WO2014034215A1 - フィルタ装置及びデュプレクサ - Google Patents

フィルタ装置及びデュプレクサ Download PDF

Info

Publication number
WO2014034215A1
WO2014034215A1 PCT/JP2013/065584 JP2013065584W WO2014034215A1 WO 2014034215 A1 WO2014034215 A1 WO 2014034215A1 JP 2013065584 W JP2013065584 W JP 2013065584W WO 2014034215 A1 WO2014034215 A1 WO 2014034215A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
acoustic wave
idt
wave filter
transversal
Prior art date
Application number
PCT/JP2013/065584
Other languages
English (en)
French (fr)
Inventor
幸一郎 川崎
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201390000721.1U priority Critical patent/CN204578493U/zh
Priority to JP2014532841A priority patent/JP6033311B2/ja
Publication of WO2014034215A1 publication Critical patent/WO2014034215A1/ja
Priority to US14/630,845 priority patent/US9628049B2/en
Priority to US15/452,825 priority patent/US10063213B2/en
Priority to US16/049,859 priority patent/US10622968B2/en
Priority to US16/814,047 priority patent/US10868517B2/en
Priority to US17/095,782 priority patent/US11881843B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14547Fan shaped; Tilted; Shifted; Slanted; Tapered; Arched; Stepped finger transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14552Transducers of particular shape or position comprising split fingers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14558Slanted, tapered or fan shaped transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/205Constructional features of resonators consisting of piezoelectric or electrostrictive material having multiple resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers

Definitions

  • the present invention relates to a filter device in which delay elements are connected in parallel to a bandpass filter, and a duplexer provided with the filter device.
  • Patent Document 1 discloses a filter device in which a delay element is connected in parallel to a main filter.
  • the delay elements have characteristics in which the amplitude characteristics are substantially equal at a desired frequency within the attenuation range of the main filter, and the phases differ by (2n-1) ⁇ (n is a positive integer). Thereby, it is possible to cancel the direct wave at the desired frequency and increase the attenuation at the frequency.
  • the delay element is constituted by a surface acoustic wave (SAW) filter such as a transversal type.
  • SAW surface acoustic wave
  • An object of the present invention is to provide a filter device capable of expanding a frequency range in which attenuation is desired to be expanded outside the passband, and a duplexer having the filter device.
  • the filter device of the present invention is connected in parallel to a bandpass filter and the bandpass filter, and has the characteristics that the amplitude characteristics are equal and the phases are opposite at a desired frequency within the attenuation region of the bandpass filter. Having a delay element.
  • the delay element is composed of a transversal elastic wave filter having a first IDT and a second IDT, and the distance between the first IDT and the second IDT is determined by the electrode finger period of the IDT.
  • the fixed wavelength is ⁇ , it is set to 12 ⁇ or less.
  • the transversal acoustic wave filter is a transversal acoustic wave filter having a tilted IDT (Slanted Finger Interdigital Transducer).
  • IDT Siliconted Finger Interdigital Transducer
  • the delay element includes a plurality of the transversal acoustic wave filters, and the electrode finger pitch in at least one transversal acoustic wave filter remains. This is different from the electrode finger pitch of the transversal type elastic wave filter. In this case, the number of frequency bands in which the attenuation amount increases can be increased, and the frequency range in which the attenuation amount is desired to be expanded can be further expanded.
  • a distance between the first IDT and the second IDT is 6 ⁇ or less.
  • the frequency range in which the attenuation amount is desired to be expanded can be further expanded.
  • the duplexer according to the present invention is a duplexer having a first terminal connected to an antenna, a transmission terminal, and a reception terminal, and is connected between the first terminal and the transmission terminal or the reception terminal.
  • a first filter unit comprising a filter device configured according to the present invention, and connected between the first terminal and the reception terminal or the transmission terminal, the first filter unit and the passband Are provided with different second filter units.
  • the filter device of the present invention since the distance between the IDTs is 12 ⁇ or less in the delay element composed of the transversal type acoustic wave filter, the amount of attenuation can be increased at a desired frequency in the attenuation region. Moreover, it is possible to effectively widen the frequency range in which the attenuation can be increased.
  • FIG. 1A is a schematic block diagram showing a duplexer according to a first embodiment of the present invention
  • FIG. 1B is a transversal acoustic wave filter used in the first embodiment
  • FIG. 1 2 is a diagram illustrating the amplitude characteristics of the transversal elastic wave filter used in the first embodiment and the amplitude characteristics of the capacitance of the bandpass filter.
  • FIG. 3 is a diagram illustrating the phase characteristics of the transversal acoustic wave filter used in the first embodiment and the phase characteristics of the capacity of the bandpass filter.
  • FIG. 4 is a diagram illustrating transmission characteristics and reception characteristics of the duplexer according to the first embodiment, and transmission characteristics and reception characteristics of a duplexer of a comparative example in which no delay element is connected.
  • FIG. 1B is a transversal acoustic wave filter used in the first embodiment.
  • FIG. 2 is a diagram illustrating the amplitude characteristics of the transversal elastic wave filter used in the first embodiment and the amplitude characteristics
  • FIG. 5 is a diagram illustrating transmission characteristics in the duplexer of the first embodiment and transmission characteristics in the duplexer of the comparative example.
  • FIG. 6 is a diagram illustrating reception characteristics of the duplexer of the first embodiment and reception characteristics of the duplexer of the comparative example.
  • FIG. 7 is a diagram showing a transmission waveform and a reception waveform when the distance between IDTs of the transversal elastic wave filter is 0.5 ⁇ , 5.6 ⁇ , and 10.7 ⁇ in the first embodiment of the present invention.
  • FIG. 8 is a diagram illustrating transmission waveforms when the distance between IDTs of the transversal acoustic wave filter is 0.5 ⁇ , 5.6 ⁇ , and 10.7 ⁇ in the first embodiment.
  • FIG. 8 is a diagram illustrating transmission waveforms when the distance between IDTs of the transversal acoustic wave filter is 0.5 ⁇ , 5.6 ⁇ , and 10.7 ⁇ in the first embodiment.
  • FIG. 9 is a diagram showing received waveforms when the distance between IDTs of the transversal acoustic wave filter is 0.5 ⁇ , 5.6 ⁇ , and 10.7 ⁇ in the first embodiment.
  • FIG. 10 is a diagram illustrating the relationship between the distance between IDTs and the frequency range in which out-of-band attenuation can be increased.
  • FIG. 11 is a plan view schematically showing the structure of a transversal acoustic wave filter used in the second embodiment of the present invention.
  • FIG. 12 is a diagram illustrating amplitude characteristics of the transversal acoustic wave filter used in the first embodiment and the transversal acoustic wave filter used in the second embodiment.
  • FIG. 13 is a diagram illustrating phase characteristics of the transversal acoustic wave filter used in the first embodiment and the transversal acoustic wave filter used in the second embodiment.
  • FIG. 14 is a diagram illustrating an attenuation frequency characteristic of a transmission filter in a duplexer according to the second embodiment and an attenuation frequency characteristic of a transmission filter of a comparative example in which a transversal elastic wave filter is not connected.
  • FIG. 15 is an enlarged view showing a main part of FIG. FIG. 16 shows that in the second embodiment, when the distance between IDTs is 1.3 ⁇ , there is no inclined structure and the distance between IDTs is 1.3 ⁇ or 10.8 ⁇ . It is a figure which shows each transmission waveform of embodiment by the enlarged scale.
  • FIG. 14 is a diagram illustrating an attenuation frequency characteristic of a transmission filter in a duplexer according to the second embodiment and an attenuation frequency characteristic of a transmission filter of a comparative example in which a transversal elastic
  • FIG. 17 shows that in the second embodiment, when the distance between IDTs is 1.3 ⁇ , there is no inclined structure and the distance between IDTs is 1.3 ⁇ or 10.8 ⁇ . It is a figure which shows each transmission waveform of embodiment by the enlarged scale.
  • FIG. 18 is a diagram illustrating the capacitance amplitude characteristics of the transversal acoustic wave filter and the bandpass filter.
  • FIG. 19 is a diagram illustrating the phase characteristics of the capacitances of the transversal acoustic wave filter and the band-pass filter.
  • FIG. 18 and 19 are diagrams for explaining problems in the conventional filter device.
  • FIG. 18 is a diagram illustrating amplitude characteristics when a band-pass filter and a transversal surface acoustic wave filter having a distance of 10.6 ⁇ between IDTs are connected in parallel.
  • FIG. 19 shows phase characteristics. 18 and 19 are diagrams showing the attenuation amount and phase of the capacity of the band-pass filter.
  • the frequency interval at which the phase characteristics of the bandpass filter, that is, the capacitance, and the phase characteristics of the transversal type acoustic wave filter are in opposite phases is very narrow.
  • the phase of the capacitance is approximately 90 °
  • the frequency at which the transversal acoustic wave filter has a phase of ⁇ 90 ° corresponding to the opposite phase is 710 MHz.
  • the frequency range in which the phase of the elastic wave filter falls within the range of ⁇ 90 ° ⁇ 30 ° is 706 MHz to 714 MHz. That is, the frequency range is only 8 MHz.
  • the wavelength of the high-frequency signal propagated by the stray capacitance is several meters to several centimeters when the frequency is several hundred MHz to several GHz, and the propagation distance of the high-frequency signal propagated by the stray capacitance is several ⁇ m to several mm. Therefore, the wavelength of the high-frequency signal is sufficiently larger than the propagation distance of the signal propagating by the stray capacitance. Therefore, the phase change is extremely small with respect to the frequency change.
  • the sound speed of the transversal surface acoustic wave filter is as slow as about 3000 to 4000 m / sec.
  • the wavelength of the high-frequency signal propagated by the surface wave is several ⁇ m if the frequency is several hundred MHz to several GHz, and the propagation distance of the surface wave is several ⁇ m to several mm. Therefore, it cannot be said that the wavelength of the high-frequency signal is sufficiently larger than the propagation distance. Therefore, the phase change is large with respect to the frequency change as described above. Increasing the distance between IDTs further increases the phase change with respect to frequency. Therefore, if the distance between IDTs is increased, it is difficult to improve the attenuation over a wide frequency range.
  • the frequency range in which the attenuation can be improved can be expanded.
  • FIG. 1A is a schematic block diagram showing a duplexer according to the first embodiment of the present invention.
  • the duplexer 1 has an antenna terminal 3 connected to the antenna 2.
  • a common connection terminal 4 is connected to the antenna terminal 3.
  • a matching inductor 5 is connected between the common connection terminal 4 and the ground potential.
  • the common connection terminal 4 is connected with a transmission filter including a filter device 7 as an embodiment of the present invention and a reception filter 8.
  • the filter device 7 has a signal terminal 6 and a transmission terminal 9. A transmission signal is input from the transmission terminal 9.
  • the filter device 7 includes a band-pass filter 10 formed of a ladder filter having a plurality of series arm resonators S1 to S5 and a plurality of parallel arm resonators P1 to P3.
  • a transversal surface acoustic wave filter 11 is connected in parallel to the bandpass filter 10 as a delay element.
  • the reception filter 8 is connected to the common connection terminal 4.
  • the reception filter 8 has reception terminals 12 and 13.
  • the reception filter 8 includes an appropriate bandpass filter circuit such as a longitudinally coupled resonator type elastic wave filter.
  • the feature of this embodiment is that the distance between the IDTs of the transversal surface acoustic wave filter 11 is narrowed to 12 ⁇ or less, and the surface acoustic wave filter 11 has a band at a desired frequency outside the band of the bandpass filter 10. It has the same amplitude and opposite phase as the pass filter 10. As a result, the out-of-band attenuation can be expanded at a desired frequency, and the frequency range in which the out-of-band attenuation is large can be expanded.
  • the transversal surface acoustic wave filter 11 has a structure in which first and second IDTs 15 and 16 are formed on a piezoelectric substrate 14.
  • the inter-IDT distance between the electrode ID centers between the first IDT 15 and the second IDT 16 is narrowed to 12 ⁇ or less.
  • the ladder type filter using a surface acoustic wave resonator as the band pass filter 10 was used.
  • a surface acoustic wave filter was also used for the reception filter 8.
  • a piezoelectric substrate made of 42 ° Y-cut X-propagating LiTaO 3 was used as the piezoelectric substrate 14.
  • the band-pass filter 10 and the reception filter 8 having the above-described circuit configuration were formed on the piezoelectric substrate 14.
  • the first and second IDTs 15 and 16 were formed on the piezoelectric substrate 14 to form the surface acoustic wave filter 11.
  • the surface acoustic wave filter 11 was configured as follows.
  • the number of pairs of electrode fingers of the first IDT 15 is 3, and the number of pairs of electrode fingers of the second IDT 16 is 15.
  • the intersection width of the first and second IDTs 15 and 16 is 60 ⁇ m, and the wavelength ⁇ determined by the electrode finger period is It was set to 5.5 ⁇ m.
  • the distance between the first and second IDTs 15 and 16 was 0.5 ⁇ .
  • 2 indicates the amplitude characteristics of the surface acoustic wave filter 11
  • the solid line in FIG. 3 indicates the phase characteristics.
  • 2 and 3 indicate the amplitude characteristic and the phase characteristic of the capacitance of 0.001 pF that imitates the band-pass filter 10.
  • the frequency range in which the phase characteristics of the capacitance of the bandpass filter 10 and the phase characteristics of the surface acoustic wave filter 11 are in opposite phases is shown in FIGS.
  • the amplitude characteristics and the phase characteristics shown in FIG. For example, in FIG. 3, the surface acoustic wave filter 11 has a phase opposite to that of the bandpass filter 10, that is, the frequency at which the phase is ⁇ 90 ° is 744 MHz.
  • the frequency at which the phase of the surface acoustic wave filter 11 becomes ⁇ 90 ° ⁇ 30 ° is 736 MHz to 753 MHz, and the frequency range is about 17 MHz.
  • the phase of the surface acoustic wave filter 11 is ⁇ 90 ° ⁇ 30 ° in a frequency range more than twice the frequency range of 8 MHz in the case of the configuration shown in FIG. Therefore, it can be seen that the frequency range of the same amplitude and opposite phase can be expanded.
  • the interval between the first IDT 15 and the second IDT 16 is set as small as 0.5 ⁇ . Therefore, the phase change due to the frequency of the surface acoustic wave filter 11 is small. Therefore, the phase characteristic of the band pass filter 10 and the phase of the surface acoustic wave filter 11 are maintained in a state close to an opposite phase in a wide frequency range. Therefore, according to the present embodiment, the attenuation can be expanded in a wide frequency range.
  • the same amplitude means not only when the amplitude of the bandpass filter is equal to the amplitude of the elastic wave filter, but also when the bandpass filter is connected to the elastic wave filter.
  • Patent Document 1 the state of the same amplitude defined in the present invention is obtained, and the amount of attenuation can be increased.
  • the amplitude of the signal of the bandpass filter 10 and the amplitude of the signal of the surface acoustic wave filter 11 are not limited to the same, but are within the same amplitude range described above including the amplitudes of the same signals. Good.
  • the antiphase is not limited to the case where the phase of the bandpass filter 10 and the surface acoustic wave filter 11 are completely opposite.
  • the difference between the phase of the bandpass filter 10 and the phase of the surface acoustic wave filter 11 may be in the range of 180 ° ⁇ 30 °.
  • FIG. 4 indicate the transmission waveform Tx and the reception waveform Rx in the duplexer 1, respectively.
  • a solid line and a two-dot chain line indicate a transmission waveform and a reception waveform in a duplexer to which the surface acoustic wave filter 11 is not connected, respectively.
  • FIG. 5 is a diagram showing the transmission waveform in the duplexer in FIG. 4 and the transmission waveform of the comparative example.
  • FIG. 6 is a diagram showing the isolation characteristics of the duplexer in FIG. 4 and the isolation characteristics of the comparative example. 5 and 6, broken lines A and B indicate the results of the embodiment, and solid lines indicate the results of the comparative example.
  • the attenuation amount of the transmission filter can be improved in the reception band Fx in FIGS. That is, it can be seen that the attenuation in the reception band Fx of 746 MHz to 756 MHz can be increased by about 8 dB in the transmission waveform indicated by the broken line A compared to the transmission waveform indicated by the solid line.
  • the attenuation of isolation in the reception band Fx can be expanded. Specifically, it can be seen that the isolation attenuation shown in FIG. 6 can be increased by about 10 dB at a frequency of 746 MHz, which is the lower side of the reception band Fx.
  • the IDT distance between the first IDT and the second IDT is narrowed to 0.5 ⁇ , it is possible to effectively increase the attenuation in the reception band Fx. it can.
  • FIG. 7 to FIG. 9 are diagrams showing characteristics when the distance between IDTs is 0.5 ⁇ as described above, 5.6 ⁇ , and 10.7 ⁇ in the above embodiment. .
  • FIG. 7 is a diagram in which the transmission waveform Tx and the reception waveform Rx are superimposed
  • FIG. 8 is a diagram illustrating a transmission waveform
  • FIG. 9 is a diagram illustrating an isolation waveform.
  • the attenuation in the reception band Fx can be increased more effectively.
  • the frequency range in which the attenuation in the reception band Fx is improved by 3 dB or more is 2 MHz from 746 MHz to 748 MHz.
  • the frequency range in which the attenuation in the reception band Fx is improved by 3 dB or more is 746 MHz to 750.5 MHz and 4.5 MHz. Therefore, it can be seen that the frequency range in which the attenuation can be increased can be expanded as compared with the comparative example described above.
  • FIG. 10 shows the relationship between the frequency range in which the attenuation in the vicinity of the attenuation band Fx when the distance between the IDTs is changed is 3 dB or more and the distance between the IDTs in the first embodiment as compared to the case where the distance between the IDTs is not the embodiment.
  • FIG. 10 shows that when the distance between IDTs is larger than 12 ⁇ , the frequency band in which the attenuation can be improved by 3 dB or more is narrower to about 2 MHz than in the case of the embodiment, and hardly changes.
  • the frequency band that can be improved by 3 dB or more can be made wider than 2 MHz. Therefore, it can be seen that the frequency band that can be improved can be widened as the distance between the IDTs is reduced.
  • the distance between IDTs is 12 ⁇ or less, the frequency range in which attenuation can be expanded can be effectively expanded according to the present invention. Further, it is preferable that if the frequency is 6 ⁇ or less, the frequency range in which the attenuation amount can be expanded can be secured up to 4 MHz or more, and the frequency range in which the attenuation amount can be expanded more effectively can be expanded.
  • the distance between the IDTs is preferably 0.25 ⁇ or more in order to prevent interference between the IDTs.
  • the surface acoustic wave filter 21 shown in FIG. 11 is used instead of the surface acoustic wave filter 11 shown in FIG.
  • the surface acoustic wave filter 21 is a transversal surface acoustic wave filter having an inclined IDT.
  • the surface acoustic wave filter 21 has a piezoelectric substrate 22.
  • a first IDT 23 and a second IDT 24 are provided on the piezoelectric substrate 22.
  • the first IDT 23 extends in an oblique direction in which a plurality of electrode fingers intersect with a direction orthogonal to the surface acoustic wave propagation direction.
  • the second IDT 24 is similarly configured.
  • the electrode finger interval gradually changes from one end side in the width direction of the piezoelectric substrate 22 of the first IDT 23 and the second IDT 24 toward the other end side. In such an inclined surface acoustic wave filter 21, the pass band can be widened.
  • the solid lines in FIGS. 12 and 13 indicate the amplitude characteristics and phase characteristics of the surface acoustic wave filter 11 used in the first embodiment, and the alternate long and short dash lines indicate the amplitude characteristics and phase characteristics of the inclined surface acoustic wave filter 21.
  • the change in phase and the change in amplitude become smaller with respect to the change in frequency. Therefore, by using the inclined surface acoustic wave filter 21, the phase of the bandpass filter 10 and the signal of the surface acoustic wave filter 21 as the delay element are in the same amplitude and close to the opposite phase in a wider frequency range. Kept. Therefore, the frequency range in which the attenuation can be expanded can be further expanded.
  • the duplexer of the second embodiment using the surface acoustic wave filter 21 was constructed, and the frequency characteristics thereof were evaluated.
  • the configuration of the duplexer is the same as that of the first embodiment except that the surface acoustic wave filter 21 is used.
  • the specifications of the surface acoustic wave filter 21 were as follows.
  • Electrode finger crossing width 28 ⁇ m.
  • the inclined transversal surface acoustic wave filter 21 was connected in parallel to a band-pass filter 10 having a ladder circuit configuration with a transmission frequency in the vicinity of 777 MHz to 787 HMz.
  • FIG. 15 shows an enlarged view of the main part of FIG.
  • the attenuation can be increased in the vicinity of 2.5 GHz which is a frequency region higher than 1200 MHz which is the transmission frequency. More specifically, the amount of attenuation in the vicinity of 2.5 GHz was about 53 dB when the surface acoustic wave filter 21 was not connected, but about 60 dB when the surface acoustic wave filter 21 was connected. It became possible to make it bigger.
  • FIGS. 16 and 17 show the attenuation frequency characteristics of the filter devices of the third and fourth embodiments in addition to the attenuation frequency characteristics of the filter device of the second embodiment.
  • the third and fourth embodiments use the surface acoustic wave filter 11 having no inclined structure.
  • the distance between the IDTs of the surface acoustic wave filter is set to 1.3 ⁇ and 10.8 ⁇ , respectively. Others are the same as those of the elastic wave filter of the second embodiment.
  • the maximum value of the attenuation can be increased in the vicinity of 2.5 GHz as compared with the second embodiment.
  • the frequency range in which the attenuation can be expanded is wider in the second embodiment. That is, as shown in FIG. 15, in the second embodiment, the frequency range in which the attenuation amount can be expanded more than the attenuation amount in the vicinity of 2.5 GHz in the case of the band-pass filter 10 alone is 95 MHz.
  • the frequency ranges in which the attenuation can be expanded more than the attenuation in the vicinity of 2.5 GHz in the frequency characteristics of the bandpass filter 10 alone are 45 MHz and 25 MHz, respectively. is there. Therefore, according to the second embodiment, it can be seen that the frequency range in which the attenuation amount at a desired frequency outside the band pass filter 10 can be expanded can be further expanded. This is because, as described above, in the inclined surface acoustic wave filter 21, changes in amplitude and phase with respect to changes in frequency are small.
  • one surface acoustic wave filter 11 is connected to the bandpass filter 10.
  • a plurality of delay elements may be connected to the bandpass filter 10 in parallel. That is, as indicated by a broken line in FIG. 1, a second transversal surface acoustic wave filter 11 ⁇ / b> A may be connected in parallel to the band pass filter 10.
  • the surface acoustic wave filter is used as the elastic wave filter constituting the delay element, but a transversal type boundary acoustic wave filter may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 より広い周波数範囲で帯域外の所望の周波数位置において減衰量を拡大し得るフィルタ装置を提供する。 バンドパスフィルタ10に並列に遅延素子としてトランスバーサル型弾性波フィルタ11が接続されており、該トランスバーサル型弾性波フィルタ11は、バンドパスフィルタ10の減衰域内の所望の周波数において、バンドパスフィルタ10と振幅特性が等しくかつ位相が逆位相である特性を有し、弾性波フィルタ11の第1のIDT15と第2のIDT16との間の距離が、IDT15,16の電極指周期により定まる波長λとしたときに、12λ以下とされている、フィルタ装置。

Description

フィルタ装置及びデュプレクサ
 本発明は、バンドパスフィルタに遅延素子が並列に接続されているフィルタ装置及び該フィルタ装置が備えられたデュプレクサに関する。
 従来、携帯電話機などの移動体通信機に、様々な帯域フィルタが用いられている。携帯電話機等では、複数のチャネルの通過帯域間の周波数幅が小さくなってきている。従って、通過帯域近傍における減衰量の拡大が強く求められている。
 下記の特許文献1には、主たるフィルタに並列に遅延素子が接続されているフィルタ装置が開示されている。遅延素子は、主たるフィルタの減衰域内の所望周波数において振幅特性がほぼ等しく、位相が(2n-1)π(nは正の整数)だけ異なる特性を有している。それによって、所望周波数における直達波を相殺し、該周波数における減衰量を増大させることが可能とされている。
 特許文献1では、上記遅延素子はトランスバーサル型などの弾性表面波(SAW)フィルタにより構成されている。
特開昭62-261211号公報
 しかしながら、特許文献1に記載のフィルタ装置では、減衰量を拡大したい所望の周波数における周波数範囲が狭いという問題があった。本発明の目的は、通過帯域外において減衰量を拡大したい周波数範囲を広げ得るフィルタ装置及び該フィルタ装置を有するデュプレクサを提供することにある。
 本発明のフィルタ装置は、バンドパスフィルタと、前記バンドパスフィルタに並列に接続されており、前記バンドパスフィルタの減衰域内の所望の周波数において、振幅特性が等しく、位相が逆位相である特性を有する遅延素子とを備える。本発明では、遅延素子が、第1のIDTと第2のIDTとを有するトランスバーサル型弾性波フィルタからなり、第1のIDTと第2のIDTとの間の距離がIDTの電極指周期により定まる波長をλとしたときに、12λ以下とされている。
 本発明に係るフィルタ装置のある特定の局面では、前記トランスバーサル型弾性波フィルタが、傾斜型IDT(Slanted Finger Interdigital Transcuder)を有するトランスバーサル型弾性波フィルタである。この場合には、減衰量を拡大したい周波数範囲をより一層広げることができる。
 本発明に係るフィルタ装置の他の特定の局面では、前記遅延素子として、複数の前記トランスバーサル型の弾性波フィルタを有し、少なくとも1つのトランスバーサル型の弾性波フィルタにおける電極指ピッチが、残りのトランスバーサル型の弾性波フィルタの電極指ピッチと異なっている。この場合には、減衰量が大きくなる周波数帯域の数が増加させることができ、減衰量を拡大したい周波数範囲をより一層拡大することができる。
 本発明に係るフィルタ装置のさらに別の特定の局面では、前記第1のIDTと前記第2のIDTとの間の距離が6λ以下である。この場合には、減衰量を拡大したい周波数範囲をより一層広げることができる。
 本発明に係るデュプレクサは、アンテナに接続された第1の端子と、送信端子と、受信端子とを有するデュプレクサであって、前記第1の端子と前記送信端子または受信端子との間で接続されており、本発明に従って構成されたフィルタ装置からなる第1のフィルタ部と、前記第1の端子と前記受信端子または前記送信端子との間に接続されており、第1のフィルタ部と通過帯域が異なる第2のフィルタ部とを備える。
 本発明に係るフィルタ装置によれば、トランスバーサル型弾性波フィルタからなる遅延素子において、IDT間の距離が12λ以下とされているため、減衰域内の所望の周波数において減衰量を拡大することができ、しかも該減衰量を拡大し得る周波数の範囲を効果的に広げることができる。
図1(a)は、本発明の第1の実施形態に係るデュプレクサを示す略図的ブロック図であり、図1(b)は、第1の実施形態で用いられているトランスバーサル型弾性波フィルタの略図的平面図である。 図2は、第1の実施形態で用いられているトランスバーサル型弾性波フィルタの振幅特性と、バンドパスフィルタの容量の振幅特性を示す図である。 図3は、第1の実施形態で用いられているトランスバーサル型弾性波フィルタの位相特性と、バンドパスフィルタの容量の位相特性を示す図である。 図4は、第1の実施形態のデュプレクサの送信特性及び受信特性、並びに遅延素子を接続していない比較例のデュプレクサの送信特性及び受信特性を示す図である。 図5は、第1の実施形態のデュプレクサにおける送信特性と、比較例のデュプレクサにおける送信特性を示す図である。 図6は、第1の実施形態のデュプレクサにおける受信特性と、比較例のデュプレクサにおける受信特性を示す図である。 図7は、本発明の第1の実施形態において、トランスバーサル型弾性波フィルタのIDT間距離を0.5λ、5.6λ及び10.7λとした場合の送信波形及び受信波形を示す図である。 図8は、第1の実施形態において、トランスバーサル型弾性波フィルタのIDT間距離を0.5λ、5.6λ及び10.7λとした場合の各送信波形を示す図である。 図9は、第1の実施形態において、トランスバーサル型弾性波フィルタのIDT間距離を0.5λ、5.6λ及び10.7λとした場合の各受信波形を示す図である。 図10は、IDT間の距離と帯域外減衰量の拡大を図り得る周波数範囲との関係を示す図である。 図11は、本発明の第2の実施形態で用いられるトランスバーサル型弾性波フィルタの構造を模式的に示す平面図である。 図12は、第1の実施形態で用いられているトランスバーサル型弾性波フィルタ及び第2の実施形態で用いられているトランスバーサル型弾性波フィルタの振幅特性を示す図である。 図13は、第1の実施形態で用いられているトランスバーサル型弾性波フィルタ及び第2の実施形態で用いられているトランスバーサル型弾性波フィルタの位相特性を示す図である。 図14は、第2の実施形態に係るデュプレクサにおける送信フィルタの減衰量周波数特性と、トランスバーサル型弾性波フィルタを接続していない比較例の送信フィルタの減衰量周波数特性を示す図である。 図15は、図14の要部を拡大して示す図である。 図16は、第2の実施形態において、IDT間の距離を1.3λとした場合、傾斜構造を有せず、IDT間の距離を1.3λまたは10.8λとした第3及び第4の実施形態の各送信波形を拡大したスケールで示す図である。 図17は、第2の実施形態において、IDT間の距離を1.3λとした場合、傾斜構造を有せず、IDT間の距離を1.3λまたは10.8λとした第3及び第4の実施形態の各送信波形を拡大したスケールで示す図である。 図18は、トランスバーサル型弾性波フィルタ及びバンドパスフィルタの容量の振幅特性を示す図である。 図19は、トランスバーサル型弾性波フィルタ及びバンドパスフィルタの容量の位相特性を示す図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 図18及び図19は従来のフィルタ装置における問題点を説明するための図である。図18は、バンドパスフィルタと、IDT間が距離10.6λであるトランスバーサル型の弾性表面波フィルタとを並列に接続した場合の振幅特性を示す図である。図19は位相特性を示す図である。なお、図18及び図19における一点鎖線はバンドパスフィルタの容量の減衰量及び位相を示す図である。
 図18及び図19から明らかなように、バンドパスフィルタすなわち容量の位相特性と、トランスバーサル型弾性波フィルタの位相特性が逆位相になる周波数間隔は非常に狭い。図18では、容量の位相はほぼ90°であり、トランスバーサル型弾性波フィルタがその逆位相にあたる-90°の位相となる周波数は710MHzである。このとき、弾性波フィルタの位相が-90°±30°の範囲になる周波数範囲は、706MHz~714MHzである。すなわち、周波数範囲は8MHzにすぎない。ここで、バンドパスフィルタの減衰域では浮遊容量が原因で信号伝達が行なわれる。浮遊容量によって伝搬する高周波信号の波長は、周波数が数百MHz~数GHzであれば数m~数cmであり、かつ浮遊容量によって伝搬する高周波信号の伝搬距離が数μm~数mmであることを考えると、浮遊容量によって伝搬する信号の伝搬距離よりも上記高周波信号の波長は十分に大きい。従って、位相変化は周波数変化に対して極めて小さい。これに対して、トランスバーサル型弾性表面波フィルタの音速は約3000~4000m/秒程度と遅い。表面波によって伝搬する高周波信号の波長は、周波数が数百MHz~数GHzであれば数μmであり、かつ表面波の伝搬距離は、大きくとも製品サイズ以下になることを考えると数μm~数mmである。従って、伝搬距離よりも高周波信号の波長が十分に大きいとは言えない。よって、上記のように位相変化が周波数変化に対して大きい。IDT間の距離を大きくすれば、さらに周波数に対して位相変化が大きくなる。従って、IDT間の距離を大きくすれば、広い周波数範囲にわたり減衰量を改善することが困難である。
 これに対して、以下に述べる本発明の各実施形態及び変形例では、減衰量を改善し得る周波数範囲を広げ得ることができる。
 図1(a)は、本発明の第1の実施形態に係るデュプレクサを示す略図的ブロック図である。デュプレクサ1は、アンテナ2に接続されるアンテナ端子3を有する。アンテナ端子3に共通接続端子4が接続されている。共通接続端子4とグラウンド電位との間に整合用インダクタ5が接続されている。共通接続端子4には、本発明の実施形態としてのフィルタ装置7からなる送信フィルタと、受信フィルタ8とが接続されている。フィルタ装置7は、信号端子6と送信端子9とを有する。送信端子9から送信信号が入力される。
 フィルタ装置7は、複数の直列腕共振子S1~S5と複数の並列腕共振子P1~P3とを有するラダー型フィルタからなるバンドパスフィルタ10を有する。バンドパスフィルタ10に並列に遅延素子としてトランスバーサル型の弾性表面波フィルタ11が接続されている。
 他方、受信フィルタ8は、共通接続端子4に接続されている。受信フィルタ8は、受信端子12,13を有する。受信フィルタ8は、縦結合共振子型弾性波フィルタなどの適宜のバンドパスフィルタ回路からなる。
 本実施形態の特徴は、トランスバーサル型の弾性表面波フィルタ11のIDT間の距離が12λ以下と狭くされており、かつ弾性表面波フィルタ11がバンドパスフィルタ10の帯域外の所望の周波数においてバンドパスフィルタ10と同振幅かつ逆位相とされていることにある。それによって、所望の周波数において、帯域外減衰量を拡大することができ、しかも該帯域外減衰量が大きい周波数範囲を広げることが可能とされている。
 図1(b)に示すように、トランスバーサル型の弾性表面波フィルタ11は、圧電基板14上に第1,第2のIDT15,16を形成した構造を有する。第1の実施形態では、第1のIDT15と第2のIDT16との間の電極指中心間距離によるIDT間距離が12λ以下と狭められている。それによって、同振幅・逆位相の関係にある周波数範囲を広げることができる。これを、図2~図9を参照して説明する。
 上記デュプレクサ1を構成するにあたり、バンドパスフィルタ10に弾性表面波共振子を用いた上記ラダー型フィルタとした。受信フィルタ8についても弾性表面波フィルタを用いた。圧電基板14として42°YカットX伝搬LiTaOからなる圧電基板を用いた。この圧電基板14上に前述した回路構成のバンドパスフィルタ10と受信フィルタ8とを構成した。
 上記圧電基板14上に第1,第2のIDT15,16を形成し、弾性表面波フィルタ11を形成した。
 上記弾性表面波フィルタ11は以下のように構成した。
 第1のIDT15の電極指の対数を3対、第2のIDT16の電極指の対数を15対とし、第1,第2のIDT15,16における交差幅は60μm、電極指周期で定まる波長λは5.5μmとした。第1,第2のIDT15,16間の距離は0.5λとした。
 図2の実線は、上記弾性表面波フィルタ11の振幅特性を示し、図3の実線は位相特性を示す。また図2及び図3における一点鎖線は、バンドパスフィルタ10を模した0.001pFの容量の振幅特性及び位相特性を示す。
 図2及び図3を図18及び図19と比較すれば明らかなように、バンドパスフィルタ10の容量の位相特性と弾性表面波フィルタ11の位相特性が逆位相になる周波数範囲は、図18及び図19に示した振幅特性及び位相特性の場合に比べて広がることがわかる。例えば、図3において、弾性表面波フィルタ11がバンドパスフィルタ10の容量と逆位相、すなわち位相が-90°になる周波数は744MHzである。そして、例えば、弾性表面波フィルタ11の位相が-90°±30°になる周波数は736MHz~753MHzであり、周波数範囲は約17MHzである。すなわち、図18に示した構成の場合の8MHzの周波数範囲に対し、2倍以上の周波数範囲において、弾性表面波フィルタ11の位相は-90°±30°となる。従って、同振幅かつ逆位相の周波数範囲を広げ得ることがわかる。
 この理由は以下の通りである。本実施形態では、第1のIDT15と第2のIDT16の間隔が0.5λと小さく設定されている。そのため、弾性表面波フィルタ11の周波数による位相変化が小さくなっている。よって、広い周波数範囲で、バンドパスフィルタ10の位相特性と、弾性表面波フィルタ11の位相とが逆位相に近い状態に保たれる。従って、本実施形態によれば、広い周波数範囲で減衰量を拡大することができる。
 なお、本発明において、同振幅とは、バンドパスフィルタの振幅と、弾性波フィルタの振幅とが等しい場合だけでなく、弾性波フィルタにバンドパスフィルタを接続した場合に、弾性波フィルタの振幅Xと、バンドパスフィルタの振幅Yとが、両フィルタの信号の振幅について10long10X/Y=-5dB~+3dBの範囲内であれば同振幅に含まれるとする。特許文献1に記載のように、本発明で定めた同振幅の状態となり、減衰量の拡大を図り得る。従って、バンドパスフィルタ10の信号の振幅と弾性表面波フィルタ11の信号の振幅とは、両者が等しい場合に限らず、互いに等しい信号の振幅を含む上記で説明した同振幅の範囲内であればよい。
 また、逆位相についても、バンドパスフィルタ10の位相と弾性表面波フィルタ11の位相が全く逆である場合だけに限らない。すなわち、バンドパスフィルタ10の位相と弾性表面波フィルタ11の位相との差が、180°±30°の範囲内であればよい。
 図4の破線A及び破線Bは、それぞれ上記デュプレクサ1における送信波形Txと受信波形Rxとを示す。また、実線及び二点鎖線は、それぞれ弾性表面波フィルタ11を接続していないデュプレクサにおける送信波形と受信波形とを示す。図5は、図4中の上記デュプレクサにおける送信波形と、上記比較例の送信波形を取り出して示す図である。図6は、図4中の上記デュプレクサのアイソレーション特性と上記比較例のアイソレーション特性を取り出して示す図である。なお、図5及び図6においては、破線A,Bが実施形態の結果を、実線が比較例の結果を示す。
 本実施形態によれば、図5及び図6における受信帯域Fxにおいて送信フィルタの減衰量を改善し得ることがわかる。すなわち、実線で示す送信波形に比べ、破線Aで示す送信波形では、受信帯域Fxである746MHz~756MHzにおける減衰量を8dB程度拡大し得ることがわかる。
 また、図6から明らかなように、アイソレーション波形においても、破線Bで示す本実施形態の受信波形と、実線で示す比較例の受信波形とを比較すれば、受信帯域Fxにおけるアイソレーションの減衰量を拡大し得ることがわかる。具体的には、受信帯域Fxの低域側である746MHzの周波数において、図6に示すアイソレーションの減衰量が10dB程度拡大し得ることが分かる。
 上記のように、本実施形態では、第1のIDTと第2のIDTとのIDT間距離が0.5λと狭められているため、上記受信帯域Fxにおける減衰量を効果的に拡大することができる。
 図7~図9は、上記実施形態において、IDT間の距離を、上記のように0.5λとした場合、5.6λとした場合、及び10.7λとした場合の特性を示す図である。図7は、それぞれの送信波形Tx及び受信波形Rxを重ね合わせた図であり、図8は、送信波形を、図9はアイソレーション波形を示す図である。
 図8から明らかなように、IDT間の距離を0.5λとした場合には、上記受信帯域Fxにおける減衰量をより効果的に大きくすることができる。また、IDT間の距離が10.7λの場合には、受信帯域Fxにおける減衰量が3dB以上改善する周波数範囲は746MHz~748MHzの2MHzである。IDT間の距離が0.5λの場合、受信帯域Fxにおける減衰量が3dB以上改善する周波数範囲は746MHz~750.5MHzで4.5MHzである。従って、前述した比較例に比べ、やはり減衰量を拡大し得る周波数範囲を広げ得ることがわかる。
 図10は、上記第1の実施形態において、IDT間の距離を変化させた場合の減衰帯Fx近傍における減衰量が実施形態でない場合より3dB以上改善する周波数範囲と、IDT間の距離との関係を示す図である。
 図10より、IDT間距離が12λより大きい場合には、実施形態でない場合より減衰量が3dB以上改善できる周波数帯域は2MHz程度と狭く、ほぼ変化しないことが分かる。また、IDT間の距離が12λ以下の場合には、3dB以上改善できる周波数帯域を2MHzより広くできる。従って、IDT間の距離を小さくするにつれ、改善できる周波数帯域を広くできることが分かる。
 図10から明らかなように、IDT間の距離を12λ以下とすれば、本発明に従って、減衰量を拡大し得る周波数範囲を効果的に広げ得ることがわかる。また、好ましくは、6λ以下とすれば、減衰量を拡大し得る周波数範囲を4MHz以上まで確保でき、より効果的に減衰量を拡大し得る周波数範囲を広げ得ることがわかる。なお、IDTを圧電基板に形成する工程において、IDT同士の干渉を防止するために、IDT間の距離は0.25λ以上であることが好ましい。
 第2の実施形態では、図1(b)に示した弾性表面波フィルタ11に替えて、図11に示す弾性表面波フィルタ21を用いた。弾性表面波フィルタ21は、傾斜設計のIDTを有するトランスバーサル型の弾性表面波フィルタである。
 図11に示すように、弾性表面波フィルタ21は、圧電基板22を有する。圧電基板22上に、第1のIDT23と、第2のIDT24とが設けられている。第1のIDT23は、複数本の電極指が弾性表面波伝搬方向と直交する方向に対して交差する斜め方向に延ばされている。第2のIDT24も同様に構成されている。第1のIDT23及び第2のIDT24の圧電基板22の幅方向一端側から他端側に向けて電極指間隔が徐々に変化している。このような傾斜型弾性表面波フィルタ21では、通過帯域を広げることができる。
 図12及び図13の実線は、第1の実施形態で用いた弾性表面波フィルタ11の振幅特性及び位相特性を示し、一点鎖線が傾斜型の弾性表面波フィルタ21の振幅特性及び位相特性を示す。図12及び図13から明らかなように、傾斜型の弾性表面波フィルタ21では、周波数の変化に対し位相変化及び振幅変化が小さくなることがわかる。よって、傾斜型の弾性表面波フィルタ21を用いることにより、より広い周波数範囲でバンドパスフィルタ10の位相と遅延素子としての弾性表面波フィルタ21の信号とが、同振幅かつ逆位相に近い状態に保たれる。よって、減衰量を拡大し得る周波数範囲をより一層広げることができる。上記弾性表面波フィルタ21を用いた第2の実施形態のデュプレクサを構成し、その周波数特性を評価した。
 なお、デュプレクサの構成は、上記弾性表面波フィルタ21を用いたことを除いては、第1の実施形態と同様とした。弾性表面波フィルタ21の仕様は以下の通りとした。
 第1のIDT23の電極指の対数=5対、第2のIDT24の電極指の対数=15対。電極指交差幅=28μm。電極指の周期である波長λ=1.51μm~1.64μm、IDT間隔=1.3λ。
 上記傾斜型のトランスバーサル型弾性表面波フィルタ21を、送信周波数が777MHz~787HMz付近にあるラダー型回路構成のバンドパスフィルタ10に並列に接続した。
 上記のように構成されたフィルタ装置の減衰量周波数特性を図14に一点鎖線で示す。また、比較のために、上記弾性表面波フィルタ21を接続していない上記バンドパスフィルタの減衰量周波数特性を図14に実線で示す。さらに、図15に、図14の要部を拡大して示す。
 図14及び図15から明らかなように、送信周波数である1200MHzよりも高い周波数域である2.5GHz付近において、本実施形態によれば減衰量を大きくし得ることができる。より具体的には、2.5GHz付近における減衰量が、弾性表面波フィルタ21を接続していない場合には53dB程度であったのに対し、上記弾性表面波フィルタ21を接続することにより60dB程度まで大きくすることが可能となった。
 さらに、図16及び図17に、第2の実施形態のフィルタ装置の減衰量周波数特性に加えて、第3,第4の実施形態のフィルタ装置の減衰量周波数特性を示す。第3及び第4の実施形態は、第1の実施形態と同様に、傾斜構造を有しない弾性表面波フィルタ11を用いている。第3及び第4の実施形態では、弾性表面波フィルタのIDT間の距離をそれぞれ1.3λ及び10.8λとした。その他は、第2の実施形態の弾性波フィルタと同様とした。
 図16及び図17から明らかように、2.5GHz付近において、第2の実施形態に比べ、第3及び第4の実施形態では、減衰量の最大値を大きくすることができる。しかしながら、減衰量を拡大し得る周波数範囲は、第2の実施形態の方が広いことがわかる。すなわち、図15に示したように、第2の実施形態では、バンドパスフィルタ10単独の場合の2.5GHz付近の減衰量よりも減衰量を拡大し得る周波数範囲は95MHzであった。これに対して、上記第3及び第4の実施形態では、バンドパスフィルタ10単独の周波数特性における2.5GHz付近の減衰量よりも減衰量を拡大し得る周波数範囲は、それぞれ、45MHz及び25MHzである。よって、第2の実施形態によれば、バンドパスフィルタ10の帯域外の所望の周波数における減衰量を拡大し得る周波数範囲をより一層広げ得ることがわかる。これは、前述したように、傾斜型の弾性表面波フィルタ21では、周波数の変化に対する振幅及び位相の変化が小さいことによる。
 なお、上述してきた第1~第4の実施形態では、バンドパスフィルタ10に1つの弾性表面波フィルタ11が接続されていた。本発明においては、複数の遅延素子をバンドパスフィルタ10に並列に接続してもよい。すなわち、図1に破線で示すように、バンドパスフィルタ10に並列に第2のトランスバーサル型の弾性表面波フィルタ11Aを接続してもよい。この場合、弾性表面波フィルタ11の電極指ピッチと、弾性表面波フィルタ11Aの電極指ピッチを異ならせることが望ましい。それによって、複数の周波数帯域で、減衰量を拡大することができる。
 なお、上記実施形態では、遅延素子を構成する弾性波フィルタとして弾性表面波フィルタを用いたが、トランスバーサル型の弾性境界波フィルタを用いてもよい。
 1…デュプレクサ
 2…アンテナ
 3…アンテナ端子
 4…共通接続端子
 5…整合用インダクタ
 6…信号端子
 7…フィルタ装置
 8…受信フィルタ
 9…送信端子
 10…バンドパスフィルタ
 11…弾性表面波フィルタ
 11…遅延素子
 11A…弾性表面波フィルタ
 12,13…受信端子
 14…圧電基板
 15,16…第1,第2のIDT
 21…傾斜型弾性表面波フィルタ
 22…圧電基板
 23,24…第1,第2のIDT
 P1~P3…並列腕共振子
 S1~S5…直列腕共振子

Claims (5)

  1.  バンドパスフィルタと、
     前記バンドパスフィルタに並列に接続されており、
     前記バンドパスフィルタの減衰域内の所望の周波数において、振幅特性が等しく、位相が逆位相である特性を有する遅延素子とを備え、
     前記遅延素子が、第1のIDTと第2のIDTとを有するトランスバーサル型弾性波フィルタからなり、第1のIDTと第2のIDTとの間の距離がIDTの電極指周期により定まる波長をλとしたときに、12λ以下とされている、フィルタ装置。
  2.  前記トランスバーサル型弾性波フィルタが、傾斜型IDTを有するトランスバーサル型弾性波フィルタである、請求項1に記載のフィルタ装置。
  3.  前記遅延素子として、複数の前記トランスバーサル型の弾性波フィルタを有し、少なくとも1つのトランスバーサル型の弾性波フィルタにおける電極指ピッチが、残りのトランスバーサル型の弾性波フィルタの電極指ピッチと異なっている、請求項1または2に記載のフィルタ装置。
  4.  前記第1のIDTと前記第2のIDTとの間の距離が6λ以下である、請求項1に記載のフィルタ装置。
  5.  アンテナに接続された第1の端子と、送信端子と、受信端子とを有するデュプレクサであって、
     前記第1の端子と前記送信端子または受信端子との間で接続されており、請求項1~4のいずれか1項に記載のフィルタ装置からなる第1のフィルタ部と、
     前記第1の端子と前記受信端子または前記送信端子との間に接続されており、第1のフィルタ部と通過帯域が異なる第2のフィルタ部とを備える、デュプレクサ。
PCT/JP2013/065584 2012-08-30 2013-06-05 フィルタ装置及びデュプレクサ WO2014034215A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201390000721.1U CN204578493U (zh) 2012-08-30 2013-06-05 滤波器装置以及双工器
JP2014532841A JP6033311B2 (ja) 2012-08-30 2013-06-05 フィルタ装置及びデュプレクサ
US14/630,845 US9628049B2 (en) 2012-08-30 2015-02-25 Filter device and duplexer
US15/452,825 US10063213B2 (en) 2012-08-30 2017-03-08 Filter device and duplexer
US16/049,859 US10622968B2 (en) 2012-08-30 2018-07-31 Filter device and duplexer
US16/814,047 US10868517B2 (en) 2012-08-30 2020-03-10 Filter device and duplexer
US17/095,782 US11881843B2 (en) 2012-08-30 2020-11-12 Filter device and duplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-189543 2012-08-30
JP2012189543 2012-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/630,845 Continuation US9628049B2 (en) 2012-08-30 2015-02-25 Filter device and duplexer

Publications (1)

Publication Number Publication Date
WO2014034215A1 true WO2014034215A1 (ja) 2014-03-06

Family

ID=50183039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065584 WO2014034215A1 (ja) 2012-08-30 2013-06-05 フィルタ装置及びデュプレクサ

Country Status (4)

Country Link
US (5) US9628049B2 (ja)
JP (1) JP6033311B2 (ja)
CN (1) CN204578493U (ja)
WO (1) WO2014034215A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044979A1 (ja) * 2018-08-30 2020-03-05 株式会社村田製作所 フィルタ装置およびマルチプレクサ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034215A1 (ja) * 2012-08-30 2014-03-06 株式会社村田製作所 フィルタ装置及びデュプレクサ
KR102086939B1 (ko) * 2016-03-31 2020-03-09 가부시키가이샤 무라타 세이사쿠쇼 주파수 가변 필터, rf 프론트 엔드 회로 및 통신 단말기
WO2018043496A1 (ja) * 2016-08-30 2018-03-08 株式会社村田製作所 弾性波装置及びその製造方法
US10404234B2 (en) * 2016-09-02 2019-09-03 Skyworks Filter Solutions Japan Co., Ltd. Filter device with phase compensation, and electronic devices including same
JP2018088678A (ja) 2016-11-29 2018-06-07 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 位相をキャンセルするループ回路を含むフィルタ
SG10201906665WA (en) 2018-07-18 2020-02-27 Skyworks Solutions Inc Fbar filter with integrated cancelation circuit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261211A (ja) * 1986-05-08 1987-11-13 Toyo Commun Equip Co Ltd フイルタ
JPH08316773A (ja) * 1995-05-22 1996-11-29 Fujitsu Ltd 表面弾性波装置
JPH0998046A (ja) * 1995-10-02 1997-04-08 Fujitsu Ltd 分波器
JPH1056353A (ja) * 1996-08-12 1998-02-24 Toyo Commun Equip Co Ltd 弾性表面波フィルタ
JP2001196898A (ja) * 2000-01-05 2001-07-19 Fujitsu Ltd 弾性表面波フィルタ
JP2002217681A (ja) * 2000-11-17 2002-08-02 Murata Mfg Co Ltd トランスバーサル型弾性表面波フィルタ
JP2003234637A (ja) * 2002-02-08 2003-08-22 Matsushita Electric Ind Co Ltd 弾性表面波フィルタ、および通信装置
JP2006261963A (ja) * 2005-03-16 2006-09-28 Epson Toyocom Corp 弾性表面波フィルタ
JP2007306493A (ja) * 2006-05-15 2007-11-22 Murata Mfg Co Ltd 弾性表面波フィルタ装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582838A (en) * 1966-09-27 1971-06-01 Zenith Radio Corp Surface wave devices
JPS6231673U (ja) * 1985-08-08 1987-02-25
JP3285790B2 (ja) * 1997-05-13 2002-05-27 富士通株式会社 発振回路
JP3587354B2 (ja) * 1999-03-08 2004-11-10 株式会社村田製作所 横結合共振子型表面波フィルタ及び縦結合共振子型表面波フィルタ
DE10213277A1 (de) 2002-03-25 2003-10-16 Epcos Ag Multiport-Resonatorfilter
JP2009021895A (ja) * 2007-07-13 2009-01-29 Panasonic Corp アンテナ共用器とそれを用いた通信機器
JP4594415B2 (ja) * 2008-07-09 2010-12-08 日本電波工業株式会社 デュプレクサ
JP6017868B2 (ja) * 2011-11-04 2016-11-02 太陽誘電株式会社 分波器、フィルタ及び通信モジュール
WO2014034215A1 (ja) * 2012-08-30 2014-03-06 株式会社村田製作所 フィルタ装置及びデュプレクサ
JP2014171210A (ja) 2013-02-08 2014-09-18 Panasonic Corp 高周波フィルタ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261211A (ja) * 1986-05-08 1987-11-13 Toyo Commun Equip Co Ltd フイルタ
JPH08316773A (ja) * 1995-05-22 1996-11-29 Fujitsu Ltd 表面弾性波装置
JPH0998046A (ja) * 1995-10-02 1997-04-08 Fujitsu Ltd 分波器
JPH1056353A (ja) * 1996-08-12 1998-02-24 Toyo Commun Equip Co Ltd 弾性表面波フィルタ
JP2001196898A (ja) * 2000-01-05 2001-07-19 Fujitsu Ltd 弾性表面波フィルタ
JP2002217681A (ja) * 2000-11-17 2002-08-02 Murata Mfg Co Ltd トランスバーサル型弾性表面波フィルタ
JP2003234637A (ja) * 2002-02-08 2003-08-22 Matsushita Electric Ind Co Ltd 弾性表面波フィルタ、および通信装置
JP2006261963A (ja) * 2005-03-16 2006-09-28 Epson Toyocom Corp 弾性表面波フィルタ
JP2007306493A (ja) * 2006-05-15 2007-11-22 Murata Mfg Co Ltd 弾性表面波フィルタ装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044979A1 (ja) * 2018-08-30 2020-03-05 株式会社村田製作所 フィルタ装置およびマルチプレクサ
KR20210030454A (ko) * 2018-08-30 2021-03-17 가부시키가이샤 무라타 세이사쿠쇼 필터 장치 및 멀티플렉서
CN112640304A (zh) * 2018-08-30 2021-04-09 株式会社村田制作所 滤波器装置以及多工器
JPWO2020044979A1 (ja) * 2018-08-30 2021-08-12 株式会社村田製作所 フィルタ装置およびマルチプレクサ
JP7103420B2 (ja) 2018-08-30 2022-07-20 株式会社村田製作所 フィルタ装置およびマルチプレクサ
KR102597953B1 (ko) * 2018-08-30 2023-11-06 가부시키가이샤 무라타 세이사쿠쇼 필터 장치 및 멀티플렉서
US11916536B2 (en) 2018-08-30 2024-02-27 Murata Manufacturing Co., Ltd. Filter device and multiplexer
CN112640304B (zh) * 2018-08-30 2024-08-20 株式会社村田制作所 滤波器装置以及多工器

Also Published As

Publication number Publication date
CN204578493U (zh) 2015-08-19
US20180367122A1 (en) 2018-12-20
JPWO2014034215A1 (ja) 2016-08-08
US10063213B2 (en) 2018-08-28
JP6033311B2 (ja) 2016-11-30
US20150171827A1 (en) 2015-06-18
US10868517B2 (en) 2020-12-15
US20170179929A1 (en) 2017-06-22
US20210067141A1 (en) 2021-03-04
US10622968B2 (en) 2020-04-14
US20200212888A1 (en) 2020-07-02
US11881843B2 (en) 2024-01-23
US9628049B2 (en) 2017-04-18

Similar Documents

Publication Publication Date Title
US11881843B2 (en) Filter device and duplexer
JP6481758B2 (ja) 弾性波フィルタ、マルチプレクサ、デュプレクサ、高周波フロントエンド回路、および通信装置
JP6790907B2 (ja) マルチプレクサ、送信装置および受信装置
US9762209B2 (en) Duplexer with a series trap element and a specifically connected capacitance or elastic wave resonator
US9112478B2 (en) Duplexer
JP6347779B2 (ja) 分波器および通信モジュール
JP6323348B2 (ja) フィルタ装置
JP6504551B2 (ja) 共振器、フィルタおよび分波器
JP6509151B2 (ja) 弾性波共振器、フィルタおよびマルチプレクサ
JP5246205B2 (ja) 弾性波フィルタおよびこれを用いたアンテナ共用器、通信機器
JP6656135B2 (ja) フィルタおよびマルチプレクサ
JP6760480B2 (ja) エクストラクタ
WO2012169231A1 (ja) 弾性波フィルタ装置
JP2017228945A (ja) 弾性波共振器、フィルタおよびマルチプレクサ
WO2010061496A1 (ja) 弾性波フィルタ装置
JP6634973B2 (ja) 弾性表面波フィルタ、デュプレクサおよびマルチプレクサ
JP6178972B2 (ja) ローパス特性を有する電子音響フィルタ
WO2016031391A1 (ja) ラダー型フィルタ及びデュプレクサ
WO2018117060A1 (ja) 弾性波共振器、フィルタ装置およびマルチプレクサ
KR20210084253A (ko) 탄성파 필터
KR20140127524A (ko) 이중모드 방식 표면 탄성파 필터

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390000721.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832441

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532841

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832441

Country of ref document: EP

Kind code of ref document: A1