CN105140171B - 一种绝缘体上材料的制备方法 - Google Patents

一种绝缘体上材料的制备方法 Download PDF

Info

Publication number
CN105140171B
CN105140171B CN201510532134.2A CN201510532134A CN105140171B CN 105140171 B CN105140171 B CN 105140171B CN 201510532134 A CN201510532134 A CN 201510532134A CN 105140171 B CN105140171 B CN 105140171B
Authority
CN
China
Prior art keywords
insulator
layer
material layer
substrate
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510532134.2A
Other languages
English (en)
Other versions
CN105140171A (zh
Inventor
狄增峰
贾鹏飞
薛忠营
陈达
马骏
张苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201510532134.2A priority Critical patent/CN105140171B/zh
Publication of CN105140171A publication Critical patent/CN105140171A/zh
Application granted granted Critical
Publication of CN105140171B publication Critical patent/CN105140171B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

本发明提供一种制备绝缘体上材料的方法,包括以下步骤:S1:提供一衬底;S2:在所述衬底表面依次外延第一材料层、硼掺杂第一材料层及第二材料层;S3:重复步骤S2至少一次;S4:进行离子注入,使离子注入到最远离所述衬底的所述第一材料层中;S5:提供一表面形成有绝缘层的基板,将所述绝缘层与位于顶层的第二材料层键合,形成键合片;S6:对键合片进行退火处理,使位于离子注入层上的所述硼掺杂第一材料层吸附离子形成微裂纹而剥离,得到绝缘体上材料。本发明中,所述衬底可以重复利用,从而降低了生产材料成本,并简化了工艺流程;且离子注入剂量更低,有利于提高晶体质量,减少注入成本;本发明得到的绝缘体上材料表面非常光滑,无需抛光。

Description

一种绝缘体上材料的制备方法
技术领域
本发明属于微电子领域,涉及一种绝缘体上材料的制备方法。
背景技术
根据国际半导体产业技术发展蓝图的预测,2015年集成电路加工工艺将减小到到15纳米,2019年达到11纳米。随着集成电路技术发展到22纳米及以下节点时,传统器件所采用的材料和器件结构将会接近或达到它们的极限。近年来,绝缘体上材料以其独特的绝缘埋层结构,能降低衬底的寄生电容和漏电电流,在低压、低功耗、高温、抗辐射器件等诸多领域得到了广泛的应用。SOI(绝缘体上硅,Silicon on Insulator)结构被认为是延续摩尔定律发展的关键衬底材料之一。
通常绝缘体上材料的制备包括以下技术:1.通过外延、键合、智能剥离或背部研磨等工艺流程;2.注氧隔离技术。传统的绝缘体上材料剥离方法有离子注入剥离法、等离子体吸入剥离法、机械剥离法、绝缘体上材料减薄技术等。其中离子注入剥离得到的绝缘体上材料表面很粗糙,并且在超低能量注入情况下会引起同位素效应或表面损伤,同时很难控制;等离子体吸附剥离耗时长,材料消耗大,不适宜大规模生产;机械剥离法需要引入机械,产品成品率及产量不可控;而绝缘体上材料减薄技术步骤繁琐,例如制备超薄SOI,需要不断氧化,时间较长且能耗大,并且随着顶层硅厚度的减小,氧化条件会越来越苛刻,增加了困难;注氧隔离技术虽然方法较为简单,但目前仍然难以制备高质量的超薄绝缘体上材料。
目前智能剥离(Smart cut)工艺已经成为制备SOI材料的主流方法,其中离子注入和键合是至关重要的两步。传统的Smart cut工艺需要6×1016cm-3的注入剂量,既占用了大量的离子注入成本,又导致了较高密度的注入缺陷。同时,传统的智能剥离仍然存在生产材料成本较高、工艺流程较为繁琐的问题。
因此,如何提供一种制备绝缘体上材料的方法,以降低生产材料成本、提高绝缘体上材料的质量并简化工艺流程,成为本领域技术人员亟待解决的一个重要技术问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种制备绝缘体上材料的方法,用于解决现有技术中制备绝缘体上材料的生产材料成本较高、工艺流程较为繁琐且绝缘体上材料具有较高密度的注入缺陷的问题。
为实现上述目的及其他相关目的,本发明提供一种制备绝缘体上材料的方法,包括以下步骤:
S1:提供一衬底;
S2:在所述衬底表面依次外延第一材料层、硼掺杂第一材料层及第二材料层;
S3:重复所述步骤S2至少一次;
S4:进行离子注入,使离子注入到最远离所述衬底的所述第一材料层中;
S5:提供一表面形成有绝缘层的基板,将所述绝缘层与位于顶层的所述第二材料层键合,形成键合片;
S6:对所述键合片进行退火处理,使位于离子注入层上的所述硼掺杂第一材料层吸附离子形成微裂纹,使所述键合片从所述硼掺杂第一材料层处剥离,得到自下而上依次包括基板、绝缘层及第二材料层的绝缘体上材料。
可选地,所述第一材料层选自SiGe、SiGeSn、GaAs、AlAs、AlGaAs及InGaAs中的任意一种。
可选地,所述第一材料层的厚度小于其生长临界厚度。
可选地,所述第二材料层选自Si、Ge、SiGe、SiGeSn、GaAs、AlAs、AlGaAs及InGaAs中的任意一种。
可选地,所述硼掺杂第一材料层中,硼掺杂浓度范围是1E18~1E20cm-3
可选地,所述离子注入的剂量范围是2E16~5E16cm-3
可选地,所述离子注入采用H离子注入或H/He离子共注。
可选地,于所述步骤S5中,首先对所述绝缘层表面及位于顶层的所述第二材料层表面进行等离子体处理,然后将所述绝缘层与位于顶层的所述第二材料层键合。
可选地,所述键合采用真空键合。
可选地,于所述步骤S6中,对所述键合片进行退火处理的方法为:采用热退火方法,首先将所述键合片在第一温度下退火第一时间以加固键合,然后将所述键合片在第二温度下退火第二时间以实现剥离;所述第二温度高于第一温度。
可选地,所述第一温度为200~400℃,所述第二温度为400~800℃。
可选地,还包括步骤S7:选择性腐蚀掉位于所述衬底顶层因剥离残留的第一材料层,然后重复所述步骤S4~S6,再次得到绝缘体上材料。
可选地,于所述步骤S3中,重复所述步骤S2的次数为2~500次。
可选地,于所述步骤S6之后,重复所述步骤S7若干次,得到多个绝缘体上材料,直至暴露出所述衬底。
可选地,所述衬底的材料选自Si、Ge及SiGe中的至少一种。
如上所述,本发明的制备绝缘体上材料的方法,具有以下有益效果:(1)衬底上外延有多层的掺杂超薄层结构作为施主层,只需要选择性腐蚀即可达到较低的表面粗糙度,腐蚀速度快且无需抛光即可以重复利用,从而降低了生产材料成本,并简化了工艺流程,有利于提高生产效率。(2)相对于传统的智能剥离方法,本发明可以使离子注入剂量减小到原来的一半甚至更小,极大的提高了晶体质量,并减少了注入成本;(3)由于硼掺杂吸附层的厚度很薄,剥离之后得到的绝缘体上材料表面非常光滑,无需抛光。
附图说明
图1显示为本发明的制备绝缘体上材料的方法的工艺流程图。
图2显示为本发明的制备绝缘体上材料的方法提供一衬底的示意图。
图3显示为本发明的制备绝缘体上材料的方法在所述衬底表面依次外延第一材料层、硼掺杂第一材料层及第二材料层的示意图。
图4显示为本发明的制备绝缘体上材料的方法在图3所示结构上重复所述步骤S2两次得到的结构示意图。
图5显示为本发明的制备绝缘体上材料的方法进行离子注入,使离子注入到最远离所述衬底的所述第一材料层中。
图6显示为本发明的制备绝缘体上材料的方法提供一表面形成有绝缘层的基板,将所述绝缘层与位于顶层的所述第二材料层键合,形成键合片的示意图。
图7显示为本发明的制备绝缘体上材料的方法对所述键合片进行退火处理,使位于离子注入层上的所述硼掺杂第一材料层吸附离子形成微裂纹的示意图。
图8显示为本发明的制备绝缘体上材料的方法在退火吸附剥离后将所述基板掀开的示意图。
图9显示为本发明的制备绝缘体上材料的方法得到的绝缘体上材料的结构示意图。
图10显示为本发明的制备绝缘体上材料的方法选择性腐蚀掉剥离后残留的硼掺杂第一材料层的示意图。
元件标号说明
S1~S6 步骤
100 衬底
211,212,213 第一材料层
221,222,223 硼掺杂第一材料层
231,232,233 第二材料层
300 绝缘层
400 基板
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1至图10。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
本发明提供一种制备绝缘体上材料的方法,请参阅图1,显示为该方法的工艺流程图,包括以下步骤:
S1:提供一衬底;
S2:在所述衬底表面依次外延第一材料层、硼掺杂第一材料层及第二材料层;
S3:重复所述步骤S2至少一次;
S4:进行离子注入,使离子注入到最远离所述衬底的所述第一材料层中;
S5:提供一表面形成有绝缘层的基板,将所述绝缘层与位于顶层的所述第二材料层键合,形成键合片;
S6:对所述键合片进行退火处理,使位于离子注入层上的所述硼掺杂第一材料层吸附离子形成微裂纹,使所述键合片从所述硼掺杂第一材料层处剥离,得到自下而上依次包括基板、绝缘层及第二材料层的绝缘体上材料。
首先请参阅图2,执行步骤S1:提供一衬底100。
所述衬底100的作用是作为后续外延层生长的外延衬底。所述衬底100的材料可选自Si、Ge及SiGe中的至少一种。作为示例,所述衬底100采用Si衬底。
然后请参阅图3,执行步骤S2:在所述衬底100表面依次外延第一材料层211、硼掺杂第一材料层212及第二材料层213。
具体的,所述第一材料层211的作用主要是作为缓冲层,其厚度小于其生长临界厚度。
需要说明的是,一般来说,晶体薄膜只要生长在与其晶格不匹配(晶格常数或者热膨胀系数不同)的衬底上面时,如果保持外延薄膜平行于生长平面的晶格参数与衬底的相同,其中就一定存在应变;随着生长薄膜厚度的增大,外延薄膜中积累的应力也增大,当大到一定的程度就会产生晶面的滑移而产生位错(失配位错),同时释放出应力。因此,为了保存外延薄膜中的应变,不致因产生失配位错而得到释放,薄膜的厚度就应当小于某一个临界值,这个临界值就是临界厚度。所以,由于外延薄膜的组分不同,下面的衬底种类不同,薄膜的应变也都将相应有所不同,从而其临界厚度也就不一样。对于本步骤,所述临界厚度指的是所述第一材料层211在所述衬底100表面生长的临界厚度。而在后续步骤S3中重复本步骤的过程中,由于第一材料层是外延生长于第二材料层表面的,因此,相应的临界厚度为所述第一材料层在所述第二材料层表面生长的临界厚度。
作为示例,所述第一材料层211的材料可选自SiGe、SiGeSn、GaAs、AlAs、AlGaAs及InGaAs中的任意一种。
所述硼掺杂第一材料层212的作用主要是作为离子吸附层及剥离层,其厚度超薄,在1~10nm范围内。本实施例中,所述硼掺杂第一材料层212的厚度优选为2~3nm。所述硼掺杂第一材料层212中,硼掺杂浓度范围是1E18~1E20cm-3
所述第二材料层213作为待转移层,其厚度可以根据需要生长。所述第二材料层213可选自Si、Ge、SiGe、SiGeSn、GaAs、AlAs、AlGaAs及InGaAs中的任意一种。例如,若所述第二材料层213选用Si,则最终得到的绝缘层上材料为绝缘体上硅。
接着请参阅图4,执行步骤S3:重复所述步骤S2至少一次。
具体的,重复所述步骤S2的次数可以为一次,也可为为多次,例如2~500次,从而在所述衬底100上得到以“第一材料层/硼掺杂第一材料层/第二材料层”复合层为重复单位的多层外延层。其中,所述衬底上第一材料层和第二材料层的层数决定了重复使用的次数。作为示例,如图4所示,与所述步骤S2之后,再次重复所述步骤S2两次,在所述衬底100上得到三组“第一材料层/硼掺杂第一材料层/第二材料层”复合层单元,从而该衬底可重复使用三次。
再请参阅图5,执行步骤S4:进行离子注入,使离子注入到最远离所述衬底100的所述第一材料层231中。
离子注入就是在真空中、低温下,把杂质离子加速,获得很大动能的杂质离子即可以直接进入半导体中。离子注入的杂质浓度分布一般呈现为高斯分布,并且浓度最高处不是在表面,而是在表面以内的一定深度处。离子注入的优点是能精确控制杂质的总剂量、深度分布和面均匀性,而且是低温工艺(可防止原来杂质的再扩散等),同时可实现自对准技术(以减小电容效应)。
具体的,通过控制注入能量E,使离子峰值分布于所述最远离所述衬底100的所述第一材料层231中。本实施例中,离子注入剂量比常规Smart cut工艺离子注入剂量(通常6E16cm-3)小得多,甚至可以减小到常规离子注入剂量一半以下。较低的离子注入剂量极大的提高了晶体质量,并减少了注入成本。作为示例,所述离子注入的剂量范围是2E16~5E16cm-3
所述离子注入采用H离子注入或H/He离子共注,其中,采用H/He离子共注的注入剂量可以小于H离子注入剂量,但是由于He为稀有气体,较H更难激发,离子注入时间相应更长一些。
再请参阅图6,执行步骤S5:提供一表面形成有绝缘层300的基板400,将所述绝缘层300与位于顶层的所述第二材料层233键合,形成键合片。
具体的,所述键合优选采用真空键合。且在键合之前,可首先对所述绝缘层300表面及位于顶层的所述第二材料层233表面进行等离子体处理,然后将所述绝缘层300与位于顶层的所述第二材料层233键合。所述等离子体处理可采用N2或其它气体的等离子体。等离子体处理可以清洁待键合的两个片表面,使得键合效果更好。
最后请参阅图7至图9,执行步骤S6:对所述键合片进行退火处理,使位于离子注入层上的所述硼掺杂第一材料层231吸附离子形成微裂纹,使所述键合片从所述硼掺杂第一材料层231处剥离,得到自下而上依次包括基板400、绝缘层300及第二材料层233的绝缘体上材料。
具体的,对所述键合片进行退火处理的方法为:采用热退火方法,首先将所述键合片在第一温度下退火第一时间以加固键合,然后将所述键合片在第二温度下退火第二时间以实现剥离;所述第二温度高于第一温度。作为示例,所述第一温度为200~400℃,所述第二温度为400~800℃。退火气氛可包括N2、Ar或O2中的任意一种。
如图7所示,退火过程中,离子注入层(即所述第一材料层231)上的所述硼掺杂第一材料层231吸附离子,伴随退火过程的进行,吸附的离子在所述硼掺杂第一材料层231中形成若干气泡(孔洞),并进而形成微裂纹,使所述键合片从所述硼掺杂第一材料层231处剥离。如图8所示,掀起所述基板400,即可得到如图9所示的自下而上依次包括基板400、绝缘层300及第二材料层233的绝缘体上材料。
需要说明的是,由于所述硼掺杂吸附层的厚度很薄,剥离之后得到的绝缘体上材料表面非常光滑,无需抛光。另一方面,由于所述第一材料层与硼掺杂第一材料层为同种材料,其晶格差异较小,而所述第二材料层与所述硼掺杂第一材料层晶格差异较大,因此退火过程气泡更倾向于形成在所述第二材料层与所述硼掺杂第一材料层之间,使剥离面更靠近所述第二材料层,从而减少残留在所述绝缘体上材料表面的硼掺杂第一材料层。
上述过程仅为一次剥离,由于所述衬底100表面还形成有多个“第一材料层/硼掺杂第一材料层/第二材料层”复合层,因此,可以继续执行步骤S7:选择性腐蚀掉位于所述衬底100顶层因剥离残留的第一材料层231,得到如图10所示的结构。然后重复所述步骤S4~S6,可以再次得到绝缘体上材料。
所述硼掺杂第一材料层作为施主层,只需要选择性腐蚀即可达到较低的表面粗糙度,腐蚀速度快且无需抛光即可以重复利用,从而降低了生产材料成本,并简化了工艺流程,有利于提高生产效率。
具体的,根据所述衬底100上残留的“第一材料层/硼掺杂第一材料层/第二材料层”复合层的数目,可以重复所述步骤S7若干次,得到多个绝缘体上材料,直至暴露出所述衬底100。
至此,通过多次重复利用所述衬底100,制备得到了多个绝缘体上材料。
综上所述,本发明的制备绝缘体上材料的方法,具有以下有益效果:(1)衬底上外延有多层的掺杂超薄层结构作为施主层,只需要选择性腐蚀即可达到较低的表面粗糙度,腐蚀速度快且无需抛光即可以重复利用,从而降低了生产材料成本,并简化了工艺流程,有利于提高生产效率。(2)相对于传统的智能剥离方法,本发明可以使离子注入剂量减小到原来的一半甚至更小,极大的提高了晶体质量,并减少了注入成本;(3)由于硼掺杂吸附层的厚度很薄,剥离之后得到的绝缘体上材料表面非常光滑,无需抛光。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (15)

1.一种制备绝缘体上材料的方法,其特征在于,包括以下步骤:
S1:提供一衬底;
S2:在所述衬底表面依次外延第一材料层、硼掺杂第一材料层及第二材料层;
S3:重复所述步骤S2至少一次;
S4:进行离子注入,使离子注入到最远离所述衬底的所述第一材料层中;
S5:提供一表面形成有绝缘层的基板,将所述绝缘层与位于顶层的所述第二材料层键合,形成键合片;
S6:对所述键合片进行退火处理,使位于离子注入层上的所述硼掺杂第一材料层吸附离子形成微裂纹,使所述键合片从所述硼掺杂第一材料层处剥离,得到自下而上依次包括基板、绝缘层及第二材料层的绝缘体上材料。
2.根据权利要求1所述的制备绝缘体上材料的方法,其特征在于:所述第一材料层选自SiGe、SiGeSn、GaAs、AlAs、AlGaAs及InGaAs中的任意一种。
3.根据权利要求1所述的制备绝缘体上材料的方法,其特征在于:所述第一材料层的厚度小于其生长临界厚度。
4.根据权利要求1所述的制备绝缘体上材料的方法,其特征在于:所述第二材料层选自Si、Ge、SiGe、SiGeSn、GaAs、AlAs、AlGaAs及InGaAs中的任意一种。
5.根据权利要求1所述的制备绝缘体上材料的方法,其特征在于:所述硼掺杂第一材料层中,硼掺杂浓度范围是1E18~1E20cm-3
6.根据权利要求1所述的制备绝缘体上材料的方法,其特征在于:所述离子注入的剂量范围是2E16~5E16cm-3
7.根据权利要求1所述的制备绝缘体上材料的方法,其特征在于:所述离子注入采用H离子注入或H/He离子共注。
8.根据权利要求1所述的制备绝缘体上材料的方法,其特征在于:于所述步骤S5中,首先对所述绝缘层表面及位于顶层的所述第二材料层表面进行等离子体处理,然后将所述绝缘层与位于顶层的所述第二材料层键合。
9.根据权利要求8所述的制备绝缘体上材料的方法,其特征在于:所述键合采用真空键合。
10.根据权利要求1所述的制备绝缘体上材料的方法,其特征在于:于所述步骤S6中,对所述键合片进行退火处理的方法为:采用热退火方法,首先将所述键合片在第一温度下退火第一时间以加固键合,然后将所述键合片在第二温度下退火第二时间以实现剥离;所述第二温度高于第一温度。
11.根据权利要求10所述的制备绝缘体上材料的方法,其特征在于:所述第一温度为200~400℃,所述第二温度为400~800℃。
12.根据权利要求1所述的制备绝缘体上材料的方法,其特征在于:还包括步骤S7:选择性腐蚀掉位于所述衬底顶层因剥离残留的第一材料层,然后重复所述步骤S4~S6,再次得到绝缘体上材料。
13.根据权利要求12所述的制备绝缘体上材料的方法,其特征在于:于所述步骤S3中,重复所述步骤S2的次数为2~500次。
14.根据权利要求13所述的制备绝缘体上材料的方法,其特征在于:于所述步骤S6之后,重复所述步骤S7若干次,得到多个绝缘体上材料,直至暴露出所述衬底。
15.根据权利要求1所述的制备绝缘体上材料的方法,其特征在于:所述衬底的材料选自Si、Ge及SiGe中的至少一种。
CN201510532134.2A 2015-08-26 2015-08-26 一种绝缘体上材料的制备方法 Active CN105140171B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510532134.2A CN105140171B (zh) 2015-08-26 2015-08-26 一种绝缘体上材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510532134.2A CN105140171B (zh) 2015-08-26 2015-08-26 一种绝缘体上材料的制备方法

Publications (2)

Publication Number Publication Date
CN105140171A CN105140171A (zh) 2015-12-09
CN105140171B true CN105140171B (zh) 2018-06-29

Family

ID=54725470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510532134.2A Active CN105140171B (zh) 2015-08-26 2015-08-26 一种绝缘体上材料的制备方法

Country Status (1)

Country Link
CN (1) CN105140171B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449369B (zh) * 2016-11-24 2020-04-28 清华大学 绝缘体上半导体结构以及制备方法
CN106531682A (zh) * 2016-11-24 2017-03-22 清华大学 GeOI结构以及制备方法
CN106783616B (zh) * 2016-11-24 2020-09-08 清华大学 半导体结构以及制备方法
CN106409750B (zh) * 2016-11-24 2020-04-28 清华大学 绝缘体上半导体结构以及制备方法
CN106449368B (zh) * 2016-11-24 2020-05-12 清华大学 半导体结构以及制备方法
CN106373870B (zh) * 2016-11-24 2020-06-02 清华大学 半导体结构以及制备方法
CN106449663B (zh) * 2016-11-24 2020-04-28 清华大学 绝缘体上半导体结构以及制备方法
CN107910750B (zh) * 2017-06-28 2021-04-16 超晶科技(北京)有限公司 一种半导体激光器材料的制备方法
CN107910404B (zh) * 2017-06-28 2020-03-17 超晶科技(北京)有限公司 一种碲镉汞红外探测器件材料的制备方法
CN107910402B (zh) * 2017-06-28 2020-07-17 超晶科技(北京)有限公司 一种铟镓砷红外探测器材料制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1950937A (zh) * 2004-03-05 2007-04-18 S.O.I.Tec绝缘体上硅技术公司 用于改善剥离薄层的质量的方法
CN103633010A (zh) * 2012-08-28 2014-03-12 中国科学院上海微系统与信息技术研究所 利用掺杂超薄层吸附制备超薄绝缘体上材料的方法
CN104425341A (zh) * 2013-08-28 2015-03-18 中国科学院上海微系统与信息技术研究所 一种低剂量注入制备绝缘体上半导体材料的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1950937A (zh) * 2004-03-05 2007-04-18 S.O.I.Tec绝缘体上硅技术公司 用于改善剥离薄层的质量的方法
CN103633010A (zh) * 2012-08-28 2014-03-12 中国科学院上海微系统与信息技术研究所 利用掺杂超薄层吸附制备超薄绝缘体上材料的方法
CN104425341A (zh) * 2013-08-28 2015-03-18 中国科学院上海微系统与信息技术研究所 一种低剂量注入制备绝缘体上半导体材料的方法

Also Published As

Publication number Publication date
CN105140171A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
CN105140171B (zh) 一种绝缘体上材料的制备方法
JP4919316B2 (ja) 層の移転を介してシリコン・オン・グラスを製造する方法
CN100405534C (zh) 半导体结构的制造方法
CN103633010B (zh) 利用掺杂超薄层吸附制备超薄绝缘体上材料的方法
CN104517883B (zh) 一种利用离子注入技术制备绝缘体上半导体材料的方法
US20060073708A1 (en) Strained silicon on insulator from film transfer and relaxation by hydrogen implantation
JPH11307747A (ja) Soi基板およびその製造方法
CN103943547B (zh) 基于增强吸附来制备绝缘体上材料的方法
CN103972148B (zh) 一种超薄绝缘体上材料的制备方法
CN105957831A (zh) 一种用于制造支撑衬底上的单晶材料薄层结构的方法
JP2005109448A (ja) 層転位によりガラス上に緩和したシリコンゲルマニウムを作製する方法
CN101312125B (zh) 制备半导体衬底的方法
CN104752309B (zh) 剥离位置精确可控的绝缘体上材料的制备方法
CN102832160B (zh) 一种soi硅片的制备方法
CN102737963A (zh) 一种利用离子注入及定点吸附工艺制备半导体材料的方法
CN100539025C (zh) 制备半导体衬底的方法
KR101903239B1 (ko) Soi 기판 및 제조 방법
CN105428300B (zh) 吸附剥离制备绝缘体上材料的方法
CN103632930B (zh) 利用超薄层吸附制备绝缘体上超薄改性材料的方法
CN104425341B (zh) 一种低剂量注入制备绝缘体上半导体材料的方法
WO2012176030A1 (en) Method for manufacturing a semiconductor substrate, and a semiconductor substrate
CN105428301A (zh) 利用微波退火技术低温制备goi的方法
CN106531682A (zh) GeOI结构以及制备方法
CN104425342B (zh) 一种厚度可控的绝缘体上半导体材料的制备方法
JP2014138097A (ja) GeOIウェーハの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant