WO2019022541A2 - 리튬이차전지용 양극 및 이를 포함하는 리튬이차전지 - Google Patents

리튬이차전지용 양극 및 이를 포함하는 리튬이차전지 Download PDF

Info

Publication number
WO2019022541A2
WO2019022541A2 PCT/KR2018/008484 KR2018008484W WO2019022541A2 WO 2019022541 A2 WO2019022541 A2 WO 2019022541A2 KR 2018008484 W KR2018008484 W KR 2018008484W WO 2019022541 A2 WO2019022541 A2 WO 2019022541A2
Authority
WO
WIPO (PCT)
Prior art keywords
lithium carbonate
secondary battery
positive electrode
primer layer
lithium
Prior art date
Application number
PCT/KR2018/008484
Other languages
English (en)
French (fr)
Other versions
WO2019022541A3 (ko
Inventor
김경민
최정석
오송택
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180086694A external-priority patent/KR102160572B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18839320.1A priority Critical patent/EP3573147B1/en
Priority to US16/481,667 priority patent/US10868294B2/en
Priority to CN201880008707.3A priority patent/CN110226250B/zh
Priority to PL18839320T priority patent/PL3573147T3/pl
Publication of WO2019022541A2 publication Critical patent/WO2019022541A2/ko
Publication of WO2019022541A3 publication Critical patent/WO2019022541A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/06Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application claims priority from Korean Patent Application No. 10-2017-0094550, filed on July 26, 2017, and Korean Patent Application No. 10-2018-0086694, filed on July 25,
  • the present invention relates to a positive electrode for a lithium secondary battery and a lithium secondary battery comprising the same.
  • lithium carbonate Li 2 CO 3
  • Li 2 CO 3 known to generate gas at approximately 5.0 V
  • the present invention has been made in order to solve the above problems, and it is an object of the present invention to provide a positive electrode for a lithium secondary battery securing safety of a lithium secondary battery in an overcharged state.
  • Another object of the present invention is to provide a lithium secondary battery including the positive electrode.
  • a positive electrode collector comprising: a positive electrode collector; A cathode active material layer; And a primer layer formed between the cathode current collector and the cathode active material layer, wherein the primer layer includes lithium carbonate (Li 2 CO 3 ) particles having two or more kinds of particle diameters, a binder polymer, and a conductive material
  • Li 2 CO 3 lithium carbonate
  • the lithium carbonate particles may be contained in an amount of 90 to 99.9% by weight of the solid content constituting the primer layer.
  • the lithium carbonate particles may be composed of lithium carbonate and lithium carbonate particles.
  • the lithium carbonate precursor has a particle diameter in the range of 3 ⁇ to 15 ⁇ , and the lithium carbonate precursor has a particle diameter in the range of 0.1 ⁇ to less than 3 ⁇ .
  • the lithium carbonate particles may be composed of 80 to 120 parts by weight of the lithium carbonate particles based on 100 parts by weight of the lithium carbonate particles.
  • the primer layer has a thickness of 3 ⁇ to 15 ⁇ .
  • a space formed between the lithium carbonate particles may serve as pores.
  • the primer layer may be porous.
  • a lithium secondary battery comprising a positive electrode for a lithium secondary battery according to any one of the first to ninth aspects.
  • the lithium secondary battery in the overcharged state, quickly reaches the overcharge end voltage due to the gas generated between the positive electrode collector and the positive electrode active material layer, thereby securing the safety of the lithium secondary battery.
  • a lithium secondary battery improved in safety by shortening a time required to reach the overcharge end voltage.
  • a lithium secondary battery having a maximum capacity by minimizing a volume occupied by a primer layer for generating a gas.
  • FIG. 1 schematically shows a section of a cathode to which the present invention is directed.
  • Figure 2 schematically shows a cross section of an anode according to an aspect of the invention.
  • FIG. 3 is a SEM photograph showing a section of the primer layer prepared in Example 1.
  • FIG. 4 is a SEM photograph showing a cross section of the primer layer prepared in Comparative Example 1.
  • FIG. 6 is a graph showing the results of an overcharge test of a lithium secondary battery produced according to Example 1 and Comparative Examples 1 and 2.
  • FIG. 6 is a graph showing the results of an overcharge test of a lithium secondary battery produced according to Example 1 and Comparative Examples 1 and 2.
  • Example 7 is a graph showing the volume change and the gas generation amount of the lithium secondary battery manufactured according to Example 1 and Comparative Examples 1 and 2 while undergoing overcharge progression.
  • Example 8 is a graph showing the interfacial resistance of the primer layer prepared according to Example 1 and Comparative Examples 1 and 2, measured.
  • FIG. 9 is a graph showing resistance of a lithium secondary battery produced according to Example 1 and Comparative Examples 1 and 2.
  • a positive electrode for a lithium secondary battery comprising: a positive electrode collector; A cathode active material layer; And a primer layer formed between the cathode current collector and the cathode active material layer, wherein the primer layer includes lithium carbonate (Li 2 CO 3 ) particles having two or more kinds of particle diameters, a binder polymer, and a conductive material Wherein the primer layer contains substantially no cathode active material.
  • the primer layer includes lithium carbonate (Li 2 CO 3 ) particles having two or more kinds of particle diameters, a binder polymer, and a conductive material
  • FIG. 1 schematically shows an aspect of a conventional anode 100 in which a primer layer 120 containing lithium carbonate is formed on a cathode current collector 110 and a cathode active material layer 130.
  • FIG. 1 schematically shows an aspect of a conventional anode 100 in which a primer layer 120 containing lithium carbonate is formed on a cathode current collector 110 and a cathode active material layer 130.
  • lithium carbonate particles 121 are included in the primer layer 120, and the lithium carbonate particles 121 have substantially the same particle diameter.
  • lithium carbonate in the primer layer 220 is composed of lithium carbonate particles 221 having a relatively large particle diameter and lithium carbonate particles 222 having a relatively small particle diameter .
  • lithium carbonate particles 221 and lithium carbonate particles 222 are spaced apart from each other.
  • lithium carbonate particles 221 and lithium carbonate particles 222 Are in mutual contact with each other to form a space by inter-particle contact, that is, an interstitial volume, and the interstitial volume can act as pores.
  • the lithium carbonate particles may be contained in an amount of 90 to 99.9% by weight of the solid content constituting the primer layer.
  • the content of the lithium carbonate particles is less than the lower limit value, the electrical resistance is insufficiently increased.
  • the content of the lithium carbonate particles is larger than the upper limit value, the interfacial adhesion property or the electrical conductivity may be insufficient.
  • the lithium carbonate particle may have a shape such as a sphere, an ellipse, or a polygon, but is not limited thereto.
  • the [spherical shape] and the [elliptical shape] do not mean a complete [spherical shape] or an [elliptical shape] but include a distorted part or have a wide meaning meaning spherical or elliptical shape that is generally acceptable.
  • the lithium carbonate particles are characterized by having two or more kinds of particle diameters.
  • the lithium carbonate particles may be composed of two or more kinds of particles having different particle diameters, that is, major particles and minor particles.
  • [particle diameter] means the particle diameter of D50, which means the particle diameter corresponding to 50% of the weight percentage in the particle size distribution curve.
  • the lithium carbonate comparative may have a particle diameter ranging from 3 mu m to 15 mu m.
  • the particle size (D50) of the above-mentioned alligator may be 3 mu m or more or 4 mu m or more or 5 mu m or more within the above range.
  • the electrode volume is unnecessarily increased.
  • the effect of the present invention is reduced, It becomes difficult to achieve the effect of blocking the conductive path of the primer layer later.
  • the lithium carbonate alternate may have a BET specific surface area in the range of 0.4 to 2.0 m 2 / g.
  • the primer layer may have a thickness in the range of 3 to 15 mu m.
  • the term [BET specific surface area] is understood to mean the specific surface area measured by the BET method using nitrogen as the adsorption gas.
  • the lithium carbonate fine particles may have a particle diameter ranging from 0.1 mu m to less than 3.0 mu m.
  • the particle size of the small particle may be 2.5 ⁇ or less, 2.0 ⁇ or less, or 1.5 ⁇ or less within the above range.
  • the particle size of the lithium carbonate fine particles is larger than the upper limit value, the time for reaching the overcharge end voltage becomes longer.
  • the particle size is smaller than the lower limit value, the conductive material content increases, making it difficult to achieve the object of the present invention. It is difficult to form pores capable of smooth movement.
  • the lithium carbonate fine particles may have a BET specific surface area ranging from 2.0 m 2 / g to 5.0 m 2 / g or less.
  • the lithium carbonate particles may be used in an amount of 0.1 to 200 parts by weight, preferably 50 to 150 parts by weight, and more preferably 80 to 120 parts by weight, based on 100 parts by weight of the lithium carbonate precursor.
  • the lithium carbonate fine particle content is more than the upper limit value, the surface area of the particles included in the primer layer is increased, so that the required amount of the conductive material is decreased, resulting in increased battery resistance.
  • the reaction rate of the small particles is faster than that of the major particles, the amount of lithium carbonate gasified increases as the amount of the fine particles increases, so that the point of time when the overcharge end voltage is reached can be advanced. On the other hand, if it is less than the lower limit value, the time point at which the overcharge end voltage is reached may be delayed.
  • the primer layer may be a porous structure that is sustained by lithium carbonate particles. That is, lithium carbonate particles are in contact with each other, and a space formed between adjacent lithium carbonate particles can act as pores.
  • the lithium carbonate fine particles may have a particle size capable of entering a space formed by contacting the lithium carbonate particles with each other, that is, an interstitial volume.
  • the lithium carbonate fine particles may have a particle size larger than the space formed by the contact with the lithium carbonate complex, that is, the interstitial volume, but smaller than the size of the opposite particle.
  • the conductive material may be contained in an amount of 0.1 to 10 wt% of the solid content constituting the primer layer.
  • the required conductive material content is reduced as compared with the case where only the lithium carbonate particles are used. Therefore, the possibility that the conductive path of the primer layer is blocked after generation of gas generated at a specific voltage is increased.
  • the conductive material may be at least one selected from the group consisting of a graphite-based conductive material, a carbon black-based conductive material, and a metal-based or metal-based conductive material.
  • the graphite conductive material may be at least one of artificial graphite and natural graphite
  • the carbon black conductive material may be acetylene black, ketjen black, denka black, thermal black, channel black and at least one of the perovskite materials such as tin, tin oxide, tin phosphate (SnPO 4 ), titanium oxide, potassium titanate, LaSrCoO 3 and LaSrMnO 3 It can be one.
  • the lithium carbonate particles, the conductive material and the binder polymer may be applied to the positive electrode collector in a slurry state dispersed or dissolved in an organic solvent.
  • the solid content in the organic solvent that is, the content of the lithium carbonate particles, the conductive material, and the binder polymer is not particularly limited as long as it is a slurry having a viscosity that can be easily applied and does not flow.
  • organic solvent examples include N-methyl-2-pyrrolidone (NMP), methoxypropyl acetate, butyl acetate, glycolic acid esters, butyl esters, butyl glycols, methylalkylpolysiloxanes, alkylbenzenes, propylene glycols, But are not limited to, polyglycidyl polysiloxane copolymers, polyether modified dimethylpolysiloxane copolymers, polyacrylate solutions, alkylbenzenes, diisobutyl ketones, organic modified polysiloxanes, butanol, isobutanol, modified poly Acrylate, a modified polyurethane, and a polysiloxane-modified polymer may be preferably used.
  • NMP N-methyl-2-pyrrolidone
  • methoxypropyl acetate examples include NMP, methoxypropyl acetate, butyl acetate, glycolic acid esters, buty
  • the cathode current collector generally has a thickness of 3 to 500 ⁇ m.
  • the cathode current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery.
  • stainless steel, aluminum , Nickel, titanium, sintered carbon, or a surface treated with carbon, nickel, titanium, silver or the like on the surface of aluminum or stainless steel can be used.
  • the current collector may have fine irregularities on the surface thereof to increase the adhesive force of the cathode active material, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric are possible.
  • the cathode active material layer may further include a conductive material, a binder polymer, and a filler in addition to the cathode active material.
  • the conductive material is usually added in an amount of 1 to 50 wt% based on the total weight of the mixture including the cathode active material.
  • a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder polymer is a component that assists in bonding between the positive electrode active material and the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 50 wt% based on the total weight of the mixture containing the positive electrode active material.
  • binder polymer examples include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, Polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene terpolymer
  • EPDM ethylene-propylene-diene terpolymer
  • EPDM ethylene-propylene-diene terpolymer
  • sulfonated EPDM styrene butylene rubber
  • fluorine rubber various copolymers and the like.
  • the filler is optionally used as a component for suppressing the expansion of the anode and is not particularly limited as long as it is a fibrous material without causing a chemical change in the battery.
  • an olefin polymer such as polyethylene, ; Fibrous materials such as glass fibers and carbon fibers are used.
  • a lithium secondary battery comprising a positive electrode for a lithium secondary battery, a negative electrode, a separator, and a nonaqueous electrolyte solution containing a lithium salt.
  • the negative electrode is prepared by applying, drying and pressing a negative electrode active material slurry containing a negative electrode active material on a negative electrode collector, and may further optionally include a conductive material, a binder polymer, a filler, and the like as described above .
  • the negative electrode current collector is generally made to have a thickness of 3 to 500 mu m.
  • Such an anode current collector is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and examples of the anode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, a surface of copper or stainless steel A surface treated with carbon, nickel, titanium, silver or the like, an aluminum-cadmium alloy, or the like can be used.
  • fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics.
  • the negative electrode active material may include, for example, carbon such as non-graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1 ), Li x WO 2 (0 ⁇ x ⁇ 1), Au x Me 1 - x Me 'y O z (Me: Mn, Fe, Pb, Ge; Me' : Metal complex oxides such as Al, B, P, Si, Group 1, Group 2 and Group 3 elements of the periodic table, Halogen; 0 ⁇ x < Lithium metal; Lithium alloy; Silicon-based alloys; Tin alloy; AuO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO 2, Bi 2 O 3, Bi 2 O 4, and Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials; Titanium oxide; Lithium titanium oxide and the like can be used.
  • the electrode structure as described above is preferable because LTO itself has low electronic conductivity.
  • it is preferable to use LiNixMn 2 - x O 4 (x 0.01 to 0.6) spinel lithium manganese composite oxide having a relatively high potential due to the high potential of LTO as the cathode active material.
  • the lithium secondary battery has a structure in which a lithium salt-containing electrolyte is impregnated in an electrode assembly having a structure in which a separator is interposed between the positive electrode and the negative electrode.
  • the separation membrane is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally 0.01 to 10 mu m and the thickness is generally 5 to 300 mu m.
  • Such separation membranes include, for example, olefinic polymers such as polypropylene, which are chemically resistant and hydrophobic; A sheet or nonwoven fabric made of glass fiber, polyethylene or the like is used.
  • a solid electrolyte such as a polymer is used as an electrolyte, the solid electrolyte may also serve as a separation membrane.
  • the electrolyte solution containing the lithium salt is composed of an electrolyte solution and a lithium salt.
  • the electrolyte solution may be a non-aqueous organic solvent, an organic solid electrolyte, or an inorganic solid electrolyte, but is not limited thereto.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylolactone, Tetrahydrofuran, tetrahydrofuran, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate
  • organic solvent examples include methyl acetate, phosphoric acid triester, trimethoxy methane, dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, Propylenic organic solvents such as methylmethyl, ethylpropionate and
  • organic solid electrolyte examples include a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, A polymer containing an ionic dissociation group and the like may be used.
  • a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, A polymer containing an ionic dissociation group and the like may be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides and sulfates of Li such as Li 4 SiO 4 -LiI-LiOH and Li 3 PO 4 -Li 2 S-SiS 2 can be used.
  • the lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide.
  • the electrolytic solution is preferably mixed with an organic solvent such as pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, glyme, Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxyethanol, .
  • halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further added to impart nonflammability.
  • carbon dioxide gas may be further added.
  • FEC Fluoro-Ethylene Carbonate
  • PRS Propene sultone
  • LiPF 6, LiClO 4, LiBF 4, LiN (SO 2 CF 3) 2 such as a lithium salt, a highly dielectric solvent of DEC, DMC or EMC Fig solvent cyclic carbonate and a low viscosity of the EC or PC of And then adding it to a mixed solvent of linear carbonate to prepare a lithium salt-containing non-aqueous electrolyte.
  • the present invention also provides a battery module including the lithium secondary battery as a unit cell, and a battery pack including the battery module.
  • the battery pack can be used as a power source for a medium and large-sized device requiring high temperature stability, long cycle characteristics, and high rate characteristics.
  • Preferred examples of the above medium to large devices include a power tool that is powered by an electric motor and moves; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and the like; An electric motorcycle including an electric bike (E-bike) and an electric scooter (E-scooter); An electric golf cart; And a power storage system, but the present invention is not limited thereto.
  • An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and the like
  • An electric motorcycle including an electric bike (E-bike) and an electric scooter (E-scooter)
  • An electric golf cart And a power storage system, but the present invention is not limited thereto.
  • the primer layer is a porous structure in which a space formed between the lithium carbonate particles acts as pores.
  • LiCoO 2 cathode active material having a D50 of approximately 15 to 20 ⁇ m, Super P as a conductive material and polyvinylidene fluoride as a binder polymer were mixed at a weight ratio of 92: 4: 4, and then NMP (N-methyl pyrrolidone) was added to prepare a cathode active material slurry.
  • the thus-prepared slurry of the cathode active material was coated on the aluminum anode current collector on which the primer layer was formed, and dried in a vacuum oven at 120 ° C to form a cathode current collector, a cathode active material layer, and a cathode active material layer between the cathode current collector and the cathode active material layer Thereby preparing a positive electrode comprising the formed primer layer.
  • MCMB meocarbon microbead
  • super P as a conductive material
  • PVdF as a binder
  • the slurry was applied to the copper foil current collector and dried to prepare a negative electrode.
  • the electrode assembly was fabricated using polyethylene separator between anode and cathode.
  • the electrode assembly was placed in a pouch-type case, and an electrode lead was connected.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • Example 1 The procedure of Example 1 was repeated except that two kinds of lithium carbonate particles were used in the preparation of the slurry for forming the primer layer, and 100 g of lithium carbonate particles having an average diameter of 5.0 ⁇ was used instead of lithium carbonate particles To prepare a positive electrode and a lithium secondary battery.
  • FIG. 4 is a SEM photograph showing a cross section of the primer layer formed in Comparative Example 1.
  • a slurry for forming a primer layer was prepared in the same manner as in Example 1 except that two kinds of lithium carbonate particles were used instead of the small particles of lithium carbonate, that is, 100 g of lithium carbonate particles having a particle diameter of 2.0 ⁇ To prepare a positive electrode and a lithium secondary battery.
  • Evaluation example 1 Overcharge evaluation result
  • the resistance of the primer layer is increased by the generation of the gas, thereby causing the overvoltage to reach 6.4 V which is the overcharge end voltage.
  • the smaller the absolute amount of the conductive material in the primer layer the greater the probability that the conduction path is blocked at the time of gas evolution, thereby reaching an earlier time to the overcharge termination voltage.
  • a bimodal type gas generating material is provided in the primer layer to reduce the absolute amount of the conductive material, and to reach the overcharge end voltage in the safe region, Can be implemented.
  • the overcharge test proceeded to two steps. First, the SOC 100 state was established with CC / CV of 0.33 C / 4.25 V at room temperature (25 ° C) and normal pressure, and the cut-off current was 0.05 C (first step: SOC 100 setting). Subsequently, charging was started from SOC 100 at CC (1C-rate) at room temperature and atmospheric pressure for overcharging test, and the condition was terminated upon overcharging by one time or 1.5 times the maximum voltage (second step: overcharging). The specimen size was unlimited.
  • FIG. 6 is a graph showing the results of an overcharge test of a lithium secondary battery produced according to Example 1 and Comparative Examples 1 and 2.
  • FIG. 6 is a graph showing the results of an overcharge test of a lithium secondary battery produced according to Example 1 and Comparative Examples 1 and 2.
  • the amount of volume change of the pre / post-overcharge cell can be calculated by using the value of the battery weight before and after overcharging through the balance in the water tank and the volume change amount of water in the water tank.
  • the weight of the battery when the weight of the battery is measured in the water tank, the weight of the battery before overcharging is slightly reduced due to the buoyancy.
  • the volume change amount of the battery can be measured.
  • the gas generation amount was measured by gas chromatography analysis, and the generated amount of CO and CO 2 gas was measured and shown.
  • FIG. 8 is a graph showing the interfacial resistance of the primer layer prepared according to Example 1 and Comparative Examples 1 and 2
  • FIG. 9 is a graph showing the relationship between the surface resistance of the primer layer of the lithium secondary battery manufactured according to Example 1 and Comparative Examples 1 and 2. FIG. And the resistance is measured.
  • the interface resistance of the primer layer of the anode was measured using an electrode resistance meter (HIOKI, model: XF-074). As a result, it was confirmed that the resistance value of the embodiment was the lowest.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명에서는, 양극 집전체; 양극 활물질층; 및 상기 양극 집전체와 상기 양극 활물질층 사이에 형성되어 있는 프라이머층;을 포함하고, 상기 프라이머층이 2종 이상의 입경을 갖는 탄산리튬(Li2CO3) 입자, 바인더 고분자 및 도전재를 포함하는 리튬이차전지용 양극 및 이를 포함하는 리튬이차전지가 제공된다. 과충전 상황에서, 양극 집전체와 양극 활물질층 사이에서 발생하는 가스로 인해 리튬이차전지가 과충전 종료 전압에 신속하게 도달함으로써 리튬이차전지의 안전성이 확보될 수 있다.

Description

리튬이차전지용 양극 및 이를 포함하는 리튬이차전지
본 출원은 2017년 7월 26일에 출원된 한국특허출원 제10-2017-0094550호 및 2018년 7월 25일에 출원된 한국 특허출원 10-2018-0086694호에 기초한 우선권을 주장한다. 본 발명은 리튬이차전지용 양극 및 이를 포함하는 리튬이차전지에 관한 것이다.
전자, 통신, 컴퓨터 산업 등의 급속한 발전에 힘입어 기기의 소형, 경량화 및 고기능화와 함께, 캠코더, 휴대폰, 노트북 PC 등 휴대용 전자제품의 사용이 일반화됨으로써, 가볍고 오래 사용할 수 있으며 신뢰성이 높은 전지에 대한 요구가 높아지고 있다. 특히, 충전가능한 리튬이차전지는 기존의 납축전지, 니켈-카드뮴 전지, 니켈-수소 전지, 니켈-아연 전지 등과 비교할 때 단위 중량당 에너지 밀도가 3배 정도 높고, 급속 충전할 수 있기 때문에 국내외에서 연구 개발이 활발하게 진행되고 있다.
최근, 리튬이차전지의 고에너지 밀도화 및 저가화를 위해 고용량 활물질, 박막 분리막(thin separator) 및 고전압 구동과 같은 기술이 더욱 개발되어 적용됨에 따라, 과충전이 문제되고 있으며, 과충전 상황에서 발화, 폭발 이슈에 대한 해결이 필요한 상황이다.
이를 위해, 대략 5.0 V에서 가스를 발생시키는 것으로 알려진 탄산리튬(Li2CO3)을 양극에 혼입시켜 양극 저항을 크게 증가시킴으로써 과충전 종료 전압에 도달하도록 하는 기술이 있다.
그러나, 상기 기술에서는 탄산리튬으로부터 가스가 충분하게 발생하지 않거나 혹은 예상과 달리 양극 저항이 크게 증가하지 않아 과충전 종료 전압까지 도달하는데 많은 시간이 걸려, 전지 안전성 확보에 충분하지 않은 문제점이 있는 것으로 알려졌다.
본 발명은 상기 문제점을 해결하기 위하여 안출된 것으로, 본 발명이 해결하고자 한 일 과제는 과충전 상황에서 리튬이차전지의 안전성을 확보하는 리튬이차전지용 양극을 제공하는 것이다.
본 발명이 해결하고자 한 다른 과제는 상기 양극을 포함한 리튬이차전지를 제공하는 것이다.
본 발명의 제1 양태에 따르면, 양극 집전체; 양극 활물질층; 및 상기 양극 집전체와 상기 양극 활물질층 사이에 형성되어 있는 프라이머층;을 포함하고, 상기 프라이머층이 2종 이상의 입경을 갖는 탄산리튬(Li2CO3) 입자, 바인더 고분자 및 도전재를 포함하는 리튬이차전지용 양극이 제공된다.
본 발명의 제2 양태에 따르면, 상기 제1 양태에서 상기 탄산리튬 입자는 상기 프라이머층을 구성하는 고형분 중 90 내지 99.9 중량%의 양으로 포함될 수 있다.
본 발명의 제3 양태에 따르면, 상기 제1 양태 또는 제2 양태에서 상기 탄산리튬 입자가 탄산리튬 대립자와 탄산리튬 소립자로 이루어질 수 있다.
본 발명의 제4 양태에 따르면, 상기 제3 양태에서 상기 탄산리튬 대립자는 3 ㎛ 내지 15 ㎛ 범위의 입경을 갖고, 상기 탄산리튬 소립자는 0.1 ㎛ 이상 3 ㎛ 미만 범위의 입경을 가질 수 있다.
본 발명의 제5 양태에 따르면, 상기 제3 양태 또는 제4 양태에서 상기 탄산리튬 입자는, 상기 탄산리튬 대립자 100 중량부를 기준으로 상기 탄산리튬 소립자 80 내지 120 중량부의 양으로 이루어질 수 있다.
본 발명의 제6 양태에 따르면, 상기 제1 양태 내지 제5 양태 중 임의의 양태에서 상기 프라이머층은 두께가 3㎛ 내지 15㎛ 인 것이다.
본 발명의 제7 양태에 따르면, 상기 제3 양태 내지 제5 양태 중 임의의 양태에서 상기 탄산리튬 소립자는 상기 탄산리튬 대립자가 접하여 형성된 공간인 인터스티셜 볼륨(interstitial volume)보다 크지만, 상기 탄산리튬 대립자보다 작은 입경 크기를 가질 수 있다.
본 발명의 제8 양태에 따르면, 상기 제1 양태 내지 제7 양태 중 임의의 양태에서 상기 프라이머층에서, 상기 탄산리튬 입자 사이에 형성된 공간이 기공으로 작용할 수 있다.
본 발명의 제9 양태에 따르면, 상기 제1 양태 내지 제8 양태 중 임의의 양태에서 상기 프라이머층이 다공성일 수 있다.
본 발명의 제10 양태에 따르면, 상기 제1 양태 내지 제9 양태 중 임의의 양태에 기재된 리튬이차전지용 양극을 포함하는 리튬이차전지가 제공된다.
본 발명의 일 양태에 따르면, 과충전 상황에서, 양극 집전체와 양극 활물질층 사이에서 발생하는 가스로 인해 리튬이차전지가 과충전 종료 전압에 신속하게 도달함으로써 리튬이차전지의 안전성이 확보될 수 있게 된다.
본 발명의 다른 양태에 따르면, 과충전 종료 전압에 도달하는 시간이 단축됨으로써 안전성이 향상된 리튬이차전지가 제공된다.
본 발명의 또 다른 양태에 따르면, 가스 발생을 위한 프라이머층(primer layer)이 차지하는 체적을 최소로 함으로써 용량이 최대로 확보된 리튬이차전지가 제공된다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 본 발명이 개선하고자 한 양극의 단면을 개략적으로 나타낸 것이다.
도 2는 본 발명의 일 양태에 따른 양극의 단면을 개략적으로 나타낸 것이다.
도 3은 실시예 1에서 제조된 프라이머층의 단면을 나타낸 SEM 사진이다.
도 4는 비교예 1에서 제조된 프라미어층의 단면을 나타낸 SEM 사진이다.
도 5는 비교예 2에서 제조된 프라이머층의 단면을 나타낸 SEM 사진이다.
도 6은 실시예 1 및 비교예 1, 2에 따라 제조된 리튬이차전지의 과충전 실험 결과를 나타낸 그래프이다.
도 7은 실시예 1 및 비교예 1, 2에 따라 제조된 리튬이차전지의 과충전 진행 중 부피 변화량 및 가스 발생량을 측정하여 나타낸 그래프이다.
도 8은 실시예 1 및 비교예 1, 2에 따라 제조된 양극의 프라이머층의 계면 저항을 측정하여 나타낸 그래프이다.
도 9는 실시예 1 및 비교예 1, 2에 따라 제조된 리튬이차전지의 저항을 측정하여 나타낸 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 양태에 따른 리튬이차전지용 양극은, 양극 집전체; 양극 활물질층; 및 상기 양극 집전체와 상기 양극 활물질층 사이에 형성되어 있는 프라이머층;을 포함하고, 상기 프라이머층이 2종 이상의 입경을 갖는 탄산리튬(Li2CO3) 입자, 바인더 고분자 및 도전재를 포함하는 것을 특징으로 하며, 상기 프라이머층에는 실질적으로 양극 활물질이 포함되지 않는다.
이하, 본 발명을 도 1과 도 2를 참조하여 설명한다.
도 1은 탄산리튬을 포함하는 프라이머층(120)이 양극 집전체(110)와 양극 활물질층(130)에 형성되어 있는 종래의 양극(100) 단면의 일 양태를 개략적으로 나타낸 것이다.
도 1에 따르면, 프라이머층(120)에 탄산리튬 입자들(121)이 포함되어 있으며, 상기 탄산리튬 입자들(121)은 실질적으로 동일한 입경을 갖는다.
한편, 도 2는 탄산리튬을 포함하는 프라이머층(220)이 양극 집전체(210)와 양극 활물질층(230) 사이에 형성되어 있는 본 발명의 일 양태인 양극(200) 단면의 일 양태를 개략적으로 나타낸 것으로, 도 2에 따르면, 프라이머층(220)에 있는 탄산리튬은 상대적으로 큰 입경을 갖는 탄산리튬 대립자들(221)과 상대적으로 작은 입경을 갖는 탄산리튬 소립자들(222)로 이루어져 있다. 도 2에서 탄산리튬 대립자들(221)과 탄산리튬 소립자들(222)이 이격되게 배치되어 있는 것으로 도시되어 있으나, 바람직한 양태에서, 탄산리튬 대립자들(221)과 탄산리튬 소립자들(222)은 상호 접촉되어 있으면서, 입자간 접촉에 의한 공간, 즉, 인터스티셜 볼륨(interstitial volume)을 형성하고, 상기 인터스티셜 볼륨은 기공으로 작용할 수 있다.
상기 탄산리튬 입자는 상기 프라이머층을 구성하는 고형분 중 90 내지 99.9 중량%의 양으로 포함될 수 있다. 탄산리튬 입자의 함량이 상기 하한치보다 적게 함유되는 경우에는 전기저항이 불충분하게 증가하게 되고, 탄산리튬 입자의 함량이 상기 상한치보다 많은 경우에는 구성요소간 결착성 혹은 전기전도성이 부족하게 될 수 있다.
상기 탄산리튬 입자는 예컨대, 구형(sphere), 타원형, 다각형과 같은 형상을 가질 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 [구형], [타원형]은 완전한 [구형], [타원형] 만을 의미하는 것이 아니라, 찌그러진 부분을 포함하거나 통상적으로 용인할 수 있는 수준의 구형, 타원형을 의미하는 폭넓은 의미이다.
상기 탄산리튬 입자는 2종 이상의 입경으로 이루어진 것을 특징으로 한다. 예컨대, 상기 탄산리튬 입자는 입경 범위가 서로 다른 2종 이상의 입경, 즉, 대립자와 소립자로 이루어질 수 있다. 본원 명세서에서 [입경]이라 함은 입도분포곡선에서 중량백분율의 50 %에 해당하는 입경을 의미하는 D50 입경을 의미하는 것으로 이해한다.
탄산리튬 대립자는 3 ㎛ 내지 15 ㎛인 범위의 입경을 갖는 것일 수 있다. 본 발명의 일 실시양태에 있어서, 상기 대립자의 입경(D50)은 상기 범위 내에서 3㎛ 이상 또는 4㎛ 이상 또는 5㎛ 이상일 수 있다. 탄산리튬 대립자 입경이 상기 상한치보다 큰 경우에는 전극 체적이 불필요하게 증가하게 되고, 상기 하한치보다 작은 경우에는 본 발명이 목적한 효과, 즉, 도전재 함량을 감소시켜, 특정 전압에서 발생하는 가스 발생 후에 프라이머층의 도전 경로(path)가 차단되도록 하는 효과를 달성하기가 곤란해진다. 예컨대, 탄산리튬 대립자는 0.4 내지 2.0 m2/g 범위의 BET 비표면적을 가질 수 있다.
한편, 상기 프라이머층은 3 내지 15 ㎛ 범위의 두께를 가질 수 있다.
본원 명세서에서 [BET 비표면적]이라 함은 흡착 가스로 질소를 이용하는 BET 법에 의해 측정한 비표면적을 의미하는 것으로 이해한다.
탄산리튬 소립자는 0.1 ㎛ 이상 3.0 ㎛ 미만 범위의 입경을 갖는 것일 수 있다. 본 발명의 일 실시양태에 있어서, 상기 소립자는 입경이 상기 범위 내에서 2.5㎛ 이하, 2.0 ㎛ 이하 또는 1.5㎛ 이하일 수 있다. 탄산리튬 소립자 입경이 상기 상한치보다 큰 경우에는 과충전 종료 전압에 도달하는 시간이 길어지게 되고, 상기 하한치보다 작은 경우에는 도전재 함량이 증가하게 되어 본 발명의 목적을 달성하기가 곤란하게 되고 또한 리튬이온이 원활하게 이동할 수 있는 기공이 형성되기 곤란하게 된다. 예컨대, 탄산리튬 소립자는 2.0 m2/g 보다 크고 5.0 m2/g 이하인 범위의 BET 비표면적을 가질 수 있다.
상기 탄산리튬 입자는, 탄산리튬 대립자 100 중량부를 기준으로 탄산리튬 소립자 0.1 내지 200 중량부, 바람직하게는 50 내지 150 중량부, 더욱 바람직하게는 80 내지 120 중량부의 양으로 이루어질 수 있다. 탄산리튬 소립자 함량이 상기 상한치보다 많이 포함되는 경우에는 프라이머층에 포함된 입자들의 표면적이 증가하므로 상대적으로 이에 요구되는 도전재의 함량이 감소하는 결과가 발생하여 전지 저항이 증가할 수 있다. 또한, 대립자에 비해서 소립자의 반응 속도가 빠르므로 소립자의 양이 증가할수록 가스화되는 탄산 리튬의 양이 증가하기 때문에 과충전 종료 전압 도달 시점이 앞당겨질 수 있다. 반면, 상기 하한치보다 적게 포함되면 과충전 종료 전압 도달 시점이 지연되는 결과를 초래할 수 있다.
상기 프라이머층은 탄산리튬 입자에 의해 지지되는(sustained) 다공성 구조일 수 있다. 즉, 탄산리튬 입자가 접해있고, 접해있는 탄산리튬 입자 사이에 형성된 공간이 기공으로 작용할 수 있다. 또한, 탄산리튬 소립자는 탄산리튬 대립자가 접하여 형성된 공간, 즉, 인터스티셜 볼륨(interstitial volume)에 들어갈 수 있는 입경 크기를 가질 수 있다. 또는, 탄산리튬 소립자는 탄산리튬 대립자가 접하여 형성된 공간, 즉, 인터스티셜 볼륨(interstitial volume)보다 크지만, 대립자보다 작은 입경 크기를 가질 수 있다.
상기 도전재는 프라이머층을 구성하는 고형분 중 0.1 내지 10 중량%의 양으로 포함될 수 있다. 본 발명에서는 탄산리튬 소립자만으로 사용되는 경우에 비해 필요로 하는 도전재 함량이 감소하게 되므로, 특정 전압에서 발생하는 가스 발생 후에 프라이머층의 도전 경로(path)가 차단될 가능성이 높아지게 된다.
상기 도전재는 흑연계 도전재, 카본 블랙계 도전재, 금속계 또는 금속 화합물계 도전재로 이루어진 군에서 선택되는 적어도 하나일 수 있다. 이 때, 상기 흑연계 도전재는 인조흑연, 천연 흑연 중 적어도 하나, 상기 카본 블랙계 도전재는 아세틸렌 블랙, 케첸 블랙(ketjen black), 덴카 블랙(denka black), 써멀 블랙(thermal black), 채널 블랙(channel black) 중 적어도 하나, 상기 금속계 또는 금속 화합물계 도전재는 주석, 산화주석, 인산주석(SnPO4), 산화티타늄, 티탄산칼륨, LaSrCoO3, LaSrMnO3와 같은 페로브스카이트(perovskite) 물질 중 적어도 하나일 수 있다.
상기 탄산리튬 입자, 도전재 및 바인더 고분자는 유기용매에 분산 또는 용해된 슬러리 상태로 양극 집전체에 도포될 수 있다. 이때, 유기용매 중 고형분, 즉, 탄산리튬 입자, 도전재 및 바인더 고분자의 함량은 용이하게 도포되면서 흘러내리지 않는 점도의 슬러리이면 특별히 제한되지 않는다. 또한, 상기 유기용매로는 N-메틸-2-피롤리돈(NMP), 메톡시 프로필 아세테이트, 부틸 아세테이트, 글리콜에시드, 부틸에스테르, 부틸글리콜, 메틸알킬폴리실록산, 알킬벤젠, 프로필렌글리콜, 크실렌, 모노페닐글리콜, 아랄킬 변성 메틸알킬폴리실록산, 폴리에테르 변성 디메틸폴리실록산 공중합체, 폴리에테르 변성 디메틸폴리실록산 공중합체, 폴리아크릴레이트 용액, 알킬벤젠, 디이소부틸케톤, 유기변성 폴리실록산, 부탄올, 이소부탄올, 변성 폴리아크릴레이트, 변성 폴리우레탄, 및 폴리실록산 변성 폴리머로 이루어진 군에서 선택된 하나 또는 둘 이상의 혼합물이 바람직하게 사용될 수 있다.
상기 양극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만든다 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 양극 활물질층에 포함되는 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1 + xMn2 - xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 - xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2 - xO4 (x = 0.01 ~ 0.6 임)등의 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
한편, 상기 양극 활물질층은, 상기 양극 활물질 외에, 도전재, 바인더 고분자 및 충진제를 더 포함할 수 있다.
여기서, 상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
그리고, 상기 바인더 고분자는 양극 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더 고분자의 예로는, 폴리불화 비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머 (EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
그리고, 상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올레핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
한편, 본 발명의 다른 측면에 따르면, 전술한 리튬이차전지용 양극과, 음극, 분리막, 및 리튬염 함유 비수 전해액으로 구성된 리튬이차전지가 제공된다.
상기 음극은, 음극 집전체 상에, 음극 활물질을 포함하는 음극 활물질 슬러리를 도포, 건조 및 프레싱하여 제조되며, 필요에 따라 전술한 바와 같은 도전재, 바인더 고분자, 충진제 등이 선택적으로 더 포함될 수 있다.
상기 음극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질은, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), AuxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤ y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; AuO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 사용할 수 있다.
하나의 예에서, 상기 음극 활물질로 리튬 티타늄 산화물(LTO)을 사용하는 경우, LTO 자체의 전자 전도도가 낮으므로 상기와 같은 전극 구조가 바람직하다. 또한, 이 경우, LTO의 높은 전위로 인하여 상대적으로 고전위를 가지는 LiNixMn2 - xO4(x = 0.01 ~ 0.6 임)의 스피넬 리튬 망간 복합 산화물을 양극 활물질로 사용하는 것이 바람직하다.
또한, 상기 리튬이차전지는 상기 양극과 음극 사이에 분리막이 개재된 구조의 전극조립체에 리튬염 함유 전해액이 함침되어 있는 구조로 이루어진다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬염 함유 전해액은 전해액과 리튬염으로 이루어져 있으며, 상기 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
하나의 바람직한 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수계 전해질을 제조할 수 있다.
본 발명은 또한, 상기 리튬이차전지를 단위전지로 포함하는 전지모듈을 제공하고, 상기 전지모듈을 포함하는 전지팩을 제공한다.
상기 전지팩은 고온 안정성 및 긴 사이클 특성과 높은 레이트 특성 등이 요구되는 중대형 디바이스의 전원으로 사용될 수 있다.
상기 중대형 디바이스의 바람직한 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하에서는 실시예를 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
실시예 1
바인더 고분자인 폴리비닐리덴 플루오라이드 2g을 N-메틸 피롤리돈에 용해시키고, 이어서, 입경이 2.0 ㎛인 탄산리튬 소립자 50 g과 입경이 5.0 ㎛인 탄산리튬 대립자 50 g로 구성되는 탄산리튬(Li2CO3) 입자, 도전재인 Super-P 4 g을 첨가하여 프라이머층 형성을 위한 슬러리를 준비하였다. 알루미늄 양극 집전체 상에 상기 슬러리를 코팅한 후, 120 ℃의 진공오븐에서 건조하여 0.03 g/cm2 로딩량이 되도록 프라이머층을 형성시켰다. 형성된 프라이머층은 9 ㎛ 두께를 가졌다.
도 3은 본 실시예에서 형성된 프라이머층의 단면을 보여주는 SEM 사진이다. 도 3을 참조하면, 상기 프라이머층은 상기 탄산리튬 입자 사이에 형성된 공간이 기공으로 작용하는 다공성 구조임을 알 수 있다.
이어서, 대략 15 ~ 20 ㎛의 D50을 가진 LiCoO2 양극 활물질, 도전재인 Super P 및 바인더 고분자인 폴리비닐리덴 플루오라이드(polyvinylidene fluoride)를 중량비 92:4:4으로 혼합한 후, NMP(N-methyl pyrrolidone)를 첨가하여 양극 활물질 슬러리를 제조하였다. 이렇게 제조된 양극 활물질 슬러리를 상기 프라이머층이 형성된 알루미늄 양극 집전체 상에 도포한 후, 120℃의 진공오븐에서 건조하여 양극 집전체, 양극 활물질층, 및 상기 양극 집전체와 상기 양극 활물질층 사이에 형성되어 있는 프라이머층을 포함하는 양극을 제조하였다.
한편, MCMB(mesocarbon microbead)를 음극 활물질로 사용하고, 도전재로는 super P 및 바인더로는 PVdF를 각각 사용하여 92:2:6의 비율(중량비)로 혼합하고, NMP에 분산시켜 음극 활물질 슬러리를 제조한 후, 구리 호일 집전체에 상기 슬러리를 도포한 후, 건조하여 음극을 제조하였다.
이렇게 제조된 양극과 음극 사이에 폴리에틸렌 분리막을 사용하여 전극조립체를 제조하였다. 상기 전극조립체를 파우치형 케이스에 넣고 전극리드를 연결한 후, 1 M의 LiPF6이 녹아있는 부피비 1:1의 에틸렌카보네이트(EC)와 디메틸카보네이트(DMC) 용액을 전해질로 주입한 다음, 밀봉하여 리튬이차전지를 조립하였다.
비교예 1
프라이머층 형성용 슬러리 제조 시, 2종의 탄산리튬 입자를 사용하는 대신, 대립경 탄산리튬, 즉, 입경이 5.0 ㎛인 탄산리튬 입자 100 g을 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 양극 및 리튬이차전지를 제조하였다.
도 4는 본 비교예 1에서 형성된 프라이머층의 단면을 보여주는 SEM 사진이다.
비교예 2
프라이머층 형성용 슬러리 제조 시, 2종의 탄산리튬 입자를 사용하는 대신, 소립경 탄산리튬, 즉, 입경이 2.0 ㎛인 탄산리튬 입자 100 g을 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 양극 및 리튬이차전지를 제조하였다.
도 5는 본 비교예 2에서 형성된 프라이머층의 단면을 보여주는 SEM 사진이다.
평가예 1: 과충전 평가 결과
특정 전압에 도달시 가스(gas)를 발생시키는 프라이머층에 의해 과충전 상황 발생시 프라이머층의 가스 발생에 의해 저항이 증가하며, 이로 인해 과전압이 걸려 과충전 종료 전압인 6.4 V에 도달하게 된다. 기본적으로 프라이머층의 도전재 절대량이 적을수록 가스 발생시 도전 경로(path)가 차단될 확률이 증가하며 이로 인해 과충전 종료 전압에 이른(earlier) 시간에 도달할 수 있다. 하지만, 이러한 경우에 결론적으로 전지의 저항이 증가하는 문제가 발생한다. 이를 해결하기 위해 프라이머층에 가스 발생 물질을 바이모달 타입(bimodal type)으로 구현함으로써 도전재 절대량을 줄이면서도 안전한 영역에서 과충전 종료 전압에 도달하면서도 프라이머층이 없는 전지와 동등 수준의 DC 저항을 갖는 전지를 구현할 수 있다.
과충전 실험은 2가지 스텝(step)으로 진행하였다. 먼저, 상온(25 ℃) 및 상압에서 CC/CV를 0.33 C/4.25 V로 하여 SOC 100 상태를 만들었으며, 이 때 cut-off 전류는 0.05 C 이었다 (제1 스텝: SOC 100 setting). 이어서, 과충전 테스트를 위해 상온 및 상압에서 CC (1C-rate)로 SOC 100부터 충전을 시작하고, 1시간 또는 최대 전압의 1.5배가 되어 과충전시 종료하는 조건이었다 (제2 스텝: 과충전). 시험편 크기는 제한이 없었다.
도 6은 실시예 1 및 비교예 1, 2에 따라 제조된 리튬이차전지의 과충전 실험 결과를 나타낸 그래프이다.
실시예 1의 경우가 과충전 종료전압 도달 시점이 가장 빨랐음을 알 수 있다.
평가예 2: 과충전시 부피 변화량 및 가스 발생량 측정 결과
과충전 전/후 전지의 부피 변화량과, 과충전 종료 전압 도달 시점에서의 가스 발생량을 측정하여 도 7 및 표 1에 나타내었다.
이때, 상기 과충전 전/후 전지의 부피 변화량은, 과충전 전, 후의 전지 무게를 수조 내에 있는 저울을 통해 측정한 값과, 수조 내의 물의 부피 변화량 값을 이용하여 계산할 수 있었다. 과충전 전, 후의 전지 질량은 동일하지만, 과충전 후의 전지 내부에 가스가 발생해 있는 상태이므로, 수조 내에서 전지의 무게를 측정하게 되면, 부력의 영향으로 과충전 전의 전지의 무게보다 다소 감소하게 되며, 그 전지의 무게 차이 및 수조 내의 물의 부피 변화량 값을 이용하면, 전지의 부피 변화량을 측정할 수 있다. 전지가 수조 내의 물에 잠길 때에는 전지 내부로 물이 스며들지 않도록 전지 외부를 꼼꼼히 테이핑하였다.
한편, 상기 가스 발생량은 가스 크로마토그래피 분석을 통해 측정하였고, CO 및 CO2 가스의 발생량을 측정하여 나타낸 것이다.
실시예 1 비교예 1 비교예 2
부피 변화량(ml) 1.151 0.956 1.008
가스 발생량(㎕) CO 708 474 654
CO2 1,780 951 1,220
CO + CO2 2,488 1,425 1,874
평가예 3: 양극 및 전지 저항 측정 결과
도 8은 실시예 1 및 비교예 1, 2에 따라 제조된 양극의 프라이머층의 계면 저항을 측정하여 나타낸 그래프이고, 도 9는 실시예 1 및 비교예 1, 2에 따라 제조된 리튬이차전지의 저항을 측정하여 나타낸 그래프이다.
양극의 프라이머층의 계면 저항은 전극 저항 측정기(제조사: HIOKI, 모델명: XF-074)를 이용하여 측정하였고, 측정 결과, 실시예의 저항 값이 가장 낮았음을 확인할 수 있었다.
그리고, 리튬이차전지의 저항 측정을 위해, SOC50%의 상태에서 3C-rate의 전류로 10 s 방전을 진행하였고, 이때의 전압 변화량으로부터 전지의 DC 저항 값을 계산할 수 있었다. 그 결과, 실시예 1의 경우가 비교예들에 비해 저항 값이 낮았음을 확인할 수 있었다.
이상 설명한 바와 같이, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형의 실시가 가능한 것은 물론이고, 그와 같은 변경은 특허청구범위 기재의 범위 내에 있게 된다.

Claims (9)

  1. 양극 집전체; 양극 활물질층; 및 상기 양극 집전체와 상기 양극 활물질층 사이에 형성되어 있는 프라이머층;을 포함하고,
    상기 프라이머층이 입경 범위가 서로 다른 2종 이상의 입경(D50)을 갖는 탄산리튬(Li2CO3) 입자, 바인더 고분자 및 도전재를 포함하는 리튬이차전지용 양극.
  2. 제1항에 있어서,
    상기 탄산리튬 입자는 상기 프라이머층을 구성하는 고형분 중 90 내지 99.9 중량%의 양으로 포함되는 것을 특징으로 하는 리튬이차전지용 양극.
  3. 제1항에 있어서,
    상기 탄산리튬 입자가 탄산리튬 대립자와 탄산리튬 소립자로 이루어진 것을 특징으로 하는 리튬이차전지용 양극.
  4. 제3항에 있어서,
    상기 탄산리튬 대립자는 3 ㎛ 내지 15 ㎛ 범위의 입경을 갖고, 상기 탄산리튬 소립자는 0.1 ㎛ 이상 3 ㎛ 미만 범위의 입경을 갖는 것을 특징으로 하는 리튬이차전지용 양극.
  5. 제3항에 있어서,
    상기 탄산리튬 입자는, 상기 탄산리튬 대립자 100 중량부를 기준으로 상기 탄산리튬 소립자 80 내지 120 중량부의 양으로 이루어진 것을 특징으로 하는 리튬이차전지용 양극.
  6. 제1항에 있어서,
    상기 프라이머층은 두께가 3㎛ 내지 15㎛인 것인, 리튬이차전지용 양극.
  7. 제1항에 있어서,
    상기 프라이머층에서, 상기 탄산리튬 입자 사이에 형성된 공간이 기공으로 작용하는 것을 특징으로 하는 리튬이차전지용 양극.
  8. 제1항에 있어서,
    상기 프라이머층이 다공성인 것을 특징으로 하는 리튬이차전지용 양극.
  9. 제1항 내지 제8항 중 어느 한 항에 기재된 리튬이차전지용 양극을 포함하는 리튬이차전지.
PCT/KR2018/008484 2017-07-26 2018-07-26 리튬이차전지용 양극 및 이를 포함하는 리튬이차전지 WO2019022541A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18839320.1A EP3573147B1 (en) 2017-07-26 2018-07-26 Positive electrode for lithium secondary battery and lithium secondary battery including same
US16/481,667 US10868294B2 (en) 2017-07-26 2018-07-26 Positive electrode for lithium secondary battery and lithium secondary battery including same
CN201880008707.3A CN110226250B (zh) 2017-07-26 2018-07-26 锂二次电池用正极和包含该正极的锂二次电池
PL18839320T PL3573147T3 (pl) 2017-07-26 2018-07-26 Elektroda dodatnia do litowej baterii akumulatorowej i zawierająca ją litowa bateria akumulatorowa

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170094550 2017-07-26
KR10-2017-0094550 2017-07-26
KR1020180086694A KR102160572B1 (ko) 2017-07-26 2018-07-25 리튬이차전지용 양극 및 이를 포함하는 리튬이차전지
KR10-2018-0086694 2018-07-25

Publications (2)

Publication Number Publication Date
WO2019022541A2 true WO2019022541A2 (ko) 2019-01-31
WO2019022541A3 WO2019022541A3 (ko) 2019-04-25

Family

ID=65039775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008484 WO2019022541A2 (ko) 2017-07-26 2018-07-26 리튬이차전지용 양극 및 이를 포함하는 리튬이차전지

Country Status (2)

Country Link
CN (1) CN110226250B (ko)
WO (1) WO2019022541A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021023135A1 (zh) * 2019-08-08 2021-02-11 宁德时代新能源科技股份有限公司 正极极片及其相关的电化学储能装置和设备
CN113130972A (zh) * 2020-01-16 2021-07-16 微宏动力系统(湖州)有限公司 一种锂离子电池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284503B (zh) * 2021-11-09 2024-05-14 浙江南都电源动力股份有限公司 一种锂电池正极集流体、电池及制备方法
CN114864948A (zh) * 2022-07-06 2022-08-05 宁德新能源科技有限公司 一种电化学装置及用电装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170094550A (ko) 2013-03-21 2017-08-18 히타치 오토모티브 시스템즈 스티어링 가부시키가이샤 파워 스티어링 장치
KR20180086694A (ko) 2017-01-23 2018-08-01 이노6 주식회사 히터 블록 및 이를 포함하는 기판 지지 장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101222345B1 (ko) * 2006-03-03 2013-01-14 삼성에스디아이 주식회사 리튬 이차전지용 전극조립체 및 이를 이용한 리튬 이차전지
KR101201044B1 (ko) * 2006-04-27 2012-11-14 삼성에스디아이 주식회사 양극판과 이를 이용한 리튬 이차전지 및 양극판 제조방법
JP4636341B2 (ja) * 2008-04-17 2011-02-23 トヨタ自動車株式会社 リチウム二次電池およびその製造方法
US8658312B2 (en) * 2010-03-31 2014-02-25 Panasonic Corporation Positive electrode for lithium ion battery, fabrication method thereof, and lithium ion battery using the same
CN102176519A (zh) * 2011-03-02 2011-09-07 湖南美特新材料科技有限公司 亚微米级碳酸锂的制备方法、碳酸锂粉末及其应用
CN105810885B (zh) * 2016-04-27 2018-08-21 宁德时代新能源科技股份有限公司 一种正极极片及锂离子电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170094550A (ko) 2013-03-21 2017-08-18 히타치 오토모티브 시스템즈 스티어링 가부시키가이샤 파워 스티어링 장치
KR20180086694A (ko) 2017-01-23 2018-08-01 이노6 주식회사 히터 블록 및 이를 포함하는 기판 지지 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021023135A1 (zh) * 2019-08-08 2021-02-11 宁德时代新能源科技股份有限公司 正极极片及其相关的电化学储能装置和设备
CN113130972A (zh) * 2020-01-16 2021-07-16 微宏动力系统(湖州)有限公司 一种锂离子电池

Also Published As

Publication number Publication date
WO2019022541A3 (ko) 2019-04-25
CN110226250B (zh) 2022-05-17
CN110226250A (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
WO2018212453A1 (ko) 이차전지용 실리콘 산화물 음극의 전리튬화 방법
WO2016148383A1 (ko) 다층 구조 전극 및 이를 포함하는 리튬 이차전지
WO2010093219A2 (ko) 에너지 밀도가 향상된 리튬이차전지
WO2016089099A1 (ko) 저온 성능이 향상된 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2017171425A1 (ko) 리튬 코발트 산화물을 포함하는 코어 및 붕소와 불소를 포함하는 코팅층을 포함하는 양극 활물질 입자 및 이의 제조 방법
WO2015053478A1 (ko) 규소계 화합물을 포함하는 이차전지
WO2015102139A1 (ko) 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2014073833A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 이차전지
WO2015102140A1 (ko) 이차전지용 음극 및 이를 포함하는 리튬 이차전지
KR101717220B1 (ko) 둘 이상의 집전체를 구비하는 이차전지용 전극 및 이를 포함하는 리튬 이차전지
WO2013157863A1 (ko) 전극 및 이를 포함하는 이차전지
WO2019022541A2 (ko) 리튬이차전지용 양극 및 이를 포함하는 리튬이차전지
WO2015005694A1 (ko) 전지 수명을 향상시키는 전극 및 이를 포함하는 리튬 이차전지
WO2013157867A1 (ko) 레이트 특성이 향상된 리튬 이차전지
WO2013157832A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2013157854A1 (ko) 성능이 우수한 리튬 이차전지
WO2020071814A1 (ko) 실리콘계 화합물을 포함하는 다층 구조 음극 및 이를 포함하는 리튬 이차전지
WO2016209014A1 (ko) 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지
WO2019221410A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2015016568A1 (ko) 안전성이 강화된 리튬 이차전지
WO2013157862A1 (ko) 전극조립체 및 이를 포함하는 리튬 이차전지
WO2015012625A1 (ko) 가교화 화합물 입자 및 이를 포함하는 이차전지
KR102160572B1 (ko) 리튬이차전지용 양극 및 이를 포함하는 리튬이차전지
WO2017061807A1 (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
WO2019017617A1 (ko) 집전체가 없는 전극 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839320

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2018839320

Country of ref document: EP

Effective date: 20190822

NENP Non-entry into the national phase

Ref country code: DE