WO2014038335A1 - パラレルフロー型熱交換器及びそれを搭載した空気調和機 - Google Patents

パラレルフロー型熱交換器及びそれを搭載した空気調和機 Download PDF

Info

Publication number
WO2014038335A1
WO2014038335A1 PCT/JP2013/071301 JP2013071301W WO2014038335A1 WO 2014038335 A1 WO2014038335 A1 WO 2014038335A1 JP 2013071301 W JP2013071301 W JP 2013071301W WO 2014038335 A1 WO2014038335 A1 WO 2014038335A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
flat tubes
air conditioner
parallel flow
Prior art date
Application number
PCT/JP2013/071301
Other languages
English (en)
French (fr)
Inventor
円 上野
一寿 三代
吉田 健司
Original Assignee
シャープ株式会社
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 日本軽金属株式会社 filed Critical シャープ株式会社
Priority to US14/418,467 priority Critical patent/US20150168072A1/en
Priority to CN201380044123.9A priority patent/CN104620069B/zh
Priority to KR1020157003750A priority patent/KR101698698B1/ko
Publication of WO2014038335A1 publication Critical patent/WO2014038335A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators

Definitions

  • the present invention relates to a side flow type parallel flow heat exchanger and an air conditioner equipped with the same.
  • a parallel flow type heat in which a plurality of flat tubes are arranged between a plurality of header pipes so that a plurality of refrigerant passages in the flat tubes communicate with the inside of the header pipe, and fins such as corrugated fins are arranged between the flat tubes.
  • Exchangers are widely used in outdoor units of car air conditioners and building air conditioners.
  • FIG. 1 An example of the structure of a parallel flow type heat exchanger is shown in FIG.
  • the upper side of the paper is the upper side of the heat exchanger
  • the lower side of the paper is the lower side of the heat exchanger.
  • the parallel flow type heat exchanger 1 is a side flow type, and includes two vertical header pipes 2 and 3 and a plurality of horizontal flat tubes 4 disposed therebetween.
  • the header pipes 2 and 3 are arranged in parallel in the horizontal direction at intervals, and the flat tubes 4 are arranged at a predetermined pitch in the vertical direction. Since the heat exchanger 1 is installed at various angles according to design requirements at the stage of actually mounting on equipment, the “vertical direction” and “horizontal direction” in this specification should not be strictly interpreted. It should be understood as a mere measure of direction.
  • the flat tube 4 is an elongated molded product obtained by extruding a metal, and as shown in FIG. 2, a refrigerant passage 5 through which a refrigerant flows is formed. Since the flat tube 4 is disposed so that the extrusion direction, which is the longitudinal direction, is horizontal, the refrigerant flow direction of the refrigerant passage 5 is also horizontal. A plurality of refrigerant passages 4 having the same cross-sectional shape and the same cross-sectional area are arranged in the left-right direction in FIG. Therefore, the vertical cross section of the flat tube 4 has a harmonica shape. Each refrigerant passage 5 communicates with the inside of the header pipes 2 and 3.
  • the fin 6 is attached to the flat surface of the flat tube 4.
  • corrugated fins are used as the fins 6, but plate fins may be used.
  • the side plate 7 is disposed outside the uppermost and lowermost fins.
  • the header pipes 2 and 3, the flat tubes 4, the fins 6, and the side plates 7 are all made of a metal having good heat conduction such as aluminum, the flat tubes 4 are for the header pipes 2 and 3, and the fins 6 are for the flat tubes 4.
  • the side plate 7 is fixed to the fin 6 by brazing or welding.
  • the inside of the header pipe 2 is partitioned into three sections S1, S2, and S3 by two partition plates P1 and P2.
  • the partition plates P1 and P2 divide the plurality of flat tubes 4 into three flat tube groups.
  • a plurality of flat tubes 4 are connected to each of the sections S1, S2, and S3.
  • the inside of the header pipe 3 is partitioned into two sections S4 and S5 by one partition plate P3.
  • the partition plate P3 divides the plurality of flat tubes 4 into two flat tube groups.
  • a plurality of flat tubes 4 are connected to each of the sections S4 and S5.
  • the refrigerant access pipe 8 is connected to the section S1.
  • a refrigerant inlet / outlet pipe 9 is connected to the section S3.
  • the function of the heat exchanger 1 is as follows.
  • the refrigerant is supplied to the section S1 through the refrigerant inlet / outlet pipe 8.
  • the refrigerant that has entered the compartment S1 travels to the compartment S4 through a plurality of flat tubes 4 that connect the compartment S1 and the compartment S4.
  • the flat tube group including the plurality of flat tubes 4 constitutes the refrigerant path A.
  • the refrigerant path A is symbolized by a block arrow. Other refrigerant paths are also symbolized by block arrows.
  • the refrigerant that has entered the compartment S4 is turned back and passes through the plurality of flat tubes 4 connecting the compartment S4 and the compartment S2 to the compartment S2.
  • the flat tube group including the plurality of flat tubes 4 constitutes the refrigerant path B.
  • the refrigerant that has entered the compartment S2 is turned back there, and travels to the compartment S5 through a plurality of flat tubes 4 that connect the compartment S2 and the compartment S5.
  • the flat tube group including the plurality of flat tubes 4 constitutes the refrigerant path C.
  • the refrigerant that has entered the compartment S5 is turned back and passes through the plurality of flat tubes 4 connecting the compartment S5 and the compartment S3 to the compartment S3.
  • the flat tube group including the plurality of flat tubes 4 constitutes the refrigerant path D.
  • the refrigerant entering the section S3 flows out from the refrigerant inlet / outlet pipe 9.
  • the section from the refrigerant inlet / outlet pipe 8 or 9 to the first turn or between the turn and the next turn is referred to as “one turn”.
  • the refrigerant paths A, B, C, and D are all one-turn refrigerant paths.
  • the refrigerant When the heat exchanger 1 is used as an evaporator, the refrigerant is supplied to the section S3 through the refrigerant inlet / outlet pipe 9.
  • the refrigerant flow thereafter follows the refrigerant path when the heat exchanger 1 is used as a condenser. That is, the refrigerant enters the section S ⁇ b> 1 through the refrigerant path D ⁇ refrigerant path C ⁇ refrigerant path B ⁇ refrigerant path A and flows out of the refrigerant inlet / outlet pipe 8.
  • a fluid diameter of 0.015 inch (about 0.38 mm) to 0.07 is provided inside a plurality of flat tubes connecting two header pipes.
  • a plurality of refrigerant passages in the range of inches (about 1.78 millimeters) are formed in parallel.
  • the cross-sectional contour of the refrigerant passage has two or more relatively linear portions that meet each other and at least one recessed portion that is formed at a location where they meet.
  • the height of the refrigerant passage in the flat tube is set from 0.35 millimeters to 0.8 millimeters.
  • the shunt parameter ⁇ which is the ratio of the resistance parameter ⁇ of the flat tube to the resistance parameter ⁇ of the header pipe on the refrigerant inlet side, is set to 0.5 or more. This prevents the refrigerant from intensively flowing in the flat tube connected to the highest pressure portion of the refrigerant inlet of the header pipe, and evenly distributes the pressure applied to each flat tube to obtain a good diversion state. Good heat exchange performance is exhibited.
  • An object of the present invention is to provide a side flow parallel flow type heat exchanger that is optimally designed with respect to the number of flat tubes constituting a refrigerant path, from the viewpoint of preventing drift.
  • the object is to optimize the number of flat tubes in the refrigerant path having a large proportion of gaseous refrigerant.
  • the parallel flow type heat exchanger includes two vertical header pipes and a plurality of horizontal flat tubes connecting the header pipes.
  • the plurality of horizontal flat tubes are further grouped therein, and each group forms a one-turn refrigerant path through which refrigerant flows from one to the other of the two vertical header pipes.
  • the upper limit of the number of the flat tubes constituting the one-turn refrigerant path is determined by a numerical value ⁇ 2 obtained by the following formula A:
  • n When using the parallel flow type heat exchanger for an outdoor unit of an air conditioner, n ⁇ 3.0 ⁇ 10 ⁇ 4 ⁇ Q + 8.0
  • n When using the parallel flow type heat exchanger for an indoor unit of an air conditioner, n ⁇ 4.2 ⁇ 10 ⁇ 4 ⁇ Q + 7.9 (A)
  • n is the number of flat tubes constituting a one-turn refrigerant path
  • Q is a rated capacity
  • W is a unit.
  • Q is a rated heating capacity for an outdoor unit and a rated cooling capacity for an indoor unit.
  • the lower limit of the number of the flat tubes constituting the one-turn refrigerant path is preferably determined by the following formula B: n> ( ⁇ Q + ⁇ ) ⁇ ⁇ (1.4 ⁇ 10 ⁇ 16 ) ⁇ L / (d ⁇ A ′ 2 ) ⁇ 0.5 (B)
  • 0.0161
  • 8.86
  • d is a hydraulic diameter in units of m
  • a ′ is a cross-sectional area of the refrigerant passage of one flat tube
  • m 2 is in units.
  • an air conditioner in which the parallel flow heat exchanger having the above configuration is mounted on an outdoor unit or an indoor unit is the present invention.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • the parallel flow type heat exchanger 1 of the side flow type shown in FIG. 1, in which the number of flat tubes 4 constituting the refrigerant path is set by the method described below, is a parallel flow type heat according to the present invention. It shall be an exchanger. However, the number of refrigerant paths is not limited to four. It may be more or less.
  • the upper limit of the number of flat tubes 4 constituting the one-turn refrigerant path is obtained.
  • the upper limit value is obtained from the following formula A.
  • n When using the parallel flow type heat exchanger for an outdoor unit of an air conditioner, n ⁇ 3.0 ⁇ 10 ⁇ 4 ⁇ Q + 8.0
  • n When using the parallel flow type heat exchanger for an indoor unit of an air conditioner, n ⁇ 4.2 ⁇ 10 ⁇ 4 ⁇ Q + 7.9 (A)
  • n is the number of flat tubes constituting a one-turn refrigerant path
  • Q is a rated capacity
  • W is a unit.
  • Formula A was derived from the test.
  • the table of FIG. 3 shows the specifications of the flat tube examined in the test.
  • the test product a has a width of 16.2 mm, a thickness of 1.9 mm, and a refrigerant passage cross-sectional area of 13 mm 2 .
  • the test product b has a width of 13.9 mm, a thickness of 1.9 mm, and a refrigerant passage cross-sectional area of 11 mm 2 .
  • the test product c has a width of 16.2 mm, a thickness of 1.6 mm, and a refrigerant passage cross-sectional area of 11 mm 2 .
  • the test product d has a width of 19.2 mm, a thickness of 1.9 mm, and a refrigerant passage cross-sectional area of 14 mm 2 .
  • the test was conducted as follows. The refrigerant is circulated through various numbers of flat tubes, and whether or not a drift has occurred is visually confirmed by thermography. Four types of test products shown in FIG. 3 were used, and the refrigerant was circulated by changing the circulation amount for each test product.
  • the table of FIG. 4 summarizes the maximum number of flat tubes in which no drift was observed in the refrigerant circulation amount (this state may be referred to as “no drift” in this specification).
  • test product b was used.
  • the maximum number of non-biased flow was 9.
  • the refrigerant circulation rate was 22.1 kg / h
  • the maximum number of non-biased flow was 8.
  • test product c was used.
  • the maximum number of no drift was 10.
  • the refrigerant circulation rate was 48.8 kg / h
  • the maximum number of no drift was 9.
  • the refrigerant circulation rate was 26.4 kg / h
  • the maximum number of no drift was 8.
  • test product b was used.
  • the refrigerant circulation rate was 54.8 kg / h
  • the maximum number of no drift was 8.
  • the refrigerant circulation rate was 89.2 kg / h
  • the maximum number of no drift was 8.
  • test product d was used.
  • the refrigerant circulation rate was 26.6 kg / h
  • the maximum number of non-biased flow was 6.
  • the refrigerant circulation rate was 44.3 kg / h
  • the maximum number of no-flow currents was 9.
  • the refrigerant circulation rate was 67.3 kg / h
  • the maximum number of no drift was 9.
  • Refrigerant circulation amount m (kg / h) is generally set as a value proportional to the rated capacity of the product. The relationship between the refrigerant circulation amount and the capacity is shown in FIGS.
  • refrigerant circulation amount m Compressor rotation speed ⁇ Suction pressure density ⁇ Compressor volume
  • the parallel flow heat exchanger becomes an evaporator during heating operation when used as an outdoor unit heat exchanger for an air conditioner, and during cooling operation when used as a heat exchanger for an indoor unit of an air conditioner. It becomes an evaporator.
  • the flat tube constituting the one-turn refrigerant path is obtained from the above formulas (a) and (b).
  • the lower limit of the number of flat tubes 4 constituting each refrigerant path is obtained.
  • the outlet temperature of the heat exchanger is T out ⁇ 0 ° C.
  • the suction pressure is greatly reduced as shown in FIG. That is, the suction pressure rapidly decreases with respect to the refrigerant circulation amount. This is due to frost formation due to the outlet temperature being below 0 ° C.
  • T Dp the temperature drop due to pressure loss ⁇ P
  • T Rin the refrigerant inlet evaporation temperature.
  • the unit of pressure loss ⁇ P is Pa.
  • P Rin is the inlet evaporating pressure
  • P lim is the refrigerant saturation pressure at 0 ° C.
  • ⁇ P ⁇ ⁇ L / d ⁇ ⁇ ⁇ u 2/2 It becomes.
  • is a coefficient of friction between the inner wall of the flat tube 4 and the refrigerant.
  • L is the pipe length and is in units of m.
  • d is the hydraulic diameter and is in units of m.
  • is the refrigerant density and is expressed in kg / m 3 .
  • u is the flow rate of the refrigerant and is in units of m / s.
  • the flow velocity u can be obtained from the following equation.
  • u M / ⁇ A
  • M is the refrigerant circulation amount and is expressed in kg / s.
  • A is for the m 2 units a total of the refrigerant passage sectional area of the plurality of flat tubes 4 which constitute the refrigerant path of one turn.
  • n the number of the flat tubes 4 constituting the one-turn refrigerant path.
  • the heating rated capacity may be used, and in the case of the indoor unit heat exchanger, the cooling rated capacity may be used.
  • refrigerant circulation amount m Compressor rotation speed ⁇ Suction pressure density ⁇ Compressor volume
  • the friction coefficient ⁇ varies depending on the refrigerant circulation amount, the refrigerant pressure, the shape of the flat tube, and the like. Generally, it is about 0.5 to 0.05 for a domestic air conditioner.
  • the density ⁇ varies depending on the pressure and dryness of the refrigerant, but in the case of a gas refrigerant, it is generally 20 to 70 kg / m 3 .
  • the lower limit of the number of the flat tubes 4 constituting the one-turn refrigerant path can be obtained from Formula B.
  • FIG. 12 and FIG. 13 are graphs showing an example of the calculation result by Formula B.
  • FIG. 12 shows the relationship between the number of flat tubes in the outdoor unit heat exchanger and the rated heating capacity.
  • FIG. 13 shows the relationship between the number of flat tubes and the cooling capacity in an indoor unit heat exchanger. In these graphs, the number of the flat tubes 4 constituting the one-turn refrigerant path is optimized according to the rated capacity, and the lower limit value among them is shown.
  • the parallel flow type heat exchanger 1 can be mounted on a separate air conditioner.
  • a separate air conditioner is composed of an outdoor unit and an indoor unit.
  • the outdoor unit includes a compressor, a four-way valve, an expansion valve, an outdoor heat exchanger, an outdoor fan, and the like.
  • the indoor unit includes an indoor side heat exchanger, an indoor side blower, and the like.
  • the outdoor heat exchanger functions as an evaporator during heating operation and functions as a condenser during cooling operation.
  • the indoor heat exchanger functions as a condenser during heating operation and functions as an evaporator during cooling operation.
  • FIG. 14 shows a basic configuration of a separate air conditioner that uses a heat pump cycle as a refrigeration cycle.
  • the heat pump cycle 101 includes a compressor 102, a four-way valve 103, an outdoor heat exchanger 104, a decompression / expansion device 105, and an indoor heat exchanger 106 connected in a loop.
  • the compressor 102, the four-way valve 103, the heat exchanger 104, and the decompression / expansion device 105 are accommodated in the casing of the outdoor unit.
  • the heat exchanger 106 is accommodated in the housing of the indoor unit.
  • the heat exchanger 104 is combined with an outdoor fan 107.
  • the heat exchanger 106 is combined with an indoor fan 108.
  • the blower 107 includes a propeller fan.
  • the blower 108 includes a cross flow fan.
  • the parallel flow type heat exchanger 1 can be used as a component of the heat exchanger 106 of the indoor unit.
  • the heat exchanger 106 is a combination of three heat exchangers 106 ⁇ / b> A, 106 ⁇ / b> B, 106 ⁇ / b> C like a roof covering the blower 108. Any of the heat exchangers 106A, 106B, and 106C can be used as the parallel flow heat exchanger 1.
  • the parallel flow heat exchanger 1 according to the present invention can also be used as the heat exchanger 104 of an outdoor unit.
  • FIG. 14 shows the state during heating operation.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 102 enters the indoor heat exchanger 106 where it dissipates heat and condenses.
  • the refrigerant exiting the heat exchanger 106 enters the outdoor heat exchanger 104 from the decompression / expansion device 105 and expands there, takes heat from the outdoor air, and returns to the compressor 102.
  • the airflow generated by the indoor fan 108 promotes heat dissipation from the heat exchanger 106, and the airflow generated by the outdoor fan 107 accelerates heat absorption of the heat exchanger 104.
  • FIG. 15 shows a state during cooling operation or defrosting operation.
  • the four-way valve 103 is switched so that the refrigerant flow is reversed from that during the heating operation. That is, the high-temperature and high-pressure refrigerant discharged from the compressor 102 enters the outdoor heat exchanger 104, where it dissipates heat and condenses.
  • the refrigerant exiting the heat exchanger 104 enters the heat exchanger 106 on the indoor side from the decompression / expansion device 105 and expands there, takes heat from the indoor air, and returns to the compressor 102.
  • the airflow generated by the outdoor fan 107 promotes heat dissipation from the heat exchanger 104, and the airflow generated by the indoor fan 108 promotes heat absorption of the heat exchanger 106.
  • the present invention is widely applicable to side flow type parallel flow heat exchangers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

 パラレルフロー型熱交換器(1)は、2本の垂直方向ヘッダパイプ(2)(3)と、ヘッダパイプ同士を連結する複数の水平方向偏平チューブ(4)を備える。複数本の水平方向偏平チューブはさらにその中で複数本ずつグループ化され、各グループが垂直ヘッダパイプの一方から他方へと冷媒を流す冷媒パスを構成する。1ターンの冷媒パスを構成する偏平チューブの本数は、所定の数式により上限を定められる。

Description

パラレルフロー型熱交換器及びそれを搭載した空気調和機
 本発明はサイドフロー方式のパラレルフロー型熱交換器及びそれを搭載した空気調和機に関する。
 複数のヘッダパイプの間に複数の偏平チューブを配置して偏平チューブ内部の複数の冷媒通路をヘッダパイプの内部に連通させるとともに、偏平チューブ間にコルゲートフィン等のフィンを配置したパラレルフロー型の熱交換器は、カーエアコンや建物用空気調和機の室外側ユニットなどに広く利用されている。
 パラレルフロー型熱交換器の構造例を図1に示す。図1では紙面上側が熱交換器の上側、紙面下側が熱交換器の下側となる。パラレルフロー型熱交換器1はサイドフロー方式であって、2本の垂直方向ヘッダパイプ2、3と、その間に配置される複数本の水平方向偏平チューブ4を備える。ヘッダパイプ2、3は水平方向に間隔を置いて平行に配置され、偏平チューブ4は垂直方向に所定ピッチで配置されている。実際に機器に搭載する段階では、熱交換器1は設計の要請に従って様々な角度に据え付けられるから、本明細書における「垂直方向」「水平方向」は厳格に解釈されるべきものではない。単なる方向の目安として理解されるべきである。
 偏平チューブ4は金属を押出成型した細長い成型品であり、図2に示す通り、内部には冷媒を流通させる冷媒通路5が形成されている。偏平チューブ4は長手方向である押出成型方向を水平にする形で配置されるので、冷媒通路5の冷媒流通方向も水平になる。冷媒通路4は断面形状及び断面面積の等しいものが図2の左右方向に複数個並ぶ。そのため偏平チューブ4の垂直断面はハーモニカ状を呈している。各冷媒通路5はヘッダパイプ2、3の内部に連通する。
 偏平チューブ4の偏平面にはフィン6が取り付けられる。フィン6として、ここではコルゲートフィンを用いているが、プレートフィンでも構わない。上下に並ぶフィン6のうち、最上段のものと最下段のものの外側にはサイドプレート7が配置される。
 ヘッダパイプ2、3、偏平チューブ4、フィン6、及びサイドプレート7はいずれもアルミニウム等熱伝導の良い金属からなり、偏平チューブ4はヘッダパイプ2、3に対し、フィン6は偏平チューブ4に対し、サイドプレート7はフィン6に対し、それぞれロウ付けまたは溶着で固定される。
 ヘッダパイプ2の内部は、2枚の仕切板P1、P2により3個の区画S1、S2、S3に仕切られている。仕切板P1、P2は複数本の偏平チューブ4を3個の偏平チューブグループに区分する。区画S1、S2、S3にはそれぞれ複数本ずつの偏平チューブ4が接続される。
 ヘッダパイプ3の内部は、1枚の仕切板P3により2個の区画S4、S5に仕切られている。仕切板P3は複数本の偏平チューブ4を2個の偏平チューブグループに区分する。区画S4、S5にはそれぞれ複数本ずつの偏平チューブ4が接続される。
 区画S1には冷媒出入パイプ8が接続される。区画S3には冷媒出入パイプ9が接続される。
 熱交換器1の機能は次の通りである。熱交換器1が凝縮器として用いられるとき、冷媒は冷媒出入パイプ8を通じて区画S1に供給される。区画S1に入った冷媒は区画S1と区画S4を連結する複数本の偏平チューブ4を通って区画S4に向かう。この複数本の偏平チューブ4からなる偏平チューブグループが冷媒パスAを構成する。冷媒パスAはブロック矢印で象徴されている。それ以外の冷媒パスもブロック矢印で象徴させる。
 区画S4に入った冷媒はそこで折り返し、区画S4と区画S2を連結する複数本の偏平チューブ4を通って区画S2に向かう。この複数本の偏平チューブ4からなる偏平チューブグループが冷媒パスBを構成する。
 区画S2に入った冷媒はそこで折り返し、区画S2と区画S5を連結する複数本の偏平チューブ4を通って区画S5に向かう。この複数本の偏平チューブ4からなる偏平チューブグループが冷媒パスCを構成する。
 区画S5に入った冷媒はそこで折り返し、区画S5と区画S3を連結する複数本の偏平チューブ4を通って区画S3に向かう。この複数本の偏平チューブ4からなる偏平チューブグループが冷媒パスDを構成する。区画S3に入った冷媒は冷媒出入パイプ9より流出する。
 本明細書では、冷媒出入パイプ8もしくは9から最初の折り返しまで、または折り返しとその次の折り返しの間の区間を「1ターン」と称する。冷媒パスA、B、C、Dはいずれも1ターンの冷媒パスということになる。
 熱交換器1が蒸発器として用いられるときは、冷媒は冷媒出入パイプ9を通じて区画S3に供給される。それ以後の冷媒の流れは、熱交換器1が凝縮器として用いられるときの冷媒パスを逆に辿る。すなわち冷媒パスD→冷媒パスC→冷媒パスB→冷媒パスAのルートで冷媒は区画S1に入り、冷媒出入パイプ8より流出する。
 パラレルフロー型熱交換器においては、性能を高めるため、設計に様々な工夫がこらされる。その例を特許文献1~3に見ることができる。
 特許文献1に記載されたパラレルフロー型熱交換器では、2本のヘッダパイプを連結する複数本の偏平チューブの内部に、流体直径が0.015インチ(約0.38ミリメートル)から0.07インチ(約1.78ミリメートル)の範囲の冷媒通路が複数個平行に形成される。その冷媒通路の断面の輪郭は、会合する2以上の比較的直線状の部分とそれらが会合する箇所にできる少なくとも1つの凹入部とを有することとされている。そしてこの構成により、偏平チューブによって塞がれる空気側の前面面積が小さく、空気側圧力降下を増大させることなく、空気側熱伝達表面を増大可能としている。
 特許文献2に記載されたパラレルフロー型熱交換器では、偏平チューブ内の冷媒通路の高さを0.35ミリメートルから0.8ミリメートルに設定している。これにより、通風抵抗による放熱性低下分と管圧損による放熱性能低下分の和を小さくして、放熱性能を高めることとしている。
 特許文献3に記載されたパラレルフロー型熱交換器では、冷媒の入口側のヘッダパイプの抵抗パラメータαに対する偏平チューブの抵抗パラメータβの比である分流パラメータγを0.5以上にしている。これにより、ヘッダパイプの冷媒入口の最も圧力が高い部分に接続されている偏平チューブに冷媒が集中的に流れることを阻害し、各偏平チューブにかかる圧力を均一にして良好な分流状態を得、良好な熱交換性能が発揮されるようにしている。
特開平5-87752号公報 特開2001-165532号公報 特開2000-111274号公報
 パラレルフロー型熱交換器を蒸発器として用いる場合に、冷媒パスを流れる冷媒を考えたとき、ある偏平チューブには液体の冷媒が多く流れ、他の偏平チューブには気体の冷媒が多く流れるという、「偏流」の状態が生じていないことが望ましい。本発明は、冷媒パスを構成する偏平チューブの本数に関し、偏流を生じさせないという観点で最適設計を施したサイドフロー方式のパラレルフロー型熱交換器を提供することを目的とする。特に、気体の冷媒の割合が多い冷媒パスの偏平チューブ本数を最適化することを目的とする。
 本発明に係るパラレルフロー型熱交換器は、2本の垂直方向ヘッダパイプと、前記ヘッダパイプ同士を連結する複数本の水平方向偏平チューブを備える。前記複数本の水平方向偏平チューブはさらにその中で複数本ずつグループ化され、各グループが前記2本の垂直ヘッダパイプの一方から他方へと冷媒を流す1ターンの冷媒パスを構成する。前記1ターンの冷媒パスを構成する前記偏平チューブの本数の上限は、以下の数式Aによって得られた数値±2により定められる:
 当該パラレルフロー型熱交換器を空気調和機の室外機に用いる場合は、
  n<3.0×10-4×Q+8.0  …(A)
 当該パラレルフロー型熱交換器を空気調和機の室内機に用いる場合は、
  n<4.2×10-4×Q+7.9  …(A)
 但しnは1ターンの冷媒パスを構成する偏平チューブの本数、Qは定格能力であってWを単位とするものである。Qは、室外機の場合には暖房定格能力、室内機の場合には冷房定格能力を用いる。
 上記構成のパラレルフロー型熱交換器が空気調和機の室外機に用いられる場合、前記1ターンの冷媒パスを構成する前記偏平チューブの本数の下限は、以下の数式Bにより定められることが好ましい:
  n>(αQ+β)×{(1.4×10-16)×L/(d×A´)}0.5 …(B)
 但しα=0.0161、β=8.86、dは水力直径であってmを単位とするもの、A´は1本の偏平チューブの冷媒通路の断面積であって、mを単位とするものである
 上記構成のパラレルフロー型熱交換器が空気調和機の室内機に用いられる場合、前記1ターンの冷媒パスを構成する前記偏平チューブの本数の下限は、以下の数式Bにより定められることが好ましい:
  n>(αQ+β)×{(1.4×10-16)×L/(d×A´)}0.5 …(B)
 但しα=0.0228、β=6.62、dは水力直径であってmを単位とするもの、A´は1本の偏平チューブの冷媒通路の断面積であって、mを単位とするものである。
 さらに、上記構成のパラレルフロー型熱交換器を室外機または室内機に搭載した空気調和機が本発明となる。
 本発明によると、冷媒の循環量に応じて、偏流を生じることのないサイドフロー方式のパラレルフロー型熱交換器を得ることができる。
サイドフロー方式のパラレルフロー型熱交換器の概略構成図である。 図1のII-II線に沿った断面図である。 偏平チューブの試験品の仕様の表である。 冷媒循環量と偏流を生じない偏平チューブ本数の関係を示す表である。 冷媒循環量と偏平チューブ本数の関係を示すグラフである。 冷房能力と冷媒循環量の関係を示すグラフである。 暖房能力と冷媒循環量の関係を示すグラフである。 空気調和機室外機に関する偏平チューブ本数最適範囲のグラフである。 空気調和機室内機に関する偏平チューブ本数最適範囲のグラフである。 冷媒循環量とサクション圧力の関係を示すグラフである。 冷媒循環量と偏平チューブ本数の関係を示すグラフである。 室外機用熱交換器における偏平チューブの本数と暖房定格能力の関係を示すグラフである。 室内機用熱交換器における偏平チューブの本数と冷房定格能力の関係を示すグラフである。 本発明に係るパラレルフロー型熱交換器を搭載した空気調和機の概略構成図で、暖房運転時の状態を示すものである。 本発明に係るパラレルフロー型熱交換器を搭載した空気調和機の概略構成図で、冷房運転時の状態を示すものである。
 図1に記載されたサイドフロー方式のパラレルフロー型熱交換器1であって、冷媒パスを構成する偏平チューブ4の本数を以下に説明する手法で設定したものが本発明に係るパラレルフロー型熱交換器であるものとする。但し、冷媒パスの数は4個に限定されない。それより多くてもよく、それより少なくてもよい。
 まず、1ターンの冷媒パスを構成する偏平チューブ4の本数の上限を求める。上限値は次の数式Aから求められる。
 当該パラレルフロー型熱交換器を空気調和機の室外機に用いる場合は、
  n<3.0×10-4×Q+8.0  …(A)
 当該パラレルフロー型熱交換器を空気調和機の室内機に用いる場合は、
  n<4.2×10-4×Q+7.9  …(A)
 但しnは1ターンの冷媒パスを構成する偏平チューブの本数、Qは定格能力であってWを単位とするものである。
 数式Aは試験から導き出された。図3の表には試験で検討した偏平チューブの仕様が示されている。試験品aは幅16.2mm、厚み1.9mm、冷媒通路断面積13mmである。試験品bは幅13.9mm、厚み1.9mm、冷媒通路断面積11mmである。試験品cは幅16.2mm、厚み1.6mm、冷媒通路断面積11mmである。試験品dは幅19.2mm、厚み1.9mm、冷媒通路断面積14mmである。
 試験は次のようにして行われた。様々な本数の偏平チューブに冷媒を循環させ、偏流が生じたかどうかをサーモグラフィーで目視により確認する。図3に示す4種類の試験品を用い、各試験品につき循環量を変えては冷媒を循環させた。その冷媒循環量において、偏流が認められなかった(この状態を本明細書では「無偏流」と称することがある)偏平チューブの最大本数をまとめたものが図4の表である。
 図4の表において、試験1では試験品aを用いた。冷媒循環量が27.3kg/hのときの無偏流最大本数は8であった。冷媒循環量が42.5kg/hのときの無偏流最大本数は9であった。冷媒循環量が64.3kg/hのときの無偏流最大本数は10であった。冷媒循環量が63.2kg/hのときの無偏流最大本数は10であった。
 試験2では試験品bを用いた。冷媒循環量が20.9kg/hのときの無偏流最大本数は9であった。冷媒循環量が22.1kg/hのときの無偏流最大本数は8であった。
 試験3では試験品cを用いた。冷媒循環量が59.2kg/hのときの無偏流最大本数は10であった。冷媒循環量が48.8kg/hのときの無偏流最大本数は9であった。冷媒循環量が26.4kg/hのときの無偏流最大本数は8であった。
 試験4では試験品bを用いた。冷媒循環量が54.8kg/hのときの無偏流最大本数は8であった。冷媒循環量が89.2kg/hのときの無偏流最大本数は8であった。
 試験5では試験品dを用いた。冷媒循環量が26.6kg/hのときの無偏流最大本数は6であった。冷媒循環量が44.3kg/hのときの無偏流最大本数は9であった。冷媒循環量が67.3kg/hのときの無偏流最大本数は9であった。
 図4の試験結果をプロットすると図5のグラフになった。近似直線を引き、直線近似の近似式から、
  n=1.9×10-2m+7.8  …(a)
±2本となる。
 冷媒循環量m(kg/h)は、一般に製品の定格能力に比例する値として設定される。冷媒循環量と能力の関係を図6及び図7に示す。
 暖房定格能力Q(単位はW)を用いて数式で表すと、
  m=0.0161Q+8.86  …(b)
と表せる。
 冷房定格能力Q(単位はW)を用いて数式で表すと、
  m=0.0228Q+6.621  …(c)
と表せる。
 定格能力と冷媒循環量の関係は製品により多少ばらつく。なお、冷媒循環量は下記の計算式より簡易的に算出したものである。
  冷媒循環量m=圧縮機回転数×サクション圧力密度×圧縮機容積
 パラレルフロー型熱交換器は、空気調和機の室外機用熱交換器として用いられる場合には暖房運転時に蒸発器となり、空気調和機の室内機用熱交換器として用いられる場合には冷房運転時に蒸発器となる。
 そのため、図8に示すように、パラレルフロー型熱交換器を室外機用熱交換器として用いる場合には、上記数式(a)と(b)より、1ターンの冷媒パスを構成する偏平チューブの本数の上限は、
  n=3.0×10-4Q+8.0
となる。
 図9に示すように、パラレルフロー型熱交換器を室内機用熱交換器として用いる場合には、上記数式(a)と(c)より、1ターンの冷媒パスを構成する偏平チューブの本数の上限は、
  n=4.2×10-4Q+7.9
±2本とすることにより、偏流を抑えることが可能となる。
 続いて、各冷媒パスを構成する偏平チューブ4の本数の下限を求める。熱交換器の出口温度が、
  Tout<0℃
となると、図10に示すように大きくサクション圧力が低下する。すなわち、冷媒循環量に対しサクション圧力が急激に減少する。これは出口温度が0℃を下回ったことによる着霜に起因する。
 圧力損失ΔPによる温度低下をTDpとすると、
  TRin-TDp<0度
となる。TRinは冷媒の入口蒸発温度である。圧力損失ΔPの単位はPaである。
 つまり、
  PRin-ΔP>Plim
となる。PRinは入口蒸発圧力、Plimは0℃のときの冷媒の飽和圧力である。
 ここで、
  ΔP=λ×L/d×ρ×u/2
となる。λは偏平チューブ4の内壁と冷媒との間の摩擦係数である。Lは管路長であってmを単位とするものである。dは水力直径であってmを単位とするものである。ρは冷媒密度であってkg/mを単位とするものである。uは冷媒の流速であってm/sを単位とするものである。
 流速uは次の式から求められる。
  u=M/ρA
 Mは冷媒循環量であってkg/sを単位とするものである。Aは1ターンの冷媒パスを構成する複数本の偏平チューブ4の冷媒通路断面積の合計であってmを単位とするものである。
 よって、
  ΔP=λ/2ρ×L/dA×M
となる。
 ここで、1本の偏平チューブ4の冷媒通路断面積をA′とすると、
  A=nA′
となる。nは1ターンの冷媒パスを構成する偏平チューブ4の本数である。
 ここで、
  ΔP<PRin-Plim
より
  λ/2ρ×L/(dn×A′)×M<PRin-Plim
となる。
 ここで、
  n>M×λ/2ρ×L/dA′×1/(PRin-Plim
となる。
 上式より
  n>M{λ/2ρ×L/dA′×1/(PRin-Plim)}0.5  …(d)
となる。
 Mの単位違いである冷媒循環量m(kg/h)は、一般に製品の定格能力に比例する値として設定される。従って、
  m=αQ+β
と表せる。
 冷媒循環量と能力の関係を図6及び図7に示す。暖房定格能力Q(単位はW)を用いて数式で表すと
  m=0.0161Q+8.86
と表せる。つまり、α=0.0161、β=8.86である。
 また、冷房定格能力Q(単位はW)を用いて数式で表すと
  m=0.0228Q+6.62
と表せる。つまり、α=0.0228、β=6.62である。
 室外機用熱交換器の場合には暖房定格能力を用い、室内機用熱交換器の場合は冷房定格能力を用いればよい。
 定格能力と冷媒循環量の関係は製品により多少ばらつく。なお、冷媒循環量は下記の計算式より簡易的に算出したものである。
  冷媒循環量m=圧縮機回転数×サクション圧力密度×圧縮機容積
 また、圧力損失は200kPa以下に抑えるのが通常である。従って、
  PRin-Plim<200×10
 摩擦係数λは、冷媒循環量、冷媒圧力、偏平チューブの形状等により変化する。一般的に家庭用空気調和機では0.5~0.05程度である。また、密度ρは冷媒の圧力や乾き度により変化するが、気体の冷媒の場合、一般的に20~70kg/mである。
 上記よりMをmに単位変換を行うと
  n>(αQ+β)×{Π×L/(d×A´)}0.5
 Πは、
  1.4×10-16<Π<4.8×10-15
 数式Aによる上限本数の計算結果を下限本数が上回る場合には、入口または熱交換器の途中で分岐させることが望ましい。
 ここで、圧力損失は低い方が望ましいため、Πは最低値、すなわち1.4×10-16を用いるのが望ましい。
 従って、
  n>(αQ+β)×{(1.4×10-16)×L/(d×A´)}0.5 …(B)
 以上から、数式Bにより、1ターンの冷媒パスを構成する偏平チューブ4の本数の下限を求めることができる。
 図12、図13には数式Bによる計算結果の一例をグラフ化したものが示されている。
図12は室外機用熱交換器における偏平チューブの本数と暖房定格能力の関係を示す。図13は室内機用熱交換器における偏平チューブの本数と冷房定格能力の関係を示す。これらのグラフは、1ターンの冷媒パスを構成する偏平チューブ4の本数を定格能力に応じて最適化し、その中で下限となる値を示すものである。
 パラレルフロー型熱交換器1はセパレート型空気調和機に搭載することができる。セパレート型空気調和機は室外機と室内機により構成される。室外機は圧縮機、四方弁、膨張弁、室外側熱交換器、室外側送風機などを含む。室内機は室内側熱交換器、室内側送風機などを含む。室外側熱交換器は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。室内側熱交換器は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。
 冷凍サイクルとしてヒートポンプサイクルを用いるセパレート型空気調和機の基本的構成を図14に示す。ヒートポンプサイクル101は、圧縮機102、四方弁103、室外側の熱交換器104、減圧膨張装置105、及び室内側の熱交換器106をループ状に接続したものである。圧縮機102、四方弁103、熱交換器104、及び減圧膨張装置105は室外機の筐体に収容される。熱交換器106は室内機の筐体に収容される。熱交換器104には室外側の送風機107が組み合わせられる。熱交換器106には室内側の送風機108が組み合わせられる。送風機107はプロペラファンを含む。送風機108はクロスフローファンを含む。
 本発明に係るパラレルフロー型熱交換器1は、室内機の熱交換器106の構成要素として用いることができる。熱交換器106は、3個の熱交換器106A、106B、106Cを送風機108を覆う屋根のように組み合わせたものである。熱交換器106A、106B、106Cのいずれかをパラレルフロー型熱交換器1とすることができる。
 本発明に係るパラレルフロー型熱交換器1は、室外機の熱交換器104として用いることもできる。
 図14は暖房運転時の状態を示す。この時は、圧縮機102から吐出された高温高圧の冷媒は室内側の熱交換器106に入ってそこで放熱し、凝縮する。熱交換器106を出た冷媒は減圧膨張装置105から室外側の熱交換器104に入ってそこで膨張し、室外空気から熱を取り込んだ後、圧縮機102に戻る。室内側の送風機108によって生成された気流が熱交換器106からの放熱を促進し、室外側の送風機107によって生成された気流が熱交換器104の吸熱を促進する。
 図15は冷房運転時あるいは除霜運転時の状態を示す。この時は四方弁103が切り換えられて暖房運転時と冷媒の流れが逆になる。すなわち、圧縮機102から吐出された高温高圧の冷媒は室外側の熱交換器104に入ってそこで放熱し、凝縮する。熱交換器104を出た冷媒は減圧膨張装置105から室内側の熱交換器106に入ってそこで膨張し、室内空気から熱を取り込んだ後、圧縮機102に戻る。室外側の送風機107によって生成された気流が熱交換器104からの放熱を促進し、室内側の送風機108によって生成された気流が熱交換器106の吸熱を促進する。
 以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。
 本発明はサイドフロー方式のパラレルフロー型熱交換器に広く利用可能である。
   1  熱交換器
   2、3 ヘッダパイプ
   4  偏平チューブ
   5 冷媒通路
   6 フィン
   7 サイドプレート
   A、B、C、D 冷媒パス

Claims (5)

  1.  サイドフロー方式のパラレルフロー型熱交換器であって、以下の構成を備えるもの:
     2本の垂直方向ヘッダパイプと、
     前記ヘッダパイプ同士を連結する複数本の水平方向偏平チューブを備え、
     前記複数本の水平方向偏平チューブはさらにその中で複数本ずつグループ化され、各グループが前記2本の垂直ヘッダパイプの一方から他方へと冷媒を流す1ターンの冷媒パスを構成するものであり、
     前記1ターンの冷媒パスを構成する前記偏平チューブの本数の上限は、以下の数式Aによって得られた数値±2により定められる:
     当該パラレルフロー型熱交換器を空気調和機の室外機に用いる場合は、
      n<3.0×10-4×Q+8.0  …(A)
     当該パラレルフロー型熱交換器を空気調和機の室内機に用いる場合は、
      n<4.2×10-4×Q+7.9  …(A)
     但しnは1ターンの冷媒パスを構成する偏平チューブの本数、Qは定格能力であってWを単位とするものである。
  2.  請求項1のパラレルフロー型熱交換器であって、以下の構成を備えるもの:
     当該熱交換器は空気調和機の室外機に用いられるものであり、
     前記1ターンの冷媒パスを構成する前記偏平チューブの本数の下限は、以下の数式Bにより定められる:
      n>(αQ+β)×{(1.4×10-16)×L/(d×A´)}0.5 …(B)
     但しα=0.0161、β=8.86、dは水力直径であってmを単位とするもの、A´は1本の偏平チューブの冷媒通路の断面積であって、mを単位とするものである。
  3.  請求項1のパラレルフロー型熱交換器であって、以下の構成を備えるもの:
     当該熱交換器は空気調和機の室内機に用いられるものであり、
     前記1ターンの冷媒パスを構成する前記偏平チューブの本数の下限は、以下の数式Bにより定められる:
      n>(αQ+β)×{(1.4×10-16)×L/(d×A´)}0.5 …(B)
     但しα=0.0228、β=6.62、dは水力直径であってmを単位とするもの、A´は1本の偏平チューブの冷媒通路の断面積であって、mを単位とするものである。
  4.  空気調和機であって、以下の構成を備えるもの:
     当該空気調和機の室外機に、請求項2に記載のパラレルフロー型熱交換器を搭載した。
  5.  空気調和機であって、以下の構成を備えるもの:
     当該空気調和機の室内機に、請求項3に記載のパラレルフロー型熱交換器を搭載した。
PCT/JP2013/071301 2012-09-04 2013-08-07 パラレルフロー型熱交換器及びそれを搭載した空気調和機 WO2014038335A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/418,467 US20150168072A1 (en) 2012-09-04 2013-08-07 Parallel-flow type heat exchanger and air conditioner equipped with same
CN201380044123.9A CN104620069B (zh) 2012-09-04 2013-08-07 并流式热交换器和安装有该并流式热交换器的空气调节机
KR1020157003750A KR101698698B1 (ko) 2012-09-04 2013-08-07 평행류형 열교환기 및 그것을 탑재한 공기 조화기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-194111 2012-09-04
JP2012194111A JP5858478B2 (ja) 2012-09-04 2012-09-04 パラレルフロー型熱交換器及びそれを搭載した空気調和機

Publications (1)

Publication Number Publication Date
WO2014038335A1 true WO2014038335A1 (ja) 2014-03-13

Family

ID=50236951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071301 WO2014038335A1 (ja) 2012-09-04 2013-08-07 パラレルフロー型熱交換器及びそれを搭載した空気調和機

Country Status (5)

Country Link
US (1) US20150168072A1 (ja)
JP (1) JP5858478B2 (ja)
KR (1) KR101698698B1 (ja)
CN (1) CN104620069B (ja)
WO (1) WO2014038335A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015210231A1 (de) * 2015-06-03 2016-12-08 Bayerische Motoren Werke Aktiengesellschaft Wärmetauscher für ein Kühlsystem, Kühlsystem sowie Baugruppe
JP2017026281A (ja) * 2015-07-28 2017-02-02 サンデンホールディングス株式会社 熱交換器
US11105538B2 (en) * 2015-12-01 2021-08-31 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP6704361B2 (ja) * 2017-01-13 2020-06-03 日立ジョンソンコントロールズ空調株式会社 空気調和機
US11047625B2 (en) 2018-05-30 2021-06-29 Johnson Controls Technology Company Interlaced heat exchanger
JP2020165579A (ja) 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 熱交換器分流器
JP2020165578A (ja) 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 熱交換器分流器
JP2021025746A (ja) * 2019-08-08 2021-02-22 株式会社Uacj 熱交換器および空気調和機
JP7372778B2 (ja) * 2019-08-08 2023-11-01 株式会社Uacj 熱交換器および空気調和機
JP7372777B2 (ja) * 2019-08-08 2023-11-01 株式会社Uacj 熱交換器および空気調和機
US20230204297A1 (en) * 2021-12-23 2023-06-29 Goodman Manufacturing Company, L.P. Heat exchanger assembly and method for hvac system
KR102549339B1 (ko) 2023-01-17 2023-06-29 아세아열기 주식회사 히트파이프용 열교환기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111274A (ja) * 1998-08-04 2000-04-18 Sanden Corp 熱交換器
JP2012037099A (ja) * 2010-08-04 2012-02-23 Sharp Corp 空気調和機の室内機
JP2012132644A (ja) * 2010-12-22 2012-07-12 Sharp Corp 熱交換器及びそれを搭載した空気調和機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482112A (en) * 1986-07-29 1996-01-09 Showa Aluminum Kabushiki Kaisha Condenser
JPH02287094A (ja) * 1989-04-26 1990-11-27 Zexel Corp 熱交換器
JP2789882B2 (ja) 1991-09-26 1998-08-27 日本電気株式会社 薄膜熱物性値測定方法
JPH1089883A (ja) * 1996-09-17 1998-04-10 Zexel Corp 熱交換器用ヘッダーパイプとその製造装置
GB2346680A (en) * 1999-02-11 2000-08-16 Llanelli Radiators Ltd Condenser
JP2001194081A (ja) * 1999-03-08 2001-07-17 Denso Corp 放熱器又は蒸発器用のチューブ
JP2001165532A (ja) 1999-12-09 2001-06-22 Denso Corp 冷媒凝縮器
JP4449153B2 (ja) * 2000-04-14 2010-04-14 ダイキン工業株式会社 室外熱交換器、室内熱交換器、及び空気調和装置
AU2001277703A1 (en) * 2000-08-04 2002-02-18 Showa Denko K K Heat exchanger
CN100398968C (zh) * 2003-10-30 2008-07-02 乐金电子(天津)电器有限公司 超细管道热交换器的制冷剂分流结构
WO2005071329A1 (en) * 2004-01-20 2005-08-04 Norsk Hydro Asa Parallel flow evaporator
WO2006068262A1 (en) * 2004-12-24 2006-06-29 Showa Denko K.K. Heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111274A (ja) * 1998-08-04 2000-04-18 Sanden Corp 熱交換器
JP2012037099A (ja) * 2010-08-04 2012-02-23 Sharp Corp 空気調和機の室内機
JP2012132644A (ja) * 2010-12-22 2012-07-12 Sharp Corp 熱交換器及びそれを搭載した空気調和機

Also Published As

Publication number Publication date
CN104620069B (zh) 2016-08-31
JP5858478B2 (ja) 2016-02-10
US20150168072A1 (en) 2015-06-18
KR20150036570A (ko) 2015-04-07
KR101698698B1 (ko) 2017-01-20
JP2014048028A (ja) 2014-03-17
CN104620069A (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5858478B2 (ja) パラレルフロー型熱交換器及びそれを搭載した空気調和機
JP5071597B2 (ja) 熱交換器および空気調和機
JP5626254B2 (ja) 熱交換器
JP6109303B2 (ja) 熱交換器及び冷凍サイクル装置
CN103097828B (zh) 空气调节机的室内机
US10041710B2 (en) Heat exchanger and air conditioner
US20090050298A1 (en) Heat exchanger and integrated-type heat exchanger
JP2013002774A (ja) パラレルフロー型熱交換器及びそれを搭載した空気調和機
WO2020179651A1 (ja) 車両用バッテリの冷却モジュール
JP6486223B2 (ja) エバポレータ
JP2010127510A (ja) 熱交換器
JP3177302U (ja) 冷暖房空調装置
JP5940895B2 (ja) パラレルフロー型熱交換器及びそれを搭載した空気調和機
JP7414845B2 (ja) 冷凍サイクル装置
JP5763436B2 (ja) パラレルフロー型熱交換器及びそれを搭載した空気調和機
JP2012052732A (ja) 熱交換器およびこれを備えた車両用空調装置
JP6139093B2 (ja) パラレルフロー型熱交換器
JP2012042128A (ja) 熱交換器及びそれを搭載した空気調和機
JP2003222436A (ja) ヒートポンプ型空調用熱交換器
CN218065155U (zh) 换热器和换热系统
KR102169284B1 (ko) 열교환기 및 이를 갖는 공기조화기
JP3177300U (ja) 冷暖房空調装置
CN116972454A (zh) 一种换热系统
JP3177299U (ja) 冷暖房空調装置
JP2013228134A (ja) パラレルフロー型熱交換器及びそれを搭載した空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835628

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14418467

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157003750

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13835628

Country of ref document: EP

Kind code of ref document: A1