WO2014032346A1 - 利用掺杂超薄层吸附制备超薄绝缘体上材料的方法 - Google Patents

利用掺杂超薄层吸附制备超薄绝缘体上材料的方法 Download PDF

Info

Publication number
WO2014032346A1
WO2014032346A1 PCT/CN2012/081894 CN2012081894W WO2014032346A1 WO 2014032346 A1 WO2014032346 A1 WO 2014032346A1 CN 2012081894 W CN2012081894 W CN 2012081894W WO 2014032346 A1 WO2014032346 A1 WO 2014032346A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
preparing
doping
insulator material
layer
Prior art date
Application number
PCT/CN2012/081894
Other languages
English (en)
French (fr)
Inventor
狄增峰
陈达
卞剑涛
薛忠营
张苗
Original Assignee
中国科学院上海微系统与信息技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海微系统与信息技术研究所 filed Critical 中国科学院上海微系统与信息技术研究所
Priority to US13/825,079 priority Critical patent/US9230849B2/en
Publication of WO2014032346A1 publication Critical patent/WO2014032346A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing

Definitions

  • the present invention relates to the field of microelectronics and solid state electronics, and more particularly to a method for preparing a material on an ultrathin insulator by doping an ultrathin layer. Background technique
  • silicon-on-insulator (SOI) materials have been widely used in low voltage, low power, high temperature, radiation resistant devices, etc. due to their unique insulating buried structure, which can reduce the parasitic capacitance and leakage current of the substrate. .
  • Silicon-on-insulator application technology has been very mature in related fields.
  • Strained silicon (SSOI) on insulators has also received increasing attention from relevant technicians.
  • Silicon-on-insulator (SGOI) combines the advantages of silicon germanium and silicon-on-insulator. It can also reduce the parasitic capacitance and leakage current of the substrate, and can also improve the carrier mobility, and has also received extensive attention. The preparation of smaller size, higher performance devices has been the goal and direction of the semiconductor industry.
  • the material on the insulator needs to be obtained through two processes of material preparation and layer transfer.
  • the more common layer transfer realization techniques are bonding and stripping processes.
  • the traditional smart peeling method has a thick peeling surface, a large peeling crack, a rough surface of the material obtained on the insulator after peeling, and it is difficult to prepare an ultra-thin insulator material; and because a higher injection dose is required, not only the production time is increased, but also The cost, as well as the damage to the crystal, makes it more difficult to produce high quality ultra-thin insulator materials.
  • an object of the present invention is to provide a method for preparing an ultra-thin insulator material by doping an ultra-thin layer, which is suitable for solving the problem of preparing a high-quality ultra-thin insulator material in the prior art. The problem.
  • the present invention provides a method for preparing an ultrathin insulator material by doping an ultrathin layer, wherein the preparation method comprises at least the following steps:
  • the step a) further includes a step of epitaxially growing a buffer layer on the doped single crystal film, and further comprising removing the residual buffer layer and doping single crystal in the step d) The step of the film.
  • the material of the buffer layer is selected from any one of Si, Ge, SiGe, SiGeC, GaAs, AlGaAs, InGaP or InP.
  • the buffer layer has a thickness not exceeding a critical thickness of its growth on the doped single crystal film.
  • the doped single crystal film is a single layer film, and the material of the single layer film is selected from the group consisting of
  • the single-layer doped single crystal film has a thickness ranging from 3 to 10 nm.
  • the doped single crystal film is a multilayer film
  • the multilayer film is formed by stacking a plurality of double-layer films
  • the material of the double-layer film is selected from Si/ Any one of Ge, Si/SiGe, Ge/SiGe, Ge/GaAs, GaAs/AlGaAs or InP/InGa, wherein a multi-layer film is grown while a dopant gas is introduced to form a multilayer doped single crystal film.
  • the multilayered doped single crystal film has a total thickness of less than 10 nm.
  • the impurity element is B, P, Ga, As, Sb, 3 ⁇ 4 or [.
  • the concentration of the impurity element is 1E19 ⁇ 1E22 cm- 3 .
  • the material of the top film is selected from any one of Si, Ge, SiGe, SiGeC, GaAs, AlGaAs, InGaP or InP.
  • the thickness of the top film ranges from 5 to 50 nm.
  • H ion implantation is used in the step b), or H and He ions are co-injected.
  • the ion implantation dose in the step b) is 3E16 ⁇ 6E16 cm- 2 .
  • the preset depth is 30 to 120 nm.
  • the bonding adopts a plasma strengthening bonding method.
  • the bonding adopts direct bonding, and further includes a step of performing a second annealing stage after the first annealing stage to peel off to strengthen the insulating layer and the The bonding of the top film.
  • the method for preparing an ultra-thin insulator material by doping ultra-thin layer adsorption has the following beneficial effects: adsorption of implanted ions by ultra-thin doped single crystal film, formation of microcracks to cause peeling, peeling Crack occurrence
  • the crack is small, the surface roughness of the material on the insulator is small after the stripping, and the ions are effectively adsorbed by the ultra-thin layer, and the distribution is more uniform, so that the defects on the insulator-on-insulator or the insulator-modified material are less.
  • the impurities enhance the adsorption capacity of the ultra-thin single crystal film to ions, so that the ion implantation dose can be lower, the annealing temperature of the stripping is also lower, the damage to the material on the insulator is effectively reduced, and the cost is reduced.
  • Figure 1 is a schematic view showing the structure of a method for preparing an ultrathin insulator material by doping ultra-thin layer adsorption in the first step of the first embodiment.
  • Fig. 2 is a view showing the ion implantation in the second step of the first embodiment of the method for preparing an ultrathin insulator material by doping ultra-thin layer adsorption according to the present invention.
  • FIG 3 is a schematic view showing a second substrate having an insulating layer in the first step of the first embodiment of the present invention for the method of preparing an ultrathin insulator by doping ultra-thin layer adsorption according to the present invention.
  • Fig. 4 is a view showing the structure of the method for preparing an ultrathin insulator material by doping ultra-thin layer adsorption according to the present invention after bonding in the first step of the first embodiment.
  • Fig. 5 is a view showing the method of preparing a material for an ultrathin insulator by doping ultra-thin layer adsorption according to the present invention, in the fourth step of the first embodiment, in the case of residual doping of a single crystal film on the material of the ultra-thin insulator.
  • Fig. 6 is a view showing the material of the ultrathin insulator in the first step of the first embodiment of the method for preparing an ultrathin insulator by doping ultra-thin layer adsorption according to the present invention.
  • Fig. 7 is a view showing the structure of the method for preparing an ultrathin insulator material by doping ultra-thin layer adsorption in the first step of the second embodiment.
  • Fig. 8 is a view showing the ion implantation in the second embodiment of the method for preparing an ultrathin insulator material by doping ultra-thin layer adsorption according to the present invention.
  • Figure 9 is a schematic view showing a second substrate having an insulating layer in the second embodiment of the method for preparing an ultrathin insulator material by doping ultra-thin layer adsorption according to the present invention.
  • Fig. 10 is a view showing the structure of the method for preparing an ultrathin insulator material by doping ultra-thin layer adsorption in the second embodiment after bonding in the second embodiment.
  • Figure 11 is a schematic view showing the material of the ultrathin insulator in the second embodiment of the method for preparing an ultrathin insulator by doping ultra-thin layer adsorption according to the present invention.
  • Component label description The first substrate 1
  • the present invention provides a method for preparing an ultrathin insulator material by doping an ultrathin layer, the method comprising at least the following steps:
  • Step 1 refer to FIG. 1.
  • a first substrate 1 is provided, and a single epitaxial growth is performed on the first substrate 1 by chemical vapor deposition, physical vapor deposition or molecular beam epitaxy.
  • the layer is doped with a single crystal film 2 and a top film 3.
  • the single crystal thin film material is Si, Ge, SiGe, SiGeC, GaAs, AlGaAs, InGaP or InP, wherein the composition of Ge in the SiGe is adjustable,
  • the impurity element is B, P, Ga, As, Sb, In or C, the impurity concentration is 1E19 to 1E22, the thickness of the single-layer doped single crystal thin film 2 is 3 to 10 nm, and the material of the top film 3 It is Si, Ge, SiGe, SiGeC, GaAs, AlGaAs, InGaP or InP, wherein the composition of Ge in the SiGe is adjustable, and the thickness of the top film 3 is 5 to 50 nm.
  • the first substrate 1 is Si, but is not limited to Si.
  • the material of the single crystal thin film is preferably SiGe, wherein the ratio of Ge to Si is preferably 3:7, and the impurity element is preferably B.
  • the impurity concentration is preferably 2E19 cm- 3
  • the top film 3 is preferably Si has a thickness of preferably 10 nm.
  • Step 2 referring to FIG. 2, as shown in the figure, ion implantation is performed to implant ions into the doped single crystal thin film 2 with specific energy and angle (this is common knowledge in the art, which will not be described herein).
  • the interface with the first substrate 1 has a depth of 30 to 120 nm below.
  • H ion implantation is used, or H and He ions are co-injected, and the ion implantation dose is 3E16 ⁇ 6E16 cm- 2 .
  • the implanted ions are preferably H ions, and the implantation depth is 30 nm below the interface between the doped single crystal thin film 2 and the first substrate 1, and the implantation dose is 3E16 cm- 2 .
  • Step 3 referring to FIG. 3 and FIG. 4, as shown, a second substrate 4 having an insulating layer 5 is provided, the insulating layer 5 is bonded to the top film 3, and then the sample is first annealed.
  • the doped single crystal thin film is caused to adsorb the implanted ions from the first substrate 1 and form microcracks, thereby achieving peeling.
  • the bonding adopts plasma strengthening bonding or direct bonding.
  • a second annealing stage is also required after the first annealing stage to strengthen the insulating layer 5 and the The bonding of the top film 3, in the first annealing stage, the annealing temperature is 300-600 ° C, the annealing time is 30-90 minutes, and in the second annealing stage, the annealing temperature is 800-1000 ° C, The annealing time is 60 to 120 minutes.
  • the bonding method is preferably a plasma hardening bonding method, that is, it is not necessary to strengthen the bonding through the second annealing stage to avoid the high temperature annealing affecting the quality of the top film.
  • Step 4 referring to FIG. 5 and FIG. 6, as shown in the figure, chemical etching or chemical mechanical polishing is performed to remove the residual doped single crystal film 2 to obtain an ultra-thin insulator material.
  • the removal method is preferably selective chemical etching.
  • the step 1 further includes the step of epitaxially growing a buffer layer (not shown) on the single-layer doped single crystal thin film 2, and further comprising the step 4 The step of removing the residual buffer layer and doping the single crystal film.
  • the presence of the buffer layer prevents the peeling crack from affecting the crystal quality of the material on the insulator.
  • the material of the buffer layer is selected from any one of Si, Ge, SiGe, SiGeC, GaAs, AlGaAs, InGaP, or InP, wherein the composition of Ge in the SiGe is adjustable, and the thickness of the buffer layer does not exceed It has a critical thickness grown on the single-layer doped single crystal thin film 2.
  • the buffer layer in this embodiment is preferably a SiGe single crystal material.
  • the doped ultra-thin single crystal film can more effectively adsorb the implanted ions, so that the ion implantation dose can be lower, and micro-cracks are formed at a lower annealing temperature to cause peeling, and the obtained insulator material is obtained.
  • Low surface roughness and low defects enable higher quality ultra-thin insulator materials to be produced at lower cost.
  • the second embodiment and the first embodiment adopt substantially the same technical solutions, except that the structures of the doped single crystal films prepared by the two are different.
  • the doped single crystal film is a single layer, and in the embodiment, the doped single crystal film is Multi-layered.
  • the present invention provides a method for preparing an ultra-thin insulator material by doping ultra-thin layer adsorption, the method comprising at least the following steps:
  • Step 1 refer to FIG. 7.
  • the first substrate 1 is provided, and the first substrate 1 is epitaxially grown on the first substrate 1 by chemical vapor deposition, physical vapor deposition or molecular beam epitaxy.
  • the layer is doped with a single crystal film 2 and a top film 3.
  • the multi-layer doped single crystal film 2 is formed by stacking a plurality of double-layer films, and the material of the double-layer film is selected from the group consisting of Si/Ge, Si/SiGe, Ge/SiGe, Ge/GaAs, and GaAs.
  • a Si layer 211 is epitaxially grown on the first substrate 1, and then a layer of Ge 1 having a Ge composition X having a value of x1 is 81 1 _ 5 ⁇ 6 5 ⁇ layer 212 is epitaxially grown on the Si layer 211, wherein 0 ⁇ 1, forming a Si/Si ⁇ Gex bilayer film 21, and then according to the preparation
  • the Ge composition X is prepared to have the same or different values of the Ge composition X (i.e., the value of any two of xl, x2, x3, ...
  • xn a plurality of Si/Si ⁇ Gex bilayer films which may be equal or unequal to each other; at the same time, a doping gas is introduced during the preparation of the plurality of Si/Si ⁇ Gex bilayer films, and then the first lining Get n on the bottom 1
  • the second step, the third step and the fourth step are performed in substantially the same manner as in the first embodiment to obtain the material on the ultra-thin insulator.
  • the step 1 further includes a step of epitaxially growing a buffer layer (not shown) on the multi-layer doped single crystal thin film 2, and further comprising the step 4 The step of removing the residual buffer layer and doping the single crystal film.
  • the presence of the buffer layer prevents the peeling crack from affecting the crystal quality of the material on the insulator.
  • the material of the buffer layer is selected from any one of Si, Ge, SiGe, SiGeC, GaAs, AlGaAs, InGaP, or InP, wherein the composition of Ge in the SiGe is adjustable, and the thickness of the buffer layer does not exceed It has a critical thickness grown on the multilayered doped single crystal film 2.
  • the buffer layer in this embodiment is preferably a SiGe single crystal material.
  • the doped ultra-thin single crystal film can more effectively adsorb the implanted ions, so that the ion implantation dose can be lower, and micro-cracks are formed at a lower annealing temperature to cause peeling, and the obtained insulator material is obtained.
  • the surface roughness is low and the defects are few, wherein the multi-layer doped single crystal film is more favorable for the adsorption of the implanted ions than the single layer.
  • the method for preparing an ultra-thin insulator material by doping ultra-thin layer adsorption uses the ultra-thin doped single crystal film to adsorb the implanted ions, forming micro-cracks to cause peeling, and the peeling crack occurs in the super layer sheet, cracking it Small, after peeling, the surface roughness of the material on the insulator is small, and the ions are effectively adsorbed by the ultra-thin layer, and the distribution is more uniform, so that the defects of the material on the insulator or the modified material on the insulator are less, and the impurities enhance the ultra-thin
  • the ability of the single crystal film to adsorb ions can make the implantation dose of ions lower, and the annealing temperature of the stripping is lower, which effectively reduces the damage to the top film, so that the quality of the material on the insulator is higher, and at the same time, the quality is lowered. cost. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high

Abstract

提供一种利用掺杂超薄层吸附制备超薄绝缘体上材料的方法。该方法首先在第一衬底(1)上依次外延生长超薄掺杂单晶薄膜(2)和超薄顶层薄膜(3),并通过离子注入和键合工艺,制备出高质量的超薄绝缘体上材料。所制备的超薄绝缘体上材料的厚度范围为5〜50nm。利用超薄掺杂单晶薄膜(2)对其下注入离子的吸附作用,形成微裂紋以致剥离,剥离后绝缘体上材料表面粗糙度小。此外,杂质原子增强了超薄单晶薄膜(2)对离子的吸附能力,得以降低制备过程中的离子注入剂量和退火温度,有效减轻了顶层薄膜(3)中注入的损伤,达到了提高生产效率和降低生产成本的目的。

Description

利用掺杂超薄层吸附制备超薄绝缘体上材料的方法
技术领域
本发明涉及微电子与固体电子学技术领域, 特别是涉及一种利用掺杂超薄层吸附制备超 薄绝缘体上材料的方法。 背景技术
近年来, 绝缘体上硅 (SOI) 材料以其独特的绝缘埋层结构, 能降低衬底的寄生电容和 漏电电流, 在低压、 低功耗、 高温、 抗辐射器件等诸多领域得到了广泛的应用。 绝缘体上硅 在相关领域中应用技术已经非常成熟, 绝缘体上应变硅 (sSOI) 也日益得到了相关技术人员 的重视, 绝缘体上锗硅 (SGOI) 结合了锗硅材料和绝缘体上硅的优势, 不仅能减小衬底的 寄生电容和漏电电流, 还能提高载流子迁移率, 同样得到了广泛的关注。 制备更小尺寸、 更 高性能的器件一直是半导体工业发展的目标和方向, 随着超大规模集成电路技术进入到 22 nm节点及以下, 对集成电路的特征尺寸提出了更高要求。 为了使基于绝缘上材料的器件进 一步縮微化, 就要求绝缘体上材料的厚度更薄, 超薄绝缘体上材料应运而生。
通常绝缘体上材料需要通过材料的制备和层转移两个过程得到, 比较常见的层转移实现 技术是键合和剥离工艺。 而传统的智能剥离方法剥离面很厚, 剥离裂纹大, 剥离后得到的绝 缘体上材料表面很粗糙, 难以制备超薄的绝缘体上材料; 并且由于需要较高的注入剂量, 不 仅增加了生产时间和成本, 还对晶体损伤较大, 制备出高质量的超薄绝缘体上材料难度更 大。
因而, 如何提供一种低成本的制备高质量超薄绝缘体上材料的方法, 实已成为本领域从 业者亟待解决的技术问题。 发明内容
鉴于以上所述现有技术的缺点, 本发明的目的在于提供一种利用掺杂超薄层吸附制备超 薄绝缘体上材料的方法, 用于解决现有技术中难以制备高质量超薄绝缘体上材料的问题。
为实现上述目的及其他相关目的, 本发明提供一种利用掺杂超薄层吸附制备超薄绝缘体 上材料的方法, 其特征在于, 所述制备方法至少包括以下步骤:
a) 提供第一衬底, 在所述第一衬底上依次外延生长一掺杂单晶薄膜和一顶层薄膜; b)进行离子注入, 使离子注入到所述掺杂单晶薄膜与硅衬底的界面以下预设深度; c) 提供具有绝缘层的第二衬底, 将所述绝缘层与所述顶层薄膜键合, 然后对样品进行 第一退火阶段, 使所述掺杂单晶薄膜吸附离子并形成微裂纹, 从而实现剥离; d) 进行化学腐蚀或化学机械抛光, 去除残余的所述掺杂单晶薄膜, 以获得超薄绝缘体 上材料。
可选地, 于所述步骤 a)中还包括在所述掺杂单晶薄膜上外延生长一缓冲层的步骤, 以及 于所述步骤 d)中还包括去除残余的缓冲层及掺杂单晶薄膜的步骤。
可选地, 所述缓冲层的材料选自 Si、 Ge、 SiGe、 SiGeC、 GaAs、 AlGaAs、 InGaP或 InP 中任意一种。
可选地, 所述缓冲层的厚度不超过其在所述掺杂单晶薄膜上生长的临界厚度。
可选地, 于所述步骤 a)中, 所述掺杂单晶薄膜为单层薄膜, 所述单层薄膜的材料选自
Si、 Ge、 SiGe、 SiGeC、 GaAs、 AlGaAs、 InGaP或 InP中任意一种, 其中, 生长单层薄膜的 同时通入掺杂气体, 形成单层的掺杂单晶薄膜。
可选地, 所述单层的掺杂单晶薄膜的厚度范围为 3〜10 nm。
可选地, 于所述步骤 a)中, 所述掺杂单晶薄膜为多层薄膜, 所述多层薄膜由多个双层薄 膜叠加而成, 所述双层薄膜的材料选自 Si/Ge、 Si/SiGe、 Ge/SiGe、 Ge/GaAs、 GaAs/AlGaAs 或 InP/InGa 中任意一种, 其中, 生长多层薄膜的同时通入掺杂气体, 形成多层的掺杂单晶 薄膜。
可选地, 所述多层的掺杂单晶薄膜总厚度小于 10 nm。
可选地, 所述掺杂单晶薄膜中, 杂质元素为 B、 P、 Ga、 As、 Sb、 ¾或〔。
可选地, 所述掺杂单晶薄膜中, 杂质元素的浓度为 lE19〜lE22 cm- 3
可选地, 所述顶层薄膜的材料选自 Si、 Ge、 SiGe、 SiGeC、 GaAs、 AlGaAs、 InGaP 或 InP中任意一种。
可选地, 所述顶层薄膜的厚度范围是 5〜50 nm。
可选地, 所述步骤 b)中采用 H离子注入, 或 H与 He离子共同注入。
可选地, 所述步骤 b)中离子注入剂量是 3E16〜6E16 cm- 2
可选地, 所述步骤 b)中, 所述预设深度为 30〜120 nm。
可选地, 于所述步骤 c)中, 所述键合采用等离子强化键合法。
可选地, 于所述步骤 c)中, 所述键合采用直接键合法, 并且还包括在所述第一退火阶段 以致剥离之后进行第二退火阶段的步骤, 以加强所述绝缘层与所述顶层薄膜的键合。
如上所述, 本发明的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法, 具有以下有益 效果: 利用超薄掺杂单晶薄膜对注入离子的吸附作用, 形成微裂纹以致剥离, 剥离裂纹发生 在超薄层处, 裂纹很小, 剥离后绝缘体上材料表面粗糙度小, 且离子被超薄层有效吸附, 分 布更均匀, 从而使得到的绝缘体上材料或绝缘体上改性材料中缺陷更少, 此外, 杂质增强了 超薄单晶薄膜对离子的吸附能力, 使离子的注入剂量能够更低, 剥离的退火温度也更低, 有 效降低了对绝缘体上材料的损伤, 并降低了成本, 达到制备高质量超薄绝缘体上材料的目 的。 附图说明
图 1显示为本发明的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法在实施例一步骤 一中所呈现的结构示意图。
图 2显示为本发明的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法在实施例一步骤 二中离子注入的示意图。
图 3显示为本发明的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法在实施例一步骤 三中具有绝缘层的第二衬底的示意图。
图 4显示为本发明的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法在实施例一步骤 三中键合之后所呈现的结构示意图。
图 5显示为本发明的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法在实施例一步骤 四中超薄绝缘体上材料上残余掺杂单晶薄膜时的示意图。
图 6显示为本发明的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法在实施例一步骤 四中超薄绝缘体上材料的示意图。
图 7显示为本发明的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法在实施例二步骤 一中所呈现的结构示意图。
图 8显示为本发明的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法在实施例二中离 子注入的示意图。
图 9显示为本发明的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法在实施例二中具 有绝缘层的第二衬底的示意图。
图 10 显示为本发明的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法在实施例二中 键合之后所呈现的结构示意图。
图 11 显示为本发明的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法在实施例二中 超薄绝缘体上材料的示意图。 元件标号说明 1 第一衬底
211 Si层
212 Si1-xGex
21-24 Si/Si1-xGex双层薄膜
2 掺杂单晶薄膜
3 顶层薄膜
4 第二衬底
5 绝缘层 具体实施方式
以下通过特定的具体实例说明本发明的实施方式, 本领域技术人员可由本说明书所揭露 的内容轻易地了解本发明的其他优点与功效。 本发明还可以通过另外不同的具体实施方式加 以实施或应用, 本说明书中的各项细节也可以基于不同观点与应用, 在没有背离本发明的精 神下进行各种修饰或改变。
请参阅图 1 至图 11。 需要说明的是, 本实施例中所提供的图示仅以示意方式说明本发 明的基本构想, 遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、 形 状及尺寸绘制, 其实际实施时各组件的型态、 数量及比例可为一种随意的改变, 且其组件布 局型态也可能更为复杂。
实施例一
如图 1 至图 6 所示, 本发明提供一种利用掺杂超薄层吸附制备超薄绝缘体上材料的方 法, 所述方法至少包括以下步骤:
步骤 1, 请参阅图 1, 如图所示, 提供第一衬底 1, 采用化学气相沉积法、 物理气相沉 积法或者分子束外延法, 在所述第一衬底 1上依次外延生长一单层的掺杂单晶薄膜 2和一顶 层薄膜 3。 具体的, 所述单层的掺杂单晶薄膜 2 中, 单晶薄膜材料为 Si、 Ge、 SiGe , SiGeC、 GaAs、 AlGaAs、 InGaP或 InP, 其中, 所述 SiGe 中 Ge 的组分可调, 杂质元素为 B、 P、 Ga、 As、 Sb、 In或 C, 杂质浓度为 1E19〜1E22, 所述单层的掺杂单晶薄膜 2的厚度 为 3〜10 nm, 所述顶层薄膜 3 的材料为 Si、 Ge、 SiGe、 SiGeC、 GaAs、 AlGaAs、 InGaP或 InP, 其中, 所述 SiGe中 Ge的组分可调, 所述顶层薄膜 3厚度为 5〜50 nm。 在本实施例 中, 所述第一衬底 1 为 Si, 但不仅限于 Si, 所述单晶薄膜的材料优选为 SiGe, 其中 Ge与 Si的比例优选为 3: 7, 杂质元素优选为 B, 杂质浓度优选为 2E19 cm- 3, 顶层薄膜 3优选为 Si, 其厚度优选为 10 nm。
步骤二, 请参阅图 2, 如图所示, 以特定的能量与角度 (此为本领域的公知常识, 在此 不再赘述) 进行离子注入, 使离子注入到所述掺杂单晶薄膜 2 与第一衬底 1 的界面以下 30〜120 nm的深度。 具体的, 采用 H离子注入, 或 H与 He离子共同注入, 离子注入剂量是 3E16〜6E16 cm- 2。 在本实施例中, 注入离子优选为 H离子, 注入深度为所述掺杂单晶薄膜 2 与第一衬底 1的界面以下 30 nm, 注入剂量为 3E16 cm- 2
步骤三, 请参阅图 3及图 4, 如图所示, 提供具有绝缘层 5的第二衬底 4, 将所述绝缘 层 5与所述顶层薄膜 3键合, 然后对样品进行第一退火阶段, 使所述掺杂单晶薄膜从第一衬 底 1中吸附注入的离子并形成微裂纹, 从而实现剥离。 具体的, 所述键合采用等离子体强化 键合法或直接键合法, 当采用直接键合法时, 还需要在所述第一退火阶段之后进行第二退火 阶段, 以加强所述绝缘层 5 与所述顶层薄膜 3 的键合, 所述第一退火阶段中, 退火温度为 300-600 °C, 退火时间为 30〜90分钟, 所述第二退火阶段中, 退火温度为 800〜1000 °C, 退 火时间为 60〜120 分钟。 在本实例中, 键合方法优选为等离子强化键合法, 即不需要经过第 二退火阶段加强键合, 避免高温退火影响顶层薄膜的质量。
步骤四, 请参阅图 5及图 6, 如图所示, 进行化学腐蚀或化学机械抛光, 去除残余的所 述掺杂单晶薄膜 2, 以获得超薄绝缘体上材料。 在本实施例中, 去除方法优选为选择性化学 腐蚀。
在另一实施方式中, 于所述步骤一中还包括在所述单层的掺杂单晶薄膜 2上外延生长一 缓冲层 (未图示) 的步骤, 以及于所述步骤四中还包括去除残余的缓冲层及掺杂单晶薄膜的 步骤。 缓冲层的存在能避免剥离裂纹影响绝缘体上材料的晶体质量。 具体的, 缓冲层的材料 选自 Si、 Ge、 SiGe、 SiGeC、 GaAs、 AlGaAs、 InGaP或 InP中任意一种, 其中, 所述 SiGe 中 Ge的组分可调, 所述缓冲层的厚度不超过其在所述单层的掺杂单晶薄膜 2上生长的临界 厚度。 本实施例中缓冲层优选为 SiGe单晶材料。
使用本发明制备绝缘体上材料, 掺杂超薄单晶薄膜能更加有效地吸附注入离子, 使离子 的注入剂量能够更低, 在更低的退火温度下形成微裂纹以致剥离, 得到的绝缘体上材料表面 粗糙度低, 缺陷少, 实现在更低的成本下制备更高质量的超薄绝缘体上材料。 实施例二
实施例二与实施例一采用基本相同的技术方案, 不同之处在于二者制备的掺杂单晶薄膜 的结构不同。 在实施例一中, 所述掺杂单晶薄膜为单层, 而在本实施例中, 掺杂单晶薄膜为 多层。
请参阅图 7 至图 11, 本发明提供一种利用掺杂超薄层吸附制备超薄绝缘体上材料的方 法, 该方法至少包括以下步骤:
步骤一, 请参阅图 7, 如图所示, 提供第一衬底 1, 采用化学气相沉积法、 物理气相沉 积法或者分子束外延法, 在所述第一衬底 1上依次外延生长一多层的掺杂单晶薄膜 2和一顶 层薄膜 3。 具体的, 所述多层的掺杂单晶薄膜 2 由多个双层薄膜叠加而成, 所述双层薄膜的 材料选自 Si/Ge、 Si/SiGe、 Ge/SiGe、 Ge/GaAs、 GaAs/AlGaAs 或 InP/InGa 中任意一种, 其 中, 所述 SiGe中 Ge的组分可调, 本实施例将以 Si/SiGe双层薄膜叠加而成的多层的掺杂单 晶薄膜为例进行说明。 首先在所述第一衬底 1上外延生长一 Si层 211, 其次在所述 Si层 211 上外延生长一 Ge组分 X取值为 xl的 811_5^65{层212, 其中, 0<χ≤1, 形成 Si/Si^Gex双层薄 膜 21, 然后依据制备所述
Figure imgf000008_0001
层薄膜 21 的相同手段, 在所述 Si/Si^Gex双层薄膜 21上制备出 Ge组分 X取值相同或不相同 (即 xl、 x2、 x3、 …… xn中任意两个的取值可以 相等也可以互不相等) 的多个 Si/Si^Gex双层薄膜; 同时, 在制备所述多个 Si/Si^Gex双层 薄膜时通入掺杂气体, 而后, 所述第一衬底 1上得到 n个
Figure imgf000008_0002
层薄膜叠加而成的多 层的掺杂单晶薄膜 2, 其中, n的范围是 3〜10, 所述多层的掺杂单晶薄膜 2的总厚度小于 10 nm。 在本实施例中, 优选 n=4, 即所述多层的掺杂单晶薄膜 2包括所述
Figure imgf000008_0003
层薄膜 21、 22、 23和 24。
步骤一完成之后, 请参阅图 8 至图 11, 如图所示, 执行与实施例一中基本相同的步骤 二、 步骤三和步骤四, 得到超薄绝缘体上材料。
在另一实施方式中, 于所述步骤一中还包括在所述多层的掺杂单晶薄膜 2上外延生长一 缓冲层 (未图示) 的步骤, 以及于所述步骤四中还包括去除残余的缓冲层及掺杂单晶薄膜的 步骤。 缓冲层的存在能避免剥离裂纹影响绝缘体上材料的晶体质量。 具体的, 缓冲层的材料 选自 Si、 Ge、 SiGe、 SiGeC、 GaAs、 AlGaAs、 InGaP或 InP中任意一种, 其中, 所述 SiGe 中 Ge的组分可调, 所述缓冲层的厚度不超过其在所述多层的掺杂单晶薄膜 2上生长的临界 厚度。 本实施例中缓冲层优选为 SiGe单晶材料。
使用本发明制备绝缘体上材料, 掺杂超薄单晶薄膜能更加有效地吸附注入离子, 使离子 的注入剂量能够更低, 在更低的退火温度下形成微裂纹以致剥离, 得到的绝缘体上材料表面 粗糙度低, 缺陷少, 其中, 多层的掺杂单晶薄膜相对于单层的更有利于对注入离子的吸附。
综上所述, 本发明的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法, 利用超薄掺杂 单晶薄膜对注入离子的吸附作用, 形成微裂纹以致剥离, 剥离裂纹发生在超薄层处, 裂纹很 小, 剥离后绝缘体上材料表面粗糙度小, 且离子被超薄层有效吸附, 分布更均匀, 从而使得 到的绝缘体上材料或绝缘体上改性材料中缺陷更少, 此外, 杂质增强了超薄单晶薄膜对离子 的吸附能力, 使离子的注入剂量能够更低, 剥离的退火温度也更低, 有效降低了对顶层薄膜 的损伤, 从而使得到的绝缘体上材料质量更高, 同时又降低了成本。 所以, 本发明有效克服 了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效, 而非用于限制本发明。 任何熟悉此技 术的人士皆可在不违背本发明的精神及范畴下, 对上述实施例进行修饰或改变。 因此, 举凡 所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等 效修饰或改变, 仍应由本发明的权利要求所涵盖。

Claims

权利要求书 、 一种利用掺杂超薄层吸附制备超薄绝缘体上材料的方法, 其特征在于, 所述方法包括以 下步骤:
a) 提供第一衬底, 在所述第一衬底上依次外延生长一掺杂单晶薄膜和一顶层薄膜; b) 进行离子注入, 使离子注入到所述掺杂单晶薄膜与硅衬底的界面以下预设深度; c) 提供具有绝缘层的第二衬底, 将所述绝缘层与所述顶层薄膜键合, 然后对样品进行 第一退火阶段, 使所述掺杂单晶薄膜吸附离子并形成微裂纹, 从而实现剥离; d) 进行化学腐蚀或化学机械抛光, 去除残余的所述掺杂单晶薄膜, 以获得超薄绝缘体 上材料。 、 根据权利要求 1 所述的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法, 其特征在 于: 于所述步骤 a)中还包括在所述掺杂单晶薄膜上外延生长一缓冲层的步骤, 以及于所 述步骤 d)中还包括去除残余的缓冲层及掺杂单晶薄膜的步骤。 、 根据权利要求 2 所述的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法, 其特征在 于: 所述缓冲层的材料选自 Si、 Ge、 SiGe、 SiGeC、 GaAs、 AlGaAs、 InGaP或 InP中任 意一种。 、 根据权利要求 2 所述的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法, 其特征在 于: 所述缓冲层的厚度不超过其在所述掺杂单晶薄膜上生长的临界厚度。 、 根据权利要求 1 或 2所述的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法, 其特征 在于: 于所述步骤 a)中, 所述掺杂单晶薄膜为单层薄膜, 所述单层薄膜的材料选自 Si、 Ge、 SiGe、 SiGeC、 GaAs、 AlGaAs、 InGaP或 InP 中任意一种, 其中, 生长单层薄膜的 同时通入掺杂气体, 形成单层的掺杂单晶薄膜。 、 根据权利要求 5 所述的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法, 其特征在 于: 所述单层的掺杂单晶薄膜的厚度范围为 3~10 nm。 、 根据权利要求 1 或 2所述的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法, 其特征 在于: 于所述步骤 a)中, 所述掺杂单晶薄膜为多层薄膜, 所述多层薄膜由多个双层薄膜 叠加而成, 所述双层薄膜的材料选自 Si/Ge、 Si/SiGe、 Ge/SiGe、 Ge/GaAs、 GaAs/AlGaAs 或 InP/InGa 中任意一种, 其中, 生长多层薄膜的同时通入掺杂气体, 形成多层的掺杂单 晶薄膜。 、 根据权利要求 7 所述的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法, 其特征在 于: 所述多层的掺杂单晶薄膜总厚度小于 10 nm。 、 根据权利要求 1 或 2所述的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法, 其特征 在于: 所述掺杂单晶薄膜中, 杂质元素为 B、 P、 Ga、 As、 Sb、 In或 C。 0、 根据权利要求 1 或 2所述的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法, 其特 征在于: 所述掺杂单晶薄膜中, 杂质元素的浓度为 lE19〜lE22 cm- 3。 1、 根据权利要求 1 或 2所述的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法, 其特 征在于: 所述顶层薄膜的材料选自 Si、 Ge、 SiGe、 SiGeC、 GaAs、 AlGaAs、 InGaP 或 InP中任意一种。 、 根据权利要求 1 或 2所述的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法, 其特 征在于: 所述顶层薄膜的厚度范围是 5〜50 nm。 3、 根据权利要求 1 或 2所述的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法, 其特 征在于: 所述步骤 b)中采用 H离子注入, 或 H与 He离子共同注入。 、 根据权利要求 1 或 2所述的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法, 其特 征在于: 所述步骤 b)中离子注入剂量是 3E16~6E16 cm 5、 根据权利要求 1 或 2所述的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法, 其特 征在于: 所述步骤 b)中, 所述预设深度为 30~120 nm。 6、 根据权利要求 1 或 2所述的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法, 其特 征在于: 于所述步骤 c)中, 所述键合采用等离子强化键合法。 、 根据权利要求 1 或 2所述的利用掺杂超薄层吸附制备超薄绝缘体上材料的方法, 其 特征在于: 于所述步骤 c)中, 所述键合采用直接键合法, 并且还包括在所述第一退火阶 段以致剥离之后进行第二退火阶段的步骤, 以加强所述绝缘层与所述顶层薄膜的键合。
PCT/CN2012/081894 2012-08-28 2012-09-25 利用掺杂超薄层吸附制备超薄绝缘体上材料的方法 WO2014032346A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/825,079 US9230849B2 (en) 2012-08-28 2012-09-25 Method for preparing ultra-thin material on insulator through adsorption by doped ultra-thin layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210310581.X 2012-08-28
CN201210310581.XA CN103633010B (zh) 2012-08-28 2012-08-28 利用掺杂超薄层吸附制备超薄绝缘体上材料的方法

Publications (1)

Publication Number Publication Date
WO2014032346A1 true WO2014032346A1 (zh) 2014-03-06

Family

ID=50182412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081894 WO2014032346A1 (zh) 2012-08-28 2012-09-25 利用掺杂超薄层吸附制备超薄绝缘体上材料的方法

Country Status (3)

Country Link
US (1) US9230849B2 (zh)
CN (1) CN103633010B (zh)
WO (1) WO2014032346A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103972148B (zh) * 2014-05-23 2017-01-25 中国科学院上海微系统与信息技术研究所 一种超薄绝缘体上材料的制备方法
US9752224B2 (en) * 2015-08-05 2017-09-05 Applied Materials, Inc. Structure for relaxed SiGe buffers including method and apparatus for forming
CN105140171B (zh) * 2015-08-26 2018-06-29 中国科学院上海微系统与信息技术研究所 一种绝缘体上材料的制备方法
CN106373870B (zh) * 2016-11-24 2020-06-02 清华大学 半导体结构以及制备方法
CN106449369B (zh) * 2016-11-24 2020-04-28 清华大学 绝缘体上半导体结构以及制备方法
CN106409750B (zh) * 2016-11-24 2020-04-28 清华大学 绝缘体上半导体结构以及制备方法
CN106449663B (zh) * 2016-11-24 2020-04-28 清华大学 绝缘体上半导体结构以及制备方法
CN108346686B (zh) * 2017-01-25 2021-07-30 中芯国际集成电路制造(上海)有限公司 半导体器件及其制造方法
CN113889431A (zh) * 2020-07-01 2022-01-04 中芯集成电路(宁波)有限公司上海分公司 绝缘体上半导体结构的制造方法
CN112750686B (zh) * 2020-12-30 2021-12-07 济南晶正电子科技有限公司 一种多层衬底、电子元器件及多层衬底制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030201508A1 (en) * 2000-11-30 2003-10-30 Seiko Epson Corporation SOI substrate, element substrate, semiconductor device, electro-optical apparatus, electronic equipment, method of manufacturing the SOI substrate, method of manufacturing the element substrate, and method of manufacturing the electro-optical apparatus
CN1684243A (zh) * 2003-09-30 2005-10-19 国际商业机器公司 一种制造硅绝缘体衬底结构的方法
US20050266591A1 (en) * 2003-03-25 2005-12-01 Sony Corporation Manufacturing process for ultra slim electrooptic display device unit
CN102347267A (zh) * 2011-10-24 2012-02-08 中国科学院上海微系统与信息技术研究所 一种利用超晶格结构材料制备的高质量sgoi及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939101A (en) * 1988-09-06 1990-07-03 General Electric Company Method of making direct bonded wafers having a void free interface
US7262495B2 (en) * 2004-10-07 2007-08-28 Hewlett-Packard Development Company, L.P. 3D interconnect with protruding contacts
US20060270190A1 (en) * 2005-05-25 2006-11-30 The Regents Of The University Of California Method of transferring a thin crystalline semiconductor layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030201508A1 (en) * 2000-11-30 2003-10-30 Seiko Epson Corporation SOI substrate, element substrate, semiconductor device, electro-optical apparatus, electronic equipment, method of manufacturing the SOI substrate, method of manufacturing the element substrate, and method of manufacturing the electro-optical apparatus
US20050266591A1 (en) * 2003-03-25 2005-12-01 Sony Corporation Manufacturing process for ultra slim electrooptic display device unit
CN1684243A (zh) * 2003-09-30 2005-10-19 国际商业机器公司 一种制造硅绝缘体衬底结构的方法
CN102347267A (zh) * 2011-10-24 2012-02-08 中国科学院上海微系统与信息技术研究所 一种利用超晶格结构材料制备的高质量sgoi及其制备方法

Also Published As

Publication number Publication date
CN103633010B (zh) 2016-12-21
CN103633010A (zh) 2014-03-12
US9230849B2 (en) 2016-01-05
US20150194338A1 (en) 2015-07-09

Similar Documents

Publication Publication Date Title
WO2014032346A1 (zh) 利用掺杂超薄层吸附制备超薄绝缘体上材料的方法
JP6650463B2 (ja) 電荷トラップ層を備えた高抵抗率の半導体・オン・インシュレーターウェハーの製造方法
CN105140171B (zh) 一种绝缘体上材料的制备方法
US6323109B1 (en) Laminated SOI substrate and producing method thereof
TWI264061B (en) Strained silicon-on-insulator (SSOI) and method to form same
US7232743B2 (en) Semiconductor structure for providing strained crystalline layer on insulator and method for fabricating same
JPH11307747A (ja) Soi基板およびその製造方法
CN104517883B (zh) 一种利用离子注入技术制备绝缘体上半导体材料的方法
JP2006032968A (ja) 層の移転を介してシリコン・オン・グラスを製造する方法
JP2022037175A (ja) 高抵抗率半導体・オン・インシュレータウエハおよび製造方法
CN103943547B (zh) 基于增强吸附来制备绝缘体上材料的方法
TW201041015A (en) Formation of thin layers of semiconductor materials
CN109314040B (zh) 贴合式soi晶圆的制造方法
US9824891B1 (en) Method of manufacturing the thin film
CN103972148B (zh) 一种超薄绝缘体上材料的制备方法
US7338886B2 (en) Implantation-less approach to fabricating strained semiconductor on isolation wafers
CN104752309B (zh) 剥离位置精确可控的绝缘体上材料的制备方法
TW200931601A (en) Method for manufacturing semiconductor substrate
CN112018025A (zh) Ⅲ-ⅴ族化合物半导体异质键合结构的制备方法
CN104425341B (zh) 一种低剂量注入制备绝缘体上半导体材料的方法
CN103632930B (zh) 利用超薄层吸附制备绝缘体上超薄改性材料的方法
CN105428300B (zh) 吸附剥离制备绝缘体上材料的方法
CN107195534B (zh) Ge复合衬底、衬底外延结构及其制备方法
CN102403260B (zh) 一种基于SiN埋绝缘层的晶圆级单轴应变SOI的制作方法
JP2011054704A (ja) 貼り合わせウェーハの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13825079

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.08.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12883554

Country of ref document: EP

Kind code of ref document: A1