b)は、点線位置に存在すると推定されていた別車両V2が実線位置に存在することが検知され、矢印Aの如く位置ずれが判明した例である。この場合、駐車スペースPSの奥側角部PS2のX方向位置を、前記位置ずれの量だけ矢印Bの如く手前側に補正する。そして、補正後の駐車スペースPS位置に基づき、直接アプローチに係る車両中心軌跡K1をECU10は再設定し、再設定後の軌跡K1に基づき最適操舵角をECU10は最演算する。
 図6は、駐車スペース位置の推定ずれが生じていた状況を示すのに対し、図7は、駐車スペースPSが推定位置に存在していなかった場合の状況を示す。すなわち、別車両V1のエッジ部分Veを検知したことに伴い、図中の一点鎖線に示す位置に駐車スペースPSが存在すると推定した場合において、障害物探査を継続した結果、その推定位置に別車両V3が存在していることが検知された状況を図7は示す。
 この場合、直接アプローチの軌跡K1で前進している最中に別車両V3の存在を検知した時点で、X方向に前進する軌跡K6に変更している。そして、エッジ部分Veの検知と、その検知に基づく駐車スペースPS位置の推定を再び実行する。図7の例では、別車両V4のエッジ部分Veを検知し、その検知結果に基づき、図中の実線位置に駐車スペースPSが存在すると推定している。
 図8は、自動操舵に係る最適操舵角の演算に用いるアプローチを設定する手順を示すフローチャートであり、図8の処理は、ECU10が有するマイクロコンピュータにより所定周期で繰り返し実行される。
 ここで、この出願に記載されるフローチャート、あるいは、フローチャートの処理は、複数のセクション(あるいはステップと言及される)から構成され、各セクションは、たとえば、S10と表現される。さらに、各セクションは、複数のサブセクションに分割されることができる、一方、複数のセクションが合わさって一つのセクションにすることも可能である。さらに、このように構成される各セクションは、デバイス、モジュール、ミーンズとして言及されることができる。また、上記の複数のセクションの各々あるいは組合わさったものは、(i)ハードウエアユニット(例えば、コンピュータ)と組み合わさったソフトウエアのセクションのみならず、(ii)ハードウエア(例えば、集積回路、配線論理回路)のセクションとして、関連する装置の機能を含みあるいは含まずに実現できる。さらに、ハードウエアのセクションは、マイクロコンピュータの内部に構成されることもできる。
 先ず、図8のS10において、操作スイッチ16がオン操作されて駐車支援システムが起動しているか否かを判定する。起動していれば(S10:YES)、次のS11(目標物取得セクション、デバイス、あるいはミーンズ)において、図2に示す如く目標物(別車両V1)のエッジ部分Veの検知を実行する。このエッジ検知が終了するまでは、ホスト車両VはX方向奥側への前進を継続することとなる。エッジ検知が終了すると(S12:YES)、続くS13(駐車スペース推定セクション、デバイス、あるいはミーンズ)において、エッジ部分VeのX方向位置およびY方向位置に基づき、駐車スペースPSの角部PS1、PS2のX方向位置およびY方向位置を推定する。
 続くS14(直接アプローチ判定セクション、デバイス、あるいはミーンズ)では、エッジ部分VeのY方向位置から算出される、ホスト車両Vと目標物V1との離間距離L1(図3に示すY方向距離L1)が、先述した閾値th1未満であるか否かを判定する。L1≧th1と判定されれば(S14:NO)、直接アプローチが可能であるとみなし、続くS15において、駐車スペース位置PS1、PS2に基づき直接アプローチ(図3に示す軌跡Ka、Kb)を設定する。軌跡Kaは図4のK1にしたがって設定される。そして、車両VがY方向に平行になるまでは軌跡Kaにしたがって自動操舵し、平行になった以降は、操舵角を0度にして直進する軌跡Kbに切換えるのが直接アプローチの軌跡である。
 L1<th1と判定されれば(S14:YES)、直接アプローチは不可であるとみなし、切返し側に障害物Wが存在するか否かに応じて、切返しアプローチに係る軌跡を算出する。すなわち、ソナー13~15の検知結果に基づき障害物Wが存在しないと判定されれば(S16:NO)、続くS17に進み、駐車スペース位置PS1、PS2に基づき、切返しアプローチに係る車両中心軌跡Kc、Kd、Ke(図3参照)を算出する。
 一方、障害物Wが存在すると判定されれば(S16:YES)、障害物Wおよび別車両V2と後退時に干渉しないように切返しアプローチを設定する。具体的には、S18において、ホスト車両Vと障害物Wとの離間距離L2(図5に示すY方向距離L2)が、先述した閾値th2未満であるか否かを判定する。L2≧th1と判定されれば(S18:NO)、1回の切返しで切返しアプローチが可能であるとみなし、続くS19において、駐車スペース位置PS1、PS2および離間距離L1、L2に基づき、切返しアプローチに係る車両中心軌跡Kc、Kd、Ke(図5および図3参照)を算出する。
 L2<th1と判定されれば(S18:YES)、1回の切返しでは不可能とみなし、続くS20において、図3(b3)に示す後退と(b4)に示す前進とを複数回実行するアプローチを、切返しアプローチとして設定する。
 図9は、図8で設定したアプローチを再設定する手順を示すフローチャートであり、図9の処理は、ECU10が有するマイクロコンピュータにより所定周期で繰り返し実行される。
 先ず、図9のS30にて直接アプローチ実行中であると判定されれば(S30:YES)、続くS31(探査セクション、デバイス、あるいはミーンズ)において、図8のS13で推定した駐車スペースPSが推定位置に存在するか否かを、障害物探査の結果に基づき判定する。存在しないと判定されれば(S31:NO)、S32(再設定セクション、デバイス、あるいはミーンズ)に進み、図8のS15で設定された直接アプローチを、X方向に前進する軌跡K6に変更する(図7参照)。そして、図8の処理にしたがってアプローチを再設定する。
 推定した位置に駐車スペースPSが存在すると判定され(S31:YES)、かつ、実際に検知された駐車スペースPS位置(実PS位置)と推定位置とのずれが所定値未満であれば(S33:NO)、図9の処理を終了する。なお、障害物探査による駐車スペースPS位置は、駐車スペースPSの奥側隣に位置する障害物(図7の例では別車両V5)のエッジ部分を検知することで取得すればよい。
 実PS位置と推定位置とのずれが所定値以上であれば(S33:YES)、続くS34において、操舵角を最大にして前進しても、駐車スペースPSの奥側隣に位置する障害物(別車両V5)にホスト車両Vが干渉する状態であるか否かを判定する。
 干渉しないと判定されれば(S34:NO)、S35(再設定セクション、デバイス、あるいはミーンズ)に進み、実PS位置に基づいて、ホスト車両Vが別車両V5に干渉しないように直接アプローチを再設定する。干渉すると判定されれば(S34:YES)、続くS36(判定セクション、デバイス、あるいはミーンズ)において、直接アプローチが可能であるか否かを図4の手法にしたがって判定する。直接アプローチが可能と判定されれば(S36:YES)、前記S35にて直接アプローチを再設定する。
 直接アプローチが不可能と判定されれば(S36:NO)、続くS37において、Y方向のうちホスト車両Vに対して駐車スペースPSの反対側に障害物Wが存在するか否かを判定する。障害物Wが存在しないと判定されれば(S37:NO)、S38(再設定セクション、デバイス、あるいはミーンズ)に進み、直接アプローチから切返しアプローチに変更し、別車両V5にホスト車両Vが干渉しないよう、実PS位置に基づき切返しアプローチを設定する。
 障害物Wが存在すると判定されれば(S37:YES)、S39(再設定セクション、デバイス、あるいはミーンズ)に進み、直接アプローチから切返しアプローチに変更し、別車両V5および障害物Wにホスト車両Vが干渉しないよう、実PS位置および離間距離L1、L2に基づき切返しアプローチを設定する。
 以上により、本実施形態によれば、駐車スペースPSのX方向手前側に存在する目標物の、手前側エッジ部分Veの位置を取得し、取得した目標物位置に基づき駐車スペース位置(PS位置)を推定する。そのため、駐車スペースPSを直接検知することなくPS位置を推定でき、その推定位置に基づき前進アプローチ(直接アプローチまたは切返しアプローチ)を設定するので、前進アプローチを高精度で設定することが可能となる。
 さらに本実施形態によれば、以下に列挙する作用効果も奏する。
 <作用効果1>
 ホスト車両Vには、該ホスト車両の側方に位置する障害物を検知する側方センサ13、14が搭載されており、前記目標物取得セクションS11は、側方センサ13、14の検知結果に基づき、目標物のうちX方向手前側のエッジ部分Veの位置を取得する。そして、駐車スペース推定セクションS13は、取得したエッジ部分Veの位置に基づき駐車スペース位置を推定する。
 ここで、前記目標物が一般車両である蓋然性は高く、その場合には、目標物のX方向長さは一般車両の車幅(例えば約1.8m)ということになる。すると、目標物のうちX方向手前側のエッジ部分Veから、X方向に1.8m前進した位置が、駐車スペースの手前側角部PS1ということになる。そして、駐車スペースPSの幅寸法は特定の値(例えば3.2m)である蓋然性が高いため、前記エッジ部分Veから、X方向に1.8m+3.2m前進した位置が、駐車スペースPSの奥側角部PS2ということになる。したがって、前記エッジ部分Veの位置を取得すれば、その位置を基準にして駐車スペースPSの位置を精度よく推定できる。
 この点を鑑み、本実施形態では、取得したエッジ部分Veの位置に基づき駐車スペースPSの位置を推定するので、駐車スペースPSの前を通過することがない場合であっても、駐車スペースPSの位置を精度よく推定できる。
 <作用効果2>
 アプローチ設定セクションは、推定した駐車スペース位置に基づき、直接アプローチが可能であるか否かを判定する直接アプローチ判定セクションS14を有する。つまり、ECU10は、アプローチ設定セクションおよび直接アプローチ判定セクションとしての機能を有する。これによれば、直接アプローチおよび切返しアプローチのうち適切なアプローチを前進アプローチとして設定することができる。
 <作用効果3>
 アプローチ設定セクションにより設定された駐車アプローチにしたがった前進駐車の実行中に、駐車スペースPSを探査する探査セクションと、探査セクションによる探査結果に基づき駐車アプローチを再設定する再設定セクションS33、S35、S38、S39と、を備える。これによれば、前進駐車開始前に推定しておいた駐車スペース位置が実位置からずれていたり(S33:YES)、駐車スペースが存在していなかったり(S31:NO)等の誤推定の有無を、前進駐車の実行中に探査することで確認できる。そして、探査結果に基づき駐車アプローチを再設定するので、誤推定があった場合のリカバリーが可能となる。
 <作用効果4>
 直接アプローチにしたがった前進駐車の実行中に実施された探査セクションの探査結果に基づき、当該前進駐車の継続が可能であるか否かを判定する判定セクションS36を備え、再設定セクションS33、S35、S38、S39は、判定セクションS36により継続不可と判定された場合に、直接アプローチから切返しアプローチに変更するよう駐車アプローチを再設定する。
 ここで、切返しアプローチの場合には、駐車スペースPSへ進入するに先立ち駐車スペースPSの前を通過する機会があるので、その通過時に駐車スペースPSを検知できる。これに対し、直接アプローチの場合には前記機会がないので、切返しアプローチの場合に比べると駐車スペースPSの位置推定精度が悪くなることが懸念される。この懸念解消を図ったのが上記特徴点であり、これによれば、直接アプローチによる前進駐車が継続できない場合(S31:NO、S36:NO)に、切返しアプローチに変更するように再設定される。そのため、誤推定に起因して直接アプローチによる前進駐車が継続できない場合のリカバリーが可能となる。
 <作用効果5>
 駐車スペースPSがホスト車両の進行方向斜め前方に位置する時の、駐車スペースPSとホスト車両VとのY方向離間距離を第1距離L1と呼ぶ場合において、アプローチ設定セクションは、第1距離L1が所定値th1以上である(S14:NO)ことを条件として、直接アプローチを前進アプローチとして設定する。
 ここで、第1距離L1が十分に確保されていなければ、駐車スペースPSの両隣に別車両等の障害物が存在する場合、直接アプローチでは駐車スペースPSへ前進駐車させることはできない。この点を鑑みた上記特徴点によれば、第1距離L1が所定値th1以上である(S14:NO)ことを条件として直接アプローチを選択するので、最適なアプローチを精度よく設定できるようになる。
 <作用効果6>
 駐車スペースPSがホスト車両Vの進行方向斜め前方に位置し、かつ、ホスト車両Vから見て駐車スペースPSの反対側の斜め前方に障害物Wが存在する状況下で、駐車スペースPSとホスト車両VとのY方向離間距離を第1距離L1、障害物Wとホスト車両VとのY方向離間距離を第2距離L2と呼ぶ。そして、アプローチ設定セクションは、切返しアプローチを前進アプローチとして設定した場合、第1距離L1および第2距離L2に基づき切返しアプローチを設定する。
 ここで、第1距離L1が十分に確保されていなければ、先述した通り直接アプローチでは駐車できないので、切返しアプローチを選択することとなる。但し、駐車スペースの反対側の斜め前方に障害物が存在する場合には、切返しアプローチの過程のうち直接アプローチが可能な位置へ後退する過程(後退過程)で、ホスト車両Vが障害物に干渉することが懸念される。特に、前記第2距離が十分に確保されていなければ、切返しアプローチの過程のうち駐車スペースの前を通過する過程(通過過程)および前記後退過程のアプローチを設定するにあたり、前記干渉の回避を鑑みて設定する必要が生じる。この点を鑑みた上記特徴点によれば、第1距離および第2距離に基づき切返しアプローチを設定するので、前記干渉を回避する最適なアプローチを精度よく設定できる。
 (第2実施形態)
 上記第1実施形態では、目標物V1のエッジ部分Veの位置を検出し、その検出位置に基づき駐車スペース位置を推定している。これに対し本実施形態では、ECU10(目標物取得セクション)は、ソナー13~15の検知結果に基づき目標物V1とホスト車両VとのY方向距離L1を取得する。
 また、ホスト車両運転者の指示に基づき目標物のX方向位置を取得する。例えば、X方向において、目標物V1のエッジ部分Veまたは駐車スペースの手前側角部PS1の位置(所定位置)と、ホスト車両Vの特定部位との距離が所定距離になった時点、或いは、前記所定位置と前記特定部位とが一致した時点で、操作スイッチ16をオン操作するように運転者へ操作を促しておく。そして、そのオン操作タイミングに基づき駐車スペース位置を推定する。
 ところで、先述したように、目標物V1が一般車両である蓋然性は高く、その場合には、目標物V1のX方向長さは一般車両の車幅(例えば約1.8m)ということになる。また、駐車スペースPSの幅寸法は特定の値(例えば3.2m)である蓋然性が高い。そのため、目標物V1のX方向位置を取得できれば、その位置を基準に駐車スペースPSのX方向位置を精度よく推定できる。また、駐車スペースPSのY方向位置は、目標物V1のY方向位置と同じである蓋然性が高いため、目標物V1のY方向位置を取得できれば、その位置を基準に駐車スペースのY方向位置を精度よく推定できる。
 これらの点を鑑み、本実施形態では、運転者の指示により目標物V1のX方向位置を取得するとともに、ソナー13~15の検知結果に基づき目標物V1とホスト車両VとのY方向距離L1(Y方向位置)を取得する。そして、取得した目標物V1のX方向位置およびY方向位置に基づき、駐車スペースPSの位置を推定する。そのため、前向き駐車につき駐車スペースPSの前を通過することがない場合であっても、駐車スペース位置を精度よく推定できる。
 なお、上述した「ホスト車両運転者の指示」の具体例としては、X方向において目標物V1の特定位置で車両を一時停止させることによる指示や、前記特定位置で運転者がスイッチ16を操作することによる指示等が挙げられる。
 (他の実施形態)
 本開示は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
 ・障害物検知センサはソナー13~15の如く音波を用いるものでなくてもよく、例えば、光波を用いるものであっても、電波を用いるものであってもよい。例えば測距センサ13としては、超音波センサ、レーザレーダ、ミリ波レーダ等のセンサを用いることができる。
 ・車両Vに搭載されたカメラにより車両Vの周囲を撮影し、その撮影画像に基づき目標物V1の位置をECU10が取得するように構成してもよい。
 ・図1に示す例では、図8の処理により設定したアプローチに基づく最適操舵角で自動操舵することにより、駐車スペースPSへ前進して進入するための車両経路である前進アプローチを提示している。これに対し、設定したアプローチをディスプレイに表示させることで、車両Vの運転者へ前進アプローチを提示してもよいし、設定したアプローチにしたがった音声案内により、車両Vの運転者へ前進アプローチを提示してもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (8)

  1.  駐車スペース(PS)へ前進して進入するための車両経路である前進アプローチを提示する駐車支援装置であって、
     ホスト車両(V)の進行方向斜め前方に前記駐車スペースが位置する状況下で、ホスト車両の進行方向をX方向、前記X方向に垂直な方向をY方向とした場合において、
     前記駐車スペースのX方向手前側に存在する目標物(V1)の、X方向位置およびY方向位置を取得する目標物取得セクション(S11)と、
     前記目標物取得セクションにより取得された前記目標物の位置に基づき、前記駐車スペースのX方向位置およびY方向位置を推定する駐車スペース推定セクション(S13)と、
     前記駐車スペース推定セクションにより推定された前記駐車スペースの位置に基づき、前記前進アプローチを設定するアプローチ設定セクション(S17、S19、S20)と、
     を備えることを特徴とする駐車支援装置。
  2.  前記ホスト車両には、該ホスト車両の側方に位置する障害物を検知する側方センサ(13、14)が搭載されており、
     前記目標物取得セクションは、前記側方センサの検知結果に基づき、前記目標物のうちX方向手前側のエッジ部分(Ve)の位置を取得し、
     前記駐車スペース推定セクションは、取得した前記エッジ部分の位置に基づき前記駐車スペースの位置を推定することを特徴とする請求項1に記載の駐車支援装置。
  3.  前記ホスト車両には、該ホスト車両の側方に位置する障害物を検知する側方センサ(13、14)が搭載されており、
     前記目標物取得セクションは、前記側方センサの検知結果に基づき前記目標物のY方向位置を取得するとともに、ホスト車両運転者の指示に基づき前記目標物のX方向位置を取得し、
     前記駐車スペース推定セクションは、取得した前記目標物のX方向位置およびY方向位置に基づき、前記駐車スペースの位置を推定することを特徴とする請求項1に記載の駐車支援装置。
  4.  前記駐車スペースがホスト車両の進行方向斜め前方に位置する場合に、前記駐車スペースへ向けて舵角操作して前進することにより、前記駐車スペースへ直接的に前進駐車するアプローチを直接アプローチと呼び、
     前記駐車スペースがホスト車両の進行方向斜め前方に位置する場合に、現在のホスト車両位置から前進して前記駐車スペースの前を通過し、その後、前記直接アプローチが可能な位置へ向けて舵角操作して後退し、その後、前進して前記駐車スペースへ前進駐車するアプローチを切返しアプローチと呼ぶ場合において、
     前記アプローチ設定セクションは、推定した前記駐車スペースの位置に基づき、前記直接アプローチが可能であるか否かを判定する直接アプローチ判定セクション(S14)を有することを特徴とする請求項1~3のいずれか1つに記載の駐車支援装置。
  5.  前記アプローチ設定セクションにより設定された前記駐車アプローチにしたがった前進駐車の実行中に、前記駐車スペースを探査する探査セクション(S31)と、
     前記探査セクションによる探査結果に基づき前記駐車アプローチを再設定する再設定セクション(S33、S35、S38、S39)と、
     を備えることを特徴とする請求項4に記載の駐車支援装置。
  6.  前記直接アプローチにしたがった前進駐車の実行中に実施された前記探査セクションの探査結果に基づき、当該前進駐車の継続が可能であるか否かを判定する判定セクション(S36)を備え、
     前記再設定セクションは、前記判定セクションにより継続不可と判定された場合に、前記直接アプローチから前記切返しアプローチに変更するよう前記駐車アプローチを再設定することを特徴とする請求項5に記載の駐車支援装置。
  7.  前記駐車スペースがホスト車両の進行方向斜め前方に位置する時の、前記駐車スペースとホスト車両とのY方向離間距離を第1距離(L1)と呼ぶ場合において、
     前記アプローチ設定セクションは、前記第1距離が所定値(th1)以上であることを条件として、前記直接アプローチを前記前進アプローチとして設定することを特徴とする請求項4~6のいずれか1つに記載の駐車支援装置。
  8.  前記駐車スペースがホスト車両の進行方向斜め前方に位置し、かつ、ホスト車両から見て前記駐車スペースの反対側の斜め前方に障害物(W)が存在する状況下で、前記駐車スペースとホスト車両とのY方向離間距離を第1距離(L1)、前記障害物とホスト車両とのY方向離間距離を第2距離(L2)と呼ぶ場合において、
     前記アプローチ設定セクションは、前記切返しアプローチを前記前進アプローチとして設定した場合、前記第1距離および前記第2距離に基づき前記切返しアプローチを設定することを特徴とする請求項4~7のいずれか1つに記載の駐車支援装置。
PCT/JP2013/005162 2012-09-12 2013-09-02 駐車支援装置 WO2014041757A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112013004443.9T DE112013004443B4 (de) 2012-09-12 2013-09-02 Parkassistenzvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012200700A JP5786833B2 (ja) 2012-09-12 2012-09-12 駐車支援装置
JP2012-200700 2012-09-12

Publications (1)

Publication Number Publication Date
WO2014041757A1 true WO2014041757A1 (ja) 2014-03-20

Family

ID=50277901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005162 WO2014041757A1 (ja) 2012-09-12 2013-09-02 駐車支援装置

Country Status (3)

Country Link
JP (1) JP5786833B2 (ja)
DE (1) DE112013004443B4 (ja)
WO (1) WO2014041757A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112349091A (zh) * 2019-08-07 2021-02-09 爱信精机株式会社 特定区域检测装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102289477B1 (ko) * 2015-01-30 2021-08-13 현대모비스 주식회사 주차 지원 장치
WO2016129059A1 (ja) * 2015-02-10 2016-08-18 三菱電機株式会社 幅推定装置
EP3349201B1 (en) 2017-01-12 2019-03-06 Alpine Electronics, Inc. Parking assist method and vehicle parking assist system
CN117246308A (zh) * 2022-06-10 2023-12-19 法雷奥汽车内部控制(深圳)有限公司 用于机动车辆的泊车辅助系统的运行方法以及泊车辅助系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06274796A (ja) * 1993-03-24 1994-09-30 Toyota Motor Corp 駐車空間検出装置
JP2004338635A (ja) * 2003-05-16 2004-12-02 Toyota Motor Corp 車両用走行支援装置
JP2006007875A (ja) * 2004-06-23 2006-01-12 Denso Corp 駐車支援装置
WO2009060688A1 (ja) * 2007-11-08 2009-05-14 Bosch Corporation 駐車支援装置
JP2009286376A (ja) * 2008-06-02 2009-12-10 Aisin Aw Co Ltd 駐車支援装置、駐車支援方法及びコンピュータプログラム
JP2010012836A (ja) * 2008-07-01 2010-01-21 Nissan Motor Co Ltd 駐車支援装置及び駐車支援方法
JP2010269707A (ja) * 2009-05-21 2010-12-02 Honda Motor Co Ltd 車両の駐車支援システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3683091B2 (ja) 1997-04-15 2005-08-17 本田技研工業株式会社 車両の自動操舵装置
JP5136291B2 (ja) * 2008-08-25 2013-02-06 日産自動車株式会社 駐車支援装置および駐車支援方法
JP5506795B2 (ja) * 2009-06-03 2014-05-28 ボッシュ株式会社 駐車支援装置
DE102009024083A1 (de) 2009-06-05 2010-12-09 Valeo Schalter Und Sensoren Gmbh Verfahren zum Durchführen eines zumindest semi-autonomen Parkvorgangs eines Fahrzeugs und Parkassistenzsystem für ein Fahrzeug
DE102009039084A1 (de) 2009-08-27 2011-03-03 Valeo Schalter Und Sensoren Gmbh Verfahren zum Unterstützen eines Fahrers eines Kraftfahrzeugs beim Einparken in eine Querparklücke, Fahrassistenzeinrichtung und Kraftfahrzeug mit einer Fahrerassistenzeinrichtung
JP5035321B2 (ja) 2009-11-02 2012-09-26 株式会社デンソー 車両周辺表示制御装置および車両周辺表示制御装置用のプログラム
DE102010030213B4 (de) 2010-06-17 2020-12-17 Robert Bosch Gmbh Einparkhilfesystem für Querparklücken
JP2012200700A (ja) 2011-03-28 2012-10-22 Sumitomo Chemical Co Ltd 臭素の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06274796A (ja) * 1993-03-24 1994-09-30 Toyota Motor Corp 駐車空間検出装置
JP2004338635A (ja) * 2003-05-16 2004-12-02 Toyota Motor Corp 車両用走行支援装置
JP2006007875A (ja) * 2004-06-23 2006-01-12 Denso Corp 駐車支援装置
WO2009060688A1 (ja) * 2007-11-08 2009-05-14 Bosch Corporation 駐車支援装置
JP2009286376A (ja) * 2008-06-02 2009-12-10 Aisin Aw Co Ltd 駐車支援装置、駐車支援方法及びコンピュータプログラム
JP2010012836A (ja) * 2008-07-01 2010-01-21 Nissan Motor Co Ltd 駐車支援装置及び駐車支援方法
JP2010269707A (ja) * 2009-05-21 2010-12-02 Honda Motor Co Ltd 車両の駐車支援システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112349091A (zh) * 2019-08-07 2021-02-09 爱信精机株式会社 特定区域检测装置

Also Published As

Publication number Publication date
JP5786833B2 (ja) 2015-09-30
DE112013004443B4 (de) 2022-02-17
DE112013004443T5 (de) 2015-06-18
JP2014054913A (ja) 2014-03-27

Similar Documents

Publication Publication Date Title
JP6547495B2 (ja) 駐車支援装置
US9884646B2 (en) Parking assist system and path determination method
US9751562B2 (en) Park exit assist system
US9505436B2 (en) Parking assist system
JP6015314B2 (ja) 駐車目標位置を算出する装置、駐車目標位置を算出する方法およびプログラム
JP6573795B2 (ja) 駐車支援装置、方法及びプログラム
EP3290301B1 (en) Parking assist device
JP5477515B2 (ja) 駐車支援装置
EP2990273A1 (en) Parking assist device
JP2015003565A (ja) 駐車支援装置
CN109641617B (zh) 出库辅助装置
WO2014041757A1 (ja) 駐車支援装置
JPH0628598A (ja) 駐車アシスト装置
WO2016039410A1 (ja) 運転支援装置
US20180061241A1 (en) Parking exit assist device
WO2019181260A1 (ja) 駐車支援装置
WO2018198530A1 (ja) 駐車支援装置
JP6724853B2 (ja) 駐車支援装置
JP2012131460A (ja) 目標軌道算出装置
JP5929684B2 (ja) 駐車支援装置
CN107791979B (zh) 出库辅助装置
JP6385991B2 (ja) 出庫支援装置
JP5900649B2 (ja) 運転支援装置
JP6167981B2 (ja) 運転支援装置
JP2023137962A (ja) 駐車制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837835

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120130044439

Country of ref document: DE

Ref document number: 112013004443

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13837835

Country of ref document: EP

Kind code of ref document: A1