WO2014038698A1 - リチウムイオン二次電池負極用活物質及びそれを用いたリチウムイオン二次電池負極並びにリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池負極用活物質及びそれを用いたリチウムイオン二次電池負極並びにリチウムイオン二次電池 Download PDF

Info

Publication number
WO2014038698A1
WO2014038698A1 PCT/JP2013/074270 JP2013074270W WO2014038698A1 WO 2014038698 A1 WO2014038698 A1 WO 2014038698A1 JP 2013074270 W JP2013074270 W JP 2013074270W WO 2014038698 A1 WO2014038698 A1 WO 2014038698A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium ion
ion secondary
negative electrode
active material
Prior art date
Application number
PCT/JP2013/074270
Other languages
English (en)
French (fr)
Inventor
公一 服部
和徳 小関
大輔 谷口
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to CN201380046948.4A priority Critical patent/CN104604000A/zh
Publication of WO2014038698A1 publication Critical patent/WO2014038698A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an active material for a negative electrode of a lithium ion secondary battery, a negative electrode of a lithium ion secondary battery and a lithium ion secondary battery using the same.
  • Lithium ion secondary batteries take advantage of superior features such as high operating potential, large battery capacity, and long cycle life, and low environmental pollution, so the conventional nickel-cadmium batteries and It is widely used in place of nickel metal hydride batteries.
  • HEV Hybrid Electric Assistant
  • a carbon material As a negative electrode active material constituting a negative electrode of a lithium ion secondary battery, a carbon material is generally used in terms of safety and life.
  • graphite material is an excellent material with high energy density that is obtained at a high temperature of at least about 2000 ° C., usually about 2600 to 3000 ° C.
  • problems with high input / output characteristics and cycle characteristics. Have. For this reason, for example, graphite materials are not suitable for high input / output applications such as power storage and electric vehicles, and input / output characteristics applications at low temperatures, and the use of carbon materials with other structures has been studied. ing.
  • the discharge capacity of the lithium secondary battery is raised as an important characteristic so that a current that is an energy source of HEV can be sufficiently supplied.
  • the ratio of the charge capacity to the discharge capacity, that is, the initial efficiency is required to be high so that the discharge current amount is sufficiently higher than the charge current amount.
  • the lithium ion secondary battery preferably maintains a high charge capacity up to a high current density, and is also required to have a high capacity maintenance rate. In other words, it is required to improve such output characteristics, discharge capacity, initial efficiency, and capacity retention ratio in a well-balanced manner.
  • coal-based and / or petroleum-based hereinafter referred to as “coal-based” raw coke or coal-based calcined coke is singly or mixed and fired.
  • a negative electrode active material for lithium secondary batteries has been proposed.
  • Patent Document 1 discloses that high input / output characteristics are exhibited by an active material having a larger crystal layer and a fine pore volume than graphite by firing at a temperature of 2000 ° C. or less and modifying the active material surface. It has been shown.
  • Patent Document 2 proposes that a catalyst be used during firing in order to widen the crystal layers. By treating at a firing temperature lower than that during graphite production, an active material having a wider crystal layer than graphite is proposed. It has been shown that the material can be produced.
  • Coal-based raw coke and coal-based calcined coke that have the advantages mentioned above, but because the firing temperature is lower than that of graphite material, the carbon crystallinity is low and the unit volume when used as an electrode There is a problem that the capacity per (weight) becomes low. That is, an electrode using a general graphite material has a capacity of 360 mAh / g and a volume density of 1.4 to 1.8 g / cm 3 , whereas an electrode using the above material has a capacity of 240 to 340 mAh / g. g, and the volume density is 1.0 to 1.2 g / cm 3 , the capacity as an electrode is lowered. Therefore, problems such as increase in the capacity of the active material and increase in volume density at the electrode are inherent in coal-based raw coke and coal-based calcined coke.
  • Patent Document 3 describes Si and graphite-based conductive materials as materials used for the negative electrode.
  • Si has an average particle size of 5 It is described that it is necessary to design with small particle sizes of ⁇ 15 ⁇ m and graphite of 2.5 to 15 ⁇ m.
  • the present invention per unit volume (weight) with practical characteristics that can be used for in-vehicle applications such as HEV and PHEV, such as discharge capacity, initial efficiency, input characteristics, capacity maintenance rate, etc. of lithium ion secondary batteries
  • An object of the present invention is to provide an active material for a negative electrode of a lithium ion secondary battery having a high capacity.
  • Another object of the present invention is to provide a lithium ion secondary battery negative electrode and a lithium ion secondary battery using the lithium ion secondary battery negative electrode active material.
  • the present inventors have found that the above problems can be solved by controlling the particle size distribution of the active material based on a specific raw material within a certain range, and complete the present invention. It came to. That is, the present invention is formed from a carbon material having a true specific gravity of 2.00 to 2.16 g / cm 3 , and has a particle size distribution on a volume basis of D 10 of 3 to 9 ⁇ m and D 50 of 10 to 20 ⁇ m.
  • An active material for a negative electrode of a lithium ion secondary battery wherein D 90 is in the range of 21 to 40 ⁇ m, D 90 -D 10 is in the range of 15 to 35 ⁇ m, and the tap density is 0.8 g / cc or more. is there.
  • the tap density of the active material is advantageously 0.8 g / cc or more in terms of increasing the initial density at the time of electrode preparation, and the volume density after pressing at the time of electrode preparation can be controlled. It is also advantageous in that it can be 20 g / cm 3 or more and 1.45 g / cm 3 or less.
  • an active material coal-based and / or petroleum-based (coal-based, etc.) raw coke and coal-based calcined coke may be used alone or mixed and fired.
  • the present invention is a negative electrode having a composite material layer formed by mixing the active material for a negative electrode of a lithium ion secondary battery and a binder on a current collector when observed from an electrode cross section.
  • the active material shape 80% or more of the number of observed active material particles has an ellipse equivalent length / short ratio (ellipse equivalent minor axis length / ellipse equivalent major axis length) of 0.05 to 0.70
  • the lithium ion secondary battery negative electrode is characterized in that a volume density of the composite material layer is 1.20 to 1.45 g / cm 3 or less.
  • the present invention is also a lithium ion secondary battery characterized in that the negative electrode and the positive electrode of the lithium ion secondary battery face each other with a separator interposed therebetween.
  • the volume density at the time of electrode can be increased compared to the conventional case.
  • a negative electrode active material excellent in performance balance can be provided.
  • the negative active material for a lithium ion secondary battery of the present invention has a true specific gravity in the range of 2.00 to 2.16 g / cm 3 .
  • the negative electrode active material for a lithium ion secondary battery that provides such true specific gravity can be obtained by mixing or mixing coal-based and / or petroleum-based (coal-based) raw coke, or coal-based calcined coke, alone or in combination.
  • coal-based etc. may be “coal-based and / or petroleum-based”, that is, either coal-based or petroleum-based, both It may be a mixed system of
  • the true specific gravity is less than 2.00 g / cm 3
  • the true specific gravity exceeds 2.16 g / cm 3
  • the input / output characteristics and capacity retention characteristics are degraded.
  • raw coke such as coal-based coke uses petroleum-based and / or coal-based heavy oil, for example, a coking facility such as a delayed coker, and the maximum temperature reached about 400 ° C. to 700 ° C. for about 24 hours. It means the one obtained by carrying out the decomposition and polycondensation reaction, and the coal-based calcined coke means the one obtained by calcining the coal-based raw coke and the maximum temperature reached 800 ° C. It means petroleum-based and / or coal-based coke calcined at about 1500 ° C.
  • a coal-based heavy oil is used, for example, using a coking facility such as a delayed coker, and the highest temperature reached.
  • a coal-based raw coke is obtained by carrying out a thermal decomposition and polycondensation reaction at a temperature of about 400 ° C. to 700 ° C. for about 24 hours. Thereafter, the obtained coal-based raw coke mass is pulverized to a predetermined size.
  • An industrially used pulverizer can be used for the pulverization.
  • pulverization step one or two or more of these apparatuses may be used and pulverized a plurality of times with one apparatus.
  • the heavy coal oil used here may be a heavy petroleum oil or a heavy coal oil, but the heavy heavy oil is richer in aromatic properties, Since there are few impurities, such as S, V, and Fe, and there is also little volatile matter, it is more preferable to use heavy coal oil.
  • the coal-based raw coke obtained as described above is calcined at a maximum temperature of 800 ° C. to 1500 ° C. to produce coal-based calcined coke.
  • the range is preferably 1000 ° C to 1500 ° C, more preferably 1200 ° C to 1500 ° C.
  • equipment such as lead hammer furnace, shuttle furnace, tunnel furnace, rotary kiln, roller hearth kiln or microwave capable of mass heat treatment can be used. is not. Further, these firing facilities may be either a continuous type or a batch type.
  • the obtained coal-based calcined coke lump is pulverized to a predetermined size using a pulverizer such as an industrially used atomizer in the same manner as described above.
  • the pulverized coke powder can be sized to a predetermined particle size by cutting fine powder by classification or removing coarse powder with a sieve or the like.
  • the firing temperature is preferably 800 ° C. or higher and 1500 ° C. or lower at the highest temperature reached.
  • the firing temperature exceeds the upper limit, the crystal growth of the coke material is excessively promoted, and it becomes difficult to make the true specific gravity 2.16 g / cm 3 or less.
  • the true specific gravity exceeds 2.16 g / cm 3 , the crystal structure of the coke is oriented like graphite at the time of firing, and the distance between the crystal layers becomes narrow. As described above, the input / output characteristics, the capacity retention ratio, etc. Therefore, the characteristic due to the structure will be deteriorated.
  • the crystal structure becomes undeveloped and the true specific gravity is not more than 2.00 g / cm 3, and the functional group derived from the raw material (OH group, COOH group, etc.) is present on the coke surface.
  • the functional group derived from the raw material OH group, COOH group, etc.
  • liquid phase replacement method also known as pycnometer method. Specifically, powder is put into a pycnometer, a solvent solution such as distilled water is added, air and solvent solution on the sample surface are replaced by a method such as vacuum deaeration, and the true specific gravity is obtained by calculating the exact sample weight and volume. Calculate the value.
  • the particle size distribution of the negative electrode active material particles is such that D 10 is 3 to 9 ⁇ m, D 50 is 10 to 20 ⁇ m, D 90 is 21 to 40 ⁇ m, and D 90 ⁇ D 10 needs to be in the range of 15 to 35 ⁇ m.
  • This raw material coal and the like raw coke, the particle size after grinding but one of coal, such as calcined coke obtained by sintering alone or in combination is, D 10 is 3 ⁇ 9 .mu.m, D 50 means 10 to 20 ⁇ m, D 90 means 21 to 40 ⁇ m, and D 90 -D 10 means a range of 15 to 35 ⁇ m.
  • the BET specific surface area is preferably 5 m 2 / g or less, more preferably 0.5 to 5 m 2 / g.
  • the negative electrode active material having a particle size distribution as described above is obtained by roughly crushing raw material coke with an orient mill or the like, and finely crushing with a hammer mill or jet mill, and removing fine powder by air classification or the like as necessary. Can be obtained.
  • the pulverization method is not particularly specified, and a general pulverization method can be used.
  • D 90 of it is difficult to obtain an electrode of uniform and smooth surface texture to the electrode during the production due to the presence of coarse powder exceeds 40 [mu] m.
  • D 90 -D 10 is less than 15 ⁇ m, the particle size distribution of the particles becomes sharp, and it becomes difficult for the particles to form a close-packed structure during electrode production, resulting in a decrease in electrode density. If D 90 -D 10 exceeds 35 ⁇ m or D 10 exceeds 9 ⁇ m, there is a high possibility that coarse particles having D 90 exceeding 40 ⁇ m will be present.
  • D 10 is 3 to 9 ⁇ m
  • D 50 is 10 to 20 ⁇ m
  • D 90 is 21 to 40 ⁇ m
  • D 90 -D 10 is in the range of 15 to 35 ⁇ m. It will be necessary.
  • D 90 -D 10 represents the spread of the distribution shape in the particle size distribution of the active material particles. Not define the extent of the D 50 particle size distribution which is a conventional center value has been found that it is possible to produce a superior electrode filling properties by having a spread of the distribution shown in the present invention.
  • the coke powder having the above particle size distribution may be obtained by using any one of the above-mentioned raw coal-based coke powder, coal-based calcined coke powder, or both of them. It may be obtained by using.
  • the particle size distribution measurement of the powder particles carbon material
  • an apparatus of LMS-30 manufactured by Seishin Enterprise Co., Ltd.
  • the dispersion medium was measured using water + activator.
  • the volume distribution was measured using a laser diffraction / scattering method, and the particle size distribution was evaluated using the median diameter (cumulative distribution).
  • the above-mentioned coke powder becomes flat and flake shaped in the process of pulverizing and controlling the particle size distribution.
  • As the shape of the active material 80% or more of the number of active material particles observed by observing the cross section of the produced electrode has an ellipse equivalent length / short ratio (ellipse equivalent short axis length / ellipse equivalent long axis length) of 0.05. ⁇ 0.70.
  • the coke powder has a more spherical shape, and even in the same particle size distribution, the fine packing and tap density change, and the electrode performance also changes the battery performance.
  • the coke powder when the ellipse equivalent length / short ratio is less than 0.05, the coke powder has a more needle-like shape, which not only changes the filling method and tap density, but also increases the surface area of the active material. Since the phenomenon of lowering the performance occurs, in the present invention, in the active material shape observed from the cross section of the electrode, 80% or more of the observed number of active material particles is equivalent to the ellipse equivalent length ratio (ellipse equivalent short axis length / ellipse equivalent). Coke powder having a major axis length of 0.05 to 0.70 is used.
  • an electrode having an active material layer thickness of 50 ⁇ m or more is manufactured, and a method such as a mechanical polishing method, a microtome method, a CP (Cross-section Polisher) method, or a focused ion beam (FIB) method is used.
  • a cross section of the electrode is prepared by observing all particle sizes having a minimum particle size of 1 ⁇ m or more by a method such as SEM.
  • the ellipse equivalent length / short ratio (ellipse equivalent short axis length / ellipse equivalent long axis length) is measured. Since there are variations in the distribution of particles in the observation cross section, observation of 20 fields or more is preferable.
  • the particle size may be measured by using image analysis software (WinRooF: manufactured by Mitani Corporation).
  • the negative electrode active material for a lithium secondary battery of the present invention has a tap density of 0.8 g / cc or more, preferably in the range of 0.8 to 1.2 g / cc. If the tap density is less than 0.8 g / cc, contact between the coke powders at the time of electrode preparation will be insufficient and the conduction path will be reduced, so the battery performance will be reduced, and the press pressure will be increased to increase the density. Since the amount of deformation increases, the coke powder breaks, leading to an increase in surface area, a further reduction in the conduction path due to a decrease in electrode adhesion, and a decrease in battery performance.
  • the tap density in order to increase the packing density before pressing, it is necessary to set the tap density as an index to 0.8 g / cc.
  • D 10 of must like add fine powder of less than 3 [mu] m, its surface area results powder is increased, the tap density because it leads to a decrease in battery performance 1 It is not necessary to exceed 2 g / cc.
  • the tap density of the powder measured values at a cylinder volume of 100 cc, a tapping distance of 38 mm, and a tap count of 300 using an apparatus of Tap Denser KYT-400 (manufactured by Seishin Enterprise Co., Ltd.) were used.
  • the present invention is also a lithium secondary battery negative electrode using the negative electrode active material for lithium secondary battery, and the negative electrode is formed on a current collector (generally copper foil) and the negative electrode active material for lithium secondary battery and a binder. And a composite material layer formed by mixing them.
  • a water-soluble binder such as a fluorine resin powder such as polyvinylidene fluoride (PVDF) or a polyimide (PI) resin, styrene butadiene rubber (SBR), or carboxymethyl cellulose (CMC) is used as the binder.
  • PVDF polyvinylidene fluoride
  • PI polyimide
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • Formation of the composite material layer on the current collector is performed by preparing a slurry of the negative electrode active material and the binder described above using a solvent, and applying and drying on the current collector (generally copper foil). It can be performed by pressing under any condition.
  • the solvent used is not particularly limited, and N-methylpyrrolidone (NMP), dimethylformamide, water, alcohol, or the like is used.
  • the negative electrode active material and the binder are kneaded at a weight ratio of 93 to 97: 7 to 3 (negative electrode active material: binder), and this slurry is applied onto a copper foil having a predetermined thickness.
  • the negative electrode can be obtained by drying the solvent under a drying condition of 60 to 120 ° C. and then pressing it at a linear pressure of 100 to 600 kg / cm. By setting the manufacturing conditions in this case to the above range, An electrode having a volume density in the range of 1.20 to 1.45 g / cm 3 is obtained.
  • the lithium ion secondary battery of the present invention can be obtained using the negative electrode thus produced.
  • the lithium ion secondary battery of this invention is arrange
  • the negative electrode and the positive electrode are opposed to each other via a separator, and as a positive electrode facing each other, a lithium-containing transition metal oxide LiM (1) xO 2 (wherein x is a numerical value in a range of 0 ⁇ x ⁇ 1,
  • M (1) represents a transition metal and is composed of at least one of Co, Ni, Mn, Ti, Cr, V, Fe, Zn, Al, Sn, and In), or LiM (1) yM (2) 2- yO 4 (wherein y is a numerical value in the range of 0 ⁇ y ⁇ 1, where M (1) and M (2) represent transition metals, Co, Ni, Mn, Ti, Cr, Transition metal chalcogen compounds (Ti, S 2 , NbSe, etc.), van
  • Examples of the electrolyte filling the space between the positive electrode and the negative electrode can be used, for example LiClO 4, LiBF 4, LiPF 6 , LiAsF 6, LiB (C 6 H 5), LiCl , LiBr, Li 3 SO 3, Li (CF 3 SO 2) 2 N, Li (CF 3 3SO 2) 3 C, Li) CF 3 CH 2 OSO 2) 2 N, Li (CF 3 CF 2 CH 2 OSO 2 ) 2 N, Li (HCF 2 CF 2 CH 2 OSO 2 ) 2 N, Li ((CF 3 ) 2 CHOSO 2 ) 2 N, LiB [C 6 H 3 (CF 3 ) 2 ] 4, etc. Mention may be made of mixtures of more than one species.
  • non-aqueous electrolyte examples include propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,1-dimethoxyethane, 1,2-dimethoxyethane, 1,2 -Diethoxyethane, ⁇ -butyrolactan, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, anisole, diethyl ether, sulfolane, methylsulfolane, acetonitrile, chloronitrile, propionitrile, Trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethylorthoformate, nitrobenzene , Benzoyl chloride, benzoyl bromide
  • Example 1 Using a refined pitch from which quinoline insolubles have been removed from coal-based heavy oil, bulk coke produced by heat treatment at a temperature of 500 ° C. for 24 hours by a delayed coking method is obtained. By pulverizing, raw coke pieces (fine pulverized raw coke) having an average particle diameter (D 50 ) of 11.9 ⁇ m were obtained.
  • the bulk raw coke obtained as described above was heat-treated at a temperature from the inlet temperature of 700 ° C. to the outlet temperature of 1500 ° C. (maximum temperature reached) for 1 hour or more by a rotary kiln to obtain a massive calcined coke.
  • the calcined coke is finely pulverized by appropriately adjusting the processing amount per unit time and the gas flow rate at the time of processing in the same jet mill as above, and then most of the fine powder of 3 ⁇ m or less is removed by air classification.
  • the true specific gravity is 2.14 g / cm 3
  • D 10 is 5.3 ⁇ m
  • D 50 is 11.5 ⁇ m
  • D 90 is 25.7 ⁇ m
  • D 90 -D 10 is 20.4 ⁇ m.
  • a negative electrode active material for a secondary battery was obtained. The tap density of this powder was 0.85 g / cm 3 .
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • a solution of LiPF 6 dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 1 mixture) at a concentration of 1 mol / l is used, and a coin cell is formed using a porous membrane of propylene as a separator.
  • the lithium secondary battery was manufactured.
  • the capacity of the produced battery was 1 mA / cm 2 .
  • the charging characteristics when a constant current discharge of 5 mA / cm 2 was performed in a voltage range in which the lower limit voltage of terminal voltage was 0 V and the upper limit voltage of discharge was 1.5 V were examined. The results are shown in Table 1.
  • Examples 2 and 3 Comparative Examples 1 and 2
  • Example 4 The same procedure as in Example 1 was performed except that the massive raw coke was heat-treated for 1 hour or more at a temperature from the inlet temperature of 700 ° C. to the outlet temperature of 1000 ° C. (maximum temperature reached) with a rotary kiln to obtain massive calcined coke.
  • the lithium secondary battery was obtained.
  • Table 1 shows the characteristics of the obtained powder. Observation of the cross section of the fabricated electrode confirmed that 90% of the active material particles had an elliptical equivalent length-to-short ratio in the range of 0.05 to 0.70. Further, the charging characteristics were examined in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 The same procedure as in Example 1 was performed except that the massive raw coke was heat-treated for 1 hour or more at a temperature from the inlet temperature of 700 ° C. to the outlet temperature of 1800 ° C. (maximum temperature reached) with a rotary kiln to obtain massive calcined coke.
  • the lithium secondary battery was obtained.
  • Table 1 shows the characteristics of the obtained powder. Observation of the cross section of the fabricated electrode confirmed that 87% of the active material particles have an elliptical equivalent length ratio in the range of 0.05 to 0.70. Further, the charging characteristics were examined in the same manner as in Example 1. The results are shown in Table 1.
  • the volume density exceeded 1.20 g / cm 3 while maintaining high rapid charge characteristics, It can be seen that the capacity of can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 リチウムイオン二次電池の放電容量、初期効率、入力特性、容量維持率等のHEV用、PHEV用などの車載用途にも対応し得る実用特性を備えた、単位体積(重量)あたりの容量が高いリチウムイオン二次電池負極用活物質、これを用いたリチウムイオン二次電池負極及びリチウムイオン二次電池を提供する。 真比重が2.00~2.16g/cmの炭素材料から形成されて、体積基準での粒子の粒度分布が、D10が3~9μm、D50が10~20μm、D90が21~40μm、及びD90-D10が15~35μmの範囲にあり、かつタップ密度が0.8g/cc以上であるリチウムイオン二次電池負極用活物質であり、また、集電体上に、このリチウムイオン二次電池負極用活物質とバインダーとを混合して形成される合材層を備えた負極、及び、該負極と正極とがセパレータを介して対向してなるリチウムイオン二次電池である。

Description

リチウムイオン二次電池負極用活物質及びそれを用いたリチウムイオン二次電池負極並びにリチウムイオン二次電池
 この発明は、リチウムイオン二次電池負極用活物質及びそれを用いたリチウムイオン二次電池負極並びにリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、作動電位が高いこと、電池容量が大きいこと、及びサイクル寿命が長い等の優れた特徴を活かし、かつ環境汚染が少ないことから、従来主流であったニッケル・カドミウム電池やニッケル水素電池に代わって広範囲で用いられている。
 また、エネルギー問題や環境問題に対応するために、電気自動車やニッケル水素電池駆動のモーターとガソリンエンジンとを組み合わせたハイブリッド電気自動車(HEV:Hybrid Electric Assistant)、及びハンディビデオカメラ等の移動電子機器の電源として多く利用されており、今後もその需要は益々高くなると予想されている。
 リチウムイオン二次電池の負極を構成する負極活物質として、安全性および寿命の面から炭素材料が一般的に用いられている。炭素材料のなかでも黒鉛材料は、少なくとも2000℃程度以上、通常は2600~3000℃程度の高温で得られる、高エネルギー密度を持つ優れた材料であるが、高入出力特性やサイクル特性に課題を有している。このため、例えば電力貯蔵用や電気自動車等の高入出力用途また低温下での入出力特性用途には、黒鉛材料は適しておらず、それ以外の構造をもった炭素材料の利用が研究されている。
 近年においては、HEVの更なる高性能化の観点から、リチウムイオン二次電池に対してもさらなる高性能化が求められており、その性能の向上が急務となっている。具体的には、HEVのエネルギー源である電流を十分に供給できるように、リチウム二次電池の放電容量が重要な特性として上げられる。加えて、充電電流量に比較して放電電流量が十分に高くなるように、放電容量に対する充電容量の割合、すなわち初期効率が高いことが要求される。さらに、短時間での充電を可能とすべく、リチウムイオン二次電池は高電流密度まで高い充電容量を維持することが好ましく、容量維持率が高いことも要求されている。すなわち、この様な出力特性、放電容量、初期効率、容量維持率の特性をバランス良く高めることが要求される。
 この様なリチウムイオン二次電池を提供するため、負極活物質としてコークスや黒鉛等の炭素材料が多く検討されているが、上述した放電容量を増大させることはできるものの、初期効率は十分でない。また、実電池電圧が不十分であって近年の高出力特性を満足することができず、容量維持率の要件も満足することができない。
 そこで、上記の黒鉛材料に代わって、石炭系及び/又は石油系(以下、「石炭系等」という。)の生コークス、又は、石炭系等のか焼コークスを単独で、あるいは混合して焼成することを特徴とするリチウム二次電池用負極活物質が提案されている。
 例えば、特許文献1には、2000℃以下の温度で焼成し、活物質表面を改質することで黒鉛に比べて広い結晶層間と微細孔容積を持つ活物質により、高入出力特性を発現することが示されている。また、特許文献2には、結晶層間を広げるために焼成時に触媒を用いることが提案されており、黒鉛製造時よりも低い焼成温度で処理することにより、黒鉛に比べて広い結晶層間を持つ活物質を製造できることが示されている。
 このように長所が挙げられている石炭系等生コークス及び石炭系等か焼コークスであるが、焼成温度が黒鉛材料に比べて低いために炭素の結晶性が低く、電極にした際の単位体積(重量)あたりの容量は低くなってしまうという問題がある。すなわち、一般的な黒鉛材料を用いた電極は容量が360mAh/g、体積密度が1.4~1.8g/cmであるのに対し、上記材料を用いた電極では容量が240~340mAh/g、体積密度が1.0~1.2g/cmであるため、電極としての容量が低くなることになる。そのため石炭系等生コークス及び石炭系等か焼コークスにおいては活物質の容量増加と電極時の体積密度の増加という課題が内在している。
 また、例えば、特許文献3には、負極に用いる材料としてSiと黒鉛系導電材の記述があるが、Siや黒鉛のLiイオン挿入時の大きな体積変化を抑えるために、Siは平均粒径5~15μm、黒鉛2.5~15μmという小さな粒径での設計が必要であることが記載されている。
特開2009-224322号公報 特開2011-9185号公報 特許4942319号公報
 本発明は、リチウムイオン二次電池の放電容量、初期効率、入力特性、容量維持率等のHEV用、PHEV用などの車載用途にも対応し得る実用特性を備えた、単位体積(重量)あたりの容量が高いリチウムイオン二次電池負極用活物質を提供することを目的とする。また、本発明は、そのリチウムイオン二次電池負極用活物質を用いたリチウムイオン二次電池負極及びリチウムイオン二次電池を提供することも目的とする。
 本発明者らは、上記課題を達成すべく鋭意検討した結果、特定の原料に基づく活物質の粒度分布を一定範囲に制御することで上記課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は、真比重が2.00~2.16g/cmの炭素材料から形成されて、体積基準での粒子の粒度分布が、D10が3~9μm、D50が10~20μm、D90が21~40μm、及びD90-D10が15~35μmの範囲にあり、かつタップ密度が0.8g/cc以上であることを特徴とするリチウムイオン二次電池負極用活物質である。
 ここで、活物質のタップ密度は0.8g/cc以上であることが電極作製時の初期密度を上げるうえで有利であり、電極作製時のプレス後の体積密度を制御でき、例えば、1.20g/cm以上1.45g/cm以下にすることができる点でも有利となる。このような活物質としては、石炭系及び/又は石油系(石炭系等)生コークス及び石炭系等か焼コークスを単独あるいは混合して焼成して得られたものを用いることが良い。
 また、本発明は、集電体上に、上記リチウムイオン二次電池負極用活物質とバインダーとを混合して形成される合材層を有した負極であって、電極断面から観察したときの活物質形状において、観察される活物質粒子数の80%以上が、楕円相当長短比(楕円相当短軸長さ/楕円相当長軸長さ)が0.05~0.70であり、かつ、前記合材層の体積密度が1.20~1.45g/cm以下であることを特徴とするリチウムイオン二次電池負極である。
 更に、本発明は、上記リチウムイオン二次電池負極と正極とがセパレータを介して対向してなることを特徴とするリチウムイオン二次電池でもある。
 本発明によれば、HEV用、PHEV用などの車載用途に要求される放電容量、初期効率、入力特性、容量維持率を満たしつつ、電極時の体積密度を従来に比べて増加することができ、性能バランスに優れた負極活物質を提供することが出来る。
 以下、本発明の実施の形態について、詳細に説明する。
 本発明のリチウムイオン二次電池用負極活物質は、真比重が2.00~2.16g/cmの範囲にある。このような真比重を与えるリチウムイオン二次電池用負極活物質は、石炭系及び/又は石油系(石炭系等)の生コークス、又は、石炭系等のか焼コークスを単独で、あるいは混合して焼成して得ることが出来る(本明細書中において「石炭系等」と言う場合は「石炭系及び/又は石油系」、すなわち、石炭系、石油系のいずれか一方であってもよく、両者の混合系であってもよいことを指す。)。上記真比重が2.00g/cmに満たないと、リチウムイオン二次電池に適用した場合、充放電の際に副反応が発生し、容量や効率の低下につながる。また、上記真比重が2.16g/cmを超えると、電池に適用した場合、入出力特性や容量維持率の特性が低下することとなる。なお、石炭系等生コークスとは、石油系及び/又は石炭系重質油を例えばディレードコーカー等のコークス化設備を用い、最高到達温度が400℃~700℃程度の温度で24時間程度、熱分解・重縮合反応を実施して得たものを意味し、石炭系等か焼コークスとは、石炭系等生コークスに対してか焼処理を施したものを意味し、最高到達温度が800℃~1500℃程度でか焼した石油系及び/又は石炭系のコークスを意味する。
 真比重が上記範囲を与えるリチウムイオン二次電池用負極活物質を得る方法について詳述すれば、最初に、石炭系等重質油を例えばディレードコーカー等のコークス化設備を用い、最高到達温度が400℃~700℃程度の温度で24時間程度、熱分解・重縮合反応を進めることによって石炭系等生コークスを得る。その後、得られた石炭系等生コークスの塊を所定の大きさに粉砕する。粉砕には、工業的に用いられる粉砕機を使用することができる。具体的にはアトマイザー、レイモンドミル、インペラーミル、ボールミル、カッターミル、ジェットミル、ハイブリダイザー、オリエントミル等を挙げることができるが、特にこれに限定されるものではない。また粉砕の工程においてこれらの装置を1種類または2種類以上使用し、1種類の装置で複数回粉砕して用いてもよい。
 ここで使用される石炭系等重質油は、石油系重質油であっても石炭系重質油であっても構わないが、石炭系重質油の方が芳香属性に富んでおり、S、V、Fe等の不純物が少なく、揮発分も少ないため、石炭系重質油を使用する方が好ましい。
 また、上記のようにして得た石炭系等生コークスを最高到達温度800℃~1500℃でか焼して、石炭系等か焼コークスを製造する。好ましくは1000℃~1500℃、より好ましくは1200℃~1500℃の範囲である。石炭系等生コークスの焼成には、大量熱処理が可能なリードハンマー炉、シャトル炉、トンネル炉、ロータリーキルン、ローラーハースキルンあるいはマイクロウェーブ等の設備を用いることができるが、特にこれらに限定されるものではない。また、これらの焼成設備は、連続式およびバッチ式のどちらでもよい。次いで、得られた石炭系等か焼コークスの塊を、上記同様に、工業的に用いられるアトマイザー等の粉砕機を用いて所定の大きさに粉砕する。また粉砕したコークス粉は分級により微粉をカットしたり、粗粉を篩などで除去したりすることによって所定の粒度に整粒することができる。
 なお、焼成温度は、最高到達温度で800℃以上1500℃以下とすることがよい。焼成温度が上限を超えると、コークス材料の結晶成長が過剰に促進され、真比重を2.16g/cm以下とすることが困難となる。真比重が2.16g/cmを超えると、焼成時にコークスの結晶構造が黒鉛のように配向していき、結晶層間距離が狭くなってしまい、上記のように入出力特性や容量維持率などの構造起因の特性が低下してしまうことになる。また、焼成温度が下限を下回ると、結晶構造が未発達となり、真比重が2.00g/cm以下となるだけでなく、原料由来の官能基(OH基やCOOH基など)がコークス表面に残存し、上記したように電池として充放電した際に副反応が発生することになり、容量や効率の低下につながる。
 上記の真比重の測定については、液相置換法(別名ピクノメータ法)により、測定する。具体的にはピクノメータに粉体を入れ、蒸留水などの溶媒液を加え、真空脱気などの方法によりサンプル表面の空気と溶媒液を置換し、正確なサンプル重量と体積を求めることで真比重値を算出する。
 本発明のリチウム二次電池用負極活物質は、その負極活物質粒子の粒度分布が、D10が3~9μm、D50が10~20μm、D90が21~40μmであり、かつD90-D10が15~35μmの範囲にあることが必要である。このことは、原料に石炭系等生コークス、石炭系等か焼コークスのいずれか一方を単独或いは混合して焼成して得られたものの粉砕後の粒子径が、D10が3~9μm、D50が10~20μm、D90が21~40μmであり、D90-D10が15~35μmの範囲であることを意味する。このとき、BET比表面積が5m/g以下とすることが好ましく、より好ましくは0.5~5m/gである。前述のような粒度分布の負極活物質は、原料コークスをオリエントミルなどによって粗粉砕を行い、また、ハンマーミルやジェットミルなどによって微粉砕を行い、必要に応じて微粉は風力分級などによって除去することによって得ることができる。粉砕方法については特に指定するものではなく、一般的な粉砕方法を用いることができる。
 負極活物質粒子の粒度分布について、D10が3μmに満たないと比表面積が過度に増加して、得られた二次電池の初期効率が低下する。D90が40μmを超えると粗大な粉の存在により電極作製時に均一で滑らかな表面性状の電極が得ることが難しくなる。D90-D10が15μm未満であると粒子の粒度分布がシャープとなり、電極作製時に粒子が最密充填構造を形成することが難しくなり、結果、電極密度が低下することになる。またD90-D10が35μmを超えたりD10が9μmを超えると、結果的にD90が40μmを越えるような粗大な粒子が存在する可能性が高くなる。40μmを越えるような粗大粒子は電極表面の平滑性を低下させ集電体との密着性の低下やセパレータ側の損傷や粗大粒子の粉落ちなど悪い影響を及ぼすことが懸念される。このような理由から、本発明においてはD10が3~9μmであり、D50が10~20μmであり、D90が21~40μmであり、D90-D10が15~35μmの範囲とすることが必要となる。なお、D90-D10は活物質粒子の粒度分布における分布形状の広がりを表す。従来の中心値であるD50では粒度分布の広がりを規定しておらず、本発明で示した分布の広がりを有することで充填性に優れた電極を作製することができることを見出した。また、上記粒度分布を有するコークス粉は、前述の石炭系等生コークス粉、石炭系等か焼コークス粉のいずれか一方を単独で用い得られたものであっても、或いはその両方を混合して用い得られたものであってもよい。
 粉体粒子(炭素材料)の粒度分布測定については、LMS―30(セイシン企業社製)の装置を用いて、分散媒は水+活性剤を用いて測定をおこなった。粒子の存在比率の基準としては、レーザー回折・散乱法を用いて体積分布を測定し、メジアン径(累積分布)を用いて粒度分布評価をおこなった。
 上述のコークス粉は、粉砕して粒度分布を制御する過程において扁平状、燐片状の形状となる。活物質の形状としては、作製した電極断面を観察すると観察される活物質粒子数の80%以上が、楕円相当長短比(楕円相当短軸長さ/楕円相当長軸長さ)が0.05~0.70となる。楕円相当長短比が0.70超のとき、コークス粉はより球状の形状となり、同じ粒度分布においても細密充填のしかたやタップ密度が変化し、電極密度しいては電池性能も変化する。また楕円相当長短比が0.05未満のとき、コークス粉はより針状の形状となり、同じく充填のしかたやタップ密度が変化するだけでなく、活物質の表面積が大きくなりすぎるため副反応など電池性能を下げる現象が起きるため、本発明では電極断面から観察したときの活物質形状において、観察される活物質粒子数の80%以上が、楕円相当長短比(楕円相当短軸長さ/楕円相当長軸長さ)が0.05~0.70であるコークス粉を用いる。
 上記の電極断面の観察手法としては、活物質層の厚みが50μm以上の電極を作製し、機械研磨法、ミクロトーム法、CP(Cross-section Polisher)法、集束イオンビーム(FIB)法などの方法により電極断面を作製し、SEM等の方法にて最小粒子径サイズ1μm以上の粒子サイズをすべて観察する。観察した粒子について、楕円相当長短比(楕円相当短軸長さ/楕円相当長軸長さ)を計測する。観察断面において粒子の分布のバラつきなどがあるため20視野以上の観察が好ましい。粒子サイズの測定については画像解析ソフト(WinRooF:三谷商事株式会社製)などを用いて解析してもいい。
 本発明のリチウム二次電池用負極活物質は、そのタップ密度が0.8g/cc以上であり、0.8~1.2g/ccの範囲とすることが好ましい。タップ密度が0.8g/ccに満たないと電極作製時のコークス粉同士の接触が不十分となり導通パスの減少となるため電池性能が低下する、また密度を上げるためにプレス圧力を増加させると変形量が大きくなるためコークス粉が割れたりして、表面積の増加、電極の密着性の低下による更なる導通パスの低減などにつながり、電池性能低下につながる。そのためプレス前の充填密度をあげるためにタップ密度を指標として0.8g/ccにしておく必要がある。また、1.2g/cc超にするためには、例えばD10が3μm未満の微粉を入れるなどする必要があり、その結果粉の表面積が大きくなり、電池性能の低下につながるためタップ密度を1.2g/cc超にする必要はない。
 本明細書において、粉体のタップ密度については、タップデンサーKYT-400(セイシン企業社製)の装置を用いて、シリンダー体積100cc、タッピング距離38mm、タップ回数300回での測定値を用いた。
 本発明は、上記リチウム二次電池用負極活物質を用いたリチウム二次電池負極でもあり、負極は、集電体上(一般的に銅箔)に上記リチウム二次電池用負極活物質とバインダーとを混合して形成される合材層とからなる。
 バインダーには、一般には、ポリフッ化ビニリデン(PVDF)等のフッ素系樹脂粉末あるいはポリイミド(PI)系樹脂、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等の水溶性粘結剤が用いられる。
 集電体上への合材層の形成は、上述の負極活物質とバインダーを、溶媒を用いて、スラリーを作製し、集電体上(一般的に銅箔)に塗布、乾燥し、その後、任意の条件でプレスすることにより行なうことができる。用いられる溶媒は、特に限定されるものではないが、N-メチルピロリドン(NMP)、ジメチルホルムアムドあるいは、水、アルコール等が用いられる。
 より具体的には、例えば、負極活物質とバインダーを重量比で93~97:7~3の比(負極活物質:バインダー)で混錬し、このスラリーを所定厚みの銅箔上に塗布し、60~120℃の乾燥条件で溶媒を乾燥し、その後、線圧100~600kg/cmでプレスすることによって負極電極とすることが出来るが、この際の製造条件を上記範囲とすることで、体積密度が1.20~1.45g/cmの範囲の電極が得られる。ここで、プレス時の線圧を上げ過ぎると電極の体積密度は高くなるが、活物質が変形、破壊してしまい、電極内での接触が悪くなり、容量や効率の低下につながるため上記の体積密度になるプレス条件を設定することが望ましい。
 このようにして製造された負極を用いて本発明のリチウムイオン二次電池とすることができる。本発明のリチウムイオン二次電池は、上記した負極と正極間にセパレータが存するように配置されている。負極と正極とはセパレータを介して対向しており、相対する正極としては、リチウム含有遷移金属酸化物LiM(1)xO(式中、xは0≦x≦1の範囲の数値であり、式中M(1)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる)、あるいはLiM(1)yM(2)-yO(式中、yは0≦y≦1の範囲の数値であり、式中、M(1)、M(2)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる、遷移金属カルコゲン化合物(Ti、S、NbSe、等)、バナジウム酸化物(V、V13、V、V、等)およびリチウム化合物、一般式MxMoCh-y(式中、xは0≦x≦4、yは0≦y≦1の範囲の数値であり、式中Mは遷移金属をはじめとする金属、Chはカルコゲン金属を表す)で表されるフュブレル相化合物、あるいは活性炭、活性炭素繊維等の正極活物質を例示することができる。
 また、上記正極と負極との間を満たす電解質としては、従来公知のものをいずれも使用することができ、例えばLiClO、LiBF、LiPF、LiAsF、LiB(C)、LiCl、LiBr、LiSO、Li(CFSON、Li(CF3SOC,Li)CFCHOSON、Li(CFCFCHOSON、Li(HCFCFCHOSON、Li((CFCHOSON、LiB[C(CF]4等の1種または2種以上の混合物を挙げることができる。
 また、非水系電解質としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,1-ジメトキシエタン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ―ブチロラクタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチルー1,3-ジオキソラン、アニソール、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、クロロニトリル、プロピオニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N-メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3-メチルー2-オキサゾリドン、エチレングリコール、サルファイト、ジメチルサルファイト等の単独溶媒もしくは2種類以上の混合溶媒を使用できる。
 以下、本発明を実施例に基づいて具体的に説明する。ただし、これらの実施例によって、本発明の内容が制限されるものではない。
(実施例1)
 石炭系重質油よりキノリン不溶分を除去した精製ピッチを用い、ディレードコーキング法によって500℃の温度で24時間熱処理して製造した塊状コークス(生コークス)を得、オリエントミルおよびジェットミルにて微粉砕し、平均粒径(D50)が11.9μmの生コークス片(微粉砕生コークス)を得た。
 上述のようにして得た塊状の生コークスを、ロータリーキルンによって入口付近温度700℃から出口付近温度1500℃(最高到達温度)の温度で1時間以上熱処理して塊状のか焼コークスを得た。このか焼コークスを上記と同じジェットミルにて単位時間あたりの処理量、処理時のガス流速を適切に調整して微粉砕を実施し、その後風力分級により3μm以下の微粉の大部分を除去することで、真比重が2.14g/cmであり、D10が5.3μm、D50が11.5μm、D90が25.7μm、及びD90-D10が20.4μmのリチウムイオン二次電池用負極活物質を得た。この粉体のタップ密度は0.85g/cmであった。
 次いで、このリチウムイオン二次電池用負極活物質にバインダーとしてポリフッ化ビニリデン(PVDF、株式会社クレハ製)を5質量%加え、N-メチルピロリドン(NMP)を溶媒として混錬してスラリーを作製し、これを厚さ18μmの銅箔に均一になるように塗布して60~120℃の温度で乾燥し、その後300kg/cmの線圧でプレスすることにより負極電極を得た。この電極の体積密度は1.22g/cmであった。このシートから直径15mmφの円形に切り出すことにより負極電極を作製した。この負極電極単極での電極特性を評価するために、対極には約15.5mmφに切り出した金属リチウムを用いた。なお、作製した電極をCP法により切断し、その断面をFE-SEMで観察したところ(倍率1500倍)、視野角75μm×30μmの範囲内で観察される活物質粒子のうち、楕円相当長短比0.05~0.70の範囲である活物質粒子は87%であることが確認された。なお、観察視野については、ばらつきを低減させるために20視野の平均値を用いた。
 また、電解液としてエチレンカーボネートとジエチルカーボネートとの混合溶媒(体積比1:1混合)にLiPFを1mol/lの濃度で溶解したものを用い、セパレータにプロピレンの多孔質膜を用いてコインセルを作製し、リチウム二次電池を作製した。作製した電池の容量は1mA/cmであった。25℃の恒温下、端子電圧の充電下限電圧を0V、放電の上限電圧を1.5Vとした電圧範囲で5mA/cmの定電流放電を実施した際の、充電特性を調べた。結果を表1に示す。
(実施例2及び3、比較例1及び2)
 か焼コークスを得た後のジェットミル粉砕時の条件を変更した以外は、それぞれ実施例1と同様の操作を行い、表1に示すような粒度分布が異なるリチウムイオン二次電池用負極活物質を得た。得られた粉体の特性を表1に示す。また、作製した電極の断面を観察したところ、楕円相当長短比0.05~0.70の範囲である活物質粒子はいずれのサンプルも85~89%であることが確認された。それらを用いて負極電極及びリチウムイオン二次電池を得、充電特性を調べた。結果を表1に示す。
(実施例4)
 塊状の生コークスを、ロータリーキルンによって入口付近温度700℃から出口付近温度1000℃(最高到達温度)の温度で1時間以上熱処理して塊状のか焼コークスを得た以外は、実施例1と同様の操作を行い、リチウム二次電池を得た。得られた粉体の特性を表1に示す。作製した電極の断面を観察したところ、楕円相当長短比0.05~0.70の範囲である活物質粒子は90%であることが確認された。また、実施例1と同様にして充電特性を調べた。結果を表1に示す。
(比較例3)
 塊状の生コークスを、ロータリーキルンによって入口付近温度700℃から出口付近温度1800℃(最高到達温度)の温度で1時間以上熱処理して塊状のか焼コークスを得た以外は、実施例1と同様の操作を行い、リチウム二次電池を得た。得られた粉体の特性を表1に示す。作製した電極の断面を観察したところ、楕円相当長短比0.05~0.70の範囲である活物質粒子は87%であることが確認された。また、実施例1と同様にして充電特性を調べた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1から明らかなように、本発明の要件を満たしたリチウムイオン二次電池負極用活物質においては、高い急速充電特性を有したまま、体積密度も1.20g/cmを超え、体積あたりの容量が向上できていることが分かる。
 一方、粒度分布において、D90-D10が15μm以下と分布がシャープになると、電極において活物質の充填密度が低下してしまうことが分かる。
 また、粒度分布において、D90-D10が35μmを超え分布がブロードになると、粗大粒子が混在する結果、電極の外観だけでなく、急速充電特性も低下してくることが分かる。これは活物質が粗大になることにより、Liイオンが出入りするエッジ部の面積が相対的に低下することも原因のひとつであると思われる。
 また、真比重が大きくなると、急速充電特性が損なわれてくることも分かる。これは焼成温度が高くなることなどにより炭素の結晶化が進み、黒鉛のように層間距離が狭くなってくることが原因のひとつであると思われる。
 以上、本発明を上記具体的に基づいて詳細に説明したが、本発明は上記具体例に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。
 

Claims (4)

  1.  真比重が2.00~2.16g/cmの炭素材料から形成されて、体積基準での粒子の粒度分布が、D10が3~9μm、D50が10~20μm、D90が21~40μm、及びD90-D10が15~35μmの範囲にあり、かつタップ密度が0.8g/cc以上であることを特徴とするリチウムイオン二次電池負極用活物質。
  2.  活物質が、石炭系及び/又は石油系の生コークス、又は、石炭系及び/又は石油系のか焼コークスのいずれか一方を単独で、或いは両方を混合して焼成して得られたものである請求項1に記載のリチウムイオン二次電池負極用活物質。
  3.  集電体上に、請求項1又は2に記載のリチウムイオン二次電池負極用活物質とバインダーとを混合して形成される合材層を有した負極であって、電極断面から観察したときの活物質形状において、観察される活物質粒子数の80%以上が、楕円相当長短比(楕円相当短軸長さ/楕円相当長軸長さ)が0.05~0.70であり、前記合材層の体積密度が1.20~1.45g/cm以下であることを特徴とするリチウムイオン二次電池負極。
  4.  請求項3記載のリチウムイオン二次電池負極と正極とがセパレータを介して対向してなることを特徴とするリチウムイオン二次電池。
PCT/JP2013/074270 2012-09-10 2013-09-09 リチウムイオン二次電池負極用活物質及びそれを用いたリチウムイオン二次電池負極並びにリチウムイオン二次電池 WO2014038698A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380046948.4A CN104604000A (zh) 2012-09-10 2013-09-09 锂离子二次电池负极用活性物质及使用其的锂离子二次电池负极以及锂离子二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-198845 2012-09-10
JP2012198845A JP2014053268A (ja) 2012-09-10 2012-09-10 リチウムイオン二次電池負極用活物質及びそれを用いたリチウムイオン二次電池負極並びにリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2014038698A1 true WO2014038698A1 (ja) 2014-03-13

Family

ID=50237302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074270 WO2014038698A1 (ja) 2012-09-10 2013-09-09 リチウムイオン二次電池負極用活物質及びそれを用いたリチウムイオン二次電池負極並びにリチウムイオン二次電池

Country Status (3)

Country Link
JP (1) JP2014053268A (ja)
CN (1) CN104604000A (ja)
WO (1) WO2014038698A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016091904A (ja) * 2014-11-07 2016-05-23 日立化成株式会社 リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6447013B2 (ja) * 2014-10-30 2019-01-09 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6647211B2 (ja) * 2014-11-11 2020-02-14 株式会社Adeka 非水電解液二次電池
CN112563491B (zh) * 2019-03-21 2023-10-24 宁德新能源科技有限公司 负极材料及包含该负极材料的负极及电化学装置
CN113195405A (zh) * 2020-01-28 2021-07-30 杰富意化学株式会社 碳质材料、碳质材料的制造方法、锂离子二次电池用负极及锂离子二次电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022664A1 (ja) * 2007-08-10 2009-02-19 Showa Denko K.K. リチウム系二次電池用負極、炭素系負極活物質の製造方法及びリチウム系二次電池及びその用途
WO2011010789A2 (ko) * 2009-07-23 2011-01-27 지에스칼텍스 주식회사 리튬 이차 전지용 음극 활물질, 그 제조 방법 및 그를 포함하는 리튬 이차 전지
JP2011159634A (ja) * 2011-03-28 2011-08-18 Hitachi Chem Co Ltd リチウム二次電池用負極材料及びリチウム二次電池並びに自動車

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022664A1 (ja) * 2007-08-10 2009-02-19 Showa Denko K.K. リチウム系二次電池用負極、炭素系負極活物質の製造方法及びリチウム系二次電池及びその用途
WO2011010789A2 (ko) * 2009-07-23 2011-01-27 지에스칼텍스 주식회사 리튬 이차 전지용 음극 활물질, 그 제조 방법 및 그를 포함하는 리튬 이차 전지
JP2011159634A (ja) * 2011-03-28 2011-08-18 Hitachi Chem Co Ltd リチウム二次電池用負極材料及びリチウム二次電池並びに自動車

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016091904A (ja) * 2014-11-07 2016-05-23 日立化成株式会社 リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Also Published As

Publication number Publication date
JP2014053268A (ja) 2014-03-20
CN104604000A (zh) 2015-05-06

Similar Documents

Publication Publication Date Title
JP6352363B2 (ja) リチウムイオン電池用電極材料用黒鉛材料の製造方法
EP2634847B1 (en) Multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous secondary battery, lithium ion secondary battery, and method for manufacturing multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery
JP5407196B2 (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
KR101952464B1 (ko) 비수계 이차 전지용 탄소재, 및 부극, 그리고, 비수계 이차 전지
JP4877568B2 (ja) リチウム二次電池用負極材料の製造方法
JPWO2018123967A1 (ja) 全固体リチウムイオン電池
KR20160101850A (ko) 리튬 2차 전지용 복합 활물질 및 그 제조방법
KR20090094818A (ko) 비수계 2차전지용 복합 흑연 입자, 그것을 함유하는 부극 재료, 부극 및 비수계 2차전지
KR101380730B1 (ko) 리튬 이온 전지용 전극 재료의 제조 방법
KR101772402B1 (ko) 리튬 이차 전지용 음극활물질의 제조방법 및 이로부터 제조된 리튬 이차 전지용 음극활물질
JP2018006270A (ja) リチウムイオン二次電池負極用黒鉛質炭素材料、その製造方法、それを用いた負極又は電池
WO2014038698A1 (ja) リチウムイオン二次電池負極用活物質及びそれを用いたリチウムイオン二次電池負極並びにリチウムイオン二次電池
JP2015187972A (ja) リチウムイオン二次電池用負極活物質及びそれを用いたリチウムイオン二次電池負極並びにリチウムイオン二次電池
KR20150107674A (ko) 리튬이온 이차전지용 부극 활물질 및 그것을 사용한 리튬이온 이차전지 부극 및 리튬이온 이차전지
JP2013229343A (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
WO2016136803A1 (ja) リチウムイオン二次電池負極用活物質、それを用いた二次電池負極及び二次電池
JP7009049B2 (ja) リチウムイオン二次電池負極用炭素材料、その中間体、その製造方法、及びそれを用いた負極又は電池
JP2018055999A (ja) リチウムイオン二次電池の負極活物質用低結晶性炭素材料及びその製造方法並びにそれを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2013179101A (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
WO2018087928A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2017016774A (ja) リチウムイオン二次電池負極及び二次電池
JP2015187973A (ja) リチウムイオン二次電池用負極活物質及びそれを用いたリチウムイオン二次電池負極並びにリチウムイオン二次電池
CN114391190A (zh) 球状化碳质负极活性材料、其制造方法、以及包含其的负极和锂二次电池
JP2017016773A (ja) リチウムイオン二次電池負極及び二次電池
CN117855444A (zh) 用于电池负极的活性材料粉末和包含该活性材料粉末的电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835589

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13835589

Country of ref document: EP

Kind code of ref document: A1