WO2014038245A1 - 非水電解液二次電池の製造方法 - Google Patents

非水電解液二次電池の製造方法 Download PDF

Info

Publication number
WO2014038245A1
WO2014038245A1 PCT/JP2013/062603 JP2013062603W WO2014038245A1 WO 2014038245 A1 WO2014038245 A1 WO 2014038245A1 JP 2013062603 W JP2013062603 W JP 2013062603W WO 2014038245 A1 WO2014038245 A1 WO 2014038245A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
positive electrode
negative electrode
secondary battery
solvent
Prior art date
Application number
PCT/JP2013/062603
Other languages
English (en)
French (fr)
Inventor
宏司 鬼塚
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201380046271.4A priority Critical patent/CN104604016B/zh
Priority to US14/423,645 priority patent/US9437902B2/en
Priority to KR1020157008504A priority patent/KR101678798B1/ko
Publication of WO2014038245A1 publication Critical patent/WO2014038245A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/0042Four or more solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery.
  • Lithium ion secondary batteries and other non-aqueous electrolyte secondary batteries are becoming increasingly important as power sources for vehicles or for personal computers and mobile terminals.
  • a lithium ion secondary battery that is lightweight and obtains a high energy density is preferable as a high-output power source mounted on a vehicle.
  • a part of the non-aqueous electrolyte is decomposed during charging, and the decomposition product is formed on the surface of the negative electrode active material (for example, natural graphite particles).
  • a film that is, a SEI (Solid Electrolyte Interface) film may be formed.
  • the SEI film plays a role of protecting the negative electrode active material, but is formed by consuming charge carriers (for example, lithium ions) in the non-aqueous electrolyte. That is, since the charge carriers are fixed in the SEI film, the charge carriers can no longer contribute to the battery capacity. For this reason, the formation of a large amount of the SEI film causes a decrease in capacity retention rate (deterioration of cycle characteristics).
  • Patent Document 1 describes a non-aqueous electrolyte for a secondary battery containing lithium bis (oxalato) borate (Li [B (C 2 O 4 ) 2 ]) as an additive.
  • a sodium component for example, sodium salt
  • a sodium component is contained as an inevitable impurity in the electrode body of a non-aqueous electrolyte secondary battery including a positive electrode and a negative electrode.
  • the sodium component is dissolved in the non-aqueous electrolyte.
  • the nonaqueous electrolytic solution containing lithium bis (oxalato) borate described in Patent Document 1 is injected into the electrode body, sodium ions (Na + ) in the nonaqueous electrolytic solution are [B (C 2 O 4 ). 2] - to spread faster than.
  • the electrode body is an electrode body formed by laminating or winding a rectangular positive electrode and negative electrode
  • sodium ions tend to gather at the center in the width direction perpendicular to the longitudinal direction of the electrode body. That is, the concentration of sodium ions is high at the center in the width direction.
  • [B (C 2 O 4 ) 2 ] ⁇ diffuses with a delay in the central part where the sodium ion concentration is high.
  • sodium ions and [B (C 2 O 4 ) 2 ] ⁇ are actively associated, and Na [B (C 2 O 4 ) 2 ] is a part. It tends to precipitate.
  • a portion where Na [B (C 2 O 4 ) 2 ] is present in a large amount and a portion where [B (C 2 O 4 ) 2 ] ⁇ is present in a small amount are formed at the center of the electrode body.
  • the coating amount generated by the decomposition of [B (C 2 O 4 ) 2 ] may vary.
  • a portion where a large amount and a small amount of a coating produced by the decomposition of [B (C 2 O 4 ) 2 ] are present on the surface of the negative electrode active material at the central portion in the width direction of the electrode body. Therefore, the portion where the coating film exists in a small amount is likely to deteriorate due to long-term use, and the resistance of the portion may increase. Therefore, when charging / discharging is repeated, a substance (for example, a metal such as metallic lithium) derived from the charge carrier may be deposited in a portion where the resistance is partially high in the central portion of the electrode body.
  • the present invention has been created to solve the above-described conventional problems, and the object thereof is to suppress deposition of a substance derived from a charge carrier by forming a film having a preferable aspect on the surface of the negative electrode active material.
  • the manufacturing method of the manufactured non-aqueous-electrolyte secondary battery is provided.
  • the inventor of the present application uses a solvent having a polarity higher than that of the carbonate-based solvent as a part of the non-aqueous solvent in the non-aqueous electrolyte containing lithium bis (oxalato) borate, and a predetermined additive in the non-aqueous electrolyte. It has been found that the above-mentioned object can be realized by containing the present invention, and the present invention has been completed.
  • the present invention provides a method for producing a non-aqueous electrolyte secondary battery. That is, the manufacturing method disclosed herein includes a step of preparing a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material, wherein at least one of the prepared positive electrode and the negative electrode is an inevitable impurity.
  • the non-aqueous solvent contained in the non-aqueous electrolyte is 100% by volume, the solvent contained in the non-aqueous electrolyte is included.
  • Le solvent is less than 10 vol%; after charged to a predetermined charging voltage to the assembly, the step of performing a discharge to a predetermined discharge voltage; including.
  • non-aqueous electrolyte secondary battery includes a non-aqueous electrolyte (typically, an electrolyte containing a supporting salt (supporting electrolyte) in a non-aqueous solvent (organic solvent)).
  • Battery typically, an electrolyte containing a supporting salt (supporting electrolyte) in a non-aqueous solvent (organic solvent)).
  • secondary battery refers to a battery that can be repeatedly charged and discharged, and is a term that includes a so-called chemical battery such as a lithium ion secondary battery and a physical battery such as an electric double layer capacitor.
  • sodium (Na) component is a term including a case where sodium exists alone (typically in an ionic state) and a case where it exists as a compound containing Na as a constituent element. is there.
  • a non-aqueous electrolyte containing lithium bis (oxalato) borate, a fluorine-containing phosphoric acid compound, and an ether solvent of less than 10% by volume is contained in the battery case.
  • the assembly is subjected to predetermined charging / discharging.
  • the non-aqueous electrolyte contains an ether solvent having higher polarity and superior solubility than the carbonate solvent as a non-aqueous solvent, Na [B (C 2 O 4 ) 2 is formed on the electrode body. ] Is suppressed.
  • the coating produced in this way can be in a state where variation in the amount of coating is suppressed (preferably in a state where the coating is uniform in the width direction).
  • a non-aqueous electrolyte containing an ether solvent at a ratio of less than 10% by volume is used, even if charging / discharging of the non-aqueous electrolyte secondary battery obtained by the above production method is repeated, The increase in the internal resistance of the battery can be kept low.
  • the ether solvent is easily oxidatively decomposed at the positive electrode, and when the ether solvent is oxidized on the positive electrode, the positive electrode resistance may be increased.
  • the non-aqueous electrolytic solution containing the fluorine-containing phosphate compound is used in the above production method, the surface of the positive electrode (typically the surface of the positive electrode active material) derived from the fluorine-containing phosphate compound is charged and discharged. A film is formed.
  • the non-aqueous electrolyte secondary battery manufactured by the above manufacturing method includes an electrode body in which variation in the coating amount is suppressed, and even if the coating is deteriorated by repeated charge and discharge, In particular, deterioration of the coating is suppressed. For this reason, it can prevent that an electric current concentrates locally and can suppress that the substance (for example, metallic lithium) derived from a charge carrier in an electrode body (for example, negative electrode) precipitates.
  • the substance for example, metallic lithium
  • a chain ether and / or a cyclic ether is used as the ether solvent.
  • dimethoxyethane and / or 1,2-dimethoxypropane is used as the chain ether.
  • the chain ether or cyclic ether can be suitably used as a solvent for dissolving Na [B (C 2 O 4 ) 2 ]. According to the various ether solvents, it is possible to suppress the precipitation of Na [B (C 2 O 4 ) 2 ] on the electrode body before the first charge / discharge.
  • the fluorine-containing phosphate compound is lithium difluorophosphate
  • the concentration of the lithium difluorophosphate in the non-aqueous electrolyte is 0.01 mol. / L to 0.15 mol / L.
  • the concentration of lithium bis (oxalato) borate in the nonaqueous electrolytic solution is 0.005 mol / L to 0.05 mol / L.
  • the electrode body is an electrode body in which a positive electrode formed in a sheet shape and a negative electrode formed in a sheet shape are overlapped, and the electrode body A wound electrode body wound in the longitudinal direction is used.
  • the nonaqueous electrolytic solution is impregnated from the both end portions in the width direction of the wound electrode body toward the center portion. For this reason, the concentration of the sodium component is high in the central portion of the wound electrode body, and a portion in which a large amount of Na [B (C 2 O 4 ) 2 ] is present in the central portion of the electrode body and [B (C 2 O 4).
  • the configuration of the present invention is used in which a nonaqueous electrolytic solution containing lithium bis (oxalato) borate, a fluorine-containing phosphate compound, and less than 10% by volume of an ether solvent is used. The effect by this can be exhibited especially.
  • a lithium-containing compound capable of inserting and extracting lithium ions is used as the positive electrode active material. According to this configuration, a positive electrode with better output performance can be obtained.
  • a non-aqueous electrolyte secondary battery manufactured by any of the manufacturing methods disclosed herein is provided.
  • a non-aqueous electrolyte secondary battery for example, a lithium ion secondary battery obtained by any of the production methods disclosed herein
  • the coating produced by the decomposition of [B (C 2 O 4 ) 2 ] is a negative electrode Since the surface of the active material is formed in a preferable state (a state in which there is little or no variation in the coating amount), precipitation of a material derived from the charge carrier (for example, metallic lithium) is prevented, and the battery performance is excellent. It can be a secondary battery.
  • non-aqueous electrolyte secondary batteries for example, 40 to 80 batteries obtained by any of the manufacturing methods disclosed herein are typically connected in series.
  • a vehicle including the battery pack as a driving power source is provided.
  • a non-aqueous electrolyte used in a non-aqueous electrolyte secondary battery includes lithium bis (oxalato) borate as an additive, a fluorine-containing phosphate compound containing fluorine and phosphorus as constituent elements, a carbonate-based solvent and an ether-based solvent as non-aqueous solvents.
  • the ether solvent contained in the non-aqueous electrolyte is less than 10% by volume. According to such a non-aqueous electrolyte, precipitation of Na [B (C 2 O 4 ) 2 ] can be suppressed while suppressing an increase in battery resistance.
  • FIG. 1 is a perspective view schematically showing the outer shape of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a flowchart for explaining a method of manufacturing a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 4 is a graph showing the relationship between the capacity retention rate and the ratio of the ether solvent.
  • FIG. 5 is a graph showing the relationship between the resistance increase rate and the ratio of the ether solvent.
  • FIG. 6 is a graph showing the relationship between the Li precipitation resistance and the ratio of the ether solvent.
  • FIG. 7 is a side view schematically showing a vehicle (automobile) provided with the nonaqueous electrolyte secondary battery according to the present invention.
  • a method for producing a lithium ion secondary battery will be described in detail as an example. Is not intended to be limited to such types of secondary batteries.
  • the present invention can also be applied to a non-aqueous electrolyte secondary battery using other metal ions (for example, magnesium ions) as a charge carrier.
  • the manufacturing method of the lithium ion secondary battery (non-aqueous electrolyte secondary battery) disclosed herein includes a positive / negative electrode preparation step (S10), an electrode body preparation step (S20), A solid production process (S30), an injection process (S40), and a charge / discharge process (S50) are included.
  • the positive and negative electrode preparation step (S10) will be described.
  • a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material are prepared.
  • the method further includes preparing a separator disposed between the positive electrode and the negative electrode.
  • at least one of the prepared positive electrode and negative electrode contains a sodium (Na) component as an unavoidable impurity.
  • the negative electrode of the lithium ion secondary battery disclosed herein includes a negative electrode current collector and a negative electrode mixture layer including at least a negative electrode active material formed on the surface of the negative electrode current collector.
  • the negative electrode mixture layer can contain optional components such as a binder and a thickener as needed in addition to the negative electrode active material.
  • a conductive member made of a metal having good conductivity is preferably used, like the current collector used in the negative electrode of a conventional lithium ion secondary battery.
  • copper, nickel, or an alloy mainly composed of them can be used.
  • the shape of the negative electrode current collector can vary depending on the shape or the like of the lithium ion secondary battery, and is not particularly limited, and may be various forms such as a foil shape, a sheet shape, a rod shape, and a plate shape.
  • a particulate (or spherical, scale-like) carbon material including a graphite structure (layered structure) at least partially, a lithium transition metal composite oxide (for example, a lithium titanium composite oxide such as Li 4 Ti 5 O 12 ), Lithium transition metal composite nitride, etc.
  • the carbon material include natural graphite, artificial graphite (artificial graphite), non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), and the like.
  • the average particle diameter of the negative electrode active material is, for example, in the range of about 1 ⁇ m to 50 ⁇ m (usually 5 ⁇ m to 30 ⁇ m), which is based on various commercially available laser diffraction / scattering methods.
  • the median diameter (D50: 50% volume average particle diameter) that can be derived from the particle size distribution measured based on the particle size distribution measuring device.
  • a negative electrode active material at least partially coated with an amorphous carbon film can be obtained by mixing a negative electrode active material with a pitch and baking it.
  • binder those similar to the binder used for the negative electrode of a general lithium ion secondary battery can be appropriately employed.
  • a water-soluble polymer material or a water-dispersible polymer material can be preferably used.
  • the water dispersible polymer include rubbers such as styrene butadiene rubber (SBR); polyethylene oxide (PEO), vinyl acetate copolymer and the like. Styrene butadiene rubber is preferably used.
  • “Aqueous paste-like composition” is a concept indicating a composition using water or a mixed solvent mainly composed of water as a dispersion medium of the negative electrode active material.
  • a solvent other than water constituting such a mixed solvent one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used.
  • a water-soluble or water-dispersible polymer can be used as the thickener.
  • the water-soluble polymer include cellulose polymers such as carboxymethylcellulose (CMC), methylcellulose (MC), cellulose acetate phthalate (CAP), and hydroxypropylmethylcellulose (HPMC); polyvinyl alcohol (PVA); .
  • CMC carboxymethylcellulose
  • MC methylcellulose
  • CAP cellulose acetate phthalate
  • HPMC hydroxypropylmethylcellulose
  • PVA polyvinyl alcohol
  • the same materials as those mentioned as the binder can be appropriately employed.
  • the negative electrode disclosed here can be suitably manufactured, for example, generally by the following procedure.
  • a paste-like composition for forming a negative electrode mixture layer is prepared by dispersing the above-described negative electrode active material and other optional components (binder, thickener, etc.) in an appropriate solvent (for example, water).
  • a negative electrode comprising a negative electrode current collector and a negative electrode mixture layer formed on the negative electrode current collector by applying the prepared composition to the negative electrode current collector, drying, and then compressing (pressing) the negative electrode current collector.
  • the negative electrode produced in this way can contain a sodium (Na) component as an unavoidable impurity.
  • the sodium (Na) component as an unavoidable impurity means an element that can be dissolved in the non-aqueous electrolyte. The same applies hereinafter unless otherwise specified.
  • the positive electrode of the lithium ion secondary battery disclosed herein includes a positive electrode current collector and a positive electrode mixture layer including at least a positive electrode active material formed on the surface of the positive electrode current collector.
  • the positive electrode mixture layer may contain an optional component such as a conductive material and a binder (binder) in addition to the positive electrode active material.
  • the positive electrode current collector aluminum or an aluminum alloy mainly composed of aluminum is used as in the case of the positive electrode current collector used for the positive electrode of a conventional lithium ion secondary battery.
  • the shape of the positive electrode current collector can be the same as the shape of the negative electrode current collector.
  • the positive electrode active material examples include materials capable of inserting and extracting lithium ions, and include lithium-containing compounds (for example, lithium transition metal composite oxides) containing a lithium element and one or more transition metal elements.
  • lithium-containing compounds for example, lithium transition metal composite oxides
  • lithium nickel composite oxide for example, LiNiO 2
  • lithium cobalt composite oxide for example, LiCoO 2
  • lithium manganese composite oxide for example, LiMn 2 O 4
  • lithium nickel cobalt manganese composite oxide for example, LiNi 1).
  • LiNi 1.1 lithium nickel composite oxide
  • LiCoO 2 lithium manganese composite oxide
  • LiMn 2 O 4 lithium manganese composite oxide
  • a polyanionic compound for example, LiFePO 4 whose general formula is represented by LiMPO 4, LiMVO 4, or Li 2 MSiO 4 (wherein M is at least one element of Co, Ni, Mn, and Fe), etc. 4 , LiMnPO 4 , LiFeVO 4 , LiMnVO 4 , Li 2 FeSiO 4 , Li 2 MnSiO 4 , Li 2 CoSiO 4 ) may be used as the positive electrode active material.
  • the positive electrode active material may be manufactured by various methods.
  • the case where the positive electrode active material is a lithium nickel cobalt manganese composite oxide will be described as an example.
  • a hydroxide containing Ni, Co, and Mn at a target molar ratio for example, Ni 1/3 Co 1/3 NiCoMn composite hydroxide represented by Mn 1/3 (OH) 2 is prepared, mixed and fired so that the molar ratio of the hydroxide to the lithium source becomes the target value, thereby lithium nickel cobalt Manganese composite oxide can be obtained.
  • the NiCoMn composite hydroxide can be preferably prepared by, for example, a coprecipitation method. The firing is typically performed in an oxidizing atmosphere (for example, in the air).
  • the firing temperature is preferably 700 ° C to 1000 ° C.
  • the lithium nickel cobalt manganese composite oxide produced as described above has a sodium component as an impurity. (For example, Na 2 SO 4 ).
  • the conductive material is not limited to a specific conductive material as long as it is conventionally used in this type of lithium ion secondary battery.
  • carbon materials such as carbon powder and carbon fiber can be used.
  • the carbon powder various carbon blacks (for example, acetylene black, furnace black, ketjen black, etc.), carbon powders such as graphite powder can be used.
  • acetylene black (AB) is a preferable carbon powder.
  • Such conductive materials can be used singly or in appropriate combination of two or more.
  • the same binder as that used for the positive electrode of a general lithium ion secondary battery can be appropriately employed.
  • a solvent-based paste-like composition a paste-like composition includes a slurry-like composition and an ink-like composition
  • a polyfluoride is used as the composition for forming the positive electrode mixture layer.
  • Polymer materials that dissolve in an organic solvent (non-aqueous solvent) such as vinylidene chloride (PVDF) and polyvinylidene chloride (PVDC) can be used.
  • PVDF vinylidene chloride
  • PVDC polyvinylidene chloride
  • a water-soluble (soluble in water) polymer material or a water-dispersible (water-dispersible) polymer material can be preferably used.
  • polytetrafluoroethylene PTFE
  • CMC carboxymethyl cellulose
  • SBR styrene butadiene rubber
  • the polymer material illustrated above may be used as a thickener or other additives in the above composition in addition to being used as a binder.
  • the “solvent-based paste composition” is a concept indicating a composition in which the dispersion medium of the positive electrode active material is mainly an organic solvent (non-aqueous solvent).
  • organic solvent for example, N-methyl-2-pyrrolidone (NMP) can be used.
  • the positive electrode disclosed herein can be suitably manufactured, for example, generally by the following procedure.
  • a paste-like composition for forming a positive electrode mixture layer is prepared by dispersing, in an organic solvent, the above-described positive electrode active material, conductive material, and a binder that is soluble in an organic solvent.
  • the positive electrode produced in this way can contain a sodium (Na) component as an unavoidable impurity.
  • a conventionally known separator can be used without particular limitation.
  • a porous sheet made of resin a microporous resin sheet
  • a porous polyolefin resin sheet such as polyethylene (PE) or polypropylene (PP) is preferred.
  • PE polyethylene
  • PP polypropylene
  • a PE sheet, a PP sheet, a sheet having a three-layer structure (PP / PE / PP structure) in which PP layers are laminated on both sides of the PE layer, and the like can be suitably used. Since many separators contain a sodium component as a plasticizer, when the separator is impregnated with a non-aqueous electrolyte, the sodium component dissolves in the non-aqueous electrolyte.
  • an electrode body is manufactured using the prepared positive electrode and negative electrode.
  • an electrode body is produced using the prepared positive electrode, negative electrode and separator.
  • An electrode body (for example, a stacked electrode body or a wound electrode body) of a lithium ion secondary battery disclosed herein includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the positive electrode formed in a sheet shape, the negative electrode formed in a sheet shape, and a wound electrode body (a wound electrode body) including the separator sheet will be described as an example. It is not intended to be limited to.
  • FIG. 2 shows a wound electrode body 50 according to the present embodiment.
  • the wound electrode body 50 has a sheet-like positive electrode 64 and a sheet-like negative electrode 84 stacked in a longitudinal direction with a total of two long separator sheets 90 interposed therebetween. It is a flat wound electrode body 50 produced by turning and then crushing and ablating the obtained wound body from the side surface direction.
  • the positive electrode mixture layer non-formed portion of the positive electrode 64 that is, the portion where the positive electrode current collector 62 is exposed without the formation of the positive electrode mixture layer 66
  • the negative electrode mixture layer of the negative electrode 84 are not formed.
  • the width of the positive electrode 64 and that of the negative electrode 84 are set so that the formation portion (that is, the portion where the negative electrode current collector 82 is not formed without forming the negative electrode mixture layer 86) 83 protrudes from both sides in the width direction of the separator sheet 90. Overlapping slightly shifted in the direction. As a result, in the lateral direction with respect to the winding direction of the wound electrode body 50, the electrode mixture layer non-formed portions 63 and 83 of the positive electrode 64 and the negative electrode 84 are respectively wound core portions (that is, the positive electrode mixture layer 66 and the positive electrode 64). The negative electrode mixture layer 86 of the negative electrode 84 and the two separator sheets 90 are closely wound around).
  • a positive electrode terminal 60 (for example, made of aluminum) is joined to the positive electrode mixture layer non-formed portion 63 to electrically connect the positive electrode 64 and the positive electrode terminal 60 of the wound electrode body 50 formed in the flat shape.
  • a negative electrode terminal 80 (for example, made of nickel) is joined to the negative electrode mixture layer non-forming portion 83 to electrically connect the negative electrode 84 and the negative electrode terminal 80.
  • the positive and negative electrode terminals 60 and 80 and the positive and negative electrode current collectors 62 and 82 can be joined by, for example, ultrasonic welding, resistance welding, or the like.
  • the battery case 15 of the present embodiment is a battery case made of metal (for example, made of aluminum, and also preferably made of resin or laminate film), and the upper end is open.
  • a case body (exterior case) 30 having a flat bottomed box shape (typically a rectangular parallelepiped shape) and a lid body 25 that closes the opening 20 of the case body 30 are provided.
  • the lid body 25 is formed with an inlet 45 for injecting a non-aqueous electrolyte described later into the case body 30 (battery case 15) in which the wound electrode body 50 is accommodated.
  • the injection port 45 is sealed with a sealing plug 48 after an injection step (S40) described later.
  • the lid 25 is provided with a safety valve 40 for discharging the gas generated inside the battery case 15 to the outside of the battery case 15 when the battery is abnormal. ing.
  • the wound electrode body 50 is placed in a case in a posture in which the wound axis of the wound electrode body 50 is laid down (that is, the opening 20 is formed in the normal direction of the wound axis of the wound electrode body 50). Housed in the main body 30. Thereafter, the opening portion 20 of the case body 30 is sealed with the lid body 25, thereby producing the assembly 70.
  • the lid 25 and the case body 30 are joined by welding or the like.
  • a nonaqueous electrolyte is injected into the battery case.
  • the non-aqueous electrolyte used in the injection step is lithium bis (oxalato) borate (Li [B (C 2 O 4 ) 2 ]) (hereinafter sometimes abbreviated as “LiBOB”) and fluorine as additives.
  • LiBOB lithium bis (oxalato) borate
  • fluorine as additives.
  • the ether solvent contained in the nonaqueous electrolytic solution is less than 10% by volume (for example, 3 to 8% by volume).
  • the secondary battery is repeatedly charged and discharged as compared with the case where the ether solvent contained in the non-aqueous electrolyte is less than 10% by volume. When this is done, the rate of increase in battery resistance tends to increase.
  • the concentration of lithium bis (oxalato) borate in the non-aqueous electrolyte is, for example, 0.005 mol / L to 0.05 mol / L (for example, 0.01 mol / L to 0). 0.03 mol / L).
  • the fluorine-containing phosphoric acid compound having fluorine and phosphorus as constituent elements disclosed herein is not particularly limited as long as it contains fluorine and phosphorus as constituent elements.
  • monofluorophosphate, difluorophosphate, etc. Is mentioned.
  • the monofluorophosphate include lithium monofluorophosphate (Li 2 PO 3 F), sodium monofluorophosphate, potassium monofluorophosphate, and the like.
  • Examples of the difluorophosphate include lithium difluorophosphate (LiPO 2 F 2 ), sodium difluorophosphate, and potassium difluorophosphate.
  • the fluorine-containing phosphoric acid compound is decomposed in a charge / discharge process described later, and a coating derived from the fluorine-containing phosphoric acid compound (a compound containing fluorine and phosphorus as constituent elements) on the surface of the positive electrode (typically, the surface of the positive electrode active material), For example, a compound containing PO 2 F 2 anion, PO 3 F anion, etc.) is formed.
  • a compound containing PO 2 F 2 anion, PO 3 F anion, etc. is formed.
  • lithium difluorophosphate is used.
  • the concentration of the fluorine-containing phosphate compound (eg, lithium difluorophosphate) in the non-aqueous electrolyte is, for example, 0.01 mol / L to 0.15 mol / L (eg, 0 0.02 mol / L to 0.1 mol / L, preferably 0.03 mol / L to 0.08 mol / L). If the content of the fluorine-containing phosphate compound is less than 0.01 mol / L, a sufficient amount of the coating film derived from the fluorine-containing phosphate compound may be formed on the surface of the positive electrode (typically, the positive electrode active material). There is a possibility that it cannot be done.
  • the positive electrode typically, the positive electrode active material
  • a / B which is a ratio when the concentration [mol / L] of the fluorine-containing phosphate compound in the non-aqueous electrolyte is A and the concentration [mol / L] of lithium bis (oxalato) borate is B It is preferable to adjust the above-mentioned concentration so that becomes 2.5 to 5.
  • a / B is within the above range, a lithium ion secondary battery having excellent battery performance (for example, capacity retention rate) can be obtained.
  • the non-aqueous electrolyte disclosed here contains at least a carbonate-based solvent and an ether-based solvent as a non-aqueous solvent (organic solvent).
  • the carbonate solvent include cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), and chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC).
  • ether solvents include chain ethers such as dimethoxyethane (DME) and 1,2-dimethoxypropane (DMP), and cyclic ethers such as tetrahydrofuran and dioxane.
  • non-aqueous solvents can be used alone or in combination of two or more.
  • an aprotic solvent such as an ester solvent, a nitrile solvent, a sulfone solvent, or a lactone solvent is appropriately used in addition to or instead of the carbonate solvent.
  • the ester solvent include cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone, and chain esters such as methyl acetate and methyl propionate.
  • Such non-aqueous solvents can be used alone or in combination of two or more.
  • an appropriate supporting salt is dissolved in the non-aqueous electrolyte in the non-aqueous solvent.
  • the supporting salt include lithium salts such as LiPF 6 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N, LiBF 4 , and LiCF 3 SO 3 . These supporting salts can be used alone or in combination of two or more. LiPF 6 is particularly preferable.
  • the concentration of the supporting salt is not particularly limited, but if it is too low, the amount of charge carriers (typically lithium ions) contained in the non-aqueous electrolyte is insufficient, and the ionic conductivity tends to decrease.
  • the concentration of the supporting salt is, for example, 0.1 mol / L or more (for example, 0.8 mol / L or more) and preferably 2 mol / L or less (for example, 1.5 mol / L or less).
  • the assembly 70 is charged at a charging rate of approximately 0.1 C to 2 C to the upper limit voltage (eg, 3.7 V to 4.1 V) when the battery is used.
  • the upper limit voltage eg, 3.7 V to 4.1 V
  • [B (C 2 O 4 ) 2 ] in the electrode body is decomposed, and the coating derived from [B (C 2 O 4 ) 2 ] is the surface of the negative electrode active material in the negative electrode mixture layer 86.
  • a film formed on the surface of the negative electrode active material in the width direction orthogonal to the longitudinal direction of the negative electrode mixture layer 86 is a state in which unevenness in the coating amount is suppressed
  • non-aqueous The fluorine-containing phosphate compound in the electrolytic solution is decomposed, and a coating derived from the fluorine-containing phosphate compound is formed on the surface of the positive electrode active material in the positive electrode mixture layer 66.
  • the battery is discharged to a predetermined voltage (eg, 3V to 3.2V) at a discharge rate of about 0.1C to 2C.
  • a predetermined voltage eg, 3V to 3.2V
  • the assembly 70 becomes a usable battery, that is, a lithium ion secondary battery (non-aqueous electrolyte secondary battery) 10 (FIGS. 1 and 2). reference).
  • “1C” means the amount of current that can charge the battery capacity (Ah) predicted from the theoretical capacity of the positive electrode in one hour.
  • lithium ion secondary battery (nonaqueous electrolyte secondary battery) 10 manufactured by the manufacturing method disclosed herein will be described.
  • the lithium ion secondary battery 10 includes a stacked or wound electrode body 50 (here, a wound electrode body) 50 including a positive electrode 64 and a negative electrode 84, and a non-aqueous electrolyte. And. In the non-aqueous electrolyte, LiBOB and fluorine-containing phosphate compound that have not been decomposed in the charge / discharge step may remain.
  • the positive electrode 64 includes a positive electrode current collector 62 and a positive electrode mixture layer 66 including at least a positive electrode active material formed on the surface of the positive electrode current collector 62.
  • the negative electrode 84 includes a negative electrode current collector 82 and a negative electrode mixture layer 86 including at least a negative electrode active material formed on the surface of the negative electrode current collector 82.
  • the coating formed on the surface of the negative electrode active material in the negative electrode mixture layer 86 of the lithium ion secondary battery 10 disclosed herein is a state in which variation in the coating amount is suppressed (preferably the coating in the width direction). Can be in a uniform state).
  • a lithium ion secondary battery (non-aqueous electrolyte secondary battery) 10 exhibiting high battery performance (for example, capacity retention rate) can be obtained.
  • Example 1 [Production of lithium ion secondary battery (non-aqueous electrolyte secondary battery)] ⁇ Example 1> First, the mass ratio of LiNi 1/3 Co 1/3 Mn 1/3 O 2 as the positive electrode active material, AB as the conductive material, and PVDF as the binder is 90: 8: 2. Weighed and dispersed these materials in NMP to prepare a paste-like composition for forming a positive electrode mixture layer. This composition was applied to a positive electrode current collector (aluminum foil) having a thickness of 15 ⁇ m. Thereafter, the composition is dried in a vacuum at 120 ° C.
  • a positive electrode current collector aluminum foil
  • a positive electrode sheet having a layer formed thereon was prepared (positive electrode preparation step).
  • the coating amount of the composition was 12 mg / cm 2 .
  • the length of the positive electrode sheet in the longitudinal direction was 300 cm, and the length in the width direction was 9.5 cm.
  • a paste-like composition for forming a negative electrode mixture layer was prepared.
  • This composition was applied to a negative electrode current collector (copper foil) having a thickness of 10 ⁇ m. Thereafter, the composition is dried in a vacuum at 120 ° C. for 6 hours, and subjected to a rolling process using a roll press machine, whereby a negative electrode mixture having a mixture density of 1.1 g / cm 3 on the negative electrode current collector.
  • a negative electrode sheet having a layer formed thereon was prepared (negative electrode preparation step). The application amount of the composition was 7.5 mg / cm 2 .
  • the length of the negative electrode sheet in the longitudinal direction was 320 cm, and the length in the width direction was 10.5 cm.
  • the positive electrode mixture layer was peeled 5 cm in the longitudinal direction from one end in the longitudinal direction of the positive electrode sheet to expose the positive electrode current collector, and an aluminum positive electrode terminal was ultrasonically welded to the exposed positive electrode current collector.
  • the negative electrode mixture layer was peeled 2 cm in the longitudinal direction from one end in the longitudinal direction of the negative electrode sheet to expose the negative electrode current collector, and a nickel negative electrode terminal was attached to the exposed negative electrode current collector by ultrasonic welding.
  • the positive electrode sheet and the negative electrode sheet to which each terminal was attached were wound through two prepared separator sheets (20 ⁇ m thick polyethylene microporous resin sheet) to prepare a wound electrode body (electrode body manufacturing step) .
  • the electrode body was housed in a square case to produce an assembly according to Example 1 (assembly preparation step).
  • the nonaqueous electrolytic solution according to Example 1 was injected into the battery case of the assembly according to Example 1 (injecting step).
  • the volume ratio of EC: DMC: EMC volume ratio of 1: 1: 1 to DME as ether solvent is 97: 3.
  • a solution obtained by dissolving lithium bis (oxalato) borate (LiBOB) and lithium difluorophosphate (LiPO 2 F 2 ) as an additive and LiPF 6 as a supporting salt was used in the mixed solvent.
  • the concentration of LiBOB in the nonaqueous electrolytic solution was 0.015 mol / L
  • the concentration of LiPO 2 F 2 was 0.035 mol / L
  • the concentration of LiPF 6 was 1.1 mol / L.
  • charging / discharging of the assembly according to Example 1 was repeated 5 cycles.
  • the charge and discharge conditions for one cycle are as follows: temperature condition of 25 ° C., charge at a constant current and constant voltage up to 4.1 V at a charge rate of 1 C (4 A), and after a pause of 10 minutes, at a discharge rate of 1 C (4 A)
  • the battery was discharged at a constant current up to 3 V and rested for 10 minutes. (Preliminary charging process).
  • Example 1 except that a non-aqueous solvent having a volume ratio of EC: DMC: EMC of 1: 1: 1 and a volume ratio of DME as an ether solvent was 95: 5 was used. In the same manner, a lithium ion secondary battery according to Example 2 was produced.
  • Example 3 Example 1 except that a non-aqueous solvent having a volume ratio of EC: DMC: EMC of 1: 1: 1 and a volume ratio of DME as an ether solvent was 92: 8 was used. In the same manner, a lithium ion secondary battery according to Example 3 was produced.
  • Example 1 except that a non-aqueous solvent in which the volume ratio of EC, DMC and EMC was 1: 1: 1 and a mixed solvent in which the volume ratio of DME as an ether solvent was 90:10 was used. In the same manner, a lithium ion secondary battery according to Example 4 was produced.
  • Example 5 Example 1 except that a non-aqueous solvent having a volume ratio of EC: DMC: EMC of 1: 1: 1 and a mixture of DMP as an ether solvent was 97: 3 was used. In the same manner, a lithium ion secondary battery according to Example 5 was produced.
  • Example 6 Example 1 except that a non-aqueous solvent having a volume ratio of EC: DMC: EMC of 1: 1: 1 and a mixture of DMP as an ether solvent was 92: 8 was used. In the same manner as described above, a lithium ion secondary battery according to Example 6 was produced.
  • Example 7 The lithium according to Example 7 was used in the same manner as in Example 1 except that a non-aqueous electrolyte was prepared by dissolving LiPF 6 in a non-aqueous solvent having a volume ratio of EC, DMC, and EMC of 1: 1: 1. An ion secondary battery was produced. The concentration of LiPF 6 in the nonaqueous electrolytic solution was 1.1 mol / L.
  • Example 8> As the non-aqueous electrolyte, a volume ratio of EC, DMC and EMC are 1: 1: other using those obtained by dissolving and LiPF 6 and LiBOB are in a non-aqueous solvent 1 in the same manner as in Example 1, Example The lithium ion secondary battery which concerns on 8 was produced.
  • the concentration of LiBOB in the non-aqueous electrolyte was 0.015 mol / L, and the concentration of LiPF 6 was 1.1 mol / L.
  • a mixed solvent As a non-aqueous electrolyte, a mixed solvent was mixed so that the volume ratio of EC: DMC: EMC volume ratio of 1: 1: 1 and DME as ether solvent was 97: 3.
  • a lithium ion secondary battery according to Example 9 was produced in the same manner as in Example 1 except that a solution in which LiBOB and LiPF 6 were dissolved was used.
  • the concentration of LiBOB in the non-aqueous electrolyte was 0.015 mol / L, and the concentration of LiPF 6 was 1.1 mol / L.
  • Li precipitation resistance evaluation test With respect to the lithium ion secondary batteries according to Examples 1 to 9, the Li precipitation resistance [%] after 1000 cycles of charge / discharge was evaluated.
  • the Li precipitation resistance [%] is the capacity retention rate [%] after 1000 cycles.
  • Each lithium ion secondary battery is adjusted to SOC 90%, and charged at a constant current and a constant voltage up to 4.1 V at a charging rate of 10 C (40 A) under a temperature condition of ⁇ 30 ° C., and a discharging rate of 10 C (40 A) The operation of discharging at a constant current up to 3.0 V was repeated 1000 times.
  • the ratio of the discharge capacity after 1000 cycles to the discharge capacity after 1 cycle (initial capacity) ⁇ (discharge capacity after 1000 cycles / initial capacity) ⁇ 100 ⁇ was calculated as the capacity retention rate (%). Since the capacity reduction amount in such a test is entirely attributable to Li precipitation, the larger the capacity retention rate after 1000 cycles, the better the Li precipitation resistance. The measurement results are shown in Table 1.
  • the non-aqueous electrolyte secondary battery obtained by the manufacturing method according to the present invention is mounted on a vehicle such as an automobile, in particular, because precipitation of substances derived from charge carriers is suppressed and battery performance (for example, capacity retention rate) is excellent. It can be suitably used as a power source for a motor (electric motor). Therefore, as schematically shown in FIG. 7, the present invention provides a vehicle (typically) including such a lithium ion secondary battery 10 (typically, a battery pack 200 formed by connecting a plurality of such batteries 10 in series) as a power source. Is provided with an automobile, particularly an automobile equipped with an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel vehicle.
  • Lithium ion secondary battery non-aqueous electrolyte secondary battery
  • Battery Case Opening 25 Lid
  • Case Body Safety Valve 45 Inlet 48 Sealing Plug 50 Winding Electrode Body 60
  • Positive Terminal 62
  • Positive Electrode Current Collector 63
  • Positive Electrode Mixing Layer Non-Forming Portion 64
  • Positive Electrode 66
  • Positive Electrode Mixing Layer 70
  • Assembly 80
  • Negative electrode terminal 82
  • Negative electrode current collector 83
  • Negative electrode composite material layer non-formed portion 84
  • Negative electrode 86 Negative electrode composite material layer 90 Separator sheet 100 Vehicle (automobile) 200 batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の製造方法は、正極及び負極を準備する工程(S10)、ここで、正負極のいずれか一方にはNa成分が含まれている;準備した正負極を用いて電極体を作製する工程(S20);電極体が電池ケース内に収容された組立体を作製する工程(S30);電池ケース内に非水電解液を注入する工程(S40)、ここで、非水電解液は、リチウムビス(オキサラト)ボレートと、フッ素含有リン酸化合物と、カーボネート系溶媒とエーテル系溶媒とを少なくとも含み、非水電解液に含まれる非水溶媒を100体積%としたときに、該非水電解液に含まれるエーテル系溶媒は10体積%未満である;組立体に対して充放電を行う工程(S50);を包含する。

Description

非水電解液二次電池の製造方法
 本発明は、非水電解液二次電池の製造方法に関する。
 本出願は、2012年9月7日に出願された日本国特許出願2012-197542号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 リチウムイオン二次電池その他の非水電解液二次電池は、車両搭載用電源あるいはパソコンや携帯端末等の電源として重要性がますます高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、車両搭載用高出力電源として好ましい。
 ところで、リチウムイオン二次電池等の非水電解液二次電池では、充電の際に非水電解液の一部が分解され、負極活物質(例えば天然黒鉛粒子)の表面にその分解物からなる被膜、即ちSEI(Solid Electrolyte Interface)膜が形成され得る。SEI膜は負極活物質を保護する役割を果たすが、非水電解液中の電荷担体(例えばリチウムイオン)を消費して形成される。即ち、電荷担体がSEI膜中に固定されるので、電荷担体はもはや電池容量に寄与できなくなる。このため、SEI膜が多量に形成されることは、容量維持率の低下(サイクル特性の低下)の要因となる。
 かかる問題に対応すべく、SEI膜に代えて負極活物質の表面に予め安定的な被膜を形成するために、非水電解液中に各種の添加剤を含有させることが行われている。例えば特許文献1には、添加剤としてリチウムビス(オキサラト)ボレート(Li[B(C])を含有する二次電池用非水電解液が記載されている。
日本国特許出願公開2005-259592号公報
 ところで、正極及び負極を備える非水電解液二次電池の電極体には、不可避の不純物としてナトリウム成分(例えばナトリウム塩)が含まれている。このため、ナトリウム成分を含む電極体に非水電解液を含浸させると、ナトリウム成分が非水電解液中に溶解する。上記特許文献1に記載のリチウムビス(オキサラト)ボレートを含有する非水電解液を上記電極体に注入した場合、非水電解液中のナトリウムイオン(Na)は[B(Cよりも速く拡散する。このことから、例えば、電極体が長方形状の正極及び負極を積層若しくは捲回してなる電極体である場合、ナトリウムイオンは電極体の長手方向に直交する幅方向の中央部に集まる傾向にある。即ち、上記幅方向の中央部ではナトリウムイオンの濃度が高くなる。そして、ナトリウムイオン濃度の高い上記中央部に[B(Cが遅れて拡散する。このため、電極体の上記幅方向の中央部において、ナトリウムイオンと[B(Cとの会合が活発に行われ、Na[B(C]が部分的に析出しがちである。この結果、電極体の中央部にはNa[B(C]が多量に存在する部分と[B(Cが少量に存在する部分とが形成されることとなり、[B(C]の分解によって生成される被膜量にバラツキが生じ得る。このように、電極体の上記幅方向の中央部の負極活物質の表面には[B(C]の分解によって生成される被膜が多量に存在する部分と少量に存在する部分とがあるため、長期使用により被膜が少量に存在する部分が劣化しやすく、該部分の抵抗が大きくなることがある。従って、充放電を繰り返し行った場合、電極体の中央部において抵抗が部分的に高い部分には電荷担体に由来する物質(例えば金属リチウム等の金属)が析出してしまう虞がある。
 本発明は、上述した従来の課題を解決すべく創出されたものであり、その目的は、負極活物質の表面により好ましい態様の被膜を形成することによって、電荷担体に由来する物質の析出が抑制された非水電解液二次電池の製造方法を提供することである。
 本願発明者は、リチウムビス(オキサラト)ボレートを含有する非水電解液中の非水溶媒の一部にカーボネート系溶媒よりも極性の高い溶媒を用い、且つ該非水電解液中に所定の添加剤を含有させることにより、上記目的を実現し得ることを見出して本発明を完成するに至った。
 上記目的を実現すべく、本発明により、非水電解液二次電池を製造する方法が提供される。即ちここで開示される製造方法は、正極活物質を含む正極及び負極活物質を含む負極を準備する工程、ここで、準備した上記正極及び上記負極のうち少なくともいずれか一方には不可避的な不純物としてナトリウム(Na)成分が含まれている;上記準備した正極及び負極を用いて電極体を作製する工程;上記電極体が電池ケース内に収容された組立体を作製する工程;上記電池ケース内に非水電解液を注入する工程、ここで、上記非水電解液は、添加剤としてリチウムビス(オキサラト)ボレートと、フッ素及びリンを構成元素とするフッ素含有リン酸化合物と、非水溶媒としてカーボネート系溶媒とエーテル系溶媒とを少なくとも含み、上記非水電解液に含まれる非水溶媒を100体積%としたときに、該非水電解液に含まれる上記エーテル系溶媒は10体積%未満である;上記組立体に対して所定の充電電圧まで充電を行った後、所定の放電電圧まで放電を行う工程;を包含する。
 なお、本明細書において「非水電解液二次電池」とは、非水電解液(典型的には、非水溶媒(有機溶媒)中に支持塩(支持電解質)を含む電解液)を備えた電池をいう。
 また、本明細書において「二次電池」とは、繰り返し充放電可能な電池一般をいい、リチウムイオン二次電池等のいわゆる化学電池ならびに電気二重層キャパシタ等の物理電池を包含する用語である。
 また、本明細書において「ナトリウム(Na)成分」とは、ナトリウム単独(典型的にはイオンの状態)で存在する場合と、構成元素としてNaを含む化合物として存在する場合とを包含する用語である。
 本発明によって提供される非水電解液二次電池の製造方法では、リチウムビス(オキサラト)ボレートとフッ素含有リン酸化合物と10体積%未満のエーテル系溶媒とを含む非水電解液を電池ケース内に注入した後、組立体に対して所定の充放電を行う。
 このように、非水電解液には非水溶媒としてカーボネート系溶媒よりも極性が高く溶解性に優れるエーテル系溶媒が含まれているため、電極体上にNa[B(C]が析出することが抑制される。これにより、電極体の中央部において部分的にNa[B(C]が多量に存在することはなくなり、[B(C]の分解によって負極活物質の表面に生成される被膜は、その被膜量のバラツキが抑制された状態(好ましくは幅方向に被膜が均一な状態)となり得る。また、非水電解液としてエーテル系溶媒を10体積%未満の割合で含むものを使用しているため、上記製造方法によって得られた非水電解液二次電池の充放電を繰り返し行っても、電池の内部抵抗の増加を低く抑えることができる。なお、二次電池の充放電時において、エーテル系溶媒は正極において酸化分解されやすく、エーテル系溶媒が正極上で酸化されると正極抵抗が増加してしまう虞がある。しかしながら、上記製造方法では、フッ素含有リン酸化合物を含む非水電解液を用いているため、充放電時に正極の表面(典型的には正極活物質の表面)に該フッ素含有リン酸化合物由来の被膜が形成される。これにより、非水電解液二次電池の充放電時において、エーテル系溶媒の酸化分解が抑制されるため、エーテル系溶媒を用いても正極抵抗が増加することを抑制することができる。以上より、被膜量のバラツキが抑制された電極体を備える非水電解液二次電池では、充放電を繰り返すことによって被膜が劣化した場合であっても部分的に被膜が劣化することが抑制されているため、電流が局所的に集中することが防止され、電荷担体に由来する物質(例えば金属リチウム)の析出が抑制される。以上より、上記製造方法によって製造された非水電解液二次電池は、被膜量のバラツキが抑制された電極体を備えており、充放電を繰り返すことによって被膜が劣化した場合であっても部分的に被膜が劣化することが抑制されている。このため、電流が局所的に集中することが防止され、電極体(例えば負極)において電荷担体に由来する物質(例えば金属リチウム)が析出することを抑制することができる。
 ここで開示される製造方法の好適な一態様では、上記エーテル系溶媒として、鎖状エーテル及び/又は環状エーテルを用いる。例えば、上記鎖状エーテルとして、ジメトキシエタン及び/又は1,2-ジメトキシプロパンを用いる。
 上記鎖状エーテルや環状エーテルはNa[B(C]を溶解させる溶媒として好適に用いることができる。上記各種のエーテル系溶媒によると、最初の充放電前に電極体上にNa[B(C]が析出することが抑制される。
 ここで開示される製造方法の好適な他の一態様では、上記フッ素含有リン酸化合物はジフルオロリン酸リチウムであって、上記非水電解液中の該ジフルオロリン酸リチウムの濃度は、0.01mol/Lから0.15mol/Lである。
 ジフルオロリン酸リチウムの濃度を上記範囲内とすることによって、電池性能を低下させることなく、エーテル系溶媒の酸化分解を抑制することができる被膜を正極活物質の表面に形成することができる。
 ここで開示される製造方法の好適な他の一態様では、上記非水電解液中のリチウムビス(オキサラト)ボレートの濃度は、0.005mol/Lから0.05mol/Lである。
 リチウムビス(オキサラト)ボレートの濃度を上記範囲内とすることによって、電池性能を低下させることなく、負極活物質の表面に好ましい態様の被膜を形成することができる。
 ここで開示される製造方法の好適な他の一態様では、上記電極体として、シート状に形成された正極とシート状に形成された負極とが重ね合わされた電極体であって該電極体の長手方向に捲回された捲回電極体を用いる。
 かかる構成の捲回電極体では、捲回電極体の幅方向の両端部から中央部に向けて非水電解液が含浸する。このため捲回電極体の中央部ではナトリウム成分の濃度が高くなり、電極体の中央部にはNa[B(C]が多量に存在する部分と[B(Cが少量に存在する部分とが形成される傾向にある。従って、かかる捲回電極体を用いた場合、リチウムビス(オキサラト)ボレートとフッ素含有リン酸化合物と10体積%未満のエーテル系溶媒とを含む非水電解液を用いるという本発明の構成を採用することによる効果が特に発揮され得る。
 ここで開示される二次電池の製造方法の好適な他の一態様では、上記正極活物質として、リチウムイオンを吸蔵及び放出可能なリチウム含有化合物を用いる。かかる構成によると、より出力性能に優れた正極を得ることができる。
 また、本発明によると、上記目的を実現する他の側面として、ここで開示されるいずれかの製造方法によって製造される非水電解液二次電池が提供される。
 ここで開示されるいずれかの製造方法により得られた非水電解液二次電池(例えばリチウムイオン二次電池)では、[B(C]の分解によって生成される被膜が負極活物質の表面に好ましい状態(被膜量のバラツキがない或いは少ない状態)で形成されているため、電荷担体に由来する物質(例えば金属リチウム)の析出が防止され電池性能に優れる非水電解液二次電池となり得る。このため、車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)の駆動電源として用いることができる。また、本発明の他の側面として、ここで開示されるいずれかの製造方法により得られた非水電解液二次電池(複数個(例えば40~80個)の電池が典型的には直列に接続された組電池の形態であり得る。)を駆動電源として備える車両を提供する。
 また、本発明によると、上記目的を実現する他の側面として、非水電解液二次電池に用いられる非水電解液が提供される。本発明によって提供される非水電解液は、添加剤としてリチウムビス(オキサラト)ボレートと、フッ素及びリンを構成元素とするフッ素含有リン酸化合物と、非水溶媒としてカーボネート系溶媒とエーテル系溶媒とを少なくとも含み、上記非水電解液に含まれる非水溶媒を100体積%としたときに、該非水電解液に含まれる前記エーテル系溶媒は10体積%未満である。
 かかる非水電解液によると、電池抵抗の増加を抑制しつつNa[B(C]の析出を抑制することができる。
図1は、本発明の一実施形態に係る非水電解液二次電池の外形を模式的に示す斜視図である。 図2は、図1中のII‐II線に沿う断面図である。 図3は、本発明の一実施形態に係る非水電解液二次電池の製造方法を説明するためのフローチャートである。 図4は、容量維持率とエーテル系溶媒の割合との関係を示すグラフである。 図5は、抵抗増加率とエーテル系溶媒の割合との関係を示すグラフである。 図6は、耐Li析出性とエーテル系溶媒の割合との関係を示すグラフである。 図7は、本発明に係る非水電解液二次電池を備えた車両(自動車)を模式的に示す側面図である。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事項は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 ここで開示される非水電解液二次電池を製造する方法の好適な実施形態の一つとして、リチウムイオン二次電池を製造する方法を例にして詳細に説明するが、本発明の適用対象をかかる種類の二次電池に限定することを意図したものではない。例えば、他の金属イオン(例えばマグネシウムイオン)を電荷担体とする非水電解液二次電池にも適用することができる。
 ここで開示されるリチウムイオン二次電池(非水電解液二次電池)の製造方法は、図3に示すように、正負極準備工程(S10)と、電極体作製工程(S20)と、組立体作製工程(S30)と、注入工程(S40)と、充放電工程(S50)と、を包含する。
 ≪正負極準備工程(S10)≫
 まず、正負極準備工程(S10)について説明する。本実施形態においては、正負極準備工程として、正極活物質を含む正極及び負極活物質を含む負極を準備する。好適な一実施形態においては、上記正極と上記負極との間に配置されるセパレータをさらに準備することを包含する。ここで、準備した正極及び負極のうち少なくともいずれか一方には不可避的な不純物としてナトリウム(Na)成分が含まれている。
 ここで開示されるリチウムイオン二次電池の負極は、負極集電体と、該負極集電体の表面上に形成された少なくとも負極活物質を含む負極合材層と、を備えている。負極合材層は、負極活物質の他に、結着剤、増粘剤等の任意成分を必要に応じて含有し得る。
 上記負極集電体としては、従来のリチウムイオン二次電池の負極に用いられている集電体と同様、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、銅やニッケル或いはそれらを主体とする合金を用いることができる。負極集電体の形状は、リチウムイオン二次電池の形状等に応じて異なり得るため、特に制限はなく、箔状、シート状、棒状、板状等の種々の形態であり得る。
 上記負極活物質としては、従来からリチウムイオン二次電池に用いられる材料の一種または二種以上を特に限定なく使用することができる。例えば、少なくとも一部にグラファイト構造(層状構造)を含む粒子状(或いは球状、鱗片状)の炭素材料、リチウム遷移金属複合酸化物((例えば、LiTi12等のリチウムチタン複合酸化物)、リチウム遷移金属複合窒化物等が挙げられる。炭素材料としては、例えば、天然黒鉛、人造黒鉛(人工黒鉛)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等が挙げられる。負極活物質の平均粒径は、例えば凡そ1μm~50μm(通常は5μm~30μm)の範囲内である。なお、平均粒径とは、市販されている種々のレーザー回折・散乱法に基づく粒度分布測定装置に基づいて測定した粒度分布から導き出せるメジアン径(D50:50%体積平均粒子径)をいう。また、上記負極活物質の表面を非晶質炭素膜で被覆してもよい。例えば、負極活物質にピッチを混ぜて焼くことによって、少なくとも一部が非晶質炭素膜で被覆された負極活物質を得ることができる。
 上記結着剤としては、一般的なリチウムイオン二次電池の負極に使用される結着剤と同様のものを適宜採用することができる。例えば、負極合材層を形成するために水系のペースト状の組成物を用いる場合には、水溶性のポリマー材料または水分散性のポリマー材料を好ましく採用し得る。水分散性のポリマーとしては、スチレンブタジエンゴム(SBR)等のゴム類;ポリエチレンオキサイド(PEO)、酢酸ビニル共重合体等が例示される。好ましくはスチレンブタジエンゴムが用いられる。
 「水系のペースト状組成物」とは、負極活物質の分散媒として水または水を主体とする混合溶媒を用いた組成物を指す概念である。かかる混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶媒(低級アルコール、低級ケトン等)の一種または二種以上を適宜選択して用いることができる。
 上記増粘剤としては、例えば、水溶性又は水分散性のポリマーを採用し得る。水溶性のポリマーとしては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)等のセルロース系ポリマー;ポリビニルアルコール(PVA);等が挙げられる。また、上記結着剤として挙げられる材料と同様のものを適宜採用することができる。
 ここで開示される負極は、例えば概ね以下の手順で好適に製造することができる。上述した負極活物質と、他の任意の成分(結着剤、増粘剤等)とを適当な溶媒(例えば水)に分散させてなるペースト状の負極合材層形成用組成物を調製する。調製した組成物を負極集電体に塗布し、乾燥させた後、圧縮(プレス)することによって、負極集電体と該負極集電体上に形成された負極合材層とを備える負極を作製することができる。このように作製された負極は、不可避的な不純物としてナトリウム(Na)成分を含み得る。なお、本実施形態では、不可避的な不純物としてのナトリウム(Na)成分とは、非水電解液中に溶解し得るものをいう。以下、特に断らない限り同様である。
 ここで開示されるリチウムイオン二次電池の正極は、正極集電体と、該正極集電体の表面上に形成された少なくとも正極活物質を含む正極合材層と、を備えている。正極合材層は、正極活物質の他に、導電材、結着剤(バインダ)等の任意の成分を必要に応じて含有し得る。
 上記正極集電体としては、従来のリチウムイオン二次電池の正極に用いられている正極集電体と同様、アルミニウム又はアルミニウムを主体とするアルミニウム合金が用いられる。正極集電体の形状は、負極集電体の形状と同様であり得る。
 上記正極活物質としては、リチウムイオンを吸蔵及び放出可能な材料であって、リチウム元素と一種または二種以上の遷移金属元素を含むリチウム含有化合物(例えばリチウム遷移金属複合酸化物)が挙げられる。例えば、リチウムニッケル複合酸化物(例えばLiNiO)、リチウムコバルト複合酸化物(例えばLiCoO)、リチウムマンガン複合酸化物(例えばLiMn)、或いは、リチウムニッケルコバルトマンガン複合酸化物(例えばLiNi1/3Co1/3Mn1/3)のような三元系リチウム含有複合酸化物が挙げられる。
 また、一般式がLiMPO或いはLiMVO或いはLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種以上の元素)等で表記されるようなポリアニオン系化合物(例えばLiFePO、LiMnPO、LiFeVO、LiMnVO、LiFeSiO、LiMnSiO、LiCoSiO)を上記正極活物質として用いてもよい。
 上記正極活物質は、種々の方法により製造されたものであり得る。正極活物質がリチウムニッケルコバルトマンガン複合酸化物である場合を例として説明すると、例えば、NiとCoとMnとを目的とするモル比で含む水酸化物(例えば、Ni1/3Co1/3Mn1/3(OH)2で表わされるNiCoMn複合水酸化物)を調製し、この水酸化物とリチウム源とのモル比が目的値となるように混合して焼成することにより、リチウムニッケルコバルトマンガン複合酸化物を得ることができる。上記NiCoMn複合水酸化物は、例えば共沈法により好ましく調製することができる。上記焼成は、典型的には酸化性雰囲気中(例えば大気中)で行われる。焼成温度としては700℃~1000℃が好ましい。共沈法では、例えば、比較的濃度の高い水酸化ナトリウムを用いてNiCoMn複合水酸化物を調製するため、上記のようにして生成されたリチウムニッケルコバルトマンガン複合酸化物は、不純物としてのナトリウム成分(例えば、NaSO)を含む傾向にある。
 上記導電材としては、従来この種のリチウムイオン二次電池で用いられているものであればよく、特定の導電材に限定されない。例えば、カーボン粉末やカーボンファイバー等のカーボン材料を用いることができる。カーボン粉末としては、種々のカーボンブラック(例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラック等)、グラファイト粉末等のカーボン粉末を用いることができる。なかでも好ましいカーボン粉末としてアセチレンブラック(AB)が挙げられる。このような導電材は、一種を単独で、または二種以上を適宜組み合わせて用いることができる。
 上記結着剤(バインダ)としては、一般的なリチウムイオン二次電池の正極に使用される結着剤と同様のものを適宜採用することができる。例えば、上記正極合材層を形成する組成物として溶剤系のペースト状組成物(ペースト状組成物には、スラリー状組成物及びインク状組成物が包含される。)を用いる場合には、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)等の、有機溶媒(非水溶媒)に溶解するポリマー材料を用いることができる。あるいは、水系のペースト状組成物を用いる場合には、水溶性(水に溶解する)のポリマー材料又は水分散性(水に分散する)のポリマー材料を好ましく採用し得る。例えば、ポリテトラフルオロエチレン(PTFE)、カルボキシメチルセルロース(CMC)、スチレンブタジエンゴム(SBR)等が挙げられる。なお、上記で例示したポリマー材料は、結着剤として用いられる他に、上記組成物の増粘剤その他の添加剤として使用されることもあり得る。
 ここで、「溶剤系のペースト状組成物」とは、正極活物質の分散媒が主として有機溶媒(非水溶媒)である組成物を指す概念である。有機溶媒としては、例えば、N‐メチル‐2‐ピロリドン(NMP)等を用いることができる。
 ここで開示される正極は、例えば概ね以下の手順で好適に製造することができる。上述した正極活物質、導電材、および有機溶媒に対して可溶性である結着剤等を有機溶媒に分散させてなるペースト状の正極合材層形成用組成物を調製する。調製した組成物を正極集電体に塗布し、乾燥させた後、圧縮(プレス)することによって、正極集電体と該正極集電体上に形成された正極合材層とを備える正極を作製することができる。このように作製された正極は、不可避的な不純物としてナトリウム(Na)成分を含み得る。
 上記セパレータとしては、従来公知のものを特に制限なく使用することができる。例えば、樹脂からなる多孔性シート(微多孔質樹脂シート)を好ましく用いることができる。ポリエチレン(PE)、ポリプロピレン(PP)等の多孔質ポリオレフィン系樹脂シートが好ましい。例えば、PEシート、PPシート、PE層の両側にPP層が積層された三層構造(PP/PE/PP構造)のシート等を好適に使用し得る。上記セパレータは、可塑剤としてナトリウム成分を含む物が多いため、該セパレータに非水電解液を含浸させると、非水電解液中にナトリウム成分が溶解する。
 ≪電極体作製工程(S20)≫
 次に、電極体作製工程(S20)について説明する。電極体作製工程では、上記準備した正極及び負極を用いて電極体を作製する。典型的には、上記準備した正極、負極及びセパレータを用いて電極体を作製する。
 ここで開示されるリチウムイオン二次電池の電極体(例えば積層型の電極体或いは捲回型の電極体)は、正極と、負極と、正極及び負極の間に介在されたセパレータとを備えている。ここでは、シート状に形成された上記正極と、シート状に形成された上記負極と、上記セパレータシートを備える捲回型の電極体(捲回電極体)を例にして説明するが、かかる形態に限定することを意図したものではない。
 図2は、本実施形態に係る捲回電極体50である。図2に示すように、捲回電極体50は、シート状の正極64とシート状の負極84とを計二枚の長尺なセパレータシート90を介在して積層させた状態で長手方向に捲回して、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製された扁平形状の捲回電極体50である。
 上記積層の際には、正極64の正極合材層非形成部分(即ち正極合材層66が形成されずに正極集電体62が露出した部分)63と、負極84の負極合材層非形成部分(即ち負極合材層86が形成されずに負極集電体82が露出した部分)83と、がセパレータシート90の幅方向の両側からそれぞれはみ出すように、正極64と負極84とを幅方向にややずらして重ね合わせる。その結果、捲回電極体50の捲回方向に対する横方向において、正極64および負極84の電極合材層非形成部分63,83がそれぞれ捲回コア部分(すなわち正極64の正極合材層66と負極84の負極合材層86と二枚のセパレータシート90とが密に捲回された部分)から外方にはみ出ている。かかる正極合材層非形成部分63に正極端子60(例えばアルミニウム製)を接合して、上記扁平形状に形成された捲回電極体50の正極64と正極端子60とを電気的に接続する。同様に負極合材層非形成部分83に負極端子80(例えばニッケル製)を接合して、負極84と負極端子80とを電気的に接続する。なお、正負極端子60,80と正負極集電体62,82とは、例えば、超音波溶接、抵抗溶接等によりそれぞれ接合することができる。
 ≪組立体作製工程(S30)≫
 次に、組立体作製工程(S30)について説明する。本実施形態においては、上記作製された電極体50を電池ケース15内に収容して組立体70を作製する。
 図1及び図2に示すように、本実施形態の電池ケース15は、金属製(例えばアルミニウム製。また、樹脂製又はラミネートフィルム製も好適である。)の電池ケースであって、上端が開放された有底の扁平な箱型形状(典型的には直方体形状)のケース本体(外装ケース)30と、該ケース本体30の開口部20を塞ぐ蓋体25とを備えている。電池ケース15の上面(すなわち蓋体25)には、上記捲回電極体50の正極64と電気的に接続する正極端子60および該捲回電極体50の負極84と電気的に接続する負極端子80が設けられている。また、蓋体25には、捲回電極体50が収容されたケース本体30(電池ケース15)内に後述する非水電解液を注入するための注入口45が形成されている。注入口45は、後述の注入工程(S40)の後に封止栓48によって封止される。さらに、蓋体25には、従来のリチウムイオン二次電池のケースと同様に、電池異常の際に電池ケース15内部で発生したガスを電池ケース15の外部に排出するための安全弁40が設けられている。捲回電極体50の捲回軸が横倒しとなる姿勢(すなわち、捲回電極体50の捲回軸の法線方向に上記開口部20が形成されている。)で捲回電極体50をケース本体30内に収容する。その後ケース本体30の開口部20を蓋体25によって封止することで組立体70を作製する。蓋体25とケース本体30とは溶接等によって接合する。
 ≪注入工程(S40)≫
 次に、注入工程(S40)について説明する。本実施形態においては、注入工程として、電池ケース内に非水電解液を注入する。注入工程で用いられる非水電解液は、添加剤としてリチウムビス(オキサラト)ボレート(Li[B(C])(以下、「LiBOB」と略称することがある。)と、フッ素及びリンを構成元素とするフッ素含有リン酸化合物と、非水溶媒としてカーボネート系溶媒とエーテル系溶媒とを少なくとも含んでいる。非水電解液に含まれる非水溶媒を100体積%としたときに、該非水電解液に含まれるエーテル系溶媒は10体積%未満(例えば3体積%から8体積%である)である。非水電解液に含まれるエーテル系溶媒が10体積%以上の場合には、非水電解液に含まれるエーテル系溶媒が10体積%未満の場合と比較して、二次電池の充放電を繰り返し行った際の電池抵抗の増加率が大きくなる傾向にある。
 特に限定するものではないが、上記非水電解液中のリチウムビス(オキサラト)ボレートの濃度は、例えば、0.005mol/Lから0.05mol/Lである(例えば、0.01mol/Lから0.03mol/Lである。)。
 ここで開示されるフッ素及びリンを構成元素とするフッ素含有リン酸化合物としては、フッ素及びリンを構成元素として含んでいれば特に制限はなく、例えば、モノフルオロリン酸塩、ジフルオロリン酸塩等が挙げられる。モノフルオロリン酸塩としては、例えば、モノフルオロリン酸リチウム(LiPOF)、モノフルオロリン酸ナトリウム、モノフルオロリン酸カリウム等が挙げられる。また、ジフルオロリン酸塩としては、例えば、ジフルオロリン酸リチウム(LiPO)、ジフルオロリン酸ナトリウム、ジフルオロリン酸カリウム等が挙げられる。フッ素含有リン酸化合物は、後述の充放電工程において分解され正極の表面(典型的には正極活物質の表面)に該フッ素含有リン酸化合物由来の被膜(フッ素及びリンを構成元素として含む化合物、例えば、POアニオン、POFアニオン等を含む化合物)が形成される。好ましくはジフルオロリン酸リチウムが用いられる。
 特に限定するものではないが、上記非水電解液中のフッ素含有リン酸化合物(例えばジフルオロリン酸リチウム)の濃度は、例えば、0.01mol/Lから0.15mol/Lである(例えば、0.02mol/Lから0.1mol/Lであり、好ましくは0.03mol/Lから0.08mol/Lである。)。フッ素含有リン酸化合物の含有量が0.01mol/Lよりも少なすぎると、正極(典型的には正極活物質)の表面に十分な量のフッ素含有リン酸化合物由来の被膜を形成することができない虞がある。また、フッ素含有リン酸化合物の含有量が0.15mol/Lよりも多すぎると、正極(典型的には正極活物質)の表面に過剰な量の上記被膜が形成されてしまい正極抵抗が増加する虞がある。なお、上記非水電解液中のフッ素含有リン酸化合物の濃度[mol/L]をAとし、リチウムビス(オキサラト)ボレートの濃度[mol/L]をBとしたときの比であるA/Bが2.5から5となるように上記濃度を調整することが好ましい。A/Bが上記範囲内にある場合には、電池性能(例えば容量維持率等)に優れるリチウムイオン二次電池となり得る。
 ここで開示される非水電解液は、少なくとも非水溶媒(有機溶媒)としてカーボネート系溶媒とエーテル系溶媒とを含んでいる。カーボネート系溶媒としては、例えば、エチレンカーボネート(EC),プロピレンカーボネート(PC)等の環状カーボネート、ジメチルカーボネート(DMC),ジエチルカーボネート(DEC),エチルメチルカーボネート(EMC)等の鎖状カーボネートが挙げられる。エーテル系溶媒としては、例えば、ジメトキシエタン(DME)、1,2-ジメトキシプロパン(DMP)等の鎖状エーテル、テトラヒドロフラン、ジオキサン等の環状エーテルが挙げられる。かかる非水溶媒は、一種のみを単独で、または二種以上を組み合わせて用いることができる。また、上記非水電解液に含まれる非水溶媒としては、カーボネート系溶媒に加えて又は代えて、エステル系溶媒、ニトリル系溶媒、スルホン系溶媒、ラクトン系溶媒等の非プロトン性溶媒を適宜用いることができる。エステル系溶媒としては、例えば、γ‐ブチロラクトン,γ‐バレロラクトン等の環状エステル、酢酸メチル,プロピオン酸メチル等の鎖状エステルが挙げられる。かかる非水溶媒は、一種のみを単独で、または二種以上を組み合わせて用いることができる。
 また、上記非水電解液には上記非水溶媒に適当な支持塩を溶解させる。上記支持塩としては、例えば、LiPF、LiClO、LiAsF、Li(CFSON、LiBF、LiCFSO等のリチウム塩が例示される。かかる支持塩は、一種のみを単独で、または二種以上を組み合わせて用いることができる。特にLiPFが好ましい。支持塩の濃度は特に制限されないが、極端に低すぎると非水電解液に含まれる電荷担体(典型的にはリチウムイオン)の量が不足し、イオン伝導性が低下する傾向がある。またかかる濃度が極端に高すぎると、室温以下の温度域(例えば0℃~30℃)において非水電解液の粘度が高くなり、イオン伝導性が低下する傾向がある。このため、該支持塩の濃度は例えば、0.1mol/L以上(例えば0.8mol/L以上)であって、2mol/L以下(例えば1.5mol/L以下)とすることが好ましい。
≪充放電工程(S50)≫
 次に、充放電工程(S50)について説明する。本実施形態においては、組立体70に対して所定の充電電圧まで充電を行うことによって、リチウムビス(オキサラト)ボレート由来の被膜を負極合材層86中の負極活物質の表面に形成し、フッ素含有リン酸化合物の被膜を正極合材層66中の正極活物質の表面に形成する。
 本工程では、例えば、組立体70に対して凡そ0.1C~2Cの充電レートで電池使用時の上限電圧(例えば3.7V~4.1V)まで充電を行う。この初回充電中に、電極体中の[B(C]が分解され、[B(C]由来の被膜が負極合材層86中の負極活物質の表面に好ましい状態(即ち負極合材層86の長手方向に直交する幅方向において負極活物質の表面に形成された被膜が、その被膜量のムラが抑制された状態)で形成されると共に、非水電解液中のフッ素含有リン酸化合物が分解され、フッ素含有リン酸化合物由来の被膜が正極合材層66中の正極活物質の表面に形成される。組立体70に対して上記充電を行った後に、凡そ0.1C~2Cの放電レートで所定の電圧(例えば3V~3.2V)まで放電を行う。また、上記充放電を複数回(例えば3回)繰り返すことが好ましい。このように組立体70に対して充放電処理を行うことによって該組立体70は使用可能な電池、即ちリチウムイオン二次電池(非水電解液二次電池)10となる(図1及び図2参照)。なお、「1C」とは正極の理論容量より予測した電池容量(Ah)を1時間で充電できる電流量を意味する。
 次に、ここで開示される製造方法によって製造されたリチウムイオン二次電池(非水電解液二次電池)10について説明する。
 本実施形態に係るリチウムイオン二次電池10は、図2に示すように、正極64及び負極84を含む積層若しくは捲回された電極体(ここでは捲回電極体)50と、非水電解液と、を備えている。非水電解液中には、上記充放電工程において分解されなかったLiBOB及びフッ素含有リン酸化合物が残存し得る。正極64は、正極集電体62と、該正極集電体62の表面上に形成された少なくとも正極活物質を含む正極合材層66と、を備えている。負極84は、負極集電体82と、該負極集電体82の表面上に形成された少なくとも負極活物質を含む負極合材層86と、を備えている。
 従来の方法で製造した場合(即ち正極及び負極から多量のNa成分がLiBOBを含む非水電解液中に溶解する場合)には、負極合材層の中央部分にナトリウムを含む被膜が多量に生成されている部分と少量に生成されている部分とが存在していた。しかしながら、ここで開示されるリチウムイオン二次電池10の負極合材層86中の負極活物質の表面に形成された被膜は、その被膜量のバラツキが抑制された状態(好ましくは幅方向に被膜が均一な状態)となり得る。このため、充放電を繰り返し行い被膜が劣化した後であっても部分的に被膜が劣化することはないので電流が局所的に集中することが防止され、電荷担体に由来する物質(例えば金属リチウム)の析出が抑制される。この結果、高い電池性能(例えば容量維持率等)を示すリチウムイオン二次電池(非水電解液二次電池)10となり得る。
 以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。
 [リチウムイオン二次電池(非水電解液二次電池)の作製]
<例1>
 まず、正極活物質としてのLiNi1/3Co1/3Mn1/3と、導電材としてのABと、結着剤としてのPVDFとの質量比が90:8:2となるように秤量し、これら材料をNMPに分散させてペースト状の正極合材層形成用組成物を調製した。かかる組成物を厚さ15μmの正極集電体(アルミニウム箔)に塗布した。その後、該組成物を120℃の真空中で6時間乾燥させて、ロールプレス機を用いて圧延処理を施すことによって、正極集電体上に合材密度2.2g/cmの正極合材層が形成された正極シートを作製した(正極準備工程)。上記組成物の塗布量は12mg/cmであった。正極シートの長手方向の長さを300cm、幅方向の長さを9.5cmとした。
 次に、負極活物質としての球状黒鉛粒子と、結着剤としてのSBRと、増粘剤としてのCMCとの質量比が98:1:1となるように秤量し、これら材料を水に分散させてペースト状の負極合材層形成用組成物を調製した。かかる組成物を厚さ10μmの負極集電体(銅箔)に塗布した。その後、該組成物を120℃の真空中で6時間乾燥させて、ロールプレス機を用いて圧延処理を施すことによって、負極集電体上に合材密度1.1g/cmの負極合材層が形成された負極シートを作製した(負極準備工程)。上記組成物の塗布量は7.5mg/cmであった。負極シートの長手方向の長さを320cm、幅方向の長さを10.5cmとした。
 上記正極シートの長手方向の一端から正極合材層を長手方向に5cm剥離して正極集電体を露出させ、該露出した正極集電体にアルミニウム製の正極端子を超音波溶接して取り付けた。上記負極シートの長手方向の一端から負極合材層を長手方向に2cm剥離して負極集電体を露出させ、該露出した負極集電体にニッケル製の負極端子を超音波溶接して取り付けた。各端子を取り付けた正極シート及び負極シートを、準備した2枚のセパレータシート(厚み20μmのポリエチレン製の微多孔質樹脂シート)を介して捲回し捲回電極体を作製した(電極体作製工程)。該電極体を角型のケースに内に収容して例1に係る組立体を作製した(組立体準備工程)。
 次いで、例1に係る組立体の電池ケース内に例1に係る非水電解液を40g注入した(注入工程)。例1に係る非水電解液としては、ECとDMCとEMCとの体積比が1:1:1の非水溶媒と、エーテル系溶媒としてのDMEとの体積比が97:3となるように混合した混合溶媒に、添加剤としてリチウムビス(オキサラト)ボレート(LiBOB)とジフルオロリン酸リチウム(LiPO)と支持塩としてLiPFとを溶解させたものを使用した。非水電解液中のLiBOBの濃度は0.015mol/Lであり、LiPOの濃度は0.035mol/Lであり、LiPFの濃度は1.1mol/Lであった。注入後に、例1に係る組立体に対して充放電を5サイクル繰り返した。1サイクルの充放電条件は、25℃の温度条件下、1C(4A)の充電レートで4.1Vまで定電流定電圧で充電を行い10分間の休止の後、1C(4A)の放電レートで3Vまで定電流で放電を行い10分間の休止をした。(予備充電工程)。このようにして、負極活物質の表面にリチウムビス(オキサラト)ボレート由来の被膜が形成された負極と、正極活物質の表面にジフルオロリン酸リチウム由来の被膜が形成された正極とを備える、例1に係るリチウムイオン二次電池を作製した。
<例2>
 ECとDMCとEMCとの体積比が1:1:1の非水溶媒と、エーテル系溶媒としてのDMEとの体積比が95:5となるように混合した混合溶媒を使用した他は例1と同様にして、例2に係るリチウムイオン二次電池を作製した。
<例3>
 ECとDMCとEMCとの体積比が1:1:1の非水溶媒と、エーテル系溶媒としてのDMEとの体積比が92:8となるように混合した混合溶媒を使用した他は例1と同様にして、例3に係るリチウムイオン二次電池を作製した。
<例4>
 ECとDMCとEMCとの体積比が1:1:1の非水溶媒と、エーテル系溶媒としてのDMEとの体積比が90:10となるように混合した混合溶媒を使用した他は例1と同様にして、例4に係るリチウムイオン二次電池を作製した。
<例5>
 ECとDMCとEMCとの体積比が1:1:1の非水溶媒と、エーテル系溶媒としてのDMPとの体積比が97:3となるように混合した混合溶媒を使用した他は例1と同様にして、例5に係るリチウムイオン二次電池を作製した。
<例6>
 ECとDMCとEMCとの体積比が1:1:1の非水溶媒と、エーテル系溶媒としてのDMPとの体積比が92:8となるように混合した混合溶媒を使用した他は例1と同様にして、例6に係るリチウムイオン二次電池を作製した。
<例7>
 非水電解液として、ECとDMCとEMCとの体積比が1:1:1の非水溶媒にLiPFを溶解させたものを使用した他は例1と同様にして、例7に係るリチウムイオン二次電池を作製した。非水電解液中のLiPFの濃度は1.1mol/Lであった。
<例8>
 非水電解液として、ECとDMCとEMCとの体積比が1:1:1の非水溶媒にLiBOBとのLiPFとを溶解させたものを使用した他は例1と同様にして、例8に係るリチウムイオン二次電池を作製した。非水電解液中のLiBOBの濃度は0.015mol/Lであり、LiPFの濃度は1.1mol/Lであった。
<例9>
 非水電解液として、ECとDMCとEMCとの体積比が1:1:1の非水溶媒と、エーテル系溶媒としてのDMEとの体積比が97:3となるように混合した混合溶媒にLiBOBとLiPFとを溶解させたものを使用した他は例1と同様にして、例9に係るリチウムイオン二次電池を作製した。非水電解液中のLiBOBの濃度は0.015mol/Lであり、LiPFの濃度は1.1mol/Lであった。
Figure JPOXMLDOC01-appb-T000001
[容量維持率測定]
 上記作製した例1~例9に係るリチウムイオン二次電池について、60℃の温度条件下で120日間保存した後の容量維持率を測定した。即ち、上記各二次電池を定電流定電圧(CCCV)方式によって1Cで4.1Vまで充電した後、CC方式によって1/3Cで3Vまで放電し、さらにCCCV方式によって1/3で3Vまで放電した。このときに得られる容量を初期電池容量とした。初期電池容量を測定した各二次電池をCCCV方式でSOC(State of Charge)80%の充電状態に調整した。次いで、これら各二次電池を60℃の恒温槽中に120日間保存した後、上記初期電池容量を測定した方法と同様の方法で、各二次電池の保存後の電池容量(保存後電池容量)を測定した。ここで、次式:{(保存後電池容量)/(初期電池容量)}×100;を、120日保存後の容量維持率[%]とした。測定結果を表1に示す。
[抵抗増加率測定]
 上記作製した例1~例9に係るリチウムイオン二次電池について、60℃の温度条件下で120日間保存した後の抵抗増加率を測定した。まず保存前の各リチウムイオン二次電池について初期抵抗を測定した。即ち25℃の温度条件下、1Cの充電レートでSOC(State of Charge:充電状態)60%の充電状態に調整した後、25℃の温度条件下、35Cの放電レートで10秒間の定電流放電を行い、このときの電流(I)-電圧(V)のプロット値の一次近似直線の傾きから初期抵抗を求めた。次いで、120日間保存後の各リチウムイオン二次電池について、25℃の温度条件下、1Cの充電レートでSOC60%の充電状態に調整した後、上記初期抵抗と同様にして120日間保存後の抵抗を求め、下記式により保存後の抵抗増加率を評価した。測定結果を表1に示す。
 120日間保存後の抵抗増加率(%)=120日間保存後の抵抗/初期抵抗×100
[耐Li析出性評価試験]
 上記作製した例1~例9に係るリチウムイオン二次電池について、充放電を1000サイクル繰り返し1000サイクル後の耐Li析出性[%]を評価した。ここで、耐Li析出性[%]とは1000サイクル後の容量維持率[%]である。各リチウムイオン二次電池をSOC90%に調整し、-30℃の温度条件下、10C(40A)の充電レートで4.1Vまで定電流定電圧で充電する操作と、10C(40A)の放電レートで3.0Vまで定電流で放電する操作を1000回繰り返した。1サイクル後の放電容量(初期容量)に対する、1000サイクル後の放電容量の割合{(1000サイクル後の放電容量/初期容量)×100}を容量維持率(%)として算出した。かかる試験での容量低下量は全てLi析出に起因するものであるため、1000サイクル後の容量維持率が大きいほど耐Li析出性に優れるものである。測定結果を表1に示す。
 表1及び図4から図6に示すように、非水電解液にLiBOBを添加することによって容量維持率は向上し抵抗増加率は低減されるが、耐Li析出性が大きく低下していることが確認された(例7および例8参照)。耐Li析出性を改善するために、LiBOBを含む非水電解液の非水溶媒の一部にカーボネート系溶媒よりも極性の高いエーテル系溶媒(ここではDME)を用いると、耐Li析出性は大きく向上しているが一方で容量維持率が低下し抵抗増加率が増加していることが確認された(例8および例9参照)。正極におけるエーテル系溶媒の酸化分解を抑制するためにさらにLiPOを添加すると、容量維持率は向上し抵抗増加率は低減され耐Li析出性も向上していることが確認された(例1および例9参照)。一方で、非水電解液に含まれるエーテル系溶媒の割合が10体積%のもの(例4参照)は、非水電解液に含まれるエーテル系溶媒の割合が10体積%未満のもの(例1から3および例5、6参照)と比較して、抵抗増加率が大きく増加していることが確認された。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 本発明に係る製造方法によって得られる非水電解液二次電池は、電荷担体に由来する物質の析出が抑制され電池性能(例えば容量維持率)に優れることから、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。従って本発明は、図7に模式的に示すように、かかるリチウムイオン二次電池10(典型的には当該電池10を複数個直列接続してなる組電池200)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料自動車のような電動機を備える自動車)100を提供する。
10 リチウムイオン二次電池(非水電解液二次電池)
15 電池ケース
20 開口部
25 蓋体
30 ケース本体
40 安全弁
45 注入口
48 封止栓
50 捲回電極体
60 正極端子
62 正極集電体
63 正極合材層非形成部分
64 正極
66 正極合材層
70 組立体
80 負極端子
82 負極集電体
83 負極合材層非形成部分
84 負極
86 負極合材層
90 セパレータシート
100 車両(自動車)
200 組電池

Claims (9)

  1.  非水電解液二次電池を製造する方法であって、
     正極活物質を含む正極及び負極活物質を含む負極を準備する工程、ここで、準備した前記正極及び前記負極のうち少なくともいずれか一方には不可避的な不純物としてナトリウム(Na)成分が含まれている;
     前記準備した正極及び負極を用いて電極体を作製する工程;
     前記電極体が電池ケース内に収容された組立体を作製する工程;
     前記電池ケース内に非水電解液を注入する工程、ここで、前記非水電解液は、添加剤としてリチウムビス(オキサラト)ボレートと、フッ素及びリンを構成元素とするフッ素含有リン酸化合物と、非水溶媒としてカーボネート系溶媒とエーテル系溶媒とを少なくとも含み、前記非水電解液に含まれる非水溶媒を100体積%としたときに、該非水電解液に含まれる前記エーテル系溶媒は10体積%未満である;
     前記組立体に対して所定の充電電圧まで充電を行った後、所定の放電電圧まで放電を行う工程;
    を包含する、非水電解液二次電池の製造方法。
  2.  前記エーテル系溶媒として、鎖状エーテル及び/又は環状エーテルを用いる、請求項1に記載の製造方法。
  3.  前記鎖状エーテルとして、ジメトキシエタン及び/又は1,2-ジメトキシプロパンを用いる、請求項2に記載の製造方法。
  4.  前記フッ素含有リン酸化合物はジフルオロリン酸リチウムであって、前記非水電解液中の該ジフルオロリン酸リチウムの濃度は、0.01mol/Lから0.15mol/Lである、請求項1から3のいずれか一項に記載の製造方法。
  5.  前記非水電解液中のリチウムビス(オキサラト)ボレートの濃度は、0.005mol/Lから0.05mol/Lである、請求項1から4のいずれか一項に記載の製造方法。
  6.  前記電極体として、シート状に形成された正極とシート状に形成された負極とが重ね合わされた電極体であって該電極体の長手方向に捲回された捲回電極体を用いる、請求項1から5のいずれか一項に記載の製造方法。
  7.  前記正極活物質として、リチウムイオンを吸蔵及び放出可能なリチウム含有化合物を用いる、請求項1から6のいずれか一項に記載の製造方法。
  8.  請求項1から7のいずれか一項に記載の製造方法により得られた非水電解液二次電池。
  9.  非水電解液二次電池に用いられる非水電解液であって、
     添加剤としてリチウムビス(オキサラト)ボレートと、フッ素及びリンを構成元素とするフッ素含有リン酸化合物と、非水溶媒としてカーボネート系溶媒とエーテル系溶媒とを少なくとも含み、
     前記非水電解液に含まれる非水溶媒を100体積%としたときに、該非水電解液に含まれる前記エーテル系溶媒は10体積%未満である非水電解液二次電池用非水電解液。
PCT/JP2013/062603 2012-09-07 2013-04-30 非水電解液二次電池の製造方法 WO2014038245A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380046271.4A CN104604016B (zh) 2012-09-07 2013-04-30 非水电解液二次电池的制造方法
US14/423,645 US9437902B2 (en) 2012-09-07 2013-04-30 Method of manufacturing nonaqueous electrolyte secondary battery
KR1020157008504A KR101678798B1 (ko) 2012-09-07 2013-04-30 비수 전해액 2차 전지의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-197542 2012-09-07
JP2012197542A JP5854279B2 (ja) 2012-09-07 2012-09-07 非水電解液二次電池の製造方法

Publications (1)

Publication Number Publication Date
WO2014038245A1 true WO2014038245A1 (ja) 2014-03-13

Family

ID=50236870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062603 WO2014038245A1 (ja) 2012-09-07 2013-04-30 非水電解液二次電池の製造方法

Country Status (5)

Country Link
US (1) US9437902B2 (ja)
JP (1) JP5854279B2 (ja)
KR (1) KR101678798B1 (ja)
CN (1) CN104604016B (ja)
WO (1) WO2014038245A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015176765A (ja) * 2014-03-14 2015-10-05 トヨタ自動車株式会社 非水電解液二次電池とその製造方法および非水電解液
WO2016042373A1 (en) * 2014-09-17 2016-03-24 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery and method of manufacturing the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146341A (ja) * 2015-02-02 2016-08-12 三菱化学株式会社 非水系電解液及び非水系電解液二次電池
JP2016146238A (ja) * 2015-02-06 2016-08-12 日立化成株式会社 非水電解液及びそれを用いたリチウムイオン二次電池
JP5822044B1 (ja) * 2015-04-17 2015-11-24 宇部興産株式会社 非水電解液、並びにそれを用いたリチウムイオン二次電池及びリチウムイオンキャパシタ
JP6820517B2 (ja) * 2015-09-29 2021-01-27 パナソニックIpマネジメント株式会社 非水電解質二次電池
CN105633469B (zh) * 2016-01-05 2019-04-23 苏州氟特电池材料股份有限公司 一种非水电解液
CN106025175B (zh) * 2016-06-15 2020-07-24 中国科学院宁波材料技术与工程研究所 一种电池浆料、电池极片及其制备方法
JP6871008B2 (ja) * 2017-02-13 2021-05-12 積水化学工業株式会社 リチウムイオン二次電池用電解質及びそれを用いたリチウムイオン二次電池用電解液並びにリチウムイオン二次電池
US11316199B2 (en) 2018-01-16 2022-04-26 International Business Machines Corporation Rechargeable metal halide battery
US10903491B2 (en) * 2019-01-09 2021-01-26 GM Global Technology Operations LLC Rechargeable lithium-ion battery chemistry with fast charge capability and high energy density
US11165093B2 (en) 2019-03-08 2021-11-02 International Business Machines Corporation Rechargeable metal halide battery
JP7368416B2 (ja) * 2021-05-19 2023-10-24 プライムプラネットエナジー&ソリューションズ株式会社 栓の装着装置、および該装置を使用した二次電池の製造方法
CN117457987B (zh) * 2023-11-28 2024-06-21 广东聚圣科技有限公司 一种电解液添加剂及其制备方法和电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165125A (ja) * 2005-12-14 2007-06-28 Central Glass Co Ltd 非水電解液電池用電解液及び非水電解液電池
JP2009176534A (ja) * 2008-01-23 2009-08-06 Sanyo Electric Co Ltd 非水電解質二次電池
WO2012020769A1 (ja) * 2010-08-10 2012-02-16 Agcセイミケミカル株式会社 ニッケル含有複合化合物の製造方法
JP2012049106A (ja) * 2010-05-12 2012-03-08 Mitsubishi Chemicals Corp 非水系電解液二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3730855B2 (ja) 2000-11-28 2006-01-05 セントラル硝子株式会社 電気化学ディバイス用電解質、その電解液または固体電解質並びに電池
US6787267B2 (en) 2000-11-28 2004-09-07 Central Glass Company, Limited Electrolyte for electrochemical device
JP2005259592A (ja) 2004-03-12 2005-09-22 Sanyo Electric Co Ltd 二次電池用非水電解液及び非水電解液二次電池
CN102931434B (zh) 2005-10-20 2015-09-16 三菱化学株式会社 锂二次电池以及其中使用的非水电解液
JP5636622B2 (ja) 2005-11-29 2014-12-10 三菱化学株式会社 リチウム二次電池用非水系電解液及びそれを用いたリチウム二次電池
JP2009176634A (ja) * 2008-01-28 2009-08-06 Kyocera Mita Corp 装置
JP5666225B2 (ja) 2010-09-16 2015-02-12 株式会社豊田中央研究所 リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2015011969A (ja) 2013-07-02 2015-01-19 トヨタ自動車株式会社 非水電解液二次電池及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165125A (ja) * 2005-12-14 2007-06-28 Central Glass Co Ltd 非水電解液電池用電解液及び非水電解液電池
JP2009176534A (ja) * 2008-01-23 2009-08-06 Sanyo Electric Co Ltd 非水電解質二次電池
JP2012049106A (ja) * 2010-05-12 2012-03-08 Mitsubishi Chemicals Corp 非水系電解液二次電池
WO2012020769A1 (ja) * 2010-08-10 2012-02-16 Agcセイミケミカル株式会社 ニッケル含有複合化合物の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015176765A (ja) * 2014-03-14 2015-10-05 トヨタ自動車株式会社 非水電解液二次電池とその製造方法および非水電解液
US10249907B2 (en) 2014-03-14 2019-04-02 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery, method for producing same and nonaqueous electrolyte
WO2016042373A1 (en) * 2014-09-17 2016-03-24 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2016062738A (ja) * 2014-09-17 2016-04-25 トヨタ自動車株式会社 非水電解液二次電池およびその製造方法
CN106797034A (zh) * 2014-09-17 2017-05-31 丰田自动车株式会社 非水电解质二次电池及其制造方法
US10177411B2 (en) 2014-09-17 2019-01-08 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery and method of manufacturing the same
CN106797034B (zh) * 2014-09-17 2019-05-21 丰田自动车株式会社 非水电解质二次电池及其制造方法

Also Published As

Publication number Publication date
CN104604016B (zh) 2016-11-16
US9437902B2 (en) 2016-09-06
KR20150052233A (ko) 2015-05-13
CN104604016A (zh) 2015-05-06
JP2014053193A (ja) 2014-03-20
US20150207173A1 (en) 2015-07-23
JP5854279B2 (ja) 2016-02-09
KR101678798B1 (ko) 2016-11-23

Similar Documents

Publication Publication Date Title
JP5854279B2 (ja) 非水電解液二次電池の製造方法
JP5924552B2 (ja) 非水電解液二次電池とその製造方法
US10008712B2 (en) Negative electrode active material for lithium ion secondary battery
JP6338115B2 (ja) 非水電解液二次電池
WO2013080379A1 (ja) リチウム二次電池とその製造方法
US20180277831A1 (en) Nonaqueous electrolyte secondary battery and production method thereof
WO2015001871A1 (ja) 非水電解液二次電池及びその製造方法
JP2011090876A (ja) リチウム二次電池および該電池の製造方法
KR20140138764A (ko) 리튬 이온 이차 전지
JP5843107B2 (ja) 非水電解液二次電池の製造方法
US20190081319A1 (en) Nonaqueous electrolyte secondary battery
CN106797050B (zh) 非水电解质二次电池
JP2013247009A (ja) 非水電解液二次電池の製造方法
US8980482B2 (en) Nonaqueous electrolyte lithium ion secondary battery
JP6902206B2 (ja) リチウムイオン二次電池
JP2014130729A (ja) 非水電解液二次電池の製造方法
JP5975291B2 (ja) 非水電解液二次電池の製造方法
JP5838952B2 (ja) 非水電解質二次電池及びその製造方法
KR102520420B1 (ko) 부극
JP2019036455A (ja) 非水電解液二次電池
JP2022141208A (ja) 正極および当該正極を備える非水電解質二次電池
JP6778396B2 (ja) 非水電解質二次電池
JP2015133296A (ja) 非水電解質二次電池
JP6731155B2 (ja) 非水電解質二次電池
JP2022090809A (ja) 負極およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835392

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14423645

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157008504

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13835392

Country of ref document: EP

Kind code of ref document: A1