WO2014035104A1 - 내부 쇼트가 억제된 리튬이온 2차 전지 - Google Patents

내부 쇼트가 억제된 리튬이온 2차 전지 Download PDF

Info

Publication number
WO2014035104A1
WO2014035104A1 PCT/KR2013/007637 KR2013007637W WO2014035104A1 WO 2014035104 A1 WO2014035104 A1 WO 2014035104A1 KR 2013007637 W KR2013007637 W KR 2013007637W WO 2014035104 A1 WO2014035104 A1 WO 2014035104A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thiol
ion secondary
lithium ion
secondary battery
Prior art date
Application number
PCT/KR2013/007637
Other languages
English (en)
French (fr)
Inventor
박성준
최승돈
전호진
최대식
윤유림
정창문
윤재식
박용팔
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130100181A external-priority patent/KR101579648B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL13818180T priority Critical patent/PL2741356T3/pl
Priority to CN201380002476.2A priority patent/CN103782428B/zh
Priority to JP2014533230A priority patent/JP5935228B2/ja
Priority to EP13818180.5A priority patent/EP2741356B1/en
Priority to US14/148,948 priority patent/US9397373B2/en
Publication of WO2014035104A1 publication Critical patent/WO2014035104A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium ion secondary battery in which battery shorts caused by dendrite formation in a battery are suppressed to ensure manufacturing quality and safety of the battery.
  • rechargeable batteries that are capable of charging and discharging are being actively researched due to the development of advanced fields such as digital cameras, cellular phones, notebook computers, and hybrid vehicles.
  • secondary batteries examples include nickel-cadmium batteries, nickel-metal hydride batteries, nickel-hydrogen batteries, and lithium secondary batteries.
  • the lithium secondary battery is used as a power source for portable electronic devices with an operating voltage of 3.6 V or more, or used in a high-power hybrid vehicle by connecting several in series, which operates compared to a nickel-cadmium battery or a nickel-metal hydride battery. The voltage is three times higher, and the energy density per unit weight is also excellent and is being used rapidly.
  • the present invention provides a method for reducing copper when (i) an effective capping of copper ions present in the battery or generated during operation of the battery, or (ii) a material having excellent reactivity with copper ions.
  • the present invention has been completed by recognizing that the dendrites formed and the internal short phenomenon of the battery due to the formed dendrites can be significantly suppressed.
  • an object of the present invention is to provide a lithium ion secondary battery in which an internal short phenomenon of a battery is suppressed and cell manufacturing quality is improved by including a material having excellent reactivity with copper ions in a unit cell.
  • the present invention provides a lithium ion secondary battery characterized in that a compound containing at least one thiol (-SH) group in the molecule is provided inside the unit cell of the battery.
  • the compound containing at least one thiol (-SH) group in the molecule is included in at least one or more components selected from the group consisting of electrical components, such as electrodes, separators, and electrolytes It is desirable to be.
  • the electrode may include a compound containing at least one thiol (-SH) group in the molecule as an electrode mixture layer component, or may include a coating component of the electrode.
  • a compound containing at least one thiol (-SH) group in the molecule as an electrode mixture layer component, or may include a coating component of the electrode.
  • the electrolyte solution includes a lithium salt, an electrolyte solvent, and a compound including at least one thiol (-SH) group in the molecule, the compound containing at least one thiol group in the molecule ranges from 0.01 to 10 parts by weight relative to 100 parts by weight of the electrolyte It is preferable to be included as.
  • the separator may include a compound including at least one thiol (-SH) group in a molecule as a component or coating component of the separator.
  • the present invention by using a thiol group-containing compound having excellent reactivity with copper ions in the unit cell in which the battery reaction occurs, it is possible to prevent the formation of dendrite and the resulting short circuit of the battery, thereby improving the safety of the battery.
  • the lithium ion secondary battery may include various metal components as foreign materials, and may include a double copper component or a copper-containing alloy component. These foreign matters are oxidized during operation of the battery to become copper ions (Cu 2+ ), or the generated copper ions are reduced on the surface of the negative electrode to precipitate as a copper component.
  • the compound provided in the lithium ion secondary battery may be a compound including one or more thiol (-SH) groups in the molecule.
  • Examples of the compound containing a thiol (-SH) group in the molecule include one or two aliphatic thiols selected from the group consisting of methanethiol and ethanethiol; One or two aromatic thiols selected from the group consisting of thiophenol, 4-fluorothiophenol, 2-chlorothiophenol, 4-t-butylthiophenol and 4-t-butyl-1,2-benzenethiol; 2- (butylamino) ethanethiol (2- (Butylamino) ethanethiol); 3- (methylthio) propylamine (3- (methylthio) propylamine); And [2- (diisopropylamino) ethyl] -2-mercaptoethyl) sulfite ([2- (diisopropylamino) ethyl] -2mercaptoethyl) sulfide). .
  • the content of the compound containing at least one thiol (-SH) group in the molecule is a type of component of the lithium secondary battery to be applied, such as an electrode active material, an electrode, a separator, an electrolyte, a battery case, and / or other empty spaces inside the battery. It can adjust suitably according to etc. and does not specifically limit.
  • the thiol (-SH) group-containing compound described above can be applied irrespective of its use, introduced position, and the like as long as it is provided inside the unit cell of the battery.
  • it may be used as a component of a lithium ion secondary battery, such as an electrode active material, an electrode, a separator, an electrolyte, an element case, or an empty space inside an element, or as a coating component thereof.
  • a lithium ion secondary battery including a compound containing at least one thiol group in the molecule in a unit cell of a battery may have five embodiments. However, it is not particularly limited thereto.
  • An electrode comprising a compound containing at least one thiol group in a molecule
  • a first embodiment of a lithium ion secondary battery containing a thiol (-SH) group-containing compound is used as an electrode mixture layer component, specifically, a coating component of an electrode active material.
  • the method for preparing an electrode active material coated with a thiol (-SH) group-containing compound is not particularly limited, but a preferred embodiment thereof includes (a) a thiol (-SH) group-containing compound in a binder solution or a solvent to disperse the thiol ( Preparing a coating solution containing a -SH) group-containing compound; (b) coating the electrode active material particles by adding and stirring the coating solution prepared in step (a); And (c) heat treating the electrode active material coated in step (b).
  • cathode active material which may be coated with a thiol (-SH) group-containing compound in the aforementioned molecule
  • a conventional cathode active material that may be used for a cathode of a conventional lithium ion secondary battery may be used.
  • a conventional negative electrode active material that may be used for a negative electrode of a conventional lithium ion secondary battery may be used.
  • negative electrode active materials that can be used include lithium adsorbents such as lithium metal or lithium alloys, carbon, petroleum coke, activated carbon, graphite, silicon, tin or other carbons.
  • an active material used as a negative electrode is a foil made by aluminum, nickel or a combination thereof, and non-limiting examples of the negative electrode current collector by copper, gold, nickel or copper alloy or a combination thereof Foils produced.
  • the coating process may use a general coating method commonly used in the art, for example, solvent evaporation, co-precipitation, precipitation, sol-gel method, post-sorption filter method, sputtering, CVD, etc. .
  • the thiol (-SH) group-containing compound is used as an electrode mixture layer component, specifically, one component of the electrode.
  • the thiol (-SH) group-containing compound is used as an electrode mixture layer component, specifically, one component of the electrode.
  • / or 3 in a third embodiment, to be used as a coating component of a prepared electrode.
  • the method for producing an electrode including a thiol (-SH) group-containing compound as a constituent of the electrode is not particularly limited, but a preferred embodiment thereof includes (a) a thiol (-SH) group-containing compound as an electrode material, For example, preparing an electrode slurry by mixing with an electrode active material, if necessary, a conductive agent, a binder, etc., and then applying on the current collector or coated on the surface of the electrode prepared; And (b) may comprise the step of drying the electrode.
  • a binder eg, polyvinylidene fluoride (PVDF)
  • PVDF polyvinylidene fluoride
  • NMP N-methyl pyrroridone
  • the solvent or dispersion medium used to prepare the binder solution may be any conventional solvent used in the art, and non-limiting examples thereof include N-methylpyrrolidone, acetone, dimethylacetamide, or dimethylform.
  • Organic solvents such as aldehydes, inorganic solvents such as water, and mixtures thereof.
  • the amount of the solvent used is sufficient to dissolve and disperse the active material, the conductive agent, the electrode binder, and the adhesive force additive in consideration of the coating thickness of the electrode slurry and the production yield.
  • the solvents are removed by drying after coating the electrode slurry on a current collector.
  • An electrode active material and a thiol (-SH) group-containing compound are added to the prepared binder solution, mixed and completely dispersed, and then the electrode is completed by applying and drying it on a current collector.
  • the electrode active material and the conductive agent are added together to the binder solution containing the thiol (-SH) group-containing compound to prepare a slurry for the electrode in the mixer.
  • the electrode drying process may also be carried out according to conventional methods known in the art, and one example may be hot air drying.
  • binders may be used, and non-limiting examples thereof include polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), teflon, or mixtures thereof.
  • PVDF polyvinylidene fluoride
  • SBR styrene butadiene rubber
  • teflon teflon
  • the conductive agent is not particularly limited as long as it can improve conductivity, and non-limiting examples thereof include acetylene black or graphite.
  • a method of preparing an electrode using the thiol (-SH) group-containing compound as a coating component of the electrode may also be prepared according to a conventional method known in the art. For example, a thiol ( The -SH) group-containing compound is dispersed to prepare a thiol (-SH) group-containing compound-containing dispersion, which is then coated and dried on the prepared electrode surface.
  • the content of the compound including at least one thiol (-SH) group in the molecule may range from 0.01 to 10 parts by weight based on 100 parts by weight of the electrode mixture, but is not particularly limited thereto.
  • a compound coating layer including one or more thiol (-SH) groups is formed on a part or the whole of the surface thereof.
  • the electrode on which the thiol (-SH) group-containing compound coating layer is formed selectively traps or reacts with copper ions before the copper ions are reduced on the cathode surface. Therefore, it is possible to prevent copper dendrite formation itself by reduction at the cathode surface.
  • a thiol (-SH) group-containing compound is added to a conventional battery electrolyte.
  • the battery electrolyte to which the thiol (-SH) group-containing compound is to be added includes conventional electrolyte components known in the art, such as lithium salts and non-aqueous organic solvents.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, 4-phenyl lithium borate, and imide Can be.
  • Non-limiting examples of non-aqueous organic solvents include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, 1,2- Dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxoron, acetonitrile, nitromethane, methyl formate , Methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, fatigue And aprotic organic solvents such as methyl cionate and
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, etc.
  • halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
  • the content of the compound containing at least one thiol group in the molecule may be appropriately adjusted in consideration of battery safety and cell manufacturing quality, for example, may be included in the range of 0.01 to 10 parts by weight relative to 100 parts by weight of the electrolyte.
  • Separation membrane comprising a compound containing at least one thiol group in the molecule
  • a fifth embodiment of a lithium ion secondary battery containing a thiol (-SH) group-containing compound is used as one component of a battery separator or as a coating component of a conventional battery separator.
  • the polyolefin-based separator substrate may be completed by impregnating a thiol (-SH) group-containing compound-containing coating liquid or coating and drying according to a conventional coating method.
  • a thiol (-SH) group-containing compound-containing coating liquid or coating may be impregnated according to a conventional coating method.
  • the separator in which the thiol (-SH) group-containing compound may be introduced is not particularly limited as long as it is a porous material that blocks internal short circuits of both electrodes and impregnates the electrolyte.
  • the pore diameter of the separator is generally 0.01 to 10 ⁇ m ⁇ m, thickness may be generally 5 to 300 ⁇ m range.
  • a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; A composite porous separator in which an inorganic material is added to the porous separator substrate; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separator.
  • the same effect can also be achieved by introducing the above-described thiol (-SH) group-containing compound on the internal empty space of a lithium ion secondary battery such as a mandrel, a center pin, a PTC, and the like.
  • a lithium ion secondary battery such as a mandrel, a center pin, a PTC, and the like.
  • the present invention specifically exemplifies a compound containing a thiol group, but any other material having high reactivity with copper ions belongs to the scope of the present invention regardless of its component, content, form, and the like.
  • the lithium ion secondary battery according to the present invention may be manufactured according to a conventional method known in the art, for example, by injecting an electrolyte after assembling a separator between the positive electrode and the negative electrode ( ⁇ ⁇ ).
  • a conventional method known in the art for example, by injecting an electrolyte after assembling a separator between the positive electrode and the negative electrode ( ⁇ ⁇ ).
  • the electrode, the electrolyte, the separator, and the case may include the above-described thiol (-SH) group-containing compound.
  • at least one of an electrode active material, an electrode, an electrolyte, a separator, a core, a center pin, and an inner space of the device case may include the thiol (-SH) group-containing compound described above.
  • LiCoO 2 as the positive electrode active material
  • 6% by weight of Denka Black as a conductive agent and PVDF 4 wt% as binder
  • NMP a slurry
  • An electrode assembly was prepared through a separator of porous polyethylene between the anode and the cathode prepared as described above. After putting the electrode assembly in a case and connecting the electrode lead, 1% of methanthiol was added to a solution of ethylene carbonate (EC) and dimethyl carbonate (DMC) in a volume ratio of 1 M where LiPF 6 was dissolved. An electrolyte solution was injected and then sealed to prepare a lithium ion secondary battery.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • LiCoO 2 as the positive electrode active material
  • 6% by weight of Denka Black as a conductive agent and PVDF 4 wt% as binder
  • NMP a slurry
  • An inorganic material-coated porous polyethylene separator was prepared by dispersing and coating 99 wt% of Al 2 O 3 and 1 wt% of methanethiol on the surface of the porous polyethylene separator.
  • An electrode assembly was prepared through a separator coated between the anode and the cathode prepared as described above.
  • the electrode assembly was placed in a case, the electrode leads were connected, and a volume ratio of 1: 1 ethylene carbonate (EC) and dimethyl carbonate (DMC) electrolyte in which 1 M LiPF 6 was dissolved was injected, followed by sealing, thereby sealing a lithium ion secondary battery.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • a lithium ion secondary battery was manufactured in the same manner as in Example 1, except that methanethiol was not added to the electrolyte.
  • a lithium ion secondary battery was manufactured in the same manner as in Example 2, except that methanethiol was not added to the coated separator.
  • the voltage drop for two weeks was measured in the lithium ion secondary battery 1000 cells manufactured by the method of Example 2 and Comparative Example 2, and the results are shown in Table 2 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 분자 내 티올(-SH)기를 하나 이상 포함하는 화합물이 전지의 단위셀 내부에 구비되는 것이 특징인 리튬 이온 이차전지를 제공한다. 본 발명에서는 구리 또는 구리 이온과 반응성이 우수한 티올기 함유 화합물을 사용함으로써, 전지의 내부에 존재하거나 또는 전지의 작동 중에 발생되는 구리 이온이 음극표면에서의 환원에 의한 덴드라이트 형성 및 이러한 덴드라이트로 인한 양 전극 간의 내부 쇼트현상을 방지할 수 있다.

Description

내부 쇼트가 억제된 리튬이온 2차 전지
본 발명은 전지 내 덴드라이트 형성에 의해 초래되는 전지 내부 쇼트를 억제하여, 전지의 제조품질 및 안전성이 확보된 리튬 이온 이차전지에 관한 것이다.
통상적으로 충전이 불가능한 일차 전지와는 달리, 충전 및 방전이 가능한 이차전지는 디지털 카메라, 셀룰러 폰, 노트북 컴퓨터, 하이브리드 자동차 등 첨단분야의 개발로 활발한 연구가 진행 중이다.
이차 전지로는 니켈-카드뮴 전지, 니켈-메탈 하이드라이드 전지, 니켈-수소 전지, 리튬 이차 전지 등을 들 수 있다. 이 중에서 리튬 이차 전지는 작동전압이 3.6V 이상으로 휴대용 전자기기의 전원으로 사용되거나, 또는 수 개를 직렬 연결하여 고출력의 하이브리드 자동차에 사용되는데, 니켈-카드뮴 전지나 니켈-메탈 하이드라이드 전지에 비하여 작동전압이 3배가 높고, 단위 중량당 에너지 밀도의 특성도 우수하여 급속도로 사용되고 있는 추세이다.
이러한 리튬 이차 전지의 제조품질뿐만 아니라 상기 전지를 장기적으로 안전하게 사용하기 위해서는, 전지 내의 구리 이물질이 산화하여 생성된 구리 이온(Cu2+)이 음극 표면에서의 환원에 의해 덴드라이트를 형성하고, 이러한 덴드라이트에 의해 초래되는 전지의 내부 쇼트 현상을 억제할 필요가 있다. 또한 셀의 제조 품질면에서 본다면, 셀 제조과정의 충방전에서 이러한 금속이온이 환원되어 생긴 덴드라이트로 인해 셀의 제조시의 불량률이 증가하게 된다.
뿐만 아니라, 상기 제조공정 중에 생긴 덴드라이트가 외부의 압력이나 진동으로 인해 양극과 음극을 전기적으로 서로 연결하게 되면, 사용 중에도 셀의 안전성과 안정성에 문제를 일으킬 수 있고, 셀의 사용 중에 추가적으로 생기는 금속 이온의 환원으로 인해 역시 덴드라이트 형성을 일으켜 셀의 안전성과 안정성을 크게 해칠 수 있다. 따라서 상기와 같은 리튬 이차 전지에 있어서, 전지 내부에서 양극과 음극이 전기적으로 연결될 수 있는 덴드라이트 형성을 억제할 필요가 있다.
본 발명은 전지의 단위셀 내부에 (i) 전지 내부에 존재하거나 또는 전지의 작동 중에 발생되는 구리 이온을 효과적으로 캐핑하거나 또는 (ii) 구리이온과의 반응성이 우수한 물질을 구비하면, 구리의 환원에 의한 덴드라이트 형성 및 형성된 덴드라이트로 인한 전지의 내부쇼트 현상이 현저히 억제될 수 있다는 것을 인식하여 본 발명을 완성하였다.
이에, 본 발명은 구리 이온과의 우수한 반응성을 갖는 물질을 단위셀 내부에 구비함으로써, 전지의 내부쇼트 현상이 억제되고 셀 제조품질이 개선된 리튬 이온 이차전지를 제공하는 것을 목적으로 한다.
본 발명은 분자 내 티올(-SH)기를 하나 이상 포함하는 화합물이 전지의 단위셀 내부에 구비되는 것이 특징인 리튬 이온 이차전지를 제공한다.
본 발명의 일 실시예에 따라, 상기 분자 내 티올(-SH)기를 하나 이상 포함하는 화합물은 전기를 이루는 구성 성분, 예컨대, 전극, 분리막, 및 전해액으로 이루어진 군으로부터 선택된 적어도 하나 이상의 구성 성분에 포함되는 것이 바람직하다.
상기 전극은 분자 내 티올(-SH)기를 하나 이상 포함하는 화합물을 전극 합제층 성분으로 포함하거나, 또는 전극의 코팅성분으로 포함할 수 있다.
또한 상기 전해액은 리튬염, 전해액 용매, 및 분자 내 티올(-SH)기를 하나 이상 포함하는 화합물을 포함하며, 상기 분자 내 티올기를 하나 이상 포함하는 화합물은 전해액 100 중량부 대비 0.01 내지 10 중량부 범위로 포함되는 것이 바람직하다.
상기 분리막은 분자 내 티올(-SH)기를 하나 이상 포함하는 화합물을 분리막의 구성 성분 또는 코팅성분으로 포함할 수 있다.
본 발명에서는 전지 반응이 일어나는 단위셀의 내부에 구리이온과의 반응성이 우수한 티올기 함유 화합물을 사용함으로써, 덴드라이트 형성 및 이로 인한 전지의 내부쇼트 현상을 방지하여 전지의 안전성 향상을 구현할 수 있다.
이하, 본 발명에 대하여 상세히 설명한다.
리튬 이온 이차전지는 이물질로서 여러 금속 성분을 포함할 수 있으며, 이중 구리 성분 또는 구리 함유 합금성분을 포함할 수 있다. 이러한 구리 이물질은 전지의 작동중에 산화되어 구리 이온(Cu2+)이 되기도 하고, 또는 생성된 구리 이온이 음극 표면에서 환원되어 구리 성분으로 석출되기도 한다.
한편 구리(Cu)는 자체 패시베이션하는 산화물을 생성하지 않기 때문에, 재성장시킬 수 있는 덴드라이트 성장(dendritic growth)이 발생되는 경향이 있다. 이와 같이 음극 표면상에 침상 석출되는 구리는 분리막을 뚫고 양극과 음극을 전기적으로 연결시키는 내부 쇼트 현상을 발생시켜 전지의 안전성 저하를 초래할 수 있으며, 이와 동시에 셀의 제조 품질면에서도 불량률을 증가시키는 원인이 된다.
이에, 본 발명에서는 구리 또는 구리 이온과의 반응성이 높은 물질을 리튬 이온 이차전지의 단위셀 내부에 구비함으로써, 덴드라이트 형성 및 이로 인한 전지의 내부쇼트 현상을 근본적으로 방지하고자 하는 것이다.
본 발명에 따라 리튬 이온 이차전지의 내부, 바람직하게는 단위셀 내부에 구비하는 화합물은, 분자 내 티올(-SH)기를 하나 이상 포함하는 화합물일 수 있다.
상기 분자 내에 티올(-SH)기를 함유하는 화합물은, 전지의 내부에 존재하거나 또는 전지의 작동 중에 발생되는 구리 이온에 대한 높은 선택성을 갖는다. 따라서, 정상 조건에서는 원래 형태 그대로 존재하여 전지의 동작에 전혀 영향을 주지 않다가, 구리 또는 구리이온이 존재하면 이들이 음극표면에서 환원되기 전에, 먼저 자발적으로 반응하거나 포착하는 역할을 한다.
상기 분자 내에 티올(-SH)기를 함유하는 화합물의 예로는 메탄티올 및 에탄티올로 이루어진 군으로부터 선택된 1종 또는 2종의 지방족 티올; 티오페놀, 4-플루오로티오페놀, 2-클로로티오페놀, 4-t-부틸티오페놀 및 4-t-부틸-1,2-벤젠티올로 이루어진 군으로부터 선택된 1종 또는 2종의 방향족 티올; 2-(부틸아미노)에탄티올(2-(Butylamino)ethanethiol); 3-(메틸티오)프로필아민 (3-(methylthio)propylamine); 및 [2-(디이소프로필아미노)에틸]-2-머캅토에틸)설파이트 ([2-(diisopropylamino)ethyl]-2mercaptoethyl)sulfide)로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 들 수 있다.
상기 분자 내 티올(-SH)기를 하나 이상 포함하는 화합물의 함량은 적용하고자 하는 리튬 이차전지의 구성 요소의 종류, 예컨대 전극활물질, 전극, 분리막, 전해액, 전지 케이스 및/또는 그 외 전지 내부 빈 공간 등에 따라 적절히 조절 가능하며, 특별히 한정되지 않는다.
전술한 티올(-SH)기 함유 화합물은 전지의 단위셀 내부에 구비하기만 하면 이의 용도, 도입되는 위치 등에 상관없이 적용 가능하다. 일례로, 리튬 이온 이차전지의 구성 요소, 예컨대 전극활물질, 전극, 분리막, 전해액, 소자 케이스 또는 그 외 소자 내부 빈 공간 등의 구성 성분으로 사용하거나 또는 이들의 코팅 성분으로 사용할 수도 있다.
상기 분자 내에 티올기를 하나 이상 함유하는 화합물을 전지의 단위셀 내부에 구비하는 리튬 이온 이차전지는 크게 5가지의 실시 형태를 가질 수 있다. 그러나 이에 특별히 제한되는 것은 아니다.
분자 내에 티올기를 하나 이상 함유하는 화합물을 포함하는 전극
1) 본 발명에 따라 티올(-SH)기 함유 화합물이 함유된 리튬 이온 이차전지의 첫번째 실시 형태로는 전극 합제층 성분, 구체적으로 전극활물질의 코팅 성분으로 사용하는 것이다.
티올(-SH)기 함유 화합물로 코팅된 전극활물질의 제조방법은 특별히 제한되지 않으나, 이의 바람직한 일 실시 형태를 들면 (a) 바인더 용액 또는 용매에 티올(-SH)기 함유 화합물을 분산시켜 티올(-SH)기 함유 화합물 함유 코팅액을 제조하는 단계; (b) 상기 단계 (a)에서 제조된 코팅액에 전극활물질 입자를 첨가 및 교반하여 코팅하는 단계; 및 (c) 상기 단계 (b)에서 코팅된 전극활물질을 열처리하는 단계를 포함할 수 있다.
전술한 상기 분자 내에 티올(-SH)기 함유 화합물로 코팅될 수 있는 양극활물질은 종래 리튬 이온 이차전지의 양극에 사용될 수 있는 통상적인 양극활물질이 사용 가능하다. 사용 가능한 양극활물질의 비제한적인 예로는 LiMxOy(M=Co,Ni,Mn,CoaNibMnc)와 같은 리튬 전이금속 복합산화물(예를 들면, LiMn2O4등의 리튬 망간 복합산화물, LiNiO2등의 리튬 니켈 산화물, LiCoO2등의 리튬 코발트 산화물 및 이들 산화물의 망간, 니켈, 코발트의 일부를 다른 전이금속 등으로 치환한 것 또는 리튬을 함유한 산화바나듐 등) 또는 칼코겐 화합물(예를 들면, 이산화망간, 이황화티탄, 이황화몰리브덴 등) 등이 있다. 바람직하게는 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2 (0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-YCoYO2, LiCo1-YMnYO2, LiNi1-YMnYO2 (여기에서, 0≤Y<1), Li(NiaCobMnc)O4 (0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, LiMn2-zCozO4 (여기에서, 0<Z<2), LiCoPO4, LiFePO4또는 이들의 혼합물 등이 있다.
또한, 상기 분자 내에 티올(-SH)기 함유 화합물로 코팅될 수 있는 음극활물질은 종래 리튬 이온 이차전지의 음극에 사용될 수 있는 통상적인 음극활물질이 사용 가능하다. 사용 가능한 음극활물질의 비제한적인 예로는 리튬 금속 또는 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite), 실리콘계, 주석계 또는 기타 탄소류 등의 리튬 흡착물질, 음극으로 사용하는 활물질 등이 있다. 양극 전류집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 전류집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
이때 코팅 공정은 당 분야에서 통상적으로 사용되는 일반적인 코팅 방법을 사용할 수 있으며, 예를 들면 용매증발법(solvent evaporation), 공침법, 침전법, 졸겔법, 흡착 후 필터법, 스퍼터, CVD 등이 있다.
2) 본 발명에 따라 티올(-SH)기 함유 화합물이 함유된 리튬 이온 이차전지의 두번째 실시 형태로는 티올(-SH)기 함유 화합물을 전극 합제층 성분, 구체적으로 전극의 일 구성 성분으로 사용하거나, 및/또는 3) 세번째 실시 형태로는 기제조된 전극의 코팅 성분으로 사용하는 것이다.
티올(-SH)기 함유 화합물을 전극의 구성 성분으로 포함하는 전극을 제조하는 방법은 특별히 제한되지 않으나, 이의 바람직한 일 실시예를 들면, (a) 티올(-SH)기 함유 화합물을 전극 재료, 예컨대 전극활물질, 필요한 경우 도전제, 바인더 등과 혼합하여 전극 슬러리를 제조한 후, 집전체 상에 도포하거나 또는 기제조된 전극 표면에 코팅하는 단계; 및 (b) 상기 전극을 건조하는 단계를 포함할 수 있다.
이하, 상기 티올(-SH)기 함유 화합물을 전극 내 분산시키는 방법의 일례를 들어 상세하게 설명하고자 한다.
우선, i) 바인더(예, PVDF (polyvinylidene fluoride))를 용매 또는 분산매(예, NMP (N-methyl pyrroridone)에 투입하여 바인더 용액을 제조한다.
바인더 용액을 제조하기 위해 사용되는 용매 또는 분산매는 당 업계에서 사용되는 통상적인 용매가 모두 사용 가능하며, 이의 비제한적인 예를 들면, N-메틸피롤리돈, 아세톤, 디메틸아세트아마이드, 또는 디메틸포름알데하이드 등의 유기용매, 물 등의 무기 용매 또는 이들의 혼합물 등이 있다. 상기 용매의 사용량은 전극 슬러리의 코팅 두께, 제조 수율을 고려하여 상기 활물질, 도전제, 전극 바인더, 및 접착력 첨가제가 용해 및 분산시킬 수 있는 정도이면 충분하다. 상기 용매들은 전극 슬러리를 전류 집전체 상에 코팅한 후 건조에 의해 제거된다.
ii) 제조된 바인더 용액에 전극활물질 및 티올(-SH)기 함유 화합물을 투입하고 혼합하여 완전히 분산시킨 후 이를 집전체 상에 도포하고 건조함으로써 전극 제조가 완료된다.
이와 같이 티올(-SH)기 함유 화합물이 포함된 바인더 용액에 전극활물질, 도전제를 함께 투입하여 믹서에서 전극용 슬러리를 제조한다. 전극 건조 과정 역시 당 업계에 알려진 통상적인 방법에 따라 실시 가능하며, 일례를 열풍 건조할 수 있다.
바인더로는 통상적인 결합제를 사용할 수 있으며, 이의 비제한적인 예로는 PVDF(polyvinylidene fluoride), SBR(styrene butadiene rubber), 테플론 또는 이들의 혼합물 등이 있다.
도전제로는 도전성을 향상시킬 수만 있다면 특별한 제한이 없으며, 이의 비제한적인 예로는 아세틸렌블랙, 또는 흑연 등이 있다.
상기 티올(-SH)기 함유 화합물을 전극의 코팅 성분으로 사용하여 전극을 제조하는 방법 역시 당 업계에 알려진 통상적인 방법에 따라 제조 가능하며, 이의 일 실시예를 들면, 바인더 용액 또는 용매에 티올(-SH)기 함유 화합물을 분산시켜 티올(-SH)기 함유 화합물 함유 분산액을 제조한 후, 이를 기제조된 전극 표면에 코팅 및 건조하면 된다.
본 발명에서 분자 내 티올(-SH)기를 하나 이상 포함하는 화합물의 함량은 전극 합제 100 중량부 대비 0.01 내지 10 중량부 범위일 수 있으나, 이에 특별히 제한되지 않는다.
상기 2가지 실시 형태에 따라 제조되는 전극은 표면의 일부 또는 전부에 티올(-SH)기를 하나 이상 포함하는 화합물 코팅층이 형성되게 된다. 이와 같이 티올(-SH)기 함유 화합물 코팅층이 형성된 전극은, 구리 이온이 음극 표면에서 환원되기 이전에, 구리 이온을 선택적으로 포착하거나 이들과 반응하게 된다. 따라서, 음극 표면에서의 환원에 의한 구리 덴드라이트 형성 자체를 방지할 수 있다.
분자 내에 티올기를 하나 이상 함유하는 화합물을 포함하는 전해액
4) 본 발명에 따라 티올(-SH)기 함유 화합물이 함유된 리튬 이온 이차전지의 네번째 실시 형태로는 통상적인 전지용 전해액에 티올(-SH)기 함유 화합물을 투입하는 것이다.
상기 티올(-SH)기 함유 화합물이 첨가될 전지용 전해액은 당 업계에 알려진 통상적인 전해액 성분, 예컨대 리튬염과 비수계 유기용매를 포함한다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
사용 가능한 비수계 유기 용매의 비제한적인 예로는, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매 등이 있다.
또한, 비수계 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
이때, 상기 분자 내 티올기를 하나 이상 포함하는 화합물의 함량은 전지의 안전성 및 셀 제조품질을 고려하여 적절히 조절할 수 있으며, 일례로 전해액 100 중량부 대비 0.01 내지 10 중량부 범위로 포함될 수 있다.
분자 내에 티올기를 하나 이상 함유하는 화합물을 포함하는 분리막
5) 본 발명에 따라 티올(-SH)기 함유 화합물이 함유된 리튬 이온 이차전지의 다섯번째 실시 형태로는 전지용 분리막의 일 구성 성분으로 하거나 또는 통상적인 전지용 분리막의 코팅 성분으로 사용하는 것이다.
이의 일례를 들면, 당 업계에 알려진 바와 같이 폴리올레핀 계열 분리막 기재를 티올(-SH)기 함유 화합물 함유 코팅액에 함침시키거나 또는 통상적인 코팅 방법에 따라 코팅한 후 건조시킴으로써 완료될 수 있다.
이때, 티올(-SH)기 함유 화합물이 도입될 수 있는 분리막은 양 전극의 내부 단락을 차단하고 전해액을 함침하는 역할을 하는 다공성 물질이라면 특별히 제한되지 않는다. 상기 분리막의 기공 직경은 일반적으로 0.01 내지 10 ㎛이고, 두께는 일반적으로 5 내지 300 ㎛ 범위일 수 있다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 다공성 분리막 기재에 무기물 재료가 첨가된 복합 다공성 분리막; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
그 외, 권심(mandrel), center pin, PTC 등과 같은 리튬 이온 이차전지의 내부 빈 공간 상에 전술한 티올(-SH)기 함유 화합물을 도입하여도 동일한 효과를 도모할 수 있다.
한편 본 발명에서는 티올기를 함유하는 화합물만을 구체적으로 예시하고 있으나, 그 외 구리 이온과의 높은 반응성을 갖는 물질이라면, 이의 성분, 함량, 형태 등에 상관없이 본 발명의 범주에 속한다.
본 발명에 따른 리튬 이온 이차전지는 당 기술 분야에 알려진 통상적인 방법에 따라 제조될 수 있으며, 이의 일 실시예를 들면 양극과 음극 사이에 분리막을 개재(介在)시켜 조립한 후 전해액을 주입함으로써 제조될 수 있다. 이때, 상기 전극, 전해액, 분리막, 케이스 중 적어도 하나는 전술한 티올(-SH)기 함유 화합물이 도입된 것일 수 있다. 이때, 전극활물질, 전극, 전해액, 분리막, 권심, 센터핀 (center pin), 소자 케이스의 내부 공간 중 적어도 하나는 전술한 티올(-SH)기 함유 화합물이 도입된 것일 수 있다.
전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 기술한 실시예에 국한되어 정해져서는 안 되며, 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
실시예
(실시예 1)
양극활물질로서 LiCoO2 90중량%; 도전제로 뎅카 블랙 6 중량%; 및 바인더로 PVDF 4 중량%;를 함께 NMP에 첨가하여 슬러리를 만들었다. 이를 양극 집전체인 알루미늄(Al) 포일 위에 코팅하고 압연 및 건조하여 양극을 제조하였다.
음극활물질로서 흑연 90 중량%; 도전제로 뎅카 블랙 6 중량%; 및 바인더로 PVDF 4 중량%;를 함께 NMP에 첨가하여 슬러리를 만들었다. 이를 음극 집전체인 구리(Al) 포일 위에 코팅하고 압연 및 건조하여 음극을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하여 전극조립체를 제조하였다. 상기 전극조립체를 케이스에 넣고 전극리드를 연결한 후, 1 M의 LiPF6이 녹아있는 부피비 1:1의 에틸렌 카보네이트(EC)와 디메틸 카보네이트(DMC) 용액에 메탄티올(Methanthiol) 1%를 첨가한 전해액을 주입한 다음 밀봉하여, 리튬 이온 이차전지를 제작하였다.
(실시예 2)
양극활물질로서 LiCoO2 90중량%; 도전제로 뎅카 블랙 6 중량%; 및 바인더로 PVDF 4 중량%;를 함께 NMP에 첨가하여 슬러리를 만들었다. 이를 양극 집전체인 알루미늄(Al) 포일 위에 코팅하고 압연 및 건조하여 양극을 제조하였다.
음극활물질로서 흑연 90 중량%; 도전제로 뎅카 블랙 6 중량%; 및 바인더로 PVDF 4 중량%;를 함께 NMP에 첨가하여 슬러리를 만들었다. 이를 음극 집전체인 구리(Al) 포일 위에 코팅하고 압연 및 건조하여 음극을 제조하였다.
무기물질이 코팅된 다공성 폴리에틸렌 분리막 표면에 Al2O3 99중량%와 메탄티올 1중량%를 분산, 코팅하여 분리막을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 코팅된 분리막을 개재하여 전극조립체를 제조하였다. 상기 전극조립체를 케이스에 넣고 전극리드를 연결한 후, 1M의 LiPF6이 녹아있는 부피비 1:1의 에틸렌 카보네이트(EC)와 디메틸 카보네이트(DMC) 전해액을 주입한 다음 밀봉하여, 리튬 이온 이차전지를 제작하였다.
(비교예 1)
전해액에 메탄티올(Methanthiol)을 첨가하지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이온 이차전지를 제작하였다.
(비교예 2)
코팅된 분리막에 메탄티올을 첨가하지 않은 것을 제외하고는 상기 실시예 2와 동일한 방법으로 리튬 이온 이차전지를 제작하였다.
실험예 1
상기 실시예 1 및 비교예 1의 방법으로 각각 제작된 리튬 이온 이차전지 1만 셀에 대하여 2주 동안의 전압 강하를 측정하여 하기 표 1에 나타내었다.
표 1
구분 실시예 비교예
전압 강하가 20mV 이상 발생한 셀의 개수 9개 34개
실험예 2
상기 실시예 2 및 비교예 2의 방법으로 각각 제작된 리튬 이온 이차전지 1천 셀에 대하여 2주 동안의 전압 강하를 측정하여 하기 표 2에 나타내었다.
표 2
구분 실시예 비교예
전압 강하가 20mV 이상 발생한 셀의 개수 1개 3개

Claims (11)

  1. 분자 내 티올(-SH)기를 하나 이상 포함하는 화합물이 전지의 단위셀 내부에 구비되는 것을 특징으로 하는 리튬 이온 이차전지.
  2. 청구항 1에 있어서,
    상기 분자 내 티올(-SH)기를 하나 이상 포함하는 화합물은 메탄티올 및 에탄티올로 이루어진 군으로부터 선택된 적어도 1 또는 2 이상의 지방족 티올; 티오페놀, 4-플루오로티오페놀, 2-클로로티오페놀, 4-t-부틸티오페놀 및 4-t-부틸-1,2-벤젠티올로 이루어진 군으로부터 선택된 1 또는 2 이상의 방향족 티올; 2-(부틸아미노)에탄티올; 3-(메틸티오)프로필아민; 및 [2-(디이소프로필아미노)에틸]-2-머캅토에틸)설파이트로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이온 이차전지.
  3. 청구항 1에 있어서,
    상기 분자 내 티올(-SH)기를 하나 이상 포함하는 화합물은 전지를 이루는 구성 성분 중 적어도 하나의 성분에 존재하는 것을 특징으로 하는 리튬 이온 이차전지.
  4. 청구항 3에 있어서,
    상기 분자 내 티올(-SH)기를 하나 이상 포함하는 화합물은 전극, 분리막, 및 전해액으로 이루어진 군으로부터 선택된 적어도 하나의 전지 구성 성분에 포함되는 것을 특징으로 하는 리튬 이온 이차전지.
  5. 청구항 4에 있어서,
    상기 전극은 전극 합제층 성분, 또는 전극의 코팅 성분으로 분자 내 티올(-SH)기를 하나 이상 포함하는 화합물을 포함하는 것을 특징으로 하는 리튬 이온 이차전지.
  6. 청구항 5에 있어서,
    상기 분자 내 티올(-SH)기를 하나 이상 포함하는 화합물은 전극 합제층 100 중량부 대비 0.01 내지 10 중량부로 포함되는 것을 특징으로 하는 리튬 이온 이차전지.
  7. 청구항 1에 있어서,
    상기 분자 내 티올(-SH)기를 하나 이상 포함하는 화합물은 전지의 작동 중에 발생되는 구리 이온과 반응하여 음극 표면에서의 구리 환원에 의한 덴드라이트 형성을 방지하는 것을 특징으로 하는 리튬 이온 이차전지.
  8. 청구항 4에 있어서,
    상기 전해액은 리튬염, 전해액 용매, 및 분자 내 티올(-SH)기를 하나 이상 포함하는 화합물을 포함하며, 상기 분자 내 티올기를 하나 이상 포함하는 화합물은 전해액 100 중량부 대비 0.01 내지 10 중량부로 포함되는 것을 특징으로 하는 리튬 이온 이차전지.
  9. 청구항 4에 있어서,
    상기 분리막은 분자 내 티올(-SH)기를 하나 이상 포함하는 화합물을 분리막의 구성 성분 또는 코팅성분으로 포함하는 것을 특징으로 하는 리튬 이온 이차전지.
  10. 청구항 1에 따른 리튬 이온 이차전지를 단위 전지로 포함하는 것을 특징으로 하는 전지 모듈.
  11. 청구항 1에 따른 리튬 이온 이차전지를 단위 전지로 포함하는 것을 특징으로 하는 전지 팩.
PCT/KR2013/007637 2012-08-28 2013-08-26 내부 쇼트가 억제된 리튬이온 2차 전지 WO2014035104A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL13818180T PL2741356T3 (pl) 2012-08-28 2013-08-26 Wtórna bateria litowo-jonowa zapobiegająca wewnętrznemu zwarciu
CN201380002476.2A CN103782428B (zh) 2012-08-28 2013-08-26 无内部短路的锂离子二次电池
JP2014533230A JP5935228B2 (ja) 2012-08-28 2013-08-26 内部ショートが抑制されたリチウムイオン二次電池、電池モジュール及び電池パック
EP13818180.5A EP2741356B1 (en) 2012-08-28 2013-08-26 Lithium ion secondary battery preventing internal short
US14/148,948 US9397373B2 (en) 2012-08-28 2014-01-07 Lithium ion secondary battery without internal short

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120094363 2012-08-28
KR10-2012-0094363 2012-08-28
KR1020130100181A KR101579648B1 (ko) 2012-08-28 2013-08-23 내부 쇼트가 억제된 리튬이온 2차 전지
KR10-2013-0100181 2013-08-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/148,948 Continuation US9397373B2 (en) 2012-08-28 2014-01-07 Lithium ion secondary battery without internal short

Publications (1)

Publication Number Publication Date
WO2014035104A1 true WO2014035104A1 (ko) 2014-03-06

Family

ID=50183857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007637 WO2014035104A1 (ko) 2012-08-28 2013-08-26 내부 쇼트가 억제된 리튬이온 2차 전지

Country Status (5)

Country Link
US (1) US9397373B2 (ko)
EP (1) EP2741356B1 (ko)
CN (1) CN103782428B (ko)
PL (1) PL2741356T3 (ko)
WO (1) WO2014035104A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537666B (zh) * 2014-07-14 2020-02-28 住友金属矿山株式会社 包覆锂-镍复合氧化物粒子和包覆锂-镍复合氧化物粒子的制造方法
KR20180125370A (ko) 2017-05-15 2018-11-23 주식회사 엘지화학 리튬 전극 및 이를 포함하는 리튬 이차전지
KR102328258B1 (ko) * 2017-10-17 2021-11-18 주식회사 엘지에너지솔루션 리튬 금속 전지용 전해질 및 이를 포함하는 리튬 금속 전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245458B1 (en) * 1998-01-28 2001-06-12 Matsushita Electric Industrial Co., Ltd. Composite electrode, method of producing the same, and lithium secondary battery using the same
EP1143547A1 (en) * 1999-09-24 2001-10-10 Matsushita Electric Industrial Co., Ltd. Lithium cell
US20040058232A1 (en) * 2002-09-23 2004-03-25 Samsung Sdi Co., Ltd. Negative electrode for lithium battery and lithium battery comprising same
US20050208385A1 (en) * 2000-04-18 2005-09-22 Takao Nirasawa Nonaqueous electrolyte secondary battery
US20090191465A1 (en) * 2008-01-25 2009-07-30 Samsung Sdi Co., Ltd Polysiloxane-based compound for electrolyte of lithium secondary battery, organic electrolyte solution including the polysiloxane-based compound, and lithium battery using the solution

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163049A (ja) 1992-11-17 1994-06-10 Matsushita Electric Ind Co Ltd 電 極
DE19916043A1 (de) * 1999-04-09 2000-10-19 Basf Ag Verbundkörper geeignet zur Verwendung als Lithiumionenbatterie
JP4882134B2 (ja) * 1999-10-13 2012-02-22 パナソニック株式会社 非水電解液二次電池用電解液および非水電解液二次電池並びにリチウム二次電池
JP2001273927A (ja) 2000-03-28 2001-10-05 Ngk Insulators Ltd リチウム二次電池
US20030190530A1 (en) * 2000-03-28 2003-10-09 Li Yang Lithium Secondary Battery
CN1142602C (zh) * 2000-04-29 2004-03-17 中国科学院物理研究所 一种用于二次锂电池的微孔聚合物隔膜及其制备方法
JP2002198053A (ja) 2000-12-26 2002-07-12 Mitsubishi Chemicals Corp リチウムイオン電池用負極材料
JP2006302756A (ja) 2005-04-22 2006-11-02 Sony Corp 電池
DE102007036653A1 (de) 2007-07-25 2009-02-05 Varta Microbattery Gmbh Elektroden und Lithium-Ionen-Zellen mit neuartigem Elektrodenbinder
JP2009117081A (ja) 2007-11-02 2009-05-28 Asahi Kasei Chemicals Corp リチウムイオン二次電池用電解液、及びリチウムイオン二次電池
JP5369550B2 (ja) 2008-09-03 2013-12-18 東洋インキScホールディングス株式会社 電池用組成物
KR101441362B1 (ko) 2008-12-19 2014-09-18 주식회사 엘지화학 Gtl 촉매를 이용한 전기화학소자
US9178249B2 (en) * 2010-05-27 2015-11-03 Uchicago Argonne, Llc Electrode stabilizing materials
US20130260206A1 (en) * 2012-03-27 2013-10-03 Basf Se Electrochemical cell comprising a sulfur-containing polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245458B1 (en) * 1998-01-28 2001-06-12 Matsushita Electric Industrial Co., Ltd. Composite electrode, method of producing the same, and lithium secondary battery using the same
EP1143547A1 (en) * 1999-09-24 2001-10-10 Matsushita Electric Industrial Co., Ltd. Lithium cell
US20050208385A1 (en) * 2000-04-18 2005-09-22 Takao Nirasawa Nonaqueous electrolyte secondary battery
US20040058232A1 (en) * 2002-09-23 2004-03-25 Samsung Sdi Co., Ltd. Negative electrode for lithium battery and lithium battery comprising same
US20090191465A1 (en) * 2008-01-25 2009-07-30 Samsung Sdi Co., Ltd Polysiloxane-based compound for electrolyte of lithium secondary battery, organic electrolyte solution including the polysiloxane-based compound, and lithium battery using the solution

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2741356A4 *

Also Published As

Publication number Publication date
US20140127547A1 (en) 2014-05-08
CN103782428A (zh) 2014-05-07
US9397373B2 (en) 2016-07-19
CN103782428B (zh) 2019-04-09
EP2741356B1 (en) 2018-10-03
PL2741356T3 (pl) 2019-09-30
EP2741356A4 (en) 2016-01-20
EP2741356A1 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
WO2016148383A1 (ko) 다층 구조 전극 및 이를 포함하는 리튬 이차전지
WO2017171425A1 (ko) 리튬 코발트 산화물을 포함하는 코어 및 붕소와 불소를 포함하는 코팅층을 포함하는 양극 활물질 입자 및 이의 제조 방법
WO2012138127A2 (ko) 출력 향상을 위한 리튬이차전지용 양극재 및 이를 포함하는 리튬이차전지
WO2013009078A9 (ko) 에너지 밀도 특성이 향상된 고 에너지 리튬 이차전지
WO2014196777A1 (ko) 황-리튬 이온 전지용 전극 조립체 및 이를 포함하는 황-리튬 이온 전지
WO2013157832A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2014010854A1 (ko) 고전압용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2013157867A1 (ko) 레이트 특성이 향상된 리튬 이차전지
WO2013157856A1 (ko) 다층구조 전극 및 그 제조방법
WO2012161480A2 (ko) 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
WO2012161474A2 (ko) 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
KR101267972B1 (ko) 리튬전지 및 그 제조방법
WO2015012640A1 (ko) 에너지 밀도가 향상된 이차전지용 전극 및 이를 포함하는 리튬 이차전지
WO2013157854A1 (ko) 성능이 우수한 리튬 이차전지
WO2012161482A2 (ko) 에너지 밀도 특성이 향상된 고에너지 밀도의 리튬 이차전지
WO2012161477A2 (ko) 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
WO2015016568A1 (ko) 안전성이 강화된 리튬 이차전지
KR101579648B1 (ko) 내부 쇼트가 억제된 리튬이온 2차 전지
WO2013157862A1 (ko) 전극조립체 및 이를 포함하는 리튬 이차전지
WO2017052200A1 (ko) 안전성이 향상된 전극 및 이를 포함하는 이차전지
WO2019022541A2 (ko) 리튬이차전지용 양극 및 이를 포함하는 리튬이차전지
WO2018088798A1 (ko) 콤팩트한 결합 구조를 가지는 탭과 리드를 포함하는 전지셀
WO2017061807A1 (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
WO2019017617A1 (ko) 집전체가 없는 전극 및 이를 포함하는 이차전지
WO2014035104A1 (ko) 내부 쇼트가 억제된 리튬이온 2차 전지

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014533230

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013818180

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13818180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE