WO2014032499A1 - 双层涂布的负性光致抗蚀干膜 - Google Patents

双层涂布的负性光致抗蚀干膜 Download PDF

Info

Publication number
WO2014032499A1
WO2014032499A1 PCT/CN2013/080692 CN2013080692W WO2014032499A1 WO 2014032499 A1 WO2014032499 A1 WO 2014032499A1 CN 2013080692 W CN2013080692 W CN 2013080692W WO 2014032499 A1 WO2014032499 A1 WO 2014032499A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
dry film
photoresist
protective layer
layer
Prior art date
Application number
PCT/CN2013/080692
Other languages
English (en)
French (fr)
Inventor
陆德凯
杨卫国
董岩
Original Assignee
珠海市能动科技光学产业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海市能动科技光学产业有限公司 filed Critical 珠海市能动科技光学产业有限公司
Priority to US14/423,933 priority Critical patent/US20150241772A1/en
Priority to JP2015528852A priority patent/JP2015529853A/ja
Publication of WO2014032499A1 publication Critical patent/WO2014032499A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0384Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the main chain of the photopolymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers

Definitions

  • the invention relates to a two-layer coated negative photoresist (photoresist) dry film, characterized in that there are two layers of coating between two layers of supporting (or protective) films, one layer being a polymer non- The intermediate protective layer of the photosensitive material, and the other layer is a photoresist coating of the photosensitive material.
  • a dry film of a photoresist that can be developed with an aqueous solution is formed by covering a photoresist film with two support layers (also referred to as a protective layer). As shown in Fig. 1, the thickness of the support layer film is generally 15 ⁇ m to 25 ⁇ m, and the photoresist film coating is generally 12 ⁇ to 75 ⁇ .
  • Suitable support layers can be widely selected from a variety of polymeric films, such as polyamides, polyolefins, polyesters, and the like, wherein the support layer is commonly referred to as a carrier film and the support layer 2 is commonly referred to as a cover film.
  • the thickness of the support layer film must be uniform and does not contain any particulate impurities, so as to ensure the quality and use of the dry film photoresist, and to ensure the yield of the printed circuit board produced in the application.
  • the carrier film must also be colorless and transparent to ensure adequate exposure.
  • the photoresist dry film is produced by applying an organic solution of a photoresist to a carrier film (generally a polyester film having excellent transparency and containing no foreign particles), and an organic solvent to be coated. After evaporation, a "dry" film is formed; then a thin film (usually a polyethylene film) is overlaid on the coating layer to form a photoresist dry film product, as shown in FIG.
  • the photoresist dry film applied to the production of printed wiring boards is divided into two types, namely positive and negative photoresist dry films. After exposure, the exposed portion of the photoresist layer changes from insoluble to soluble in the developer, that is, a positive dry film; on the contrary, after exposure, the exposed portion of the photoresist layer is made in the developer. Dissolve into insoluble, that is Negative photoresist dry film.
  • the polyethylene film is first peeled off, and the photoresist coating together with the carrier film is heat-pressed onto the substrate covered with the copper foil.
  • the film of the line image is then overlaid on the carrier film, and the photoresist is exposed by ultraviolet light or laser light through the film and the carrier film to cause photopolymerization.
  • the photoresist coating in the negative photoresist dry film is soluble in the alkaline developing aqueous solution, and some components in the photoresist coating after exposure are photopolymerized and do not dissolve in the alkaline developing aqueous solution.
  • the exposed photoresist film is removed from the carrier film, it is developed in an alkaline aqueous solution to remove the unexposed soluble portion of the dry film to retain its insoluble portion.
  • the surface of the copper foil covered by the soluble portion is then exposed and removed by the etching solution, and the remaining portion is the insoluble dry film portion and the copper layer remaining thereon.
  • the dry film which is insoluble in the developing solution is peeled off by an alkaline stripping solution to form an electronic circuit.
  • the step of using a positive photoresist dry film is similar to the above negative photoresist dry film, but the photoresist coating is insoluble in an aqueous alkaline developing solution, and after exposure to photochemical reaction, the exposed portion of the photoresist coating It is now soluble in an alkaline developing aqueous solution. Due to the difference in nature, there are great differences in the chemical composition, manufacturing methods and requirements, and the use process of positive and negative photo-dried films.
  • carrier films are necessary in the use of conventional negative photoresist dry films.
  • the carrier film serves to protect the dry film photoresist coating during storage and transportation. More importantly, without the carrier film, the film for exposure will adhere to the dry film photoresist to cause processing defects. Since the exposure is carried out through the carrier film, the carrier film must be colorless and transparent to ensure exposure and quality during exposure, which increases the cost of the carrier film. Moreover, since the carrier film having a thickness of 15 ⁇ m to 25 ⁇ m has a certain light scattering effect, the photoresist is dry film. Reduced resolution affects product quality.
  • the resolution of the film is improved.
  • the invention also encompasses the selection of the polymeric coating material and the synthesis of certain polymeric coating materials.
  • the invention further comprises the use of a binder component and synthesis, a free radical initiator, a multifunctional group photopolymerizable monomer, a plasticizer and a thermal polymerization inhibitor in a negative photoresist dry film.
  • the composition and manufacturing method of the double-coated negative photoresist dry film of the present invention are as follows:
  • the double-coated negative photoresist dry film of the present invention comprises a carrier film, a cover film, and light. a resist layer and an intermediate protective layer, characterized by:
  • a water-soluble polymer coating layer is added as an intermediate protective layer between the carrier film and the photoresist, and the intermediate protective layer is colorless and transparent, soluble in the developing solution, and the photoresist layer and
  • the carrier film has good adhesion to ensure the quality of the photoresist dry film production; more importantly, the adhesion between the intermediate protective layer and the photoresist layer is greater than that of the carrier film, when the carrier film is peeled off, The intermediate protective layer is still tightly covered on the photoresist layer.
  • the intermediate protective layer material must also have a very low oxygen permeability, so that the intermediate protective layer remaining on the surface of the photoresist layer after removing the carrier film before exposure can block oxygen and prevent the photoresist layer from being exposed during the exposure process. Photoinitiation of free radical polymerization is inhibited by oxygen.
  • the polymer coating material in the present invention may be water-soluble or organic solvent-soluble, and must have good film-forming properties.
  • the most suitable material is polyvinyl alcohol or a polymerized polyvinyl alcohol (PVA) containing a carboxyl group, which is commercially available, and requires an alcoholization degree of 60 to 100%, preferably 70 to 90%; and a molecular weight of 20,000. The best of ⁇ 150,000 is 30,000 ⁇ 120,000.
  • PVA polymerized polyvinyl alcohol
  • the liquid can be used as a coating for the intermediate protective layer.
  • a polymer having a carboxyl group can also be used as an intermediate protective layer material, and the binder of the present invention (see below) can be used.
  • the aqueous solution of the binder can be obtained by dissolving the binder solid obtained by suspension polymerization in water. Usually, the pH is adjusted to 8 to 10, and the solid content is adjusted to 5 to 15% by weight for coating; the binder is synthesized by solution polymerization, and has a solid content of 25 to 40% by weight, which can be directly used for coating.
  • the polymer coating material may also be selected from polystyrene-maleic acid water-soluble salt or polystyrene-maleic acid half ester water-soluble salt, including amine salt, sodium salt, potassium salt and lithium salt, wherein styrene and horse are used.
  • the polystyrene-maleic acid water-soluble salt or the polystyrene-maleic acid half ester water-soluble salt has a molecular weight of 40,000 to 1,500,000, preferably 50,000 to 100,000.
  • the polystyrene-maleic acid half ester water-soluble salts include methyl ester, ethyl ester, propyl ester, butyl ester, amyl ester, and hexyl ester.
  • Polymer coating materials can also be selected from other water-soluble polymers, such as water-soluble cellulose ether, carboxymethyl cellulose, carboxymethyl starch, hydroxyethyl cellulose, polyacrylamide, polyvinylpyrrolidone (PVP).
  • the negative dry film resist developed by the aqueous solution in the invention is composed of the following components, a specific polymer binder, a photo-radical initiator, an addition polymerizable monomer, a thermal polymerization inhibitor, a plasticizer, a dye. , tackifiers, etc.
  • the carboxyl group-containing polymer binder of the present invention is synthesized from at least two or more monomers.
  • the first monomer is an ⁇ , ⁇ -unsaturated carboxyl group-containing monomer having at least 3 to 15 carbon atoms.
  • Examples of useful carboxyl group-containing monomers are cinnamic acid, crotonic acid, sorbic acid, acrylic acid, methacrylic acid, with acrylic acid and methacrylic acid being preferred.
  • the second monomer corresponds to the first monomer Acid ester.
  • ester moiety may be (i) ( ⁇ ( 8 fluorenyl), the fluorenyl group may be linear or branched ( ⁇ ) containing a hydroxyl group ( ⁇ ( 8 fluorenyl group, the fluorenyl group may be straight containing chain or branched (iii) phenyl substituted embankment, the ( ⁇ (4 embankment group may be linear or branched; phenyl group which may be mono- or polysubstituted by alkyl with one or.
  • the above first monomer and one or more second monomers can be used to synthesize a film-forming polymer binder containing a carboxyl group.
  • the binder used in the present invention can be synthesized by a radical solution polymerization method.
  • the binder has a weight average molecular weight of from 20,000 to 2,000,000, and the most preferred weight average molecular weight is from 40,000 to 100,000.
  • the molecular weight can be determined by gel permeation chromatography (GPC) using polystyrene as a calibration standard.
  • the Tg of the binder is 80 ° C to 120 ° C, and the Tg is preferably 95 ° C to 110 ° C.
  • the amount of the monomer used is in the range of 15 to 50% by weight, preferably 20 to 45% by weight, most preferably 25 to 40% by weight, based on the weight of the binder solution.
  • the solvent used in the solution synthesis of the polymer may be selected from organic solvents having a boiling point of 12 CTC or less, including but not limited to acetone, butanone, pentanone, ethyl acetate, cyclohexamidine, benzene, toluene, acetopropanediol methyl ether, Halogenated hydrocarbons, etc.
  • the binder in the present invention can also be synthesized by a suspension polymerization method.
  • the polymer binder solid synthesized by the suspension polymerization method can be used in the above solvent.
  • the plasticizer used in the present invention may be any of the plasticizers conventionally used in photoresists.
  • the free radical photoinitiator used in conjunction with the present invention is a conventional photoinitiated initiator.
  • the initiator is inactive below 185 °C. Examples are as follows: aromatic ketones, such as benzophenone, dimethoxyphenyl acetophenone, rice bran, 4, 4-bisdiethylamine benzophenone, tert-butyl hydrazine, 2-ethyl Thioxanthone, diphenylethanol ketone oxime ether and benzoketal.
  • aromatic ketones such as benzophenone, dimethoxyphenyl acetophenone, rice bran, 4, 4-bisdiethylamine benzophenone, tert-butyl hydrazine, 2-ethyl Thioxanthone, diphenylethanol ketone oxime ether and benzoketal.
  • Other useful free radical photoinitiators are available to the skilled artisan.
  • the multi-addition monomer used in the present invention has at least two propylene-based double bonds. Preferably, there are 2 to 4, preferably 2 to 3 propylene-based double bonds, or a mixture of the above compounds. At least 2 propylene-based double bonds enable the monomer to be multi-added, that is to say cross-linkable.
  • Useful polyaddition monomers include, alkylene or poly propylene glycol diacrylates, and compounds having a vinylidene group conjugated to an ester bond are particularly useful herein.
  • the following are illustrative examples including, but not limited to, ethylene glycol diacrylate, diethylene glycol diacrylate, glycerin diacrylate, triglyceride, 1, 3-propanediol dimethacrylate, 1, 2, 4-butanetriol trimethacrylate, 1, 4-benzenediol dimethacrylate, 1, 4-cyclohexanediol diacrylate, pentaerythritol tri- and tetra-methacrylate.
  • Other useful polyaddition monomers can be selected by the skilled artisan.
  • thermal polymerization inhibitors matched in the present invention prevent thermal polymerization of the photoresist during drying and storage.
  • thermal polymerization inhibitors are as follows: p-methoxyphenol, p-phenol, decyl or aryl substitution Hydroquinone and benzoquinone, tert-butyl catechol, pyrogallol, resin copper, beta-phenolic acid, 2,4-di-tert-butyl-p-cresol, 2,2-methine-double ( 4-ethyl-6"butylphenol), p-toluene benzoquinone, tetrahydrop-benzoquinone, aryl phosphite, and mercaptoaryl phosphite, other useful thermal polymerization inhibitors can be selected by the skilled person .
  • photoresists in the present invention are also some optional additives which are well known in the photopolymerizable component, such as colorless (printing) dyes, background dyes, and adhesion promoters.
  • additives may be selected by the skilled artisan from the prior art.
  • the photoresist solution in the present invention is formed by mixing and dissolving each component in a binder solution; On the carrier film, an aqueous solution or an organic solution of the polymer material is uniformly coated on the surface by a coating device or a coating head, and dried in an oven to form an intermediate protective layer, and the above-mentioned light is further coated on the intermediate protective layer.
  • the resist solution is dried in an oven and then covered with a film, that is, the photodry film of the invention; the photodry film of the present invention can also be coated with the aqueous solution of the polymer on the carrier film by a special multilayer coating head or
  • the organic solution and the photoresist solution are disposed under the intermediate protective layer solution, and the photoresist layer is dried on the oven and then covered with a film, as shown in FIG. 2 .
  • the thickness of the polymer coating is generally 0. 5 ⁇ 10 ⁇ . In use, a better thickness is 1 to 2 ⁇ m.
  • the photoresist coating has a thickness of between 10 and 100 ⁇ m, preferably between 12 and 80 ⁇ m.
  • the thickness of the carrier film and the cover film is preferably between 15 and 25 ⁇ m.
  • Both the carrier film and the cover film are film-forming polymer materials which are not required to be optically transparent and colorless.
  • the photodry film in the present invention is used for the production of printed wiring boards.
  • the conventional photodrying film is used to press the photoresist coating together with the carrier film onto the copper foil-covered substrate while the film is being peeled off, as shown in FIG. 3, and the film containing the specific image is placed on the carrier.
  • ultraviolet light or laser light is exposed through the film and the carrier film, and the carrier film is peeled off after exposure.
  • the exposure amount is between about 20 mj/cm 2 and 60 mJ/cm 2 , and the precise exposure depends on factors such as the specific composition and the thickness of the dry film.
  • the photodry film of the present invention uses the same hot press roll method to press the photoresist coating together with the carrier film onto the copper foil-covered substrate, as shown in FIG. 4, in the middle of the photoresist coating and the carrier film.
  • the protective layer is different from the conventional dry film in that the carrier film is first stripped, and the image film is placed on the intermediate protective layer for exposure, and the exposure amount is consistent with the corresponding conventional dry film.
  • the function of blocking oxygen and protecting the dry film of the photoresist from sticking to the backsheet is achieved by the polymer coating (intermediate protective layer) applied in the present invention.
  • the carrier film does not need to be completely transparent and colorless, thereby greatly reducing the cost of the carrier film.
  • the resolution of the dry film of the photoresist is lowered due to the light scattering effect of the carrier film having a thickness of 15 ⁇ m to 25 ⁇ m, and the photoresist film of the present invention is removed from the carrier film.
  • the thickness of the polymer coating is only 1 ⁇ m to 2 ⁇ m, so that the resolution of the photoresist dry film is improved.
  • the photoresist dry film of the present invention is developed together with an intermediate protective layer after exposure, and the developing solution is generally a strong alkali weak acid salt aqueous solution such as sodium carbonate, sodium hydrogencarbonate, and alkali metal phosphate and pyrophosphate, preferably It is made with sodium carbonate. It can also be developed using a special alkaline aqueous solution, and the wiring board can be immersed in the developing solution. It is preferred to use a high-pressure developing solution onto the plate to remove the intermediate protective layer and the unexposed photoresist coating portion.
  • the developing solution is generally a strong alkali weak acid salt aqueous solution such as sodium carbonate, sodium hydrogencarbonate, and alkali metal phosphate and pyrophosphate, preferably It is made with sodium carbonate. It can also be developed using a special alkaline aqueous solution, and the wiring board can be immersed in the developing solution. It is preferred to use a high-pressure developing solution onto the plate to remove the intermediate protective layer and the une
  • the copper foil substrate is a copper foil non-conductive dielectric laminate which is widely used in the circuit board industry, such as a glass fiber reinforced epoxy bismuth copper foil base plate. Other non-insulating media can also be used in the above copper foil base plate. .
  • the stripping solution matched with the present invention for removing the polymerized photoresist material is a heated alkaline solution, generally using an alkali metal hydroxide aqueous solution, or a special alkaline stripping liquid may be used, and the stripping liquid is heated.
  • the substrate is washed to remove the polymerized photoresist to 45 to 65 ° C, preferably to 50 to 55 ° C.
  • Figure 1 shows a conventional dry film photoresist finished product
  • Figure 2 is a diagram showing the finished product of a dry film photoresist containing an intermediate protective layer
  • Figure 3 shows a conventional dry film photoresist film
  • Figure 4 is a diagram of a dry film photoresist film containing an intermediate protective layer
  • 250 g of methyl ethyl ketone was placed in the flask, and nitrogen gas was supplied from the bottom while heating and stirring. When the temperature reached 75 ° C, nitrogen gas was supplied from the upper portion of the reaction flask.
  • the following monomer mixture was placed in a separatory funnel, and 5 g of methacrylic acid, 108 g of methyl methacrylate, and 2 g of ethyl acrylate were uniformly added dropwise over 120 minutes.
  • the photosensitive material coating liquid was prepared in accordance with the components in Table 1 below.
  • the binder was dissolved in methyl ethyl ketone in a screw mixer, and then the contents of Table 1 were uniformly mixed with the binder butanone solution at a speed of about 600 rpm in a screw mixer for about 60 to 90 minutes. The mixture was centrifuged in a centrifuge for three minutes to remove air bubbles.
  • the photosensitive material coating solution is prepared by the components in Table 2 Table 2 Mixture (Example 2) 73. 80
  • Examples 5-6 Dry film photoresists were prepared according to the description of Fig. 1 using the coating liquids of Examples 3 and 4, respectively.
  • the photosensitive material is coated on a 16 micrometer thick polyester film and prepared by a doctor blade process. When the blade is applied, the coating device moves the coating liquid to complete the coating.
  • the thickness of the film is about 0. 79mm.
  • the thickness of the coating is about 0. 79mm.
  • the thickness of the coating is about 0. 79mm.
  • the laminate is pressed at a temperature of about 121 ° C, a pressure of about 2. lkg / cm 2 , at a speed of 121. 9 cm / min, and then exposed through the film, the exposure degree is Stouffer 6-7 ( Take the 21st grade Stouffer exposure level table).
  • the developing solution is ⁇ 0.90% sodium carbonate aqueous solution single crystal, [deg.] C temperature of about 35, upper rinse and a pressure of about 1. 41kg / cm 2, a pressure of about rinsed 1. 41 kg / cm 2
  • the speed should be adjusted to the 50% elution point.
  • the developed sample is required to measure the resolution, adhesion and reproducibility of the photoresist to evaluate the performance of the dry film photoresist: the resolution can be read directly, the smaller the value, the better the resolution; the reproducibility means Based on the line width (1) line spacing (s) is 150 microns, the difference between the film line width and the sample line width measurement value, the smaller the value, the better the reproducibility; the degree of adhesion can be viewed as a test One on board with a line spacing of 250 microns The degree of attachment of the series of lines, the narrower the line remaining and the same as the standard value, the better the adhesion. The properties in each of the examples are listed in Table 3.
  • the photosensitive material layer was prepared according to the components in Tables 1 and 2, and the intermediate protective layer was an aqueous solution of 15% to 20% by weight of Changchun Chemical's BP17.
  • This material is a medium viscosity, water soluble partially hydrolyzed polyvinyl alcohol polymer having an intermediate protective layer thickness of from 1 to 2 microns.
  • the dry film photoresist was fabricated as described in Figure 2.
  • the photosensitive material coating and the intermediate protective layer are prepared by a doctor blade process, and the coating device moves the coating liquid to complete the coating.
  • the intermediate protective layer was coated on a 16 ⁇ m thick polyester film, and then dried in a 10 CTC oven for about 3-6 minutes. After cooling, the photosensitive layer was coated on the intermediate layer and then baked in a 10 CTC oven.
  • the thickness of the coating is about 0. 79mm.
  • the thickness of the coating is about 0. 79mm.
  • the laminate is pressed at a temperature of about 121 ° C, a pressure of about 2. lkg / cm 2 , at a speed of 121.
  • the exposure degree is Stouffer 6 Level -7 (with a 21-level Stouffer exposure scale).
  • the developing solution is a single crystal of sodium carbonate 0. 90 wt% aqueous solution, a temperature of about 35 ° C, upper rinse and a pressure of about 1. 41kg / cm 2, a pressure of about rinsed 1. 41 kg / cm 2 The speed should be adjusted to the 50% elution point.
  • Example 11-12 In the experiment, the exposure energy required to achieve the same degree of exposure is not much different.
  • the intermediate coating has a good barrier effect on oxygen and has no adhesion to the film, and can completely replace the relatively thick polyester film during the exposure process. Thereby significantly improving the resolution.
  • Example 11-12 In the experiment, the exposure energy required to achieve the same degree of exposure is not much different.
  • the intermediate coating has a good barrier effect on oxygen and has no adhesion to the film, and can completely replace the relatively thick polyester film during the exposure process. Thereby significantly improving the resolution.
  • the intermediate coating has a barrier effect on oxygen, and can also replace the relatively thick polyester film during the exposure process, thereby improving the resolution.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Photolithography (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

一种应用于印刷线路板的双层涂布的负性光致抗蚀干膜,包括载体薄膜(1)、覆盖薄膜(2)、光阻剂层(3)及中间保护层(4),其特征在于:中间保护层(4)位于载体薄膜(1)及光阻剂层(3)之间,是无色透明的,在光阻剂层(3)的显影液中可溶解,与光阻剂层(3)及载体薄膜(1)具有良好的粘着力,但其与光阻剂层(3)的粘着力要大于其与载体薄膜(1)的粘着力的聚乙烯醇或含有羧基的高分子聚合物;光阻剂层(3)的组份中含有高分子粘合剂、光游离基引发剂、可加聚单体、热聚合抑制剂,为进一步改善性能,还可以添加其它组分,如增塑剂、染料、增粘剂等。可以降低载体薄膜的成本,使光阻干膜的解析度得以提高。

Description

双层涂布的负性光致抗蚀干膜
技术领域
本发明涉及一种双层涂布的负性光致抗蚀(光阻)干膜, 其特征是在其两 层支撑(或保护)薄膜之间有两层涂层, 一层是高分子非感光材料的中间保护 层, 另一层为光敏材料的光阻剂涂层。
背景技术
在印刷线路板的生产中, 需要使用光阻干膜。 出于生产成本及环保方面的 考虑, 绝大部分的光阻干膜是用水溶液进行显影的。
一般而言, 可用水溶液显影的光阻干膜, 是由两个支撑层(或称为保护层) 覆盖光阻剂薄膜而形成的。如图 1所示,支撑层薄膜的厚度一般为 15μιη〜25μιη, 光阻剂薄膜涂层一般为 12μηι〜75μηι。
合适的支撑层可以从各种高聚薄膜中广泛选择,如聚酰胺、聚烯、聚酯等, 其中支撑层一通常称为载体薄膜, 而支撑层二通常称为覆盖薄膜。支撑层薄膜 的厚度必须均匀, 不含有任何颗粒杂质,这样才能保证干膜光阻剂的质量及使 用效果,确保在应用时所生产的印刷线路板的合格率。而且载体薄膜还必须无 色透明才能确保足够的曝光程度。
通常, 光阻干膜的生产是将光阻剂的有机溶液涂布到载体薄膜(一般而言 是使用透明度极佳、 不含任何异物颗粒的聚酯薄膜)上, 待涂布层的有机溶剂 挥发后形成 "干"膜; 然后再以另一层薄膜(通常是聚乙烯薄膜)覆盖在涂布 层上而形成光阻干膜产品, 如图 1所示。
应用于生产印刷线路板的光阻干膜分成两类, 即正性及负性光阻干膜。在 曝光后,光阻剂层的曝光部分在显影液中从不可溶变成可溶的,即为正性干膜; 反之, 在曝光后, 光阻剂层的曝光部分在显影液中由可溶变为不可溶的, 即为 负性光阻干膜。
在使用负性光阻干膜时,先将聚乙烯薄膜剥离, 同时将光阻剂涂层连同载 体薄膜热压至用铜箔覆盖的基物上。然后将线路图像的底片覆盖于载体薄膜之 上, 用紫外光或镭射光透过底片和载体薄膜使光阻剂曝光而发生光聚合反应。 负性光阻干膜中的光阻剂塗层在碱性显影水溶液是可溶的, 而曝光后光阻剂 塗层中的一些组分发生光聚合反应而不溶于碱性显影水溶液。曝光后的光阻干 膜在除去载体薄膜后,在碱性水溶液中显影, 除去干膜的未曝光可溶部分而保 留其曝光不溶部分。 可溶部分所覆盖的铜箔表面随即裸露, 由蚀刻液除去,余 下的即为不可溶的干膜部分及其覆盖而保留的铜层。最后用碱性剥离液将在显 影液中不溶的干膜剥离除去即形成电子线路。
使用正性光阻干膜的歩骤与上述负性光阻干膜类似,但其光阻剂塗层是不 溶于碱性显影水溶液的, 曝光发生光化学反应后, 光阻剂塗层的曝光部今即 可溶于碱性显影水溶液。由于該本质的不同, 使得正性及负性光致干膜的化学 组成,制作方法及要求,以及使用工艺上都存在了很大的差異。
上述光阻干膜在印刷线路板生产中的应用以及正性、负性光阻干膜已为印 刷线路板工业界所熟知。
在传统的負性光阻干膜使用上, 载体薄膜的使用是必要的。 首先, 它起了 一种阻隔氧气的作用。 众所周知, 氧是游离基反应的抑制剂,在有氧气存在的 条件下, 曝光的速度会降低。其次, 该载体薄膜起了一种在貯存及运輸中保护 干膜光阻剂涂层的作用。更重要的是没有该载体薄膜, 曝光用底片会与干膜光 阻剂粘连而造成加工缺隙。 由于曝光是透过该载体薄膜实施, 因此, 载体薄膜 必须无色透明才能确保曝光时的曝光度及质量, 这就增加了载体薄膜的成本。 而且由于厚度 15μιη到 25μιη的载体薄膜会有一定的光散射作用,使光阻干膜的 解析度降低而影响产品质量。
发明内容
本发明的目的是提供一种可用水溶液显影的双层涂布的负性干膜光阻剂, 以改进现有传统光阻干膜的技术, 降低载体薄膜的要求及成本, 并使光阻干膜 的解析度得以提高。本发明还包含有该高分子涂层材料的选用及某些高分子涂 层材料的合成。本发明还包含有粘合剂的组分及合成, 游离基引发剂、 多功能 基团可光聚单体、 增塑剂及热聚抑制剂在负性光致抗蚀干膜中的使用。
本发明的双层涂布的负性光致抗蚀干膜的组成及制作的方法如下: 本发明的双层涂布的负性光致抗蚀干膜, 包括有载体薄膜、 覆盖薄膜、光 阻剂层及中间保护层, 其特征在于:
本发明中在载体薄膜与光阻剂之间添加了一种水溶性的高分子涂层作为 中间保护层, 中间保护层是无色透明的,在显影液中可溶解, 与光阻剂层及载 体薄膜具有良好的粘着力, 以确保光阻干膜生产時的质量;更重要的是中间保 护层与光阻剂层的粘着力要大于其与载体薄膜的粘着力, 在剥离载体薄膜时, 中间保护层仍紧密盖拎光阻剂层上。中间保护层材料还必须具有很低的氧气渗 透率,因此曝光前除去载体薄膜后留在光阻剂层表面的中间保护层就可以起到 阻隔氧气的作用,防止曝光过程中光阻剂层进行光引发自由基聚合时受到氧气 的抑制。
本发明中的高分子涂层材料可以是水溶性的,亦可以是有机溶剂可溶性的, 必须有良好的成膜性能。 最适用的材料是聚乙烯醇或含有羧基的高分子聚合 聚乙烯醇(PVA)可从市場购得, 要求醇化度为 60〜 100%,最好为 70〜90%; 重量分子量为 20, 000〜150, 000的最好为 30, 000〜120, 000。聚乙烯醇的水溶 液即可用作为中间保护层的涂布。
含有羧基的高分子聚合物也可用作为中间保护层材料, 可以使用本发明 中的粘合剂 (見下),粘合剂的水溶液可以从悬浮聚合而得到的粘合剂固体溶解 于水中而得到, 通常需调节 pH到 8〜10, 固含量调节至 5〜15wt%进行涂布; 粘合剂如由溶液聚合法合成, 固含量为 25〜40wt%, 可直接用以涂布。
高分子涂层材料还可以选用聚苯乙烯-马来酸水溶性盐或聚苯乙烯 -马来 酸半酯水溶性盐, 包括胺盐、 钠盐、 钾盐、 锂盐, 其中苯乙烯及马来酸的摩尔 比率为 1. 20 : 1. 0到 0. 8 : 1. 0。 聚苯乙烯-马来酸水溶性盐或聚苯乙烯-马来酸 半酯水溶性盐的分子量为 40, 000〜150, 000, 最好为 50, 000〜100, 000。 聚苯 乙烯 -马来酸半酯水溶性盐包括甲酯、 乙酯、 丙酯、 丁酯、 戊酯、 己酯。
高分子涂层材料还可以选用其他水溶性高分子, 如水溶性纤维素醚、羧甲 基纤维素、 羧甲基淀粉、 羟乙基纤维素、 聚丙烯酰胺、 聚乙烯吡咯垸酮(PVP ) 本发明中的可用水溶液显影的负性干膜抗阻剂由下列组分构成,特定的高 分子粘合剂、 光游离基引发剂、 可加聚单体、 热聚合抑制剂、 增塑剂、 染料、 增粘剂等。本发明的干膜抗阻剂的配方中, 高分子粘合剂占干膜光阻剂总重量 的 40〜70%, 更好的是 50%〜60%; 光游离基引发剂占 0. 5〜10%, 更好的是 3〜 7%;可加聚单体占 5〜40%,更好的是 15〜35%;增塑剂占 2〜30%,更好的是 9〜 15%; 热聚合抑制剂占 0. 003〜0. 04%, 更好的是 0. 01〜0. 02%。
本发明的含有羧基的高分子粘合剂至少由两种或两种以上的单体合成。第 一种单体为具有至少含有 3到 15个碳原子的 α, β一不饱和的含有羧基的单 体。 有用的含有羧基的单体的例子为肉桂酸、 巴豆酸、 山梨酸、 丙烯酸、 甲基 丙烯酸,其中以丙烯酸及甲基丙烯酸为较好。第二种单体为第一种单体所对应 的酸酯。 其中酯基部分可以是 ( i ) (^〜( 8的垸基, 该垸基可以是直链或支链 的 (ϋ ) 含有羟基的(^〜( 8的垸基, 该垸基可以是直链或支链的 (iii ) 含有 垸基取代的苯基, 该(〜( 4的垸基可以是直链或支链的; 该苯基可以是 垸基单取代或多取代的。一个或一个以上的第一种单体以及一个或一个以上的 第二种单体即可用以合成含有羧基的可形成薄膜的高分子粘合剂。
在本发明中使用的粘合剂, 可以用游离基溶液聚合法合成。较好的该粘合 剂的重量平均分子量为 20, 000〜200, 000,最好的重量平均分质量为 40, 000〜 100, 000。 该分子量可由凝胶渗透色谱仪(GPC)测定, 用聚苯乙烯作为校正标 准物。 粘合剂的 Tg为 80° C〜120° C, Tg最好为 95° C〜110° C。 在粘合剂的合 成中, 单体的使用量占粘合剂溶液的重量变动范围在 15〜50wt%, 较好的是 20〜45wt%, 最好的为 25〜40wt%。 高分子的溶液合成中所使用的溶剂可以在 沸点 12CTC以下的有机溶剂中选用, 包含但不仅限于丙酮、 丁酮、 戊酮、 乙酸 乙酯、 环己垸、 苯、 甲苯、 乙酰丙二醇甲醚、 卤代垸烃等。
本发明中的粘合剂亦可以用悬浮聚合法合成。用悬浮聚合法合成的高分子 粘合剂固体可溶解于上述溶剂中使用。
在本发明中配套使用的增塑剂可以是任何为人们熟知的在光阻剂中使用 的增塑剂。
在本发明中配套使用的游离基光引发剂是一种常规的由光引发的引发剂。 该引发剂在低于 185°C是非活性的。 举例如下: 芳香酮类, 如二苯甲酮, 二甲 氧基苯基苯乙酮, 米蚩铜, 4, 4-双二乙胺二苯甲酮, 特丁基蒽醌, 2-乙基噻吨 酮, 二苯乙醇酮垸醚及苯缩酮。其它有用的游离基光引发剂可由专门技术人员 选用。
在本发明中配套使用的可多重加聚的单体, 至少要有 2个丙烯基双键,较 好的有 2到 4个, 最好的有 2到 3个丙烯基双键, 或上述化合物的混合物。至 少 2个的丙烯基双键使得该单体能够多重加聚, 也就是说可以交联聚合。
可用的加聚单体包括, 亚烃基或聚亚垸二醇二丙烯酸酯, 具有和酯键共轭 的亚乙烯基基团的化合物在此特别适用。 以下是作为例证的例子,包括但不限 于乙二醇二丙烯酸酯,二甘醇二丙烯酸酯,甘油二丙烯酸酯,甘油三丙烯酸酯, 1, 3-丙二醇二甲基丙烯酸酯, 1, 2, 4-丁三醇三甲基丙烯酸酯, 1, 4一苯二酚二 甲基丙烯酸酯, 1, 4-环已二醇二丙烯酸酯, 季戊四醇三和四甲基丙烯酸酯。季 戊四醇三及四丙烯酸酯,四甘醇二甲基丙烯酸酯,三羟甲基丙垸三甲基丙酸酯, 三甘醇二丙烯酸酯, 四甘醇二丙烯酸酯, 季戊四醇三丙烯酸酯, 三羧甲基丙垸 三丙烯酸酯, 季戊四醇四丙烯酸酯, 1, 3-丙基二醇二丙烯酸酯, 1, 5-戊二醇二 甲基丙烯酸酯, 聚丙二醇 /聚乙二醇以及分子量从 100到大约 500 (数均) 的 共聚物的二丙烯酸酯及二甲基丙烯酸酯。其它可用的加聚单体可由技术人员选 取。
在本发明中与之匹配的热聚抑制剂会防止光阻剂在干燥及储存时的热聚 合, 有用的热聚抑制剂举例如下: 对甲氧基苯酚, 对苯酚, 垸基或芳基取代的 对苯二酚及苯醌, 特丁基邻苯二酚, 连苯三酚, 树脂铜, β _苯酚酸, 2, 4- 二特丁基对甲酚, 2, 2-次甲基-双(4-乙 ^6" 丁基苯酚), 对甲苯苯醌, 四氢 代对苯醌, 芳基亚磷酸盐, 以及垸基芳基亚磷酸盐, 其它可用的热聚抑制剂可 由专门技术人员选择。
在本发明中的光阻剂中还有一些可选择的在光聚组分中为人熟知的添加 剂, 例如无色(印出)染料, 背景染料, 以及粘着促进剂。 其它的添加剂可由 技术人员从現有技术中选用。
在本发明中的光阻剂溶液是将各组分在粘合剂溶液中混合溶解而形成; 在载体薄膜上,先由涂布仪或涂布头在其表面均匀涂布高分子材料的水溶液或 有机溶液,经烘箱干燥后形成中间保护层, 在此中间保护层上再涂布上述的光 阻剂溶液, 经烘箱干燥后再加以覆盖薄膜即成本发明的光致干膜; 本发明的光 致干膜也可用特殊的多层涂布头同时在载体薄膜上涂上该高分子的水溶液或 有机溶液及光阻剂溶液, 中间保护层溶液在下, 光阻剂层在上, 经烘箱干燥后 再加以覆盖薄膜而成, 如图 2所示。
该高分子涂层的厚度一般为 0. 5〜10μιη。 在使用中,更好的厚度为 1〜2μιη。 该光阻涂层的厚度在 10〜100μηι之间, 较好的是在 12〜80μηι之间。 载体薄膜 及覆盖薄膜的厚度最好在 15〜25μηι之间。
载体薄膜及覆盖薄膜均为没有光学透明及无色要求的可成膜的高分子材 料。
在本发明中的光致干膜是用于印刷线路板的制作。传统的光致干膜在剝除 覆盖薄膜的同时,用热压滚筒把光阻涂层连同載体薄膜压到铜箔覆盖的基物 上,如图 3所示, 含有特定图像的底片放置于載体薄膜之上, 用紫外光或雷射 光透过底片及載体薄膜曝光, 该載体薄膜在曝光后方可剥除。一般而言, 曝光 量大约在 20 mj/cm 2〜60mJ/cm 2之间, 精确的曝光量取决于特别的组份及干膜 的厚度等因素。
本发明中的光致干膜用相同的热压滚筒法把光阻涂层连同載体薄膜压到 铜箔覆盖的基物上,如图 4所示,在光阻涂层及載体薄膜还有中间保护层,与传 统干膜不同的是先剝除載体薄膜, 图像底片放置于中间保护层之上曝光, 其 曝光量和相应传统干膜一致。
在本发明中,这种阻隔氧气及保护光阻剂干膜不与底片粘连的作用是由本 发明中加涂的高分子涂层(中间保护层)来实现的。在应用本发明的干膜光阻剂 时, 曝光前即先除去载体薄膜, 因此对载体薄膜就不需要有完全透明、无色的 要求,从而大大降低了载体薄膜的成本。更重要的是,在使用传统光阻干膜时, 由于厚度 15μιη到 25μιη的载体薄膜的光散射作用, 使光阻干膜的解析度降低, 而本发明的光阻干膜是在除去载体薄膜后在高分子涂层上进行曝光,而高分子 涂层的厚度仅仅 1μιη〜2μιη, 从而使光阻干膜的解析度得以提高。
本发明的光阻干膜在曝光后, 連同中间保护层进行显影, 显影液一般是 强碱弱酸盐水溶液, 如碳酸钠, 碳酸氢钠, 和碱金属磷酸盐和焦磷酸盐, 较好 的是用碳酸钠。 也可使用特制的碱性水溶液显影,线路板可以浸在显影液中, 较好的是使用往板上高压喷显影液,以除去中间保护层及未曝光的光阻塗层部 分。
铜箔基板是在线路板工业中广泛使用的铜箔非导介质压层板,如玻璃纤维 加固的环氧乙垸铜箔基层板, 其它非绝缘介质也可使用在上述的铜箔基层板 中。
一般而言,与本发明匹配用于去除已聚合光阻剂物质的剥离液是加热的碱 性溶液,一般使用碱金属氢氧化物水溶液, 也可使用特制的碱性剥离液, 该剥 离液加热至 45〜65°C,较好的是加热至 50〜55°C,洗涤基板以除去已聚合的光 阻剂。
附图说明
图 1 传统干膜光阻剂成品图示;
图 2 含有中间保护层的干膜光阻剂成品图示;
图 3 传统干膜光阻剂压膜图示;
图 4 含有中间保护层的干膜光阻剂压膜图示;
其中, 1.支撑层一 (载体薄膜), 2.支撑层二 (覆盖薄膜), 3.光阻剂层, 4. 中间保护层, 5. 铜箔, 6. 基物, 7.热压滚轴。
具体实施方式
为了更清楚地描述本发明,特提供下述例子,但是本发明并不局限于下述 的例子中。 下述例子中, 除非特别指出, 所有的份量及百分数均以重量表示。 实施例 1 聚丙烯酸-聚丙烯酸酯的悬浮合成
500ml三口圆底反应烧瓶, 配置有冷凝回流管、 搅拌及通氮气装置。 在该 反应烧瓶中称量 300g去离子水,加热,底部通氮气并开始搅拌,速度为 200rpm, 加入 4g预先配置好的 METH0CEL羟丙基甲基纤维素醚及羟基丙基纤维素 (Dow 化学公司生产, 重量 1 : 1, 4%固含量)。 当温度达到 65°C时, 改底部通氮气为 上部通氮气, 在 10分钟内滴加 80g单体混合物 (甲基丙烯酸 4g, 甲基丙烯酸 甲酯 74g, 甲基丙烯酸正丁酯 2g), 同时在 10分钟内滴加 5g AIBN (偶氮二异 丁腈)的异丙醇溶液(6%) ,反应温度保持在 63〜66°C,保持搅拌速度为 200rpm, 6小时后再加入 5g AIBN的丙酮溶液 (5%) , 3小时后停止加热, 温度冷至 30 °C停止搅拌, 过滤, 其中白色固体用去离子水洗涤 ( 150ml X 3), 在真空干燥 箱中 100°C干燥 3小时, 得白色颗粒状固体 78. 4克 (产率 98. 0%), Tg= 96 °C (DSC)
实施例 2 聚丙烯酸-聚丙烯酸酯的溶液合成
500ml四口圆底反应烧瓶, 配置有冷凝回流管、 机械搅拌及通氮气装置及 分液漏斗。 在烧瓶内放置 250g丁酮, 在加热、 搅拌的同时, 从底部通氮气, 当温度达到 75°C时, 改从反应烧瓶上部通氮气。 在分液漏斗中放置以下单体 混合物, 甲基丙烯酸 5g, 甲基丙烯酸甲酯 108g, 丙烯酸乙酯 2g, 在 120分钟 内均匀滴加完毕。 同时, 用针筒注射器滴加 10g AIBN丁酮溶液 (4%) 与单体 混合物同时滴加完毕, 搅拌速度为 100〜150rpm, 反应温度控制在 75〜80°C, 单体及 AIBN溶液滴加完毕后,保持搅拌及温度 75〜80°C,每三小时滴加 5gAIBN 丁酮溶液(5%),九小时后停止加热,保持搅拌,冷却至 30°C后停止搅拌。 Tg=96 °C, 固含量 30. 5%。 实施例 3 光敏材料涂布液的制备
光敏材料涂布液按照下列表 1中的组分配制。
表 1 粘合剂 (实施例 1 ) 24. 52
丁酮 53. 22
乙氧化双酚 A二甲基丙烯酸酯 15. 53
乙氧化三羟甲基丙烷三丙烯酸酯 4. 10
对二甲氨基苯甲酸异辛酯 1. 51
异丙基硫杂蒽酮 0. 41
柠檬酸三乙酯 1. 5
2,6-二叔丁基对甲基苯酚 0. 21
*先将粘合剂 1溶于丁酮
将粘合剂在螺旋混合器中溶于丁酮, 然后将表 1中的物质在螺旋混合器 中以大约 600转 /分速度与粘合剂丁酮溶液混合均匀, 大约 60〜90min。 该混 合物在离心机中离心三分钟除去空气气泡。
实施例 4 光敏材料涂布液的制备
光敏材料涂布液按下列表 2中的组分配制 表 2 合剂 (实施例 2) 73. 80
乙氧化双酚 A二甲基丙烯酸酯 20. 51
乙酸乙烯酯-氯乙烯-乙烯酯 0. 25
二苯甲酮 2. 31
异丙基硫杂蒽酮 0. 36
柠檬酸三乙酯 2. 51
2,6-二叔丁基对甲基苯酚 0. 26 表 2中的物质在螺旋混合器中以大约 600转 /分速度混合均匀, 大约 60〜 90min。 该混合物在离心机中离心三分钟除去空气气泡。
实施例 5-6 分别用实施例 3、 4的涂布液根据图 1描述制作干膜光阻剂。 光敏材料在 16微米厚的聚酯薄膜上涂布, 通过刮涂制程制备, 刮涂时涂布仪带动涂布液 移动完成涂布。 然后在 10CTC的烘箱中烘干, 约 3-6分钟, 涂布层然后压到去 油刷洗后的双面铜板 (56. 7g铜, 在绝缘基板上), 其厚度约 0. 79mm。 压层板 是使用热压板机以温度约 121 °C,压力约 2. lkg/cm 2,以 121. 9cm/min的速度压 成, 然后通过底片曝光, 曝光程度为 Stouffer 6-7级(以 21级 Stouffer 曝 光程度表)。 15分钟后通过显影机显影, 显影液是 0. 90 ^ %碳酸钠单晶水溶 液, 温度约 35 °C, 上部冲洗压力约 1. 41kg/cm2,淋洗压力约 1. 41 kg/cm2,速度 应调节到洗脱 50%的冲解点。
显影后的样板须要测量光阻剂的分辨率、粘着程度及重现性来评估干膜光 阻剂的性能: 分辨率可直接读出, 数值越小, 分辨率越好; 重现性是指以线宽 ( 1 )线距(s )均为 150微米的线条为基准, 底片线宽与样板线宽测量值的差 值, 该值越小, 重现性越好; 粘着程度可以视看测试板上线距为 250微米的一 系列线路的依附程度, 存留且与标准值相同的线路越窄, 粘着性越好。每个实 施例中各性能列举在表 3中。
表 3
Figure imgf000014_0001
实施例 7-8
光敏材料层按照表 1、表 2中的组分配制, 中间保护层是 15 ^%到 20 wt% 的长春化工的 BP17的水溶液。 这种材料是中等粘度、 可溶于水的部分水解的 聚乙烯醇聚合物, 中间保护层的厚度为 1〜2微米。
干膜光阻剂根据图 2描述制作。光敏材料涂层和中间保护层通过刮涂制程 制备, 刮涂时涂布仪带动涂布液移动完成涂布。 中间保护层在 16微米厚的聚 酯薄膜上涂布, 然后在 10CTC的烘箱中烘干, 约 3-6分钟, 冷却后再在中间层 上涂布光敏材料层, 然后在 10CTC的烘箱中烘干, 约 3-6分钟, 涂布层然后压 到去油刷洗后的双面铜板 (56. 7g铜, 在绝缘基板上) ,其厚度约 0. 79mm。 压 层板是使用热压板机以温度约 121 °C,压力约 2. lkg/cm 2,以 121. 9cm/min的速 度压成, 然后剥离聚酯薄膜通过底片曝光, 曝光程度为 Stouffer 6-7级(以 21级 Stouffer 曝光程度表)。 15分钟后通过显影机显影, 显影液是 0. 90 wt %碳酸钠单晶水溶液, 温度约 35°C, 上部冲洗压力约 1. 41kg/cm2,淋洗压力约 1. 41 kg/cm2,速度应调节到洗脱 50%的冲解点。
每个实施例中各性能列举在表 4中。 表 4
Figure imgf000015_0001
实验中, 达到相同曝光程度所需的曝光能量差别不大, 该中间涂层对氧 气具有很好的阻透作用且对底片无粘连,在曝光过程中完全可以替代相对较厚 的聚酯薄膜, 从而显著提高分辨率。 实施例 9-10
重复实施例 7-8的制程,中间保护层材料替换为实施例 1的粘合剂的丁酮 每个实施例中各性能列举在表 5中。
Figure imgf000015_0002
实验中, 达到相同曝光程度所需的曝光能量差别不大, 该中间涂层对氧 气具有很好的阻透作用且对底片无粘连,在曝光过程中完全可以替代相对较厚 的聚酯薄膜, 从而显著提高分辨率。 实施例 11-12
重复实施例 7-8的制程, 中间保护层材料替换为实施例 1中的粘合剂的 每个实施例中各性能列举在表 6中。
Figure imgf000016_0001
实验中, 达到相同曝光程度所需的曝光能量差别不大, 该中间涂层对氧 气具有很好的阻透作用且对底片无粘连,在曝光过程中完全可以替代相对较厚 的聚酯薄膜, 从而显著提高分辨率。 实施例 13-14
重复实施例 7-8的制程, 中间保护层材料替换为固含量为 30. 5%实施例 2 中合成的聚丙烯酸 -聚丙烯酸酯树脂。
每个实施例中各性能列举在表 7中。
Figure imgf000016_0002
实验中, 达到相同曝光程度所需的曝光能量差别不大, 该中间涂层对氧 气具有阻透作用,在曝光过程中亦可以替代相对较厚的聚酯薄膜, 从而提高分 辨率。

Claims

权 利 要 求
1. 一种双层涂布的负性光致抗蚀干膜, 由载体薄膜、 覆盖薄膜、 光阻剂 层及中间保护层组成, 其特征在于:
中间保护层位于载体薄膜及光阻剂层之间是无色透明的,在光阻剂层的显 影液中可溶解, 其重量平均分子量为 20,000〜150,000, 醇化度为 60〜 100% 的聚乙烯醇或含有羧基的高分子聚合物, 其厚度在 0. 5μιη及 ΙΟμιη之间;
光阻剂层曝光的部分不溶于碱性的显影水溶液,而未曝光部分可溶于显影 液而成像, 其组份中含有高分子粘合剂、 光游离基引发剂、 可加聚单体、 热聚 合抑制剂, 亦可添加包括染料,增塑剂或粘着剂在内的添加剂; 光阻剂层厚度 是在 ΙΟμη!〜 ΙΟΟμιη之间;
载体薄膜及覆盖薄膜均为没有光学透明及无色要求的可成膜的高分子材 料。
2. 权利要求 1所述双层涂布的负性光致抗蚀干膜, 其特征在于所述的高 分子粘合剂是重量平均分子量为 20, 000〜200, 000, Tg为 80°C〜120°C的含有 羧基的高分子聚合物。
3. 权利要求 1或 2所述双层涂布的负性光致抗蚀干膜, 其特征在于所述 的高分子粘合剂是重量平均分子量为 40, 000〜100, 000, Tg为 95 °C〜110°C 的含有羧基的高分子聚合物。
4. 权利要求 1所述双层涂布的负性光致抗蚀干膜, 其特征在于所述的高 分子粘合剂至少由两个单体聚合而成, 第一种单体为具有至少含有 3到 15个 碳原子的 α, β不饱和的含有羧基的单体, 可以是肉桂酸、 巴豆酸、 山梨酸、 丙烯酸及甲基丙烯酸; 第二种单体为第一种单体所对应的酸酯, 其中酯基部分 可以是 ( i ) ( 〜( 8的垸基, 该垸基可以是直链或支链的; (ii ) 含有羟基的 (〜( 8的垸基,该垸基可以是直链或支链的;(iii)含有 垸基取代的苯基, 该(〜( 4的垸基可以是直链或支链, 该苯基可以是垸基单取代或多取代的;一 个或一个以上的第一种单体以及一个或一个以上的第二种单体即用以合成含 有羧基的可形成薄膜的高分子粘合剂。
5. 权利要求 1所述双层涂布的负性光致抗蚀干膜, 其特征在于所述的中 间保护层的聚乙烯醇的重量平均分子量为 30, 000〜120, 000, 醇化度为 70〜 90%。
6. 权利要求 1所述双层涂布的负性光致抗蚀干膜, 其特征在于所述的中 间保护层的含有羧基的高分子聚合物为高分子粘合剂。
7. 权利要求 1所述双层涂布的负性光致抗蚀干膜, 其特征在于所述的中 间保护层的厚度为 ΐμη!〜 2μηι; 光阻剂层厚度为 12〜80 m。
8. 权利要求 1所述双层涂布的负性光致抗蚀干膜, 其特征在于所述的高 分子粘合剂可以用悬浮聚合法合成, 其产品为固体高分子材料, 可溶解于碱性 水溶液中,亦可溶于有机溶剂后用于涂布中间保护层; 高分子粘合剂也可以用 溶液聚合法合成, 其产品为高分子溶液, 可直接用于涂布中间保护层。
9. 权利 8中的高分子粘合剂的溶液聚合法合成所用的溶剂为沸点 12CTC 以下的有机溶剂,可以是包括丙酮、丁酮、戊酮在内的酮; 可以是包括正丙醚、 甲丁醚、 乙丁醚、 乙二醇二甲醚在内的醚; 可以是包括苯、 甲苯在内的芳香族 有机溶剂; 可以是包括己垸、 环己垸在内的烃类化合物, 可以是包括乙酸乙酯 在内的酯类化合物。
10. 权利 1中的负性光致抗蚀干膜在应用时应先除去覆盖薄膜后热压至 覆盖铜箔的基物上, 然后除去载体薄膜后在中间保护层上进行曝光。
PCT/CN2013/080692 2012-08-27 2013-08-02 双层涂布的负性光致抗蚀干膜 WO2014032499A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/423,933 US20150241772A1 (en) 2012-08-27 2013-08-02 Double coated negative-working dry-film photoresist
JP2015528852A JP2015529853A (ja) 2012-08-27 2013-08-02 二層のネガ型ドライフィルムフォトレジスト

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210308978.5A CN102799070B (zh) 2012-08-27 2012-08-27 双层涂布的负性光致抗蚀干膜
CN201210308978.5 2012-08-27

Publications (1)

Publication Number Publication Date
WO2014032499A1 true WO2014032499A1 (zh) 2014-03-06

Family

ID=47198206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080692 WO2014032499A1 (zh) 2012-08-27 2013-08-02 双层涂布的负性光致抗蚀干膜

Country Status (5)

Country Link
US (1) US20150241772A1 (zh)
JP (1) JP2015529853A (zh)
CN (1) CN102799070B (zh)
TW (1) TWI493294B (zh)
WO (1) WO2014032499A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102799070B (zh) * 2012-08-27 2014-03-05 珠海市能动科技光学产业有限公司 双层涂布的负性光致抗蚀干膜
JP6620714B2 (ja) * 2016-10-14 2019-12-18 信越化学工業株式会社 フィルム材料及びパターン形成方法
CN107632498A (zh) * 2017-09-20 2018-01-26 浙江福斯特新材料研究院有限公司 一种感光性树脂组合物及由其制成的层压体
CN108227379A (zh) * 2017-12-11 2018-06-29 珠海市能动科技光学产业有限公司 一种含有纤维素材料的干膜光阻剂
CN112831809A (zh) * 2020-12-31 2021-05-25 广东杰信半导体材料股份有限公司 一种引线框架加工方法
CN115639723A (zh) * 2022-11-15 2023-01-24 珠海市能动科技光学产业有限公司 一种印刷线路板用感光干膜光阻剂及其制备方法
CN116755290A (zh) * 2023-05-17 2023-09-15 珠海市能动科技光学产业有限公司 一种高附着力的阻焊干膜光阻剂及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50120825A (zh) * 1974-03-08 1975-09-22
JPH0627650A (ja) * 1992-04-07 1994-02-04 Morton Thiokol Inc 二重の中間層を有する感光性ラミネート
CN101268151A (zh) * 2005-09-16 2008-09-17 富士胶片株式会社 着色组合物以及感光性转印材料
CN101925861A (zh) * 2008-01-29 2010-12-22 旭化成电子材料株式会社 感光性树脂层压体
CN102799070A (zh) * 2012-08-27 2012-11-28 珠海市能动科技光学产业有限公司 双层涂布的负性光致抗蚀干膜

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887450A (en) * 1971-02-04 1975-06-03 Dynachem Corp Photopolymerizable compositions containing polymeric binding agents
DE2123702B2 (de) * 1971-05-13 1979-11-08 Hoechst Ag, 6000 Frankfurt Verfahren zur Herstellung eines Reliefbildes
US4065315A (en) * 1976-04-26 1977-12-27 Dynachem Corporation Phototropic dye system and photosensitive compositions containing the same
US4239849A (en) * 1978-06-19 1980-12-16 Dynachem Corporation Polymers for aqueous processed photoresists
GB2047909B (en) * 1978-12-25 1982-10-06 Karpov V D Dry film photoresist
US4486318A (en) * 1981-04-24 1984-12-04 W. R. Grace & Co. High temperature stable viscosifier and fluid loss control system
US4413051A (en) * 1981-05-04 1983-11-01 Dynamics Research Corporation Method for providing high resolution, highly defined, thick film patterns
US4528261A (en) * 1983-03-28 1985-07-09 E. I. Du Pont De Nemours And Company Prelamination, imagewise exposure of photohardenable layer in process for sensitizing, registering and exposing circuit boards
US4539286A (en) * 1983-06-06 1985-09-03 Dynachem Corporation Flexible, fast processing, photopolymerizable composition
US5120772A (en) * 1985-08-02 1992-06-09 Walls John E Radiation-polymerizable composition and element containing a photopolymerizable mixture
IL84298A0 (en) * 1986-11-14 1988-03-31 Thiokol Morton Inc Improved photosensitive laminate
US4992354A (en) * 1988-02-26 1991-02-12 Morton International, Inc. Dry film photoresist for forming a conformable mask and method of application to a printed circuit board or the like
US5164284A (en) * 1988-02-26 1992-11-17 Morton International, Inc. Method of application of a conforming mask to a printed circuit board
US5508141A (en) * 1989-12-15 1996-04-16 W. R. Grace & Co.-Conn. Autodeposition emulsion and methods of using thereof to selectively protect metallic surfaces
JP2832409B2 (ja) * 1992-06-09 1998-12-09 富士写真フイルム株式会社 光重合性樹脂材料及びこれを用いたプリント回路の作成方法
JP3241144B2 (ja) * 1993-02-19 2001-12-25 日立化成工業株式会社 感光性樹脂組成物積層体、レジストパターンの製造法、基板、プリント配線板の製造法、プリント配線板及び機器
JP2002236361A (ja) * 2001-02-08 2002-08-23 Fuji Photo Film Co Ltd 感光性転写材料及びその製造方法
JP2005148236A (ja) * 2003-11-12 2005-06-09 Fuji Photo Film Co Ltd ドライフィルムフォトレジスト
JP4587865B2 (ja) * 2004-04-22 2010-11-24 昭和電工株式会社 感光性樹脂組成物及びその硬化物並びにそれらを使用するプリント配線基板の製造方法
JP2006048031A (ja) * 2004-07-06 2006-02-16 Fuji Photo Film Co Ltd 感光性フィルム及びその製造方法、並びに永久パターンの形成方法
US20070269738A1 (en) * 2004-07-30 2007-11-22 Hitachi Chemical Company, Ltd. Photosensitive Film, Photosensitive Film Laminate and Photosensitive Film Roll
US7749676B2 (en) * 2004-12-09 2010-07-06 Kolon Industries, Inc. Positive type dry film photoresist and composition for preparing the same
CN101073035B (zh) * 2004-12-09 2012-11-28 可隆株式会社 正型干膜光致抗蚀剂
JP5068603B2 (ja) * 2007-08-22 2012-11-07 富士フイルム株式会社 感光性転写材料、隔壁及びその形成方法、カラーフィルタ及びその製造方法、並びに表示装置
JP5814667B2 (ja) * 2011-07-15 2015-11-17 旭化成イーマテリアルズ株式会社 感光性エレメント

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50120825A (zh) * 1974-03-08 1975-09-22
JPH0627650A (ja) * 1992-04-07 1994-02-04 Morton Thiokol Inc 二重の中間層を有する感光性ラミネート
CN101268151A (zh) * 2005-09-16 2008-09-17 富士胶片株式会社 着色组合物以及感光性转印材料
CN101925861A (zh) * 2008-01-29 2010-12-22 旭化成电子材料株式会社 感光性树脂层压体
CN102799070A (zh) * 2012-08-27 2012-11-28 珠海市能动科技光学产业有限公司 双层涂布的负性光致抗蚀干膜

Also Published As

Publication number Publication date
TWI493294B (zh) 2015-07-21
JP2015529853A (ja) 2015-10-08
CN102799070B (zh) 2014-03-05
US20150241772A1 (en) 2015-08-27
TW201409181A (zh) 2014-03-01
CN102799070A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
TWI493294B (zh) 雙層塗布的負性光致抗蝕乾膜
JP2015087429A (ja) 感光性樹脂組成物、感光性エレメント及びレジストパターンの形成方法
TWI240149B (en) Photosensitive resin composition, photosensitive element comprising the same, process for producing resist pattern, and process for producing printed circuit board
TWI591434B (zh) Photosensitive device, method of forming photoresist pattern using the same, manufacturing method of printed circuit board, and printed circuit board
CN108255014B (zh) 一种含有改性聚氨酯和光固化单体的干膜光阻剂
JP4697303B2 (ja) 感光性樹脂組成物、並びにこれを用いた感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法
JP5190602B2 (ja) 感光性樹脂組成物、それを使用したスクリーン印刷用版及びスクリーン印刷用版の製造方法
JP5793924B2 (ja) 感光性樹脂組成物、感光性エレメント、レジストパターンの製造方法、及びプリント配線板の製造方法
CN112034685B (zh) 一种高解析度干膜光阻剂
JP2005331966A (ja) 温度およびせん断力に対して制御された粘度応答性を有するポリマーフィルム
JP5376043B2 (ja) 感光性樹脂組成物並びにこれを用いた感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法
JP4887965B2 (ja) 感光性樹脂組成物、これを用いた感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法
CN108227379A (zh) 一种含有纤维素材料的干膜光阻剂
TW201932984A (zh) 感光性樹脂積層體及抗蝕劑圖案之製造方法
JP4569700B2 (ja) 感光性樹脂組成物、感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法
TWI797993B (zh) 光阻膜及其應用
JP4336915B2 (ja) ドライフィルムを使用したフォトレジスト形成用積層板の製造方法
JP4134574B2 (ja) 感光性樹脂組成物、これを用いた感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法
JP2008209880A (ja) 感光性樹脂組成物、感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法
JP2006285133A (ja) 感光性樹脂組成物、感光性エレメント、レジストパターンの製造方法及びプリント配線板の製造方法
JP2004301871A (ja) 感光性樹脂組成物、これを用いた感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法
JPH0160131B2 (zh)
CN112578633A (zh) 一种光致抗蚀剂
JP2003525954A6 (ja) 温度およびせん断力に対して制御された粘度応答性を有するポリマーフィルム
JP2006225498A (ja) 光重合開始剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528852

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14423933

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832432

Country of ref document: EP

Kind code of ref document: A1