WO2014034055A1 - スパークプラグ - Google Patents

スパークプラグ Download PDF

Info

Publication number
WO2014034055A1
WO2014034055A1 PCT/JP2013/004973 JP2013004973W WO2014034055A1 WO 2014034055 A1 WO2014034055 A1 WO 2014034055A1 JP 2013004973 W JP2013004973 W JP 2013004973W WO 2014034055 A1 WO2014034055 A1 WO 2014034055A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
alumina
mass
spark plug
sintered body
Prior art date
Application number
PCT/JP2013/004973
Other languages
English (en)
French (fr)
Inventor
竹内 裕貴
横山 裕
邦治 田中
光岡 健
稔貴 本田
啓一 黒野
勝哉 高岡
裕則 上垣
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to US14/420,819 priority Critical patent/US9385511B2/en
Priority to CN201380034914.3A priority patent/CN104396104B/zh
Priority to EP13832890.1A priority patent/EP2892117B1/en
Publication of WO2014034055A1 publication Critical patent/WO2014034055A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/38Selection of materials for insulation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/58Testing
    • H01T13/60Testing of electrical properties

Definitions

  • the present invention relates to a spark plug, and more particularly to a spark plug having a specific insulator.
  • Spark plugs used in internal combustion engines such as automobile engines are also referred to as spark plug insulators (“insulators”) made of an alumina-based sintered body containing alumina (Al 2 O 3 ) as a main component. ).
  • insulators made of an alumina-based sintered body containing alumina (Al 2 O 3 ) as a main component.
  • the reason why this insulator is formed of an alumina-based sintered body is that the alumina-based sintered body is excellent in heat resistance and mechanical strength.
  • Such an alumina-based sintered body has been formed by sintering a mixed powder containing a sintering aid including SiO 2 and MgO.
  • the spark plug insulator is formed of an alumina-based sintered body that is sintered using a sintering aid
  • the low-melting glass phase is formed at the grain boundary of the alumina crystal particles after the sintering aid is sintered.
  • the low melting point glass phase is softened in the environment where the spark plug is used, for example, in a high temperature environment of about 700 ° C., and the withstand voltage characteristics of the insulator may deteriorate.
  • Patent Document 1 “providing a spark plug excellent in resistance to an acid atmosphere (hereinafter sometimes referred to as acid resistance) and high-temperature withstand voltage characteristics” (paragraph number 0008) is an issue.
  • the insulator contains an Si group, a Ba component, a Ca component, and an Mg component so as to satisfy the following conditions (1) and (2), and is substantially free of the B component.
  • Patent Document 1 Although it is disclosed that the spark plug described in Patent Document 1 is excellent in resistance to an acid atmosphere, the resistance to a basic atmosphere is not disclosed.
  • the subject of this invention is providing the spark plug which is excellent in the withstand voltage characteristic in high temperature, and has the tolerance with respect to an acidic atmosphere and a basic atmosphere.
  • a spark plug comprising: The insulator includes a first crystal containing at least one selected from a La component, an Nd component, a Pr component, a Y component, an Er component, a Yb component, and a Lu component in a grain boundary phase existing between the crystals of the alumina crystal.
  • a preferred embodiment of (1) is as follows: (2) When the cross section of the insulator is subjected to X-ray diffraction analysis, the maximum height a of the diffraction peak of the alumina crystal, the maximum height b of the diffraction peak of the first crystal phase, and the second crystal phase The maximum height c of the diffraction peak satisfies the following relational expression (a).
  • the first crystal phase is MgRE 1 Al 11 O 19 , RE 1 Al 11 O 18 , RE 2 2 Si 2 O 7 , RE 2 AlO. 3 , And / or RE 2 3 Al 5 O 12 (wherein RE 1 represents at least one selected from La, Nd, and Pr, and RE 2 represents at least one selected from Y, Er, Yb, and Lu).
  • the second crystal phase is CaAl 2 Si 2 O 8 .
  • the insulator does not contain a Na component and a K component, or a total of 0.2% by mass in terms of oxides. Contains in the following proportions.
  • a spark plug according to the present invention contains an Al component and a Ti component in a specific ratio, and includes an alumina group containing the first crystal phase and the second crystal phase in a grain boundary phase existing between the crystals of the alumina crystal. Since the insulator made of a sintered body is provided, it is possible to provide a spark plug having excellent withstand voltage characteristics at high temperatures and having resistance to an acidic atmosphere and a basic atmosphere. *
  • the sum of the maximum height c is in a specific range, the withstand voltage characteristics at high temperatures, and the resistance to an acidic atmosphere and a basic atmosphere are further exhibited.
  • the insulator does not substantially contain the Na component and the K component, and even if it is contained, the total amount is 0.2% by mass or less in terms of oxides. Therefore, the first crystal phase and the second crystal phase included in the grain boundary phase are included. The crystallization of the two crystal phases can be promoted, and the withstand voltage characteristics at high temperatures, the resistance to acidic atmosphere and basic atmosphere are further exhibited.
  • FIG. 1 is an overall partial cross-sectional explanatory view illustrating a spark plug which is an example of a spark plug according to the present invention.
  • FIG. 2 is a schematic diagram showing a withstand voltage measuring device used in the withstand voltage test in the example.
  • the spark plug according to the present invention may basically be provided with an insulator that satisfies the above conditions.
  • an insulator that satisfies the above conditions.
  • a center electrode a substantially cylindrical insulator that is provided on the outer periphery of the center electrode and satisfies the above conditions, and , And a ground electrode disposed so that one end thereof faces the center electrode via a spark discharge gap.
  • the spark plug according to the present invention is not particularly limited as long as it is a spark plug having an insulator that satisfies the above conditions, and various known configurations can be adopted. *
  • FIG. 1 is a partial cross-sectional explanatory diagram of a spark plug 1 as an example of a spark plug according to the present invention.
  • the description will be made assuming that the lower side of the drawing is the front end direction of the axis O and the upper side of the drawing is the rear end direction of the axis O. *
  • the spark plug 1 includes a substantially rod-shaped center electrode 2, a substantially cylindrical insulator 3 provided on the outer periphery of the center electrode 2, and a cylindrical main body that holds the insulator 3.
  • a metal fitting 4 is provided, and a ground electrode 6 is disposed so that one end faces the tip surface of the center electrode 2 via the spark discharge gap G and the other end is joined to the end surface of the metal shell 4.
  • the metal shell 4 has a cylindrical shape and is formed so as to hold the insulator 3 by incorporating the insulator 3 therein.
  • a threaded portion 9 is formed on the outer peripheral surface in the front end direction of the metal shell 4, and the spark plug 1 is attached to a cylinder head of an internal combustion engine (not shown) using the threaded portion 9.
  • the metal shell 4 can be formed of a conductive steel material, for example, low carbon steel.
  • M10, M12, M14, etc. are mentioned.
  • the designation of the threaded portion 9 means a value defined in ISO 2705 (M12) and ISO 2704 (M10), and naturally allows variation within the range of dimensional tolerances defined in various standards. . *
  • the center electrode 2 is a substantially rod-like body extending in the direction of the axis O, and is fixed to the shaft hole of the insulator 3 with its tip projecting from the tip surface of the insulator 3 and insulated from the metal shell 4. Is retained.
  • the center electrode 2 can be formed of a Ni-base alloy having excellent heat resistance and corrosion resistance. *
  • the ground electrode 6 is formed in, for example, a prismatic body, one end is joined to the end of the metal shell 4, is bent into an approximately L shape in the middle, and the tip is positioned in the direction of the axis O of the center electrode 2. As such, its shape and structure are designed. By designing the ground electrode 6 in this way, one end of the ground electrode 6 is disposed so as to face the center electrode 2 with the spark discharge gap G interposed therebetween.
  • the spark discharge gap G is a gap between the front end surface of the center electrode 2 and the surface of the ground electrode 6, and this spark discharge gap G is normally set to 0.3 to 1.5 mm. Since the ground electrode 6 is exposed to a higher temperature than the center electrode 2, the ground electrode 6 is preferably formed of a Ni-base alloy or the like that is more excellent in heat resistance and corrosion resistance than the Ni-base alloy that forms the center electrode 2. *
  • the insulator 3 is formed of an alumina-based sintered body, which will be described later, in a substantially cylindrical shape, and has a shaft hole 10 that holds the center electrode 2 along the axis O direction of the insulator 3.
  • the insulator 3 is held on the inner peripheral portion of the metal shell 4 via talc and / or packing or the like with the end in the tip direction protruding from the tip surface of the metal shell 4.
  • the alumina-based sintered body constituting the insulator 3 which is one of the features of the spark plug 1 will be described.
  • This alumina-based sintered body contains at least one selected from Al, Ti, Si, and Group 2 elements, and at least one selected from RE components (RE component is La component, Nd Component, Pr component, Y component, Er component, Yb component, and Lu component), and the grain boundary phase existing between the crystals of the alumina crystal includes a first crystal phase and a second crystal phase described later. Yes.
  • the grain boundary phase refers to crystals other than alumina crystals existing between alumina crystals and amorphous (hereinafter also referred to as glass). *
  • the content of the Al component in the alumina-based sintered body is 89% by mass or more in terms of oxide (Al 2 O 3 ) when the total mass (as oxide) of the alumina-based sintered body is 100% by mass. Yes, it is preferably 91% by mass or more.
  • the upper limit of the content rate of the Al component may be less than 100% by mass, it is preferably 97% by mass or less in order to obtain a point that the sinterability is reduced and the production cost is increased and good withstand voltage characteristics are obtained.
  • the Al component exists mainly as alumina (Al 2 O 3 ), and also exists as a first crystal phase and a second crystal phase described later. When the Al component is contained in the above proportion, the voltage resistance characteristics, heat resistance, mechanical characteristics, and the like of the alumina-based sintered body are excellent.
  • the content of the Ti component in the alumina-based sintered body exceeds 0% by mass in terms of oxide (TiO 2 ), assuming that the total mass (as oxide) of the alumina-based sintered body is 100% by mass. It is 2 mass% or less, and it is preferable that it is 0.005 mass% or more and 0.10 mass% or less.
  • the Ti component exists as an oxide, ion, or the like. Components added as a sintering aid to be described later, such as Si component, Group 2 element component and RE component, etc., melt during sintering and function as a sintering aid.
  • the Ti component acts as a nucleating agent, crystallization of various components added as a sintering aid is promoted, and the grain boundary phase is described later.
  • the first crystal phase and the second crystal phase are easily formed.
  • the insulator made of the alumina-based sintered body has excellent withstand voltage characteristics at high temperatures and has resistance to an acidic atmosphere and a basic atmosphere.
  • the first crystal phase and the second crystal phase are formed over the grain boundary phase in preference to glass, the amount of glass having poor acid resistance and base resistance is relatively reduced, and the progress of corrosion can be suppressed. it can.
  • the first crystal phase and the second crystal phase having high acid resistance and base resistance are formed in the grain boundary phase, crystals having high acid resistance in an acidic atmosphere and high base resistance in a basic atmosphere. It is considered that the crystals suppress the progress of corrosion and suppress the deterioration of the strength of the insulator.
  • the Ti component is not contained, the effect as a nucleating agent is not exhibited, the first crystal phase and the second crystal phase are hardly formed, the amount of glass is relatively increased, and the acidic atmosphere and the basic atmosphere Inferior to the resistance to.
  • the Ti component is contained in an amount exceeding 0.2 mass%, the Ti component has semiconductor characteristics at high temperatures, so that the withstand voltage characteristics at high temperatures deteriorate.
  • the alumina-based sintered body contains at least one selected from RE components.
  • the RE component is a La component, an Nd component, a Pr component, a Y component, an Er component, a Yb component, and a Lu component.
  • the RE component is a component derived from a sintering aid and is present in the alumina-based sintered body as an oxide, an ion, or the like.
  • the content of the RE component is determined when the total mass (as oxide) of the alumina-based sintered body is 100% by mass from the viewpoint of improving the withstand voltage characteristics at high temperatures and the resistance to an acidic atmosphere and a basic atmosphere. Moreover, it is preferable that it is 0.5 mass% or more and 6.0 mass% or less in conversion of an oxide. *
  • the RE component is contained in the alumina-based sintered body during sintering, so that excessive grain growth of alumina during sintering is suppressed, and a part of the RE component is crystallized together with the Al component and Si component. It exists as a crystal in the grain boundary phase, and a part remains as an element constituting the glass in the glass in the grain boundary phase. Since the glass containing the RE component has a high melting point, the withstand voltage characteristic of the alumina-based sintered body at a high temperature can be improved as compared with a low melting point glass not containing the RE component.
  • the RE component has a first crystal phase having acid resistance and / or base resistance together with Al component, Si component, and / or Group 2 element component, etc., because the Ti component acts as a nucleating agent.
  • the first crystal phase By forming the first crystal phase in the grain boundary phase existing between the crystals of the alumina crystal, the amount of glass formed in the grain boundary phase is relatively reduced, and instead acid and / or base resistance.
  • the spark plug is exposed to an acidic atmosphere or a basic atmosphere, it is possible to suppress corrosion starting from the glass present in the grain boundary phase.
  • the alumina-based sintered body contains a Si component.
  • the Si component is a component derived from the sintering aid, and is present in the alumina-based sintered body as an oxide, an ion, or the like. Since the Si component melts during sintering to form a normal liquid phase, it functions as a sintering aid that promotes densification of the sintered body. After sintering, the Si component is low in the grain boundary phase existing between the crystals of alumina crystals. In many cases, glass having a melting point is formed. However, since the alumina-based sintered body contains a Ti component as a nucleating agent and also contains an RE component, a Group 2 component, etc. in addition to the Si component, the Si component is more than a low melting point glass. It is easy to preferentially form the first crystal phase and the second crystal phase, which will be described later, together with other components. *
  • the alumina-based sintered body contains at least one group 2 element component.
  • the Group 2 component is a component derived from a sintering aid and may contain at least one of the Group 2 element components of the periodic table based on the IUPAC 1990 recommendation. From the viewpoint of availability, Mg Preferred examples include component, Ca component, Sr component and Ba component.
  • Group 2 components are present in the alumina-based sintered body as oxides, ions, etc., and function as a sintering aid in the same manner as the Si component before sintering. And a second crystal phase, which will be described later, are formed together with the Al component or the Si component.
  • the amount of glass formed in the grain boundary phase is relatively reduced, and instead acid and / or base resistance. Therefore, when the spark plug is exposed to an acidic atmosphere or a basic atmosphere, it is possible to suppress corrosion starting from the glass present in the grain boundary phase.
  • the first crystal phase is made of a crystal containing at least one selected from an La component, an Nd component, a Pr component, a Y component, an Er component, a Yb component, and a Lu component as an essential component.
  • the first crystal phase has acid resistance and / or base resistance.
  • the first crystal phase may contain components other than the above components, for example, an Al component, a Group 2 component, a Si component, and the like. Examples of the first crystal phase include MgRE 1 Al 11 O 19 , RE 1 Al 11 O 18 , RE 2 2 Si 2 O 7 , RE 2 AlO 3 , and RE 2.
  • RE 2 4 Al 2 O 9 (where RE 1 represents at least one selected from La, Nd, and Pr, and RE 2 represents at least one selected from Y, Er, Yb, and Lu) Etc.), etc., and one or more of these may be formed.
  • MgRE 1 Al 11 O 19 , RE 1 Al 11 O 18 , RE 2 2 Si 2 O 7 , RE 2 AlO 3 , and RE 2 3 Al 5 O 12 are present together with the second crystal phase described later.
  • the acid resistance and base resistance are favorable.
  • the second crystal phase is composed of crystals containing as essential components at least one of the elements of Group 2 elements of the periodic table based on the IUPAC 1990 recommendation, Al component, and Si component.
  • the second crystal phase has acid resistance and / or base resistance.
  • Examples of the second crystal phase include CaAl 2 Si 2 O 8 , SrAl 2 Si 2 O 8 , and BaAl 2 Si 2 O 8, which are formed of one or more of these. Also good.
  • CaAl 2 Si 2 O 8 is preferable in that the acid resistance and the base resistance are improved by being present together with the first crystal phase.
  • the alumina-based sintered body was exposed to an acidic atmosphere and a basic atmosphere by containing the first crystal phase and the second crystal phase in a grain boundary phase in a region surrounded by a plurality of alumina crystals.
  • the progress of corrosion can be suppressed and the strength can be prevented from deteriorating.
  • the crystals formed in the grain boundary phase are not limited to crystals, and crystals with high acid resistance and base resistance By precipitating both of the crystal having a high crystallinity in the grain boundary phase, an insulator having resistance to an acidic atmosphere and a basic atmosphere can be obtained.
  • the grain boundary phase is the first crystal phase or the second crystal.
  • the alumina-based sintered body does not contain a Na component and a K component when the total mass (as oxide) of the alumina-based sintered body is 100% by mass, or is converted into an oxide (Na 2 O and K). 2 O) and preferably contained in a proportion of 0.2% by mass or less. That is, it is preferable not to contain Na component and K component substantially, and even if it contains, it is preferable to contain in the ratio of 0.2 mass% at most.
  • the Na component and the K component may be contained as inevitable impurities in the alumina raw material, and are added to the raw material in order to give formability when forming the raw material of the alumina-based sintered body. It may be contained in a binder.
  • the Si component, the Group 2 component, the RE component and the like are easily vitrified after sintering, and the first crystal phase and the second crystal phase are hardly formed in the grain boundary phase. There is. Therefore, it is preferable to suppress the total content ratio of the Na component and the K component to 0.2% by mass or less.
  • the maximum height a of the diffraction peak of the alumina crystal preferably satisfies the following relational expression (a). 0.025 ⁇ (b + c) /a ⁇ 0.12 (a)
  • the withstand voltage characteristics at a high temperature are further improved, and an acidic atmosphere and It is possible to provide a spark plug that is more excellent in resistance to a basic atmosphere.
  • the relational expression (a) is an approximate indicator of the content ratio of the first crystal phase and the second crystal phase to the alumina crystal in the alumina-based sintered body.
  • (b + c) / a is less than 0.025, that is, when the content of the first crystal phase and the second crystal phase is small relative to the alumina crystal, crystallization in the grain boundary phase does not proceed and oxidation resistance
  • the amount of precipitated crystals having the property and the base resistance is decreased, or the Si component, Group 2 component, RE component, etc. added as a sintering aid are insufficient.
  • the maximum height a, the maximum height b, and the maximum height c can be measured as follows. First, an arbitrary cross section of the insulator 3 is subjected to X-ray diffraction analysis to obtain an X-ray diffraction pattern. The crystals contained in the alumina-based sintered body are identified by comparing the obtained X-ray diffraction pattern with the JCPDS card which is diffraction data of the standard material. The peak height of the diffraction line having the highest intensity among the plurality of diffraction lines of the alumina crystal is obtained, and this is set as the maximum height a. *
  • the maximum height b is the peak height of the diffraction line having the highest intensity among the plurality of diffraction lines of the first crystal phase containing at least one selected from the RE components, as in the case of obtaining the maximum height a.
  • Ask. When the first crystal phase includes a plurality of crystal phases, for example, when Y 2 Si 2 O 7 and YAlO 3 are included, the highest intensity among the plurality of diffraction lines of Y 2 Si 2 O 7 .
  • the sum (b1 + b2) of the peak height b1 of the large diffraction line and the peak height b2 of the diffraction line having the highest intensity among the plurality of diffraction lines of YAlO 3 is defined as the maximum height b.
  • the maximum height c is the highest of the plurality of diffraction lines of the second crystal phase containing at least one of the group 2 components, the Al component, and the Si component, as in the case of obtaining the maximum height a.
  • the peak height of a diffraction line with high intensity is obtained.
  • the second crystal phase includes a plurality of crystal phases, the sum of the respective peak heights is set to the maximum height c in the same manner as in the case of the maximum height b. Further, when obtaining the peak height, the height excluding the background is measured. *
  • the Pr component and the Nd component there may be no JCPDS card. In this case, identification by X-ray diffraction is not possible directly.
  • the first crystal phase containing the Pr component or the Nd component is similar to the JCPDS card of the first crystal phase containing the La component. X-ray diffraction pattern is shown. Therefore, the presence of the first crystal phase containing the Pr component or the Nd component can be confirmed in comparison with the JCPDS card of the hexaaluminate crystal containing the La component.
  • the content of each of the Al component and Ti component contained in the alumina-based sintered body is measured, for example, as an oxide equivalent mass and an oxide equivalent mass% by fluorescent X-ray analysis and ICP analysis.
  • components other than the Ti component can be measured by fluorescent X-ray analysis
  • the Ti component can be measured by ICP analysis.
  • the result obtained by analyzing the alumina-based sintered body by the fluorescent X-ray analysis method and the ICP analysis method and the mixing ratio of the raw material powder used for the production of the alumina-based sintered body are substantially the same. . Therefore, the content of each component can be adjusted by the mixing ratio of each powder in the raw material powder.
  • the alumina-based sintered body substantially comprises at least one selected from RE components, at least one selected from Group 2 components, Al components, Ti components, and Si components.
  • substantially means that components other than the above components are not actively contained by addition or the like.
  • the alumina-based sintered body may contain impurities in addition to the respective components as long as the object of the present invention is not impaired. Good.
  • impurities that may be contained in such an alumina-based sintered body include Na, K, and Fe. The content of these impurities should be small. For example, when the total mass of Al component, Ti component, RE component, Group 2 component, Si component, etc.
  • the alumina-based sintered body contains a small amount of Dy, Eu, etc. as other components, for example, rare earth elements other than the RE component, in addition to the impurities, as long as the object of the present invention is not impaired. It may be. *
  • an Al compound powder, a Ti compound powder, an Si compound powder as main components, and a Group 2 element compound powder (hereinafter referred to as Group 2 compound powder) of the periodic table based on the IUPAC 1990 recommendation may be referred to.
  • RE element compound powder RE elements are La, Nd, Pr, Y, Er, Yb, and Lu
  • a binder a binder
  • a solvent a solvent
  • additives such as a plasticizer, an antifoamer, and a dispersing agent, as needed.
  • the mixing of the raw material powders is preferably performed for 8 hours or more so that the mixed state of the raw material powders can be made uniform and the sintered body obtained can be highly densified.
  • the Al compound powder is not particularly limited as long as it is a compound that can be converted to Al 2 O 3 by firing, and alumina (Al 2 O 3 ) powder is usually used. Since the Al compound powder may actually contain a Na component as an inevitable impurity, it is preferable to use a high-purity one. For example, the purity of the Al compound powder is 99.5% or more. preferable. As the Al compound powder, in order to obtain a dense alumina-based sintered body, it is usually preferable to use a powder having an average particle size of 0.1 to 5.0 ⁇ m.
  • the average particle diameter is a value measured by a laser diffraction method (manufactured by Nikkiso Co., Ltd., Microtrac particle size distribution analyzer (MT-3000)).
  • the Al compound powder is prepared to be 89% by mass to 97% by mass in terms of oxide when the total mass (as oxide) of the alumina-based sintered body after firing is 100% by mass. However, it is preferable for obtaining good withstand voltage characteristics.
  • the Ti compound powder is not particularly limited as long as it is a compound that can be converted into Ti oxide by firing.
  • various inorganic powders or natural mineral powders are grasped
  • the purity and average particle size of the Ti compound powder are basically the same as those of the Al compound powder.
  • the Ti compound powder is prepared so as to be more than 0% by mass and 0.2% by mass or less in terms of oxide when the total mass (as oxide) of the sintered alumina body after firing is 100% by mass. Is preferred. *
  • the Si compound powder is not particularly limited as long as it is a compound that can be converted into an oxide of Si by firing.
  • an oxide of Si a complex oxide thereof, a hydroxide, a carbonate, a chloride, a sulfate, a nitrate, etc.
  • various inorganic powders or natural mineral powders are grasped
  • the purity and average particle size of the Si compound powder are basically the same as those of the Al compound powder. *
  • the Group 2 compound powder is not particularly limited as long as it is a compound that can be converted into an oxide of a Group 2 element by firing.
  • an oxide of a Group 2 element, a complex oxide thereof, a hydroxide, a carbonate examples thereof include various inorganic powders such as chlorides, sulfates and nitrates, or natural minerals.
  • the usage-amount is grasped
  • the purity and average particle size of the Group 2 compound powder are basically the same as those of the Al compound powder.
  • the RE element compound powder is not particularly limited as long as it is a compound that can be converted into an oxide of RE element by firing, and examples thereof include RE element oxides, composite oxides thereof, and hydroxides. .
  • the purity and average particle diameter of the RE element compound powder are basically the same as those of the Al compound powder.
  • the RE element compound powder is 0.5% by mass or more and 6.0% by mass or less in terms of oxide when the total mass (as oxide) of the alumina-based sintered body after firing is 100% by mass. It is preferable to be prepared. *
  • the binder only needs to improve the moldability of the raw material powder, and examples of such a binder include a hydrophilic binder.
  • the hydrophilic binder include polyvinyl alcohol, water-soluble acrylic resin, gum arabic, and dextrin. These binders may be used individually by 1 type, and may use 2 or more types together.
  • As the binder it is preferable to use a binder having a small amount of Na component and K component so as not to inhibit crystallization of the first crystal phase and the second crystal phase.
  • the binder is preferably blended at a rate of 0.1 to 7 parts by mass, particularly preferably 1.0 to 5.0 parts by mass, with respect to 100 parts by mass of the raw material powder. *
  • the solvent only needs to disperse the raw material powder, and examples of such a solvent include water and alcohol. These solvents may be used alone or in combination of two or more.
  • the solvent is preferably 40 to 120 parts by mass, particularly preferably 50 to 100 parts by mass with respect to 100 parts by mass of the raw material powder.
  • the slurry thus obtained is spray-dried by a spray drying method or the like to prepare a spherical granulated product.
  • the average particle size of the granulated product is preferably 30 to 200 ⁇ m, particularly preferably 50 to 150 ⁇ m.
  • the average particle diameter is a value measured by a laser diffraction method (manufactured by Nikkiso Co., Ltd., Microtrac particle size distribution measuring device (MT-3000)). *
  • this granulated product is press-molded by, for example, a rubber press or a die press to obtain an unfired molded body.
  • the shape of the obtained green molded body is adjusted by grinding the outer surface with a resinoid grindstone or the like.
  • the green molded body that has been ground and shaped into a desired shape is fired at 1450 to 1650 ° C. for 1 to 8 hours in the atmosphere, cooled to 1200 ° C. at a cooling rate of 5 to 30 ° C./min, and then naturally cooled to room temperature.
  • an alumina-based sintered body is obtained.
  • the firing temperature is 1450 to 1650 ° C.
  • the sintered body is easily densified sufficiently, and abnormal grain growth of the alumina component is unlikely to occur, so that the withstand voltage characteristics and mechanical strength of the obtained alumina-based sintered body are ensured. be able to.
  • the sintered body when the firing time is 1 to 8 hours, the sintered body is easily densified sufficiently, and abnormal grain growth of the alumina component is difficult to occur. Therefore, the withstand voltage characteristics and mechanical strength of the obtained alumina-based sintered body are improved. Can be secured. Further, when the cooling rate from the firing temperature to 1200 ° C. is 5 to 30 ° C./min, Si compound powder, Group 2 compound powder, RE element compound powder, etc. added as a sintering aid are easily crystallized, The first crystal phase and the second crystal phase easily precipitate in the grain boundary phase, and an alumina-based sintered body having good voltage resistance characteristics and resistance to an acidic atmosphere and a basic atmosphere can be obtained. *
  • the obtained alumina-based sintered body may be shaped again if desired. In this way, an alumina-based sintered body can be obtained, and the insulator 3 for the spark plug 1 formed of this alumina-based sintered body can be produced.
  • an electrode material such as a Ni-based alloy is processed into a predetermined shape and size to produce the center electrode 2 and the ground electrode 6.
  • one end of the ground electrode 6 is joined by resistance welding or the like to the tip of the metal shell 4 formed by plastic working or the like in a predetermined shape and size.
  • the center electrode 2 and the terminal fitting are assembled to the insulator 3 by a known method, and the insulator 3 is assembled to the metal shell 4 to which the ground electrode 6 is joined.
  • the spark plug 1 is manufactured such that the tip of the ground electrode 6 is bent toward the center electrode 2 so that one end of the ground electrode 6 faces the tip of the center electrode 2.
  • the spark plug 1 is used as an ignition plug for an automobile internal combustion engine such as a gasoline engine, and a screw portion is screwed into a screw hole provided in a head (not shown) that forms a combustion chamber of the internal combustion engine. Are fixed in place. Since the spark plug 1 includes the above-described insulator, it exhibits a high withstand voltage characteristic not only at room temperature but also at high temperature, and has resistance to an acidic atmosphere and a basic atmosphere. Therefore, the spark plug 1 can be used for any internal combustion engine, but is preferably used not only for a normal internal combustion engine but also for an internal combustion engine or the like in which the combustion chamber tends to have an acidic atmosphere and / or a basic atmosphere. be able to. *
  • spark plug according to the present invention is not limited to the above-described example, and various modifications can be made within a range in which the object of the present invention can be achieved.
  • Alumina-Based Sintered Body Manufacture of Alumina-Based Sintered Body
  • Alumina (Al 2 O 3 ) powder having an average particle size of 0.2 to 2.1 ⁇ m as raw material powder and oxidation of Ti as Ti compound powder SiO 2 powder and Group 2 element compound powder as a compound, Si compound powder, carbonate powder of Ca, Mg, Sr, or Ba and RE element compound powder containing RE element as shown in Table 1 and binder
  • Ti Ti compound powder
  • SiO 2 powder Group 2 element compound powder
  • Group 2 element compound powder as a compound
  • Si compound powder carbonate powder of Ca, Mg, Sr, or Ba
  • RE element compound powder containing RE element shown in Table 1
  • binder As a mixture, polyvinyl alcohol and water as a solvent were mixed to prepare a slurry.
  • the obtained slurry was spray-dried by a spray drying method or the like to prepare a spherical granulated product having an average particle size of about 100 ⁇ m. Furthermore, the obtained granulated material was press-molded to form a disk-shaped green compact. The green body was fired in the atmosphere at a firing temperature of 1450 ° C. to 1650 ° C. within the range shown in Table 2 with a firing time set to 2 to 8 hours, and the average cooling from the firing temperature to 1200 ° C.
  • the withstand voltage measuring device 20 includes an alumina-based sintered body 21, an electrode 23 a, and an electrode 23 a in a heating box 22 from the axis X direction of the disk-shaped alumina-based sintered body 21. It is sandwiched in the axis X direction by alumina casing cylinders 24a and 24b so as to surround the electrode 23b.
  • the contact portions between the front and back surfaces of the alumina-based sintered body 21 and the alumina rods 24a and 24b are fixed by the SiO 2 sealing glass 25 over the entire circumferences of the rods 24a and 24b.
  • the tip part in contact with the alumina-based sintered body 21 is gradually reduced in diameter toward the tip part and becomes hemispherical.
  • the outer peripheral surfaces of the electrodes 23a and 23b are covered with alumina rods 28a and 28b, respectively, in order to prevent electric discharge from occurring between the electrodes 23a and 23b.
  • withstand voltage measuring device 20 high voltage generation that can apply a high voltage of about several tens of kV to the alumina-based sintered body 21 in the heating box 22 adjusted to 700 ° C. by the electric heater 26.
  • a constant high voltage is applied to the alumina-based sintered body 21 by the device 27, and the voltage value when dielectric breakdown occurs in the alumina-based sintered body 21 is determined as the thickness of the alumina-based sintered body at the position where the penetration has occurred.
  • the value divided by was measured as the “withstand voltage value” of the alumina-based sintered body 21.
  • the “withstand voltage value” at 700 ° C. is shown in Table 2.
  • a test piece having a thickness of 3 mm, a width of 4 mm, and a total length of 40 to 45 mm was prepared basically in the same manner as the production of the alumina-based sintered body described above, and JIS R 1614 “Fine In accordance with the “Acid and Alkaline Corrosion Test Method for Ceramics”, a corrosion test of the alumina-based sintered body is performed, and the degree of acid resistance and base resistance is determined by the rate of decrease in mechanical strength of the alumina-based sintered body before and after the corrosion test. evaluated. In the acid resistance test among the corrosion tests, the test piece was immersed in a sulfuric acid solution having a concentration of 6N, and a boiling test was performed for 24 hours.
  • the alumina-based sintered body is subjected to a withstand voltage test, an acid resistance test, and a base resistance test as described above.
  • a withstand voltage test 60 kV / mm or more is “mm”, 50 kV / mm or more. Less than 60 kV / mm is “O”, less than 50 kV / mm is "X”, and for acid resistance tests, 40% or less is " ⁇ ", 40% to 49% or less is "O", 49% or less is exceeded
  • 30% or less was evaluated as “ ⁇ ”, 30% to 33% or less as “ ⁇ ”, and 33% or less as “ ⁇ ”.
  • 30% or less
  • the alumina-based sintered bodies of the examples within the scope of the present invention have a high withstand voltage value even at a high temperature of 700 ° C., and after the acid resistance and base resistance tests. It was found that the strength reduction rate was small and it had resistance to an acidic atmosphere and a basic atmosphere.
  • spark plug An insulator made of a substantially cylindrical alumina-based sintered body was prepared in the same manner as the alumina-based sintered body described above, and a spark plug was manufactured as described above using this insulator. Each manufactured spark plug was excellent in withstand voltage characteristics at high temperatures and had resistance to an acidic atmosphere and a basic atmosphere.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Spark Plugs (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

この発明は、高温下における耐電圧特性に優れ、酸性雰囲気及び塩基性雰囲気に対する耐性を有するスパークプラグを提供することを課題とする。この発明のスパークプラグは、Al成分を酸化物換算で89質量%以上、Ti成分を酸化物換算で0質量%を超え0.2質量%以下の割合で含有する絶縁体を備えたスパークプラグであって、前記絶縁体は、アルミナ結晶の結晶間に存在する粒界相に、La成分、Nd成分、Pr成分、Y成分、Er成分、Yb成分、及びLu成分から選ばれる少なくとも一種を含有する第1結晶相と、IUPAC1990年勧告に基づく周期表の第2族元素の成分の少なくとも一種、Al成分、及びSi成分の各成分を含有する第2結晶相とを含むアルミナ基焼結体からなることを特徴とする。

Description

スパークプラグ
この発明は、スパークプラグに関し、さらに詳しくは、特定の絶縁体を備えたスパークプラグに関する。
自動車エンジン等の内燃機関に使用されるスパークプラグは、例えば、アルミナ(Al)を主成分とするアルミナ基焼結体により形成されたスパークプラグ用絶縁体(「絶縁体」とも称する。)を備えている。この絶縁体がアルミナ基焼結体で形成される理由としては、アルミナ基焼結体が耐熱性及び機械的強度等に優れていることが挙げられる。このようなアルミナ基焼結体は、SiO及びMgO等を含む焼結助剤を含有する混合粉末を焼結して、形成されてきた。 
ところが、焼結助剤を用いて焼結して成るアルミナ基焼結体でスパークプラグの絶縁体を形成した場合に、焼結助剤が焼結後にアルミナ結晶粒子の粒界に低融点ガラス相として存在して、スパークプラグの使用環境、例えば700℃程度の高温環境下において、低融点ガラス相が軟化し、絶縁体の耐電圧特性が低下してしまうことがある。 
また、スパークプラグは、ガソリン等の化石燃料の他にエタノール等のバイオ燃料等様々な種類の燃料が注目されている。このような状況下において、スパークプラグは酸性雰囲気又は塩基性雰囲気に曝されるので、耐腐食性が要求される。 
特許文献1には、「酸雰囲気に対する耐性(以下、耐酸性と称することがある。)及び高温耐電圧特性に優れたスパークプラグを提供すること」(段落番号0008)を課題として、「・・・前記絶縁体は、Si成分とBa成分とCa成分とMg成分とを、下記条件(1)及び(2)を満足するように、含有し、B成分を実質的に無含有であるアルミナ基焼結体で形成されてなることを特徴とするスパークプラグ。条件(1):前記Si成分の質量(酸化物換算)に対する前記Ca成分の質量(酸化物換算)の割合RCaが0.05~0.40 条件(2):前記Si成分の質量(酸化物換算)、前記Ca成分の質量(酸化物換算)及び前記Mg成分の質量(酸化物換算)の合計質量に対する前記Mg成分の質量(酸化物換算)の割合RMgが0.01~0.08」(請求項1)が記載されている。 
特許文献1に記載のスパークプラグは、酸雰囲気に対する耐性に優れることが開示されているが、塩基性雰囲気に対する耐性については開示されていない。
特開2011-70929号公報
この発明の課題は、高温下における耐電圧特性に優れ、酸性雰囲気及び塩基性雰囲気に対する耐性を有するスパークプラグを提供することである。
前記課題を解決するための手段は、(1) Al成分を酸化物換算で89質量%以上、Ti成分を酸化物換算で0質量%を超え0.2質量%以下の割合で含有する絶縁体を備えたスパークプラグであって、

 前記絶縁体は、アルミナ結晶の結晶間に存在する粒界相に、La成分、Nd成分、Pr成分、Y成分、Er成分、Yb成分、及びLu成分から選ばれる少なくとも一種を含有する第1結晶相と、IUPAC1990年勧告に基づく周期表の第2族元素の成分の少なくとも一種、Al成分、及びSi成分の各成分を含有する第2結晶相とを含むアルミナ基焼結体からなることを特徴とするスパークプラグである。

 前記(1)の好ましい態様は、

(2)前記絶縁体の断面をX線回折分析したときに、前記アルミナ結晶の回折ピークの最大高さaと、前記第1結晶相の回折ピークの最大高さbと、前記第2結晶相の回折ピークの最大高さcとが、以下の関係式(a)を満たす。

 0.025≦(b+c)/a≦0.12・・・・・(a)

(3)前記(1)又は(2)に記載のスパークプラグにおいて、前記第1結晶相が、MgREAl1119、REAl1118、RE Si、REAlO

及び/又はRE Al12(ただし、REはLa、Nd及びPrから選ばれる少なくとも一種を示し、REはY、Er、Yb、及びLuから選ばれる少なくとも一種を示す。)であり、前記第2結晶相がCaAlSiである。

(4)前記(1)~(3)のいずれか一つに記載のスパークプラグにおいて、前記絶縁体は、Na成分とK成分とを含有しないか、又は酸化物換算で合計0.2質量%以下の割合で含有する。
この発明に係るスパークプラグは、Al成分とTi成分とを特定の割合で含有し、アルミナ結晶の結晶間に存在する粒界相に前記第1結晶相と前記第2結晶相とを含むアルミナ基焼結体からなる絶縁体を備えるので、高温下における耐電圧特性に優れ、酸性雰囲気及び塩基性雰囲気に対する耐性を有するスパークプラグを提供することができる。 
前記絶縁体の断面をX線回折分析したときの、前記アルミナ結晶の回折ピークの最大高さaに対する、前記第1結晶相の回折ピークの最大高さbと前記第2結晶相の回折ピークの最大高さcとの和が特定の範囲にあるとき、高温下における耐電圧特性、酸性雰囲気及び塩基性雰囲気に対する耐性がより一層発揮される。 
前記絶縁体は、Na成分とK成分とを実質的に含有せず、含有したとしても酸化物換算で合計0.2質量%以下であるので、粒界相に含まれる第1結晶相及び第2結晶相の結晶化を促進させることができ、高温下における耐電圧特性、酸性雰囲気及び塩基性雰囲気に対する耐性がより一層発揮される。
図1は、この発明に係るスパークプラグの一例であるスパークプラグを説明する一部断面全体説明図である。 図2は、実施例における耐電圧試験で用いた耐電圧測定装置を示す概略図である。
この発明に係るスパークプラグは、基本的には前記条件を満たす絶縁体を備えていればよく、例えば、中心電極と、中心電極の外周に設けられ、前記条件を満たす略円筒形状の絶縁体と、一端が中心電極と火花放電間隙を介して対向するように配置された接地電極とを備えている。この発明に係るスパークプラグは、前記条件を満たす絶縁体を有するスパークプラグであれば、その他の構成は特に限定されず、公知の種々の構成を採ることができる。 
以下、この発明に係るスパークプラグを、その特徴の1つである絶縁体と共に、図1を参酌して、説明する。図1はこの発明に係るスパークプラグの一例であるスパークプラグ1の一部断面全体説明図である。なお、図1では紙面下方を軸線Oの先端方向、紙面上方を軸線Oの後端方向として、説明する。 
このスパークプラグ1は、図1に示されるように、略棒状の中心電極2と、中心電極2の外周に設けられた略円筒形状の絶縁体3と、絶縁体3を保持する円筒形状の主体金具4と、一端が中心電極2の先端面と火花放電間隙Gを介して対向するように配置されると共に他端が主体金具4の端面に接合された接地電極6とを備えている。 
主体金具4は、円筒形状を有しており、絶縁体3を内装することにより絶縁体3を保持するように形成されている。主体金具4における先端方向の外周面にはネジ部9が形成されており、このネジ部9を利用して図示しない内燃機関のシリンダヘッドにスパークプラグ1が装着される。主体金具4は、導電性の鉄鋼材料、例えば、低炭素鋼により形成されることができる。ネジ部9の規格の一例としては、M10、M12及びM14等が挙げられる。この発明において、ネジ部9の呼びは、ISO2705(M12)及びISO2704(M10)等に規定された値を意味し、当然に、諸規格に定められた寸法公差の範囲内での変動を許容する。 
中心電極2は、軸線O方向に伸びる略棒状体であり、その先端部が絶縁体3の先端面から突出した状態で絶縁体3の軸孔に固定されており、主体金具4に対して絶縁保持されている。中心電極2は耐熱性及び耐食性に優れたNi基合金等で形成されることができる。 
接地電極6は、例えば、角柱体に形成されてなり、一端が主体金具4の端部に接合され、途中で略L字に曲げられて、その先端部が中心電極2の軸線O方向に位置するように、その形状及び構造が設計されている。接地電極6がこのように設計されることによって、接地電極6の一端が中心電極2と火花放電間隙Gを介して対向するように配置されている。火花放電間隙Gは、中心電極2の先端面と接地電極6の表面との間の間隙であり、この火花放電間隙Gは、通常、0.3~1.5mmに設定される。接地電極6は中心電極2よりも高温に曝されるため、中心電極2を形成するNi基合金よりも耐熱性及び耐食性等により一層優れたNi基合金等で形成されるのがよい。 
絶縁体3は、後述するアルミナ基焼結体で略円筒状に形成され、絶縁体3の軸線O方向に沿って中心電極2を保持する軸孔10を有している。この絶縁体3は、その先端方向の端部が主体金具4の先端面から突出した状態で、主体金具4の内周部に滑石(タルク)及び/又はパッキン等を介して保持されている。 
このスパークプラグ1の特徴の1つである絶縁体3を構成するアルミナ基焼結体について説明する。このアルミナ基焼結体は、Al成分、Ti成分、Si成分、第2族元素の成分から選ばれる少なくとも一種、並びに、RE成分から選ばれる少なくとも一種を含有し(RE成分は、La成分、Nd成分、Pr成分、Y成分、Er成分、Yb成分、及びLu成分である。)、アルミナ結晶の結晶間に存在する粒界相に、後述する第1結晶相と第2結晶相とを含んでいる。なお、前記粒界相とは、アルミナ結晶間に存在するアルミナ結晶以外の結晶及び非晶質(以下においてガラスと称することもある。)のことをいう。 
アルミナ基焼結体におけるAl成分の含有率は、アルミナ基焼結体の全質量(酸化物換算)を100質量%としたときに、酸化物換算(Al)で89質量%以上であり、91質量%以上であるのが好ましい。Al成分の含有率の上限値は100質量%未満であればよいが、焼結性が低下し製造コストが嵩む点及び良好な耐電圧特性を得る上で97質量%以下であるのが好ましい。Al成分は、主にアルミナ(Al)として存在し、後述する第1結晶相及び第2結晶相としても存在する。Al成分を前記割合で含有すると、アルミナ基焼結体の耐電圧特性、耐熱性及び機械的特性等が優れる。 
アルミナ基焼結体におけるTi成分の含有率は、アルミナ基焼結体の全質量(酸化物換算)を100質量%としたときに、酸化物換算(TiO)で0質量%を超え0.2質量%以下であり、0.005質量%以上0.10質量%以下であるのが好ましい。Ti成分は、酸化物、イオン等として存在する。後述する焼結助剤として添加する成分、例えば、Si成分、第2族元素の成分及びRE成分等は、焼結時に溶融して焼結助剤として機能し、焼結後はアルミナ結晶の結晶間にガラス等を形成し易いところ、Ti成分を前記割合で含有すると、Ti成分が核生成剤として働き、焼結助剤として添加された各種成分の結晶化が促進され、粒界相に後述する第1結晶相及び第2結晶相が形成され易くなる。 
粒界相に第1結晶相及び第2結晶相を含むと、アルミナ基焼結体からなる絶縁体は、高温下における耐電圧特性に優れ、酸性雰囲気及び塩基性雰囲気に対する耐性を有する。粒界相にガラスよりも優先して第1結晶相及び第2結晶相が形成されると、耐酸性及び耐塩基性に劣るガラスの量が相対的に減少し、腐食の進行を抑えることができる。逆に、耐酸性及び耐塩基性の高い、第1結晶相及び第2結晶相が粒界相に形成されると、酸性雰囲気では耐酸性の高い結晶が、塩基性雰囲気では耐塩基性の高い結晶が腐食の進行を抑制し、絶縁体の強度の劣化を抑制すると考えられる。Ti成分が含有されていないと、核生成剤としての効果が発揮されず、第1結晶相及び第2結晶相が形成され難くなり、相対的にガラスの量が増え、酸性雰囲気及び塩基性雰囲気に対する耐性に劣る。Ti成分が0.2質量%を超えて含有されていると、Ti成分は高温下で半導体の特性を有するようになるので、高温下における耐電圧特性が低下してしまう。 
アルミナ基焼結体は、RE成分から選ばれる少なくとも一種を含有する。RE成分は、La成分、Nd成分、Pr成分、Y成分、Er成分、Yb成分、及びLu成分である。RE成分は、焼結助剤由来の成分であり、酸化物、イオン等として、アルミナ基焼結体中に存在する。RE成分の含有率は、高温下における耐電圧特性、並びに、酸性雰囲気及び塩基性雰囲気に対する耐性を向上させる観点から、アルミナ基焼結体の全質量(酸化物換算)を100質量%としたときに、酸化物換算で、0.5質量%以上6.0質量%以下であるのが好ましい。 
RE成分は、焼結時にアルミナ基焼結体に含有されていることにより、焼結時におけるアルミナの過度の粒成長を抑制すると共に、Al成分や、Si成分などと共に、一部が結晶化して粒界相中の結晶として存在し、一部は、粒界相中のガラスの中にガラスを構成する元素として残る。前記RE成分を含むガラスは、融点が高いので、RE成分を含まない低融点のガラスに比べてアルミナ基焼結体の高温下での耐電圧特性を向上させることができる。また、RE成分は、Ti成分が核生成剤として働くことで、Al成分、Si成分、及び/又は第2族元素の成分等と共に、耐酸性及び/又は耐塩基性を有する第1結晶相を形成する。アルミナ結晶の結晶間に存在する粒界相に第1結晶相が形成されることで、粒界相に形成されるガラスの量が相対的に減少し、代わりに耐酸性及び/又は耐塩基性を有する第1結晶相が形成されるので、酸性雰囲気又は塩基性雰囲気にスパークプラグが曝されたときに、粒界相に存在するガラスを起点として腐食するのを抑制することができる。 
アルミナ基焼結体はSi成分を含有する。Si成分は、焼結助剤由来の成分であり、酸化物、イオン等として、アルミナ基焼結体中に存在する。Si成分は、焼結時には溶融して通常液相を生じるので焼結体の緻密化を促進する焼結助剤として機能し、焼結後はアルミナ結晶の結晶間に存在する粒界相に低融点のガラス等を形成することが多い。しかし、前記アルミナ基焼結体はTi成分を核生成剤として含有し、また、Si成分に加えてRE成分、第2族成分等を含有しているので、Si成分は低融点のガラスよりも他の成分と共に後述する第1結晶相及び第2結晶相等を優先的に形成し易い。 
アルミナ基焼結体は第2族元素の成分の少なくとも一種を含有する。(以下において、第2族成分と称することもある。)。第2族成分は、焼結助剤由来の成分であり、IUPAC1990年勧告に基づく周期表の第2族元素の成分の少なくとも一種を含んでいればよく、入手のしやすさの観点から、Mg成分、Ca成分、Sr成分及びBa成分が好ましく挙げられる。第2族成分は、酸化物、イオン等として、アルミナ基焼結体中に存在し、焼結前のSi成分と同様に焼結助剤として機能すると共に、焼結後には粒界相にガラス、及びAl成分又はSi成分等と共に後述する第2結晶相等を形成する。アルミナ結晶の結晶間に存在する粒界相に第2結晶相が形成されることで、粒界相に形成されるガラスの量が相対的に減少し、代わりに耐酸性及び/又は耐塩基性を有する第2結晶相が形成されるので、酸性雰囲気又は塩基性雰囲気にスパークプラグが曝されたときに、粒界相に存在するガラスを起点として腐食するのを抑制することができる。 
前記第1結晶相は、La成分、Nd成分、Pr成分、Y成分、Er成分、Yb成分、及びLu成分から選ばれる少なくとも一種を必須の成分として含有する結晶からなる。第1結晶相は、耐酸性及び/又は耐塩基性を有する。第1結晶相は、前記成分以外の成分、例えばAl成分、第2族成分、Si成分等を含有していてもよい。前記第1結晶相としては、例えば、MgREAl1119、REAl1118、RE Si、REAlO、RE
Al12、RE Al(ただし、REはLa、Nd及びPrから選ばれる少なくとも一種を示し、REはY、Er、Yb、及びLuから選ばれる少なくとも一種を示す。)等を挙げることができ、これらのうちの1種又は2種以上により形成されてもよい。これらの中でもMgREAl1119、REAl1118、RE Si、REAlO、RE Al12は、後述する第2結晶相と共に存在することで、耐酸性及び耐塩基性が良好になる点で好ましい。 
第2結晶相は、IUPAC1990年勧告に基づく周期表の第2族元素の成分の少なくとも一種、Al成分、及びSi成分の各成分を必須の成分として含有する結晶からなる。第2結晶相は、耐酸性及び/又は耐塩基性を有する。前記第2結晶相としては、例えば、CaAlSi、SrAlSi、BaAlSiを挙げることができ、これらのうちの1種又は2種以上により形成されてもよい。これらの中でもCaAlSiは、第1結晶相と共に存在することで、耐酸性及び耐塩基性が良好になる点で好ましい。
アルミナ基焼結体は、複数のアルミナ結晶に囲まれる領域にある粒界相に、前記第1結晶相と前記第2結晶相とを含有することにより、酸性雰囲気及び塩基性雰囲気に曝されたときに腐食の進行を抑制し、強度の劣化を防止することができる。結晶の中には耐酸性及び耐塩基性の低い結晶も存在するので、前記粒界相に形成される結晶は、どのような結晶でも良いという訳ではなく、耐酸性の高い結晶と耐塩基性の高い結晶との両方を前記粒界相に析出させることで、酸性雰囲気及び塩基性雰囲気に対する耐性を有する絶縁体が得られる。前記第1結晶相と前記第2結晶相とにおけるいずれの結晶が耐酸性又は耐塩基性の高い結晶であるかについては定かではないが、粒界相が前記第1結晶相と前記第2結晶相とを含有することにより、酸性雰囲気及び塩基性雰囲気に対する耐性を有する絶縁体を形成することができる。 
アルミナ基焼結体は、アルミナ基焼結体の全質量(酸化物換算)を100質量%としたときに、Na成分とK成分とを含有しないか、又は酸化物換算(NaO及びKO)で合計0.2質量%以下の割合で含有するのが好ましい。すなわち、Na成分とK成分とを実質的に含有しないのが好ましく、含有したとしても多くとも0.2質量%の割合で含有するのが好ましい。Na成分及びK成分は、アルミナ原料中に不可避不純物として含有される場合があり、また、アルミナ基焼結体の原料の成形体を形成する際に、成形性を付与するために原料に添加するバインダーに含有される場合等がある。しかし、Na成分及びK成分を含有すると、焼結後にSi成分、第2族成分、RE成分等がガラス化し易くなり、粒界相に第1結晶相及び第2結晶相が形成され難くなることがある。したがって、Na成分及びK成分の合計含有割合を0.2質量%以下に抑えるのが好ましい。 
アルミナ基焼結体からなる絶縁体3の断面をX線回折分析したときに、前記アルミナ結晶の回折ピークの最大高さaと、前記第1結晶相の回折ピークの最大高さbと、前記第2結晶相の回折ピークの最大高さcとが、以下の関係式(a)を満たすのが好ましい。 0.025≦(b+c)/a≦0.12・・・・・(a) アルミナ基焼結体が前記関係式(a)を満たすと、高温下における耐電圧特性により一層優れ、酸性雰囲気及び塩基性雰囲気に対する耐性がより一層優れたスパークプラグを提供することができる。 
前記関係式(a)は、アルミナ基焼結体における、アルミナ結晶に対する第1結晶相及び第2結晶相の含有比のおおよその指標となる。前記(b+c)/aが0.025より小さい、すなわちアルミナ結晶に対して第1結晶相及び第2結晶相の含有率が少ないとき、粒界相における結晶化が進行せずに耐酸化性及び耐塩基性を有する結晶の析出量が少なくなっている場合、或いは焼結助剤として添加されるSi成分、第2族成分、RE成分等が不足している場合がある。前者の場合には酸性雰囲気及び塩基性雰囲気に対する耐性が劣る傾向にあり、後者の場合には焼結助剤が不足するために焼結性に劣り、耐電圧特性に劣る傾向にある。前記(b+c)/aが0.12より大きいとき、第1結晶相及び第2結晶相に対するアルミナ結晶の含有率が少なくなるので、耐電圧特性に劣る傾向にある。 
前記最大高さa、最大高さb、及び最大高さcは、次のようにして測定することができる。まず、絶縁体3の任意の断面をX線回折分析し、X線回折図形を得る。得られたX線回折図形と標準物質の回折データであるJCPDSカードとを比較することにより、アルミナ基焼結体に含まれる結晶を同定する。アルミナ結晶の複数の回折線のうち最も強度の大きい回折線のピーク高さを求め、これを最大高さaとする。 
最大高さbは、最大高さaを求める場合と同様にして、RE成分から選ばれる少なくとも一種を含有する第1結晶相の複数の回折線のうち最も強度の大きい回折線のピーク高さを求める。第1結晶相として、複数の結晶相を含有する場合、例えば、Y2Si2とYAlO3とを含有する場合には、Y2Si2の複数の回折線のうち最も強度の大きい回折線のピーク高さb1と、YAlO3の複数の回折線のうち最も強度の大きい回折線のピーク高さb2との和(b1+b2)を最大高さbとする。 
最大高さcは、最大高さaを求める場合と同様にして、第2族成分の少なくとも一種、Al成分、及びSi成分の各成分を含有する第2結晶相の複数の回折線のうち最も強度の大きい回折線のピーク高さを求める。なお、第2結晶相として、複数の結晶相を含有する場合には、最大高さbの場合と同様にして、それぞれのピーク高さの和を最大高さcとする。また、ピーク高さを求める際には、バックグラウンドを除いた高さを測定する。 
Pr成分及びNd成分に関しては、JCPDSカードが存在しない場合があり、この場合X線回折による同定は直接的には不可能である。しかし、Pr3+及びNd3+のイオン半径がLa3+のイオン半径とほぼ同等であるので、Pr成分又はNd成分が含まれる第1結晶相は、La成分を含む第1結晶相のJCPDSカードと類似したX線回折図形を示す。したがって、La成分を含むヘキサアルミネート結晶のJCPDSカードと対比して、Pr成分又はNd成分を含む第1結晶相の存在を確認することができる。 
この発明において、アルミナ基焼結体が含有するAl成分、Ti成分等の各含有率は、例えば、蛍光X線分析法及びICP分析法により、酸化物換算質量及び酸化物換算質量%として測定することができる。例えば、アルミナ基焼結体の成分のうち、Ti成分以外の成分に関しては蛍光X線分析法により、Ti成分についてはICP分析法により測定することができる。なお、この発明において、アルミナ基焼結体を蛍光X線分析法とICP分析法とによって分析して得られた結果とアルミナ基焼結体の製造に用いる原料粉末の混合比とはほぼ一致する。したがって、各成分の含有率は原料粉末における各粉末の混合比で調整できる。 
アルミナ基焼結体は、RE成分から選ばれる少なくとも一種、第2族成分から選ばれる少なくとも一種、Al成分、Ti成分、及びSi成分から実質的になる。ここで、「実質的に」とは、前記成分以外の成分を添加等により積極的に含有させないことを意味する。なお、各成分には微量の不純物等を含有していることがあるから、アルミナ基焼結体は、この発明の目的を損なわない範囲で、前記各成分に加えて不純物を含有していてもよい。このようなアルミナ基焼結体に含有してもよい不純物としては、例えば、Na、K、Fe等が挙げられる。これらの不純物の含有量は少ない方がよく、例えば、Al成分、Ti成分、RE成分、第2族成分及びSi成分等の合計質量を酸化物換算で100質量部としたときに、Na成分とK成分との酸化物換算合計は0.2質量部以下がよく、全ての不純物の合計質量は0.5質量部以下であるのがよい。また、アルミナ基焼結体は、この発明の目的を損なわない範囲で所望により、前記不純物の他に、他の成分、例えば、RE成分以外の希土類元素成分として、Dy、Eu等を少量含有していてもよい。 
次に、この発明に係るスパークプラグの一例としてスパークプラグ1を製造する方法について具体的に説明する。以下に、絶縁体を製造する工程について説明する。まず、原料粉末として、主成分としてのAl化合物粉末とTi化合物粉末とSi化合物粉末とIUPAC1990年勧告に基づく周期表の第2族元素化合物粉末(以下、第2族化合物粉末と称することがある。)とRE元素化合物粉末(RE元素は、La、Nd、Pr、Y、Er、Yb、及びLuである。)と、バインダーと、溶媒とを混合して、スラリーを調製する。必要に応じて、可塑剤、消泡剤、分散剤等の添加物を添加してもよい。 
各原料粉末の混合は、原料粉末の混合状態を均一にし、かつ得られる焼結体を高度に緻密化することができるように、8時間以上にわたって行われるのが好ましい。 
Al化合物粉末は、焼成によりAlに転化する化合物であれば特に制限はなく、通常、アルミナ(Al)粉末が用いられる。Al化合物粉末は、現実的に不可避不純物としてNa成分を含有していることがあるので、高純度のものを用いるのが好ましく、例えば、Al化合物粉末における純度は99.5%以上であるのが好ましい。Al化合物粉末は、緻密なアルミナ基焼結体を得るには、通常、その平均粒径が0.1~5.0μmの粉末を使用するのがよい。ここで、この平均粒径はレーザー回折法(日機装株式会社製、マイクロトラック粒度分布測定装置(MT-3000))により測定した値である。Al化合物粉末は、焼成後のアルミナ基焼結体の全質量(酸化物換算)を100質量%としたときに、酸化物換算で89質量%以上97質量%以下となるように調製されることが、良好な耐電圧特性を得る上で好ましい。 
Ti化合物粉末は、焼成によりTiの酸化物に転化できる化合物であれば特に制限はなく、例えば、Tiの酸化物、その複合酸化物、水酸化物、炭酸塩、塩化物、硫酸塩、硝酸塩等の各種無機系粉末、又は天然鉱物の粉末等を挙げることができる。なお、Ti化合物粉末として酸化物以外の粉末を使用する場合には、その使用量は酸化物に換算したときの酸化物換算質量%で把握する。Ti化合物粉末の純度及び平均粒径はAl化合物粉末の場合と基本的に同様である。Ti化合物粉末は焼成後のアルミナ焼結体の全質量(酸化物換算)を100質量%としたときに、酸化物換算で0質量%を超え0.2質量%以下となるように調製されるのが好ましい。 
Si化合物粉末は、焼成によりSiの酸化物に転化できる化合物であれば特に制限はなく、例えば、Siの酸化物、その複合酸化物、水酸化物、炭酸塩、塩化物、硫酸塩、硝酸塩等の各種無機系粉末、又は天然鉱物の粉末等を挙げることができる。なお、Si化合物粉末として酸化物以外の粉末を使用する場合には、その使用量は酸化物に換算したときの酸化物換算質量%で把握する。Si化合物粉末の純度及び平均粒径はAl化合物粉末の場合と基本的に同様である。 
第2族化合物粉末は、焼成により第2族元素の酸化物に転化できる化合物
であれば特に制限はなく、例えば、第2族元素の酸化物、その複合酸化物、水酸化物、炭酸塩、塩化物、硫酸塩、硝酸塩等の各種無機系粉末、又は天然鉱物等を挙げることができる。なお、第2族化合物粉末として酸化物以外の粉末を使用する場合には、その使用量は酸化物に換算したときの酸化物換算質量%で把握する。第2族化合物粉末の純度及び平均粒径はAl化合物粉末の場合と基本的に同様である。 
RE元素化合物粉末は、焼成によりRE元素の酸化物に転化できる化合物であれば特に制限はなく、例えば、RE元素の酸化物、その複合酸化物、及び水酸化物等の粉末を挙げることができる。RE元素化合物粉末の純度及び平均粒径はAl化合物粉末の場合と基本的に同様である。RE元素化合物粉末は、焼成後のアルミナ基焼結体の全質量(酸化物換算)を100質量%としたときに、酸化物換算で0.5質量%以上6.0質量%以下となるように調製されるのが好ましい。 
バインダーは、前記原料粉末の成形性を良好にすることができればよく、そのようなバインダーとして親水性結合剤を挙げることができる。親水性結合剤としては、例えば、ポリビニルアルコール、水溶性アクリル樹脂、アラビアゴム、デキストリン等を挙げることができる。これらのバインダーは、1種単独で用いてもよいし、2種以上を併用してもよい。バインダーとしては、第1結晶相及び第2結晶相の結晶化を阻害しないように、Na成分及びK成分の少ないものを使用するのが好ましい。バインダーは、原料粉末100質量部に対して、0.1~7質量部の割合で配合されるのが好ましく、1.0~5.0質量部の割合で配合されるのが特に好ましい。 
溶媒は、原料粉末を分散させることができればよく、そのような溶媒として水、アルコール等を挙げることができる。これらの溶媒は1種単独で用いてもよいし、2種以上を併用してもよい。溶媒は、原料粉末100質量部に対して、40~120質量部であるのが好ましく、50~100質量部であるのが特に好ましい。 
このようにして得られたスラリーは、スプレードライ法等により噴霧乾燥されて球状の造粒物に調製される。この造粒物の平均粒径は、30~200μmが好ましく、50~150μmが特に好ましい。前記平均粒径は、レーザー回折法(日機装株式会社製、マイクロトラック粒度分布測定装置(MT-3000))により測定した値である。 
続いて、この造粒物を例えばラバープレス又は金型プレス等でプレス成形して未焼成成形体を得る。得られた未焼成成形体は、その外面がレジノイド砥石等で研削されることにより形状が整えられる。 
所望の形状に研削整形された前記未焼成成形体を、大気雰囲気下、1450~1650℃で1~8時間焼成し、冷却速度5~30℃/分で1200℃まで冷却し、その後常温まで自然冷却することにより、アルミナ基焼結体が得られる。焼成温度が1450~1650℃であると、焼結体が十分に緻密化し易く、アルミナ成分の異常粒成長が生じ難いので、得られるアルミナ基焼結体の耐電圧特性及び機械的強度を確保することができる。また、焼成時間が1~8時間であると、焼結体が十分に緻密化し易く、アルミナ成分の異常粒成長が生じ難いので、得られるアルミナ基焼結体の耐電圧特性及び機械的強度を確保することができる。また、焼成温度から1200℃までの冷却速度が5~30℃/分であると、焼結助剤として添加されたSi化合物粉末、第2族化合物粉末、RE元素化合物粉末等が結晶化し易く、粒界相に第1結晶相及び第2結晶相が析出し易くなり、良好な耐電圧特性、並びに酸性雰囲気及び塩基性雰囲気に対する耐性を有するアルミナ基焼結体を得ることができる。 
得られた前記アルミナ基焼結体は、所望により、再度、その形状等が成形されてもよい。このようにしてアルミナ基焼結体を得ることができ、またこのアルミナ基焼結体で形成されたスパークプラグ1用の絶縁体3を作製することができる。 
一方、Ni基合金等の電極材料を所定の形状及び寸法に加工して中心電極2及び接地電極6を作製する。次いで、所定の形状及び寸法に塑性加工等によって形成した主体金具4の先端部に接地電極6の一端部を抵抗溶接等によって接合する。次いで、前記絶縁体3に中心電極2及び端子金具を公知の手法により組み付け、接地電極6が接合された主体金具4にこの絶縁体3を組み付ける。そして、接地電極6の先端部を中心電極2側に折り曲げて、接地電極6の一端部が中心電極2の先端部と対向するようにして、スパークプラグ1が製造される。 
このスパークプラグ1は、自動車用の内燃機関例えばガソリンエンジン等の点火栓として使用され、内燃機関の燃焼室を区画形成するヘッド(図示せず)に設けられたネジ穴にネジ部が螺合されて所定の位置に固定される。このスパークプラグ1は、前述した絶縁体を備えているから常温下はもちろん高温下でも高い耐電圧特性を発揮し、酸性雰囲気及び塩基性雰囲気に対する耐性を有する。したがって、このスパークプラグ1は、如何なる内燃機関にも使用することができるが、通常の内燃機関はもちろん、燃焼室内が酸性雰囲気及び/又は塩基性雰囲気になり易い内燃機関等に好適に使用されることができる。 
この発明に係るスパークプラグは、前記した一例に限定されることはなく、本願発明の目的を達成することができる範囲において、種々の変更が可能である。
1.アルミナ基焼結体の製造及び評価(アルミナ基焼結体の製造) 原料粉末として、平均粒径が0.2~2.1μmのアルミナ(Al)粉末とTi化合物粉末としてTiの酸化物とSi化合物粉末としてSiO粉末と第2族元素化合物粉末として、Ca、Mg、Sr、又はBaの炭酸塩とRE元素化合物粉末として表1に示すRE元素を含有する化合物の粉末と、バインダーとしてポリビニルアルコールと、溶媒として水とを混合してスラリーを調製した。 
得られたスラリーは、スプレードライ法等により噴霧乾燥されて、平均粒径が約100μmの球状の造粒物に調製した。更に、得られた造粒物をプレス成形することにより、円板状の未焼成成形体を成形した。この未焼成成形体を大気雰囲気下において、表2に示す、焼成温度1450℃~1650℃の範囲内で焼成時間を2~8時間に設定して焼成し、焼成温度から1200℃までの平均冷却速度を5~200℃/minの範囲内の一定条件に設定して冷却し、さらに常温まで自然冷却し、直径18mm、厚み0.3~0.5mmの円板状のアルミナ基焼結体を得た。 
(成分の含有率測定) 得られたアルミナ基焼結体それぞれの組成すなわち各成分の含有率を、Ti以外の成分については蛍光X線分析法により、Ti成分についてはICP分析法を用いた定量分析によって、検出された各成分の酸化物換算質量の合計を100質量%としたときの質量割合(%)として算出した。その結果、表1に示される各成分の調合比率と分析した各成分の含有率は前記原料粉末における混合割合とほぼ一致していた。 
(第1結晶相及び第2結晶相の存在確認) 各アルミナ基焼結体の断面に研磨処理を施した後に、株式会社リガク製のX線回折装置(型式:MiniFlex)を用いて、X線:CuKα(λ1.54Å)、スキャンスピード:4°/min、サンプリング幅:0.020°、発散スリット幅:1mmの測定条件で、前記断面のX線回折分析をした。得られたX線回折図形をJCPDSカードと比較等して、各アルミナ基焼結体の粒界相に、表1に示す、前記第1結晶相、前記第2結晶相及びその他の結晶相が存在していることを確認した。 
(耐電圧試験) 各アルミナ基焼結体について、図2に示される耐電圧測定装置20を用いて、700℃における耐電圧値を測定した。この耐電圧測定装置20は、図2に示されるように、加熱用ボックス22内において、円板状のアルミナ基焼結体21の軸線X方向から、アルミナ基焼結体21を、電極23a及び電極23bを囲繞するようにアルミナ製碍筒24a及び24bで、前記軸線X方向に挟持する。さらに、アルミナ基焼結体21の表裏面とアルミナ製碍筒24a及び24bとの接触部を碍筒24a及び24bの全周にわたってSiO系の封着ガラス25により固定する。なお、前記電極23a及び電極23bにおいて、アルミナ基焼結体21に接する先端部は、先端部に向かって徐々に径が縮小し半球状になっている。また、電極23a及び23bはそれぞれ、加熱用ボックス22との間で放電が発生するのを防止するために、その外周面がアルミナ製碍筒28a及び28bで覆われている。この耐電圧測定装置20を用いて、電熱ヒータ26で700℃に調整された加熱用ボックス22内で、数十kV程度の高電圧をアルミナ基焼結体21に印加することのできる高電圧発生装置27でアルミナ基焼結体21に一定の高電圧を印加して、アルミナ基焼結体21に絶縁破壊が発生したときの電圧値を、貫通が発生した位置のアルミナ基焼結体の厚みで割った値をアルミナ基焼結体21の「耐電圧値」として測定した。700℃での「耐電圧値」を表2に示す。 
(耐酸性試験及び耐塩基性試験)前述したアルミナ基焼結体の製造と基本的に同様にして、厚さ3mm、幅4mm、全長40~45mmの試験片を作製し、JIS R 1614「ファインセラミックスの酸及びアルカリ腐食試験方法」に準じて、アルミナ基焼結体の腐食試験を行い、腐食試験前後のアルミナ基焼結体の機械的強度の低下率により耐酸性及び耐塩基性の程度を評価した。腐食試験のうち耐酸性試験では、6Nの濃度の硫酸溶液に試験片を浸漬し、24時間沸騰試験を行った。腐食試験のうち耐塩基性試験では、6Nの濃度の水酸化ナトリウム溶液に試験片を浸漬し、24時間沸騰試験を行った。腐食試験後の試験片は洗浄及び乾燥して、JIS R 1601に準じて、試験片の曲げ強さS2を測定した。腐食試験前の試験片の曲げ強さS1についても同様にして測定し、曲げ強さS2と曲げ強さS1とから強度低下率((S1-S2)/S1×100)(%)を算出した。これらの結果を表2に示す。 
(評価) 前述のようにしてアルミナ基焼結体について、耐電圧試験、耐酸性試験、及び耐塩基性試験を行い、耐電圧試験については、60kV/mm以上を「◎」、50kV/mm以上60kV/mm未満を「○」、50kV/mm未満を「×」、耐酸性試験については、40%以下を「◎」、40%を超え49%以下を「○」、49%を超えた場合を「×」、耐塩基性試験については、30%以下を「◎」、30%を超え33%以下を「○」、33%を超えた場合を「×」として評価した。総合評価については、3つの試験のうちの少なくとも一つが「×」の場合を「×」、3つの試験結果が全て「○」の場合を「○」、3つの試験結果が全て「○」より良く、少なくとも一つが「◎」の場合を「◎」として評価した。 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
表1及び表2に示されるように、この発明の範囲にある実施例のアルミナ基焼結体は、700℃という高温下でも耐電圧値が高く、また、耐酸性及び耐塩基性の試験後の強度低下率が小さく、酸性雰囲気及び塩基性雰囲気に対する耐性を有することが分かっ
た。 
2.スパークプラグの製造 前述したアルミナ基焼結体と同様にして略円筒形状のアルミナ基焼結体からなる絶縁体を作製し、これを用いて、前述のようにしてスパークプラグを製造した。製造した各スパークプラグは、高温下での耐電圧特性に優れ、酸性雰囲気及び塩基性雰囲気に対する耐性を有していた。
1 スパークプラグ

2 中心電極

3 絶縁体

4 主体金具

5 貴金属チップ

6 接地電極

9 ネジ部

10 軸孔

G 火花放電間隙

Claims (4)

  1. Al成分を酸化物換算で89質量%以上、Ti成分を酸化物換算で0質量%を超え0.2質量%以下の割合で含有する絶縁体を備えたスパークプラグであって、

     前記絶縁体は、アルミナ結晶の結晶間に存在する粒界相に、La成分、Nd成分、Pr成分、Y成分、Er成分、Yb成分、及びLu成分から選ばれる少なくとも一種を含有する第1結晶相と、IUPAC1990年勧告に基づく周期表の第2族元素の成分の少なくとも一種、Al成分、及びSi成分の各成分を含有する第2結晶相とを含むアルミナ基焼結体からなることを特徴とするスパークプラグ。
  2. 前記絶縁体の断面をX線回折分析したときに、前記アルミナ結晶の回折ピークの最大高さaと、前記第1結晶相の回折ピークの最大高さbと、前記第2結晶相の回折ピークの最大高さcとが、以下の関係式(a)を満たすことを特徴とする請求項1に記載のスパークプラグ。

     0.025≦(b+c)/a≦0.12・・・・・(a)
  3. 前記第1結晶相が、MgREAl1119、REAl1118、RE Si、REAlO、及び/又はRE Al12(ただし、REはLa、Nd及びPrから選ばれる少なくとも一種を示し、REはY、Er、Yb、及びLuから選ばれる少なくとも一種を示す。)であり、前記第2結晶相がCaAlSiであることを特徴とする請求項1又は2に記載のスパークプラグ。
  4. 前記絶縁体は、Na成分とK成分とを含有しないか、又は酸化物換算で合計0.2質量%以下の割合で含有することを特徴とする請求項1~3のいずれか一項に記載のスパークプラグ。
PCT/JP2013/004973 2012-08-28 2013-08-23 スパークプラグ WO2014034055A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/420,819 US9385511B2 (en) 2012-08-28 2013-08-23 Spark plug
CN201380034914.3A CN104396104B (zh) 2012-08-28 2013-08-23 火花塞
EP13832890.1A EP2892117B1 (en) 2012-08-28 2013-08-23 Spark plug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-187262 2012-08-28
JP2012187262A JP5600711B2 (ja) 2012-08-28 2012-08-28 スパークプラグ

Publications (1)

Publication Number Publication Date
WO2014034055A1 true WO2014034055A1 (ja) 2014-03-06

Family

ID=50182893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004973 WO2014034055A1 (ja) 2012-08-28 2013-08-23 スパークプラグ

Country Status (5)

Country Link
US (1) US9385511B2 (ja)
EP (1) EP2892117B1 (ja)
JP (1) JP5600711B2 (ja)
CN (1) CN104396104B (ja)
WO (1) WO2014034055A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017062878A (ja) * 2015-09-24 2017-03-30 日本特殊陶業株式会社 スパークプラグ
WO2023171651A1 (ja) * 2022-03-11 2023-09-14 東京エレクトロン株式会社 アルミナセラミックス部材、アルミナセラミックス部材の製造方法、半導体製造装置用部品及び基板処理装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6276472B2 (ja) * 2015-11-28 2018-02-07 京セラ株式会社 釣り糸用ガイド部材
JP6521897B2 (ja) * 2016-05-02 2019-05-29 日本特殊陶業株式会社 スパークプラグ
JP6373311B2 (ja) 2016-08-09 2018-08-15 日本特殊陶業株式会社 スパークプラグ
JP6623194B2 (ja) * 2017-06-27 2019-12-18 日本特殊陶業株式会社 スパークプラグ
CN110376440B (zh) * 2019-08-15 2021-08-03 潍柴火炬科技股份有限公司 一种火花塞瓷组件电阻专用高电压源电阻测试仪

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313148A (ja) * 2000-05-01 2001-11-09 Ngk Spark Plug Co Ltd スパークプラグ
JP2011070929A (ja) 2009-09-25 2011-04-07 Ngk Spark Plug Co Ltd スパークプラグ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4620217B2 (ja) * 2000-05-24 2011-01-26 日本特殊陶業株式会社 スパークプラグ用絶縁体及びスパークプラグ
US8614542B2 (en) 2006-12-18 2013-12-24 Federal-Mogul Ignition Company Alumina ceramic for spark plug insulator
EP2259395B1 (en) * 2008-03-27 2020-04-08 NGK Spark Plug Co., Ltd. Spark plug
JP5017298B2 (ja) 2009-03-11 2012-09-05 株式会社日本自動車部品総合研究所 アルミナ質焼結体とその製造方法及びこれを用いた点火プラグ
JP4613242B2 (ja) 2009-03-26 2011-01-12 日本特殊陶業株式会社 スパークプラグ
JP5872998B2 (ja) * 2012-04-26 2016-03-01 日本特殊陶業株式会社 アルミナ焼結体、それを備える部材、および半導体製造装置
JP5775544B2 (ja) * 2013-05-09 2015-09-09 日本特殊陶業株式会社 点火プラグ用絶縁体及び点火プラグ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313148A (ja) * 2000-05-01 2001-11-09 Ngk Spark Plug Co Ltd スパークプラグ
JP2011070929A (ja) 2009-09-25 2011-04-07 Ngk Spark Plug Co Ltd スパークプラグ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017062878A (ja) * 2015-09-24 2017-03-30 日本特殊陶業株式会社 スパークプラグ
WO2023171651A1 (ja) * 2022-03-11 2023-09-14 東京エレクトロン株式会社 アルミナセラミックス部材、アルミナセラミックス部材の製造方法、半導体製造装置用部品及び基板処理装置

Also Published As

Publication number Publication date
EP2892117A1 (en) 2015-07-08
JP5600711B2 (ja) 2014-10-01
EP2892117A4 (en) 2016-06-01
EP2892117B1 (en) 2018-03-28
CN104396104B (zh) 2016-05-18
US20150207300A1 (en) 2015-07-23
JP2014044892A (ja) 2014-03-13
CN104396104A (zh) 2015-03-04
US9385511B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
JP5600711B2 (ja) スパークプラグ
JP5172018B2 (ja) スパークプラグ及びスパークプラグの製造方法
JP4607253B2 (ja) スパークプラグ及びスパークプラグの製造方法
JP5111603B2 (ja) スパークプラグ
JP4613242B2 (ja) スパークプラグ
WO2011001656A1 (ja) スパークプラグ及びスパークプラグの製造方法
JP5211251B1 (ja) スパークプラグ
JP5216917B2 (ja) スパークプラグ
KR20120087907A (ko) 스파크 플러그
JP6366555B2 (ja) スパークプラグ
JP6440602B2 (ja) スパークプラグ
JP5349670B1 (ja) スパークプラグ
JP6521897B2 (ja) スパークプラグ
US20240305070A1 (en) Insulator and spark plug
JP2018026230A (ja) スパークプラグ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832890

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14420819

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013832890

Country of ref document: EP