WO2014030610A1 - セメント系マトリックス及び繊維補強セメント系混合物 - Google Patents

セメント系マトリックス及び繊維補強セメント系混合物 Download PDF

Info

Publication number
WO2014030610A1
WO2014030610A1 PCT/JP2013/072085 JP2013072085W WO2014030610A1 WO 2014030610 A1 WO2014030610 A1 WO 2014030610A1 JP 2013072085 W JP2013072085 W JP 2013072085W WO 2014030610 A1 WO2014030610 A1 WO 2014030610A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
weight
strength
fine powder
parts
Prior art date
Application number
PCT/JP2013/072085
Other languages
English (en)
French (fr)
Inventor
田中 良弘
坂本 淳
理 橋本
Original Assignee
大成建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大成建設株式会社 filed Critical 大成建設株式会社
Priority to JP2014531617A priority Critical patent/JP5623679B2/ja
Priority to US14/404,234 priority patent/US9115026B2/en
Publication of WO2014030610A1 publication Critical patent/WO2014030610A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/021Ash cements, e.g. fly ash cements ; Cements based on incineration residues, e.g. alkali-activated slags from waste incineration ; Kiln dust cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a cement-based matrix and a fiber-reinforced cement-based mixture that do not contain coarse aggregates and have high strength.
  • concrete includes normal concrete applied to civil engineering and building structures, high-fluidity concrete, high-strength concrete, mass concrete, underwater concrete, etc. Material.
  • FRC fiber reinforced concrete
  • the aggregate particles in these concrete blends are composed of fine aggregate and coarse aggregate.
  • unit weight of powder the unit weight of cement + unit weight of admixture.
  • the most commonly used concrete is 400-700%, and even powder-based high-fluidity concrete that contains many powders Is about 250-300%.
  • the maximum particle size of coarse aggregate used for concrete is most often limited to 20 mm and 25 mm for general structures, and is limited to 40 mm and 80 mm for dam applications. Therefore, the adhesion mechanism between fibers and concrete in conventional fiber reinforced reinforced concrete is not expected for the mechanical adhesion force through the aggregate mixed in the concrete, but between concrete hydrate (cement paste) and fibers. This is expected for chemical adhesion and friction.
  • UFC has the property that tensile strength and toughness (stickiness) can be secured to some extent even after cracking by combining a dense and ultra-high-strength cement matrix with high tensile strength fibers. That is, it is considered that when a tensile stress acts on the material and a crack is generated in the cement matrix, a so-called cross-linking effect is exerted in which the fiber bears a tensile force instead of the cement matrix.
  • UFC does not require reinforcement by reinforcing bars. And the concrete structure constructed using UFC can make the material thinner and lighter.
  • UFC efficiently hydrates binders such as cement contained in cementitious matrices and pozzolanic materials such as silica fume, fly ash, and blast furnace slag fine powder by heat curing at 80 to 90 ° C. Because it can be completed in a short time, it is often heat-cured.
  • Patent Document 1 discloses that a mixture of low heat Portland cement and silica fume is mixed with an inorganic admixture consisting of at least one of blast furnace slag, fly ash, or fine limestone powder, and flows at a water cement ratio of about 12-30%. It is disclosed that high-strength concrete having excellent properties, workability and strength development can be obtained.
  • all the inorganic admixtures shown in the examples are only examples in which one kind of inorganic admixture is applied, and there is no description or suggestion about the action and effect of these combinations.
  • Patent Document 2 relates to cement for high fluidized shotcrete, and a mixture of Portland cement and silica fume and one or more auxiliary materials selected from fine limestone powder, silica powder, blast furnace slag or fly ash, called auxiliary powder.
  • auxiliary powder a mixture of Portland cement and silica fume and one or more auxiliary materials selected from fine limestone powder, silica powder, blast furnace slag or fly ash.
  • the addition of powder is disclosed.
  • the effect shown by patent document 2 is only about the fall of a rebound rate.
  • Patent Document 3 and Patent Document 4 have almost the same configuration except for the type of cement.
  • the difference between the two is that the type of cement of the cement composition is normal Portland cement in Patent Document 3 and high belite type Portland cement in Patent Document 4.
  • the use of a cement composition having defined weight parts of cement, silica fume, and limestone fine powder having a specific particle size distribution improves the fluidity improvement effect and the fluidity of certain concrete. It shows the effect of reducing the amount of high-performance water-reducing agent necessary to obtain.
  • Patent Documents 3 and 4 show the operational effects on the fluidity of mortar and concrete to which cement composition having cement, silica fume and limestone fine powder is applied, but the cement composition and blast furnace slag fine powder and There is no description or suggestion about the examples and the effects of the combination with fly ash. Moreover, there is no disclosure about the effects of strength development, shrinkage associated with cement hydration, and heat of hydration.
  • Patent Document 5 and Patent Document 6 are both related to ultra-high strength fiber reinforced concrete.
  • the fiber contained in the hydraulic composition of Patent Document 5 is an organic fiber or carbon fiber, and both are different in that the fiber of Patent Document 6 is a metal fiber, but the cement-based matrix is common.
  • the cementitious matrix disclosed in these documents is composed of cement whose specific surface area and weight are specified for each material, fine particles such as silica fume, and two types of inorganic particles A and B. Yes.
  • the inorganic particles A and the inorganic particles B are characterized by having different specific surface area ranges.
  • Patent Documents 5 and 6 focus only on the improvement of self-filling properties and mechanical properties (compressive strength, bending strength) before curing. For example, the initial strength development and the amount of self-shrinkage at the curing stage. There is no suggestion or description focusing on the reduction of heat of hydration. It also specifies the inclusion of inorganic powdered limestone fine powder, and suggests and describes the chemical action effect on this, and the action effect of the combination of limestone fine powder, blast furnace slag fine powder and fly ash. not.
  • Patent Documents 7, 8, 11 and the like are cited as documents disclosed in terms of improving the bending strength / compressive strength ratio of the ultra-high-strength cement-based matrix.
  • Patent Document 7 is characterized in that a shrinkage reducing agent is contained in a constituent material such as cement, pozzolanic fine powder, and fine aggregate, and the bending strength / compressive strength is reduced by the shrinkage reducing effect of the shrinkage reducing agent. It describes that the ratio is improved.
  • Patent Document 8 discloses that the ratio of bending strength / compressive strength is improved by containing an expansion material in addition to the shrinkage reducing agent.
  • patent document 11 the ratio of bending strength / compressive strength is obtained by a cement composition in which silica fume, coal gasified fly ash, and gypsum are combined in a specific range without containing a shrinkage reducing agent and an expansion material. It has been shown to improve.
  • the constituent materials common to Patent Document 8 and Patent Document 11 are coal gasification fly ash and gypsum. It is described that gypsum produces ettringite of acicular crystals by a hydration reaction, which fills voids in the hardened cement body to promote solidification and enables high strength.
  • the bending strength of a hardened cement body can be increased by blending silica fume and coal gasified fly ash at a specific ratio.
  • Patent Documents 9 and 10 disclose a composition of a cement matrix composed of cement, pozzolanic reaction particles, and sand particles. Furthermore, as a fiber which reinforces the bending strength of these cementitious matrices, the composite fiber etc. which combined the metal fiber, the organic fiber, or the organic fiber and the metal fiber are contained.
  • the pozzolanic reactive particles include silica fume, fly ash, blast furnace slag and the like, and it is disclosed that the pozzolanic reactive particles contribute to improvement of long-term mechanical properties by heat curing.
  • Patent Document 12 discloses a high toughness / high strength mortar composition capable of developing high toughness, high compressive strength, and high tensile strength at an early stage only by room temperature curing.
  • the UFC disclosed in Patent Document 12 is characterized by combining a special cement having C 3 S and C 3 A having a specific ratio, silica fume, and fine aggregate having a specific particle size distribution.
  • Silica fume is the only applicable material for pozzolanic reaction particles.
  • the conventional ultra-high strength fiber reinforced concrete has i) a large amount of unit cement, ii) a small water / (cement + silica fume) ratio (that is, a large amount of cement and silica fume used at a high material cost). iii) The amount of shrinkage during the curing period is large because the aggregate / powder ratio is small.
  • the total amount of shrinkage of ultra-high-strength fiber reinforced concrete material is as follows: i) Hydration shrinkage caused by self-shrinkage and hydration reaction that occur during primary curing at the initial curing stage, that is, from the start of setting to demolding the formwork.
  • conventional ultra-high strength fiber reinforced concrete is a high-performance water reducing agent that reduces the amount of admixtures such as expensive high-performance water reducing agents and efficiently improves fluidity with a small amount of high-performance water reducing agents.
  • this kind of material is often subjected to heat curing at 80 ° C.-90 ° C. for 36 hours to 48 hours as a secondary curing.
  • Supplying heat in the secondary curing is a necessary production process as described above.
  • a large amount of fuel is required, and the ratio of the fuel cost to the production cost is also a problem.
  • the conventional ultra-high strength fiber reinforced concrete contains a large amount of cement as a binder in order to make the compressive strength and tensile strength of the cement matrix extremely high. For this reason, there has been a problem that the amount of heat of hydration due to the cement hydration reaction increases.
  • the type of cement used is a low heat Portland cement.
  • the use of low heat Portland cement causes problems due to the slow development of initial strength as described above.
  • the following problems are caused by the large amount of heat generated by hydration when a member is manufactured by applying this type of ultra high strength fiber reinforced concrete.
  • (1) When the heat of hydration is large at the initial stage of curing, a temperature difference is generated spatially between the inside and outside of the member, and the risk of occurrence of temperature cracking due to temperature distortion due to the temperature difference increases.
  • the strength of the ultra-high-strength fiber reinforced concrete is not sufficiently expressed, so that the risk of occurrence of temperature cracking is increased.
  • the member When the member is composed of a thick-walled section and a thin-walled section, a temperature difference occurs between the members due to hydration heat generation, and the risk of temperature cracking increases.
  • a member with a thick-walled cross section may be required when planning a large structure. For example, since the precast block at the tension end has a thick cross section, the risk of occurrence of temperature cracks increases.
  • the present invention provides a cement matrix that retains fluidity at the time of freshness, has an early initial strength development, has a low hydration heat value, and has a small amount of shrinkage during curing, and contains a fiber therein.
  • the object is to provide a fiber-reinforced cementitious mixture having high tensile strength, high bending strength and high toughness performance.
  • the cementitious matrix of the present invention comprises at least 100 parts by weight of Portland cement, 5-30 parts by weight of silica fume, 5-25 parts by weight of limestone fine powder, blast furnace slag fine powder or fly ash. 30 to 80 parts by weight of one type, at least one admixture, water, and 70 to 150 parts by weight of aggregate particles having a maximum aggregate particle size of 1.2 to 3.5 mm .
  • the fiber-reinforced cementitious mixture of the present invention is characterized by containing the above-mentioned cementitious matrix and 0.7 to 8.0% by volume of the fiber of the total volume.
  • the cement-based matrix of the present invention configured as described above has a small amount of shrinkage during the primary curing and the secondary curing while maintaining a fresh property maintaining fluidity, and has a high initial strength after the primary curing. It has the characteristics that the hydration heat generated by the hydration reaction during the primary curing and the secondary curing is small, and the compression, tensile and bending strengths after the secondary curing are high.
  • the cementitious matrix of the present embodiment comprises cement, silica fume, limestone fine powder, blast furnace slag fine powder or fly ash, at least one admixture, water, and aggregate particles. It is an ultra-high-strength cementitious matrix.
  • the fiber-reinforced cement-based mixture of the present embodiment is an ultra-high-strength fiber-reinforced cement-based mixture in which reinforcing fibers are mixed into the ultra-high-strength cement matrix.
  • Portland cement ordinary Portland cement, early strength Portland cement, super early strength Portland cement, medium heat Portland cement, low heat Portland cement, sulfate resistant Portland cement, etc.
  • the present cementitious matrix responds to these requirements not only by the type of cement as will be described later, but also by blending at least one of silica fume, fine limestone powder and fine blast furnace slag powder or fly ash. . That is, silica fume, limestone fine powder, and at least one kind of blast furnace slag fine powder or fly ash are used as the admixture.
  • Silica fume preferably has a BET specific surface area (specific surface area measured by the BET method) of 15 m 2 / g or more. When the BET specific surface area of silica fume is less than 15 m 2 / g, the pozzolanic reactivity is lowered and the effect of improving the strength performance is reduced. Further, since the particle size of silica fume is increased, the micro filler effect and the bearing effect described later are reduced, and the effect on fluidity is reduced.
  • silica fume when the particle size of the silica fume is increased, the close-packing of the silica fume particles is not sufficiently performed in the gaps between the cement particles, so that the denseness of the cement matrix is lowered and the effect of improving the high durability is reduced.
  • silica fume having a BET specific surface area of 15 m 2 / g or more effects such as improvement in strength, improvement in fluidity, and improvement in high durability can be expected.
  • Silica fume is an ultrafine particle material obtained by collecting dust in exhaust gas generated when silicon metal, ferrosilicon, silicon alloy, zirconium, etc. are produced.
  • the product form of the silica fume to be used may be one in which the unit volume mass is increased by mechanical densification in order to increase transport efficiency. It can also be used in the form of a silica fume slurry in which silica fume is suspended in water.
  • the main component of the chemical composition of silica fume is amorphous silicon dioxide (S i O 2 ).
  • Silica fume with a high content of silicon dioxide (S i O 2 ) increases the pozzolanic reactivity and further produces a vitreous hydrate, which improves the strength performance of the cementitious matrix and becomes denser This contributes to improvement of high durability.
  • the pozzolanic reactivity is also increased, which contributes to the improvement of the durability because the strength performance of the cement-based matrix is improved and the closest packing of the matrix is improved.
  • the particle size of silica fume is very small, 1/40 – 1/100 that of cement particles, so it can be expected to have a micro filler effect to fill the voids in the hardened cementitious body, and the hardened body structure is greatly dense. Can be improved.
  • the highly dense structure prevents the intrusion of chloride ions, carbon dioxide, water, etc., and these influences on the rust of PC steel and steel reinforcements as well as the reinforcing fibers present in the cementitious matrix.
  • the effect of suppressing the intrusion of substances and chemical substances is high, and the structure is a highly durable structure.
  • the silica fume particle size is very fine and has a nearly spherical shape, when mixing the cementitious matrix, it will disperse in voids such as cement particles, blast furnace slag fine powder, fly ash, etc. Placed in. For this reason, the bearing effect between these particles can be expected. This bearing effect is effective in greatly improving the fluidity of the cementitious matrix.
  • Silica fume is preferably 5-30 parts by weight per 100 parts by weight of cement.
  • the performance improvement effects such as improvement in strength performance, improvement in high durability, improvement in fluidity, and the like that can be originally shown by the silica fume are greatly reduced.
  • the decrease in fluidity is remarkable, and if it is to be forced to obtain fluidity, it is necessary to add a high-performance AE water reducing agent, which is not rational.
  • the amount of shrinkage during curing tends to increase.
  • the weight part of a silica fume exceeds 30, since the viscosity of a cement-type matrix increases, predetermined fluidity
  • the silica fume content exceeds 30 parts by weight, self-shrinkage and plastic shrinkage increase and the risk of cracking increases.
  • self-shrinkage increases as the amount of unit silica fume increases, so that the amount of self-shrinkage increases as the unit cement amount increases.
  • the amount of silica fume is set as small as 5 to 30 parts by weight with respect to the parts by weight of cement, while reducing the unit cement amount. As a result of the reduction in the amount of unit silica fume, the amount of self-shrinkage can be reduced.
  • a more preferred silica fume content is 7-25 parts by weight per 100 parts by weight of cement.
  • This cementitious matrix uses fine limestone powder as an admixture.
  • Limestone fine powder is not a pozzolanic reaction particle (pozzolanic material) because it is an admixture but does not react with pozzolanic. That is, the present cementitious matrix reduces the unit cement amount by blending silica fume, limestone fine powder, and blast furnace slag fine powder or fly ash as an admixture in addition to cement. It covers losses such as a decrease in strength caused by a decrease in the amount of cement and a delay in the development of initial strength, and contributes to a reduction in shrinkage during curing and a reduction in hydration heat generation.
  • the present cementitious matrix by blending limestone fine powder that does not react with pozzolanic and pozzolanic materials such as blast furnace slag fine powder and fly ash, than the shrinkage reduction effect obtained by blending only pozzolanic material, Furthermore, the outstanding shrinkage reduction effect can be acquired. That is, i) By replacing the blending amount of cement with fine limestone powder, the amount of unit cement can be reduced and overall shrinkage can be reduced. Ii) The blending amount of pozzolanic materials (blast furnace slag fine powder and fly ash) can be reduced to limestone fine powder. This is because by substituting for limestone powder, which is smaller than the shrinkage caused by the pozzolanic reaction, the overall shrinkage can be reduced.
  • this cementitious matrix does not change the cement type to early-strength Portland cement, but by adding 5-25 parts by weight of limestone fine powder to the cement part, Early initial strength development was made possible without increasing the sum of heat generation.
  • the reason why such an effect is obtained is that i) the limestone fine powder promotes the initial hydration of alite (C 3 S) in the cement to improve the initial strength of the cementitious matrix, and ii) the limestone fine powder It is thought that the powder reacts with calcium aluminate (C 3 A) in the cement to produce hydrates such as monocarbo aluminate (C 3 ACaCO 3 ⁇ 11H 2 O) and contributes to the development of initial strength. It is done.
  • the pozzolanic blast furnace slag fine powder and fly ash can also promote the initial hydration of alite (C 3 S) in the cement and improve the initial strength of the cement matrix, These pozzolanic materials are blended in the matrix.
  • the initial strength development effect of limestone fine powder is larger than the initial strength development effect of blast furnace slag fine powder and fly ash, the initial strength can be efficiently expressed by blending limestone fine powder. Can do.
  • limestone fine powder is effective for the development of initial strength, but it cannot be expected for long-term strength. Therefore, by blending fly ash that is a pozzolanic material, a pozzolanic reaction that develops strength over the long term can be expected, and an increase in the long-term strength due to the pozzolanic reaction during secondary curing can be realized. Alternatively, by blending blast furnace slag fine powder, long-term strength enhancement after secondary curing can be realized in anticipation of the potential hydraulic hydration reaction.
  • the aluminate phase (C 3 A) with the highest calorific value among the mineral phases of cement is lower than the effect of fine limestone powder. Since initial hydration can be suppressed, a reduction in hydration heat value can be realized without changing the type of cement. Furthermore, initial strength can be expressed early.
  • the present cementitious matrix reduces the amount of unit cement as described above, it is possible to obtain the effect of reducing the amount of hydration reaction by the cement and reducing the hydration heat value.
  • the specific surface area of branes is used to prevent the strength properties such as compressive strength and tensile strength from deteriorating even if the unit cement amount decreases. 5-25 parts by weight of limestone fine powder having a specific surface area (measured with an apparatus) of 5,000-18,000 cm 2 / g is mixed with 100 parts by weight of cement.
  • the further improvement of the effect can be aimed at rather than the effect of the heat of hydration reduction obtained by mixing
  • aluminate phase (C 3 A) 8.41 (cal / mol deg)
  • ferrite phase (C 3 AF) 6.31 (cal / mol deg)
  • Alite (C 3 S) 1.8 (cal / mol deg)
  • belite (C 2 S) 1.5 (cal / mol deg).
  • the hydration of the aluminate phase (C 3 A), which has the highest calorific value among the mineral phases of limestone, is the initial hydration of the cement matrix, compared to pozzolanic materials (blast furnace slag fine powder and fly ash). Since it can suppress efficiently, reduction of the hydration calorific value can be realized effectively. For this reason, the hydration calorific value can be reduced without changing the type of cement, for example, changing to low heat Portland cement. In addition, the initial strength can be expressed at an early stage with the initial hydration calorific value reduced.
  • the limestone fine powder can be effective in improving the fluidity of the cement-based matrix and the fiber-reinforced cement-based mixture produced using the cement-based matrix.
  • the water-reducing effect by a high-performance water reducing agent is a dispersion action due to the “steric hindrance effect” of the polymer of the water reducing agent adsorbed on the powder.
  • a high-performance water reducing agent for example, polycarboxylic acid type
  • limestone fine powder possesses superior dispersion performance than cement and blast furnace slag fine powder, and by using limestone fine powder, a large dispersion effect can be achieved with less high-performance water reducing agent. Can be obtained.
  • the particle size of the limestone fine powder is smaller than that of the cement particle, it has a micro filler effect to fill the cement gap as well as a pozzolanic material such as silica fume or fly ash or blast furnace slag fine powder, and as a close-packed material Is optimal.
  • the granular shape of the limestone fine powder is close to a sphere, and due to the bearing effect, the fluidity can be improved more efficiently than fly ash or blast furnace slag fine powder under less water and a high-performance water reducing agent.
  • the Blaine specific surface area of the limestone fine powder is less than 5,000 cm 2 / g, the activity as the limestone fine powder is reduced, so it is possible to realize early strength, reduction of hydration heat generation, etc. The effect cannot be expected. Furthermore, since the micro filler effect and the bearing effect that fill the cement gap cannot be expected sufficiently, improvement in fluidity cannot be expected.
  • the Blaine specific surface area of the limestone fine powder is larger than 18,000 cm 2 / g, the activity as the limestone fine powder is improved. Processing equipment for classification and classification and pulverization for producing the powder is required, making it difficult to obtain materials.
  • a more preferable Blaine specific surface area of the fine limestone powder is 7,000-15,000 cm 2 / g.
  • a more preferred weight part of fine limestone powder is 7-22 parts by weight with respect to 100 parts by weight of cement.
  • normal fly ash there are classified fly ash and coal gasification fly ash, but any fly ash can be applied.
  • the blast furnace slag fine powder preferably has a brane specific surface area of 3,000 cm 2 / g or more.
  • the specific surface area of fly ash is preferably 2,500 cm 2 / g or more.
  • blast furnace slag fine powder or fly ash As an admixture, the role of applying blast furnace slag fine powder or fly ash as an admixture is as follows: i) By substituting blast furnace slag fine powder and / or fly ash with cement, the amount of unit cement is reduced and hydrated.
  • the Blaine specific surface area of the blast furnace slag fine powder is less than 3,000 cm 2 / g, the degree of fineness is lowered, so the latent hydraulic reaction rate of the blast furnace slag fine powder is lowered. Therefore, i) the effect of promoting the initial hydration of alite (C 3 S) in cement is reduced and the effect of improving the initial strength is reduced, ii) the effect of developing medium-term strength due to latent hydraulic properties is reduced, especially Effects such as reduced strength development under heat curing, iii) reduced effect of suppressing initial hydration of aluminate phase (C 3 A) in cement, etc.
  • blast furnace slag fine powder has a Blaine specific surface area of 10,000 cm 2 / g or more, the fineness is remarkably improved, so the heat of hydration, high fluidization, high strength, resistance to sulfate and seawater Contributes effectively to increase.
  • a processing facility for classification and classification and pulverization for producing blast furnace slag fine powder having a high brane specific surface area is required, making it difficult to obtain materials.
  • a more preferable blast furnace slag fine powder has a Blaine specific surface area of 4,000-9,000 cm 2 / g.
  • the brane specific surface area of the pozzolanic material excluding silica fume is larger than 20,000 cm 2 / g, the pozzolanic reactivity is significantly increased, and long-term strength is increased, heat of hydration is reduced, and the matrix is densified. Expected to improve durability. However, a processing step by classification or pulverization classification is required, and material acquisition is not economical. More preferred fly ash has a brain specific surface area of 3,500-18,000 cm 2 / g.
  • At least one kind of admixture of blast furnace slag fine powder and fly ash in the cement matrix is preferably 30-80 parts by weight with respect to 100 parts by weight of cement.
  • the blast furnace slag fine powder and / or fly ash is less than 30 parts by weight, the medium and long strength due to the latent hydraulic and / or pozzolanic reaction possessed by the blast furnace slag fine powder and / or fly ash, It cannot fully fulfill the role of reduction, high fluidization, and improvement of durability.
  • fluidity even if silica fume is mixed in an appropriate amount, fluidity cannot be obtained even if predetermined water is contained due to the influence of the uneven distribution of the particle size of the entire powder.
  • a more preferable blend of fine blast furnace slag powder and / or fly ash is 40 to 75 parts by weight with respect to 100 parts by weight of cement.
  • the admixture blended in this cementitious matrix is an additive used for many purposes such as improvement of fluidity and strength development, setting control, and improvement of durability, and at least one kind is used.
  • This admixture includes high-performance water reducing agents, high-performance AE water reducing agents, fluidizing agents, antifoaming agents, setting accelerators, setting retarders, thickeners, shrinkage reducing agents, quick setting agents, foaming agents, and rust prevention
  • An agent or the like can be used alone, or can be used in a plurality of combinations.
  • High-performance water reducing agents include polycarboxylate-based high-performance water reducing agents, polyalkylallyl sulfonate-based high-performance water reducing agents, aromatic amino sulfonate-based high-performance water reducing agents, and melamine formalin resin sulfonate-based high-performance water reducing agents.
  • water reducing agents There are water reducing agents.
  • High performance AE water reducing agents include alkyl allyl sulfonate high performance AE water reducing agents, aromatic amino sulfonate high performance AE water reducing agents, melamine formalin sulfonate high performance AE water reducing agents, polycarboxylates.
  • System high performance AE water reducing agent Although these high-performance water reducing agents are not limited, good fluidity can be obtained if the amount used is 3-5 parts by weight with respect to 100 parts by weight of cement. Further, an antifoaming agent may be used in combination with a high-performance water reducing agent in order to defoam the air entrained during kneading.
  • Aggregate particles blended in this cementitious matrix include river sand, sea sand, quartz sand, crushed sand, limestone crushed sand, recycled aggregate sand, calcined bauxite crushed sand, iron ore crushed sand, quartz Sand obtained by pulverizing peridotite, sand obtained by pulverizing blast furnace slag, quartz fine powder, fine meteorite powder, fine rock powder, etc. can be used alone or in combination.
  • the maximum aggregate particle size is less than 1.2 mm, a skeleton made of aggregate for reducing the shrinkage of the cementitious matrix is not sufficiently formed, and the effect of suppressing the shrinkage is reduced.
  • the maximum aggregate particle size is larger than 3.5 mm, the boundary area between the surface of the aggregate particles and the cement paste increases. It becomes large in the ratio to the whole. As a result, the bending strength and tensile strength of the cementitious matrix are significantly reduced.
  • a more preferable maximum aggregate particle size D 100 is 1.5 to 2.5 mm.
  • the average particle diameter D 50 of the aggregate particles is preferably 0.17-0.80 mm.
  • the average particle diameter D 50 of the aggregate particles, in the particle size accumulation curve of the aggregate particles, the weight ratio of the passage weight percentage (or passage rate) is the particle diameter corresponding to 50% (diameter), so-called D Equivalent to 50 .
  • the average particle size of the aggregate particles is less than 0.17 mm, the skeleton of the aggregate particles that functions to suppress the shrinkage of the cementitious matrix is not formed, and thus the shrinkage increases.
  • the aggregate particles have a role of improving the kneading efficiency, but when the average particle size of the aggregate particles is less than 0.17 mm, the kneading efficiency is descend.
  • the average particle size is larger than 0.80 mm, the skeleton of the aggregate particles that suppress the shrinkage of the cementitious matrix is sufficiently formed, but the boundary area between the surface of the aggregate particles and the cement paste increases. Probability increases, and the rate of decrease in peel strength or adhesion strength at this boundary increases among the proportion of the entire cementitious matrix. As a result, the bending strength and tensile strength of the cementitious matrix are significantly reduced.
  • the average particle diameter D 50 of the aggregate particles is more preferably 0.20-0.40 mm.
  • the composition of aggregate particles having a maximum aggregate particle size D 100 of 1.2 to 3.5 mm is preferably 70 to 150 parts by weight of aggregate particles with respect to 100 parts by weight of cement. Compared with conventional ultra-high-strength fiber reinforced concrete, this cementitious matrix has 30 to 50 parts by weight of aggregate. A large amount of aggregate particles composed of a maximum aggregate particle size as compared with the maximum aggregate particle size as shown in Patent Document 5-11 are mixed in the cement matrix, resulting in a cement system. A skeleton with solid aggregate particles is formed in the matrix.
  • the skeleton due to such aggregate particles acts as a skeleton of resistance to contraction in a macro-spatial rather than local manner against shrinkage such as self-shrinkage, hydration shrinkage, or drying shrinkage, as a result, cracking due to shrinkage occurs.
  • the amount of contraction can be reduced without generating any.
  • the amount of powder is relatively large, so the skeleton of the aggregate particles is decreased, the amount of contraction is increased, and the viscosity due to excessive powder is increased. Problems such as an increase in the viscosity, the necessity of an excessive high-performance water reducing agent to reduce the viscosity, an increase in heat of hydration of cement, and a decrease in shear transfer force between cementitious matrices due to a decrease in the amount of aggregate particles become.
  • the skeletal particles are larger than 150 parts by weight, the amount of powder is relatively small, so the effect of reducing shrinkage is sufficient, but the compressive strength, bending strength, and tensile strength due to the decrease in binders. Degradation occurs.
  • a more preferred composition of aggregate particles in the cementitious matrix is 80-135 parts by weight.
  • the cementitious matrix of the present embodiment configured as described above is in a state where the fresh property maintaining fluidity is maintained, the amount of shrinkage during curing is small, the initial strength development during primary curing is fast, and hydration is achieved. It has the feature that the hydration exotherm by reaction is small. Further, since the amount of contraction can be reduced even during the secondary curing, the expected amount of tension loss of the pretension member can be reduced, and the cost of the tension material and the labor for arranging the tension material can be saved.
  • the present cementitious matrix can reduce the amount of unit cement, and can reduce at least about 100-250 kg / m 3 in unit cement amount as compared with conventional ultrahigh strength fiber reinforced concrete.
  • the blending weight of the silica fume is an amount reduced as compared with the conventional material.
  • the cement matrix that constitutes the conventional ultra-high-strength fiber reinforced concrete contains a large amount of cement and also uses a large amount of expensive raw materials such as silica fume, resulting in an ultra-high-strength compressive strength and In addition to obtaining strength such as tensile altitude, we have realized highly dense and durable materials.
  • silica fume has the highest material unit price, which is one reason why the conventional ultra high strength fiber reinforced concrete is a very expensive material.
  • this cementitious matrix is used to blend only a specified part by weight of limestone fine powder having a specified Blaine specific surface area other than silica fume and blast furnace slag fine powder and / or fly ash. It is possible to reduce the amount of shrinkage, to develop early initial strength, and to reduce the heat of hydration. For this reason, the cement matrix can reduce the material cost.
  • the ultra-high-strength fiber-reinforced cement-based mixture (ultra-high-strength fiber-reinforced concrete) of this embodiment is a composite in which the above-mentioned cement matrix is mixed with metal fibers, organic fibers, or organic fibers and metal fibers. It is obtained by mixing any of (hybrid) fibers. That is, the fiber reinforced cementitious mixture of the present embodiment does not depend on the material of the mixed fibers.
  • metal fibers that can be mixed include steel fibers, high-tensile steel fibers, stainless fibers, titanium fibers, and aluminum fibers.
  • Organic fibers include polypropylene (PP) fiber, polyvinyl alcohol (PVA) fiber, aramid fiber, polyethylene fiber, ultra-high strength polyethylene fiber, polyethylene terephthalate (PET) fiber, rayon fiber, nylon fiber, and polyvinyl chloride. Fiber, polyester fiber, acrylic fiber, alkali-resistant glass fiber, etc. can be used.
  • composite fibers in which organic fibers are mixed into metal fibers can be used.
  • the merit of using composite fiber is that the reinforcement effect of metal fiber can be expected greatly in the region where the tensile strain is small (for example, the crack width is small immediately after the crack is generated) due to the tensile reinforcement by the metal fiber with high rigidity and tensile strength. .
  • the tensile reinforcement effect by the organic fiber can be greatly expected.
  • the total amount of fibers to be mixed is preferably adjusted so that the mixing rate (volume mixing rate) with respect to the total volume of the ultrahigh-strength fiber reinforced cementitious mixture is 0.7 to 8.0% by volume. That is, if there is a volume mixing rate of 0.7% by volume of the fiber, it is an amount that can be expected although the cross-linking effect of the fiber is small as an ultra high strength fiber reinforced cementitious mixture.
  • the volume mixing rate of 8.0% by volume is an amount that can sufficiently expect the fiber cross-linking effect, but if a larger amount of fiber is mixed into the cement matrix, the freshness of the kneaded texture cannot be maintained and self-filling May be difficult to apply as a structural material.
  • the total amount of fibers to be mixed can more preferably be 1.0 to 5.5% by volume.
  • Example 1 results of tests performed to confirm the performance of the cementitious matrix described in the above embodiment will be described. Note that the description of the same or equivalent parts as those described in the above embodiment will be described using the same terms. [Materials used] Tables 1 and 2 show the specifications of the materials used in the test of Example 1.
  • Flow value A static flow measured in a state according to “JIS R 5201 (Cement physical test method)”, in which 90 seconds have passed since the start of the flow test without performing 15 drop motions. Value (mm).
  • Flow time Time required for the flow value to reach 200 mm.
  • Compressive strength “JSCE-F 506 (How to make a cylindrical specimen for compressive strength test of mortar or cement paste)” and “JSCE-G 505 (JSTCE mortar or cement using cylindrical specimen) Paste compressive strength test method) ”, put the kneaded material into a mold with an inner space of ⁇ 5 ⁇ 10cm, cure it at 20 ° C for 48 hours as the primary curing, and then cure it Compressive strength measured after testing the body (compressive strength after primary curing), and then heated to 85 ° C as a secondary curing at a rate of + 15 ° C / hour and held at 85 ° C for 40 hours The compressive strength (compressed strength after secondary curing) was measured by testing the cured product after the temperature was lowered to 20 ° C.
  • Bending strength measured by heating at + 15 ° C / hour, holding at 85 ° C for 40 hours, and cooling down to 20 ° C at -5 ° C / hour, then testing the cured body (Bending strength after secondary curing). In the test, three specimens were prepared, and the average value of the bending test was defined as the bending strength.
  • Split tensile strength In accordance with “JIS A 1113 (Concrete split tensile strength test method)”, the kneaded material is placed in a mold with an inner space of ⁇ 10 ⁇ 20 cm. Subsequently, as a secondary curing, the temperature was raised to 85 ° C. at a rate of + 15 ° C./hour, held at 85 ° C.
  • Strain and temperature measurement data are recorded with a data logger immediately after placement, and the strain (length change) after the setting of the material is determined.
  • the measurement data of the embedded strain gauge also includes length changes due to temperature changes of materials (heat due to hydration reaction and heat due to curing), so the value of the length change due to heat is corrected from the temperature record. Calculated as the value of length change at 20 ° C.
  • Adiabatic temperature rise test A test to determine the amount of adiabatic temperature rise. A thermocouple sensor was attached to the center of the mold and the outer surface of the mold with an inner space of 20 x 20 x 20 cm.
  • the kneaded material is placed in The outside of the mold is covered with a heat insulating material made of polystyrene foam so that the heat insulating state can be maintained.
  • the specimen covered with heat insulating material is measured for temperature change immediately after placement in a constant temperature room at 20 ° C. In this thermal insulation test method, it is not possible to maintain a perfect thermal insulation state, so an ideal thermal insulation temperature rise is assumed from the temperature at the center of the specimen and the temperature time series outside the mold, assuming a heat dissipation coefficient of 0.015. Find the amount.
  • Table 3 shows the blending conditions (numerical values indicate parts by weight) of the cement-based matrix of this embodiment (Example) and 20 cases of Comparative Examples.
  • the purpose of setting the blending conditions as shown in Table 3 is: i) Cement types of moderately heated Portland cement (Experiment number 1-1 to 1-10) and ordinary Portland cement (Experiment number 2-1 to 2-10) Clarify the effect of the difference in test results on the test results, ii) Clarify the effect on the test results when changing the weight part of the limestone fine powder to 100 parts by weight of cement between 0-30 parts by weight Iii) Clarify that the invention effect of the present cementitious matrix is maintained even when one or both of blast furnace slag fine powder and fly ash are combined, iv) Blaine specific surface area of blast furnace slag fine powder It is to clarify that the inventive effect of the present cementitious matrix is maintained even when the value changes within the range of the specified value.
  • Table 4 shows blending conditions (numerical values indicate parts by weight) of the present cementitious matrix (Example) and 34 cases of Comparative Examples set from different viewpoints.
  • the purpose of setting the blending conditions as shown in Table 4 is: i) fixing cement type to moderately heated Portland cement, silica fume, limestone fine powder, blast furnace slag fine powder and / or fly ash to 100 parts by weight of cement; Clarify the impact assessment when the weight part of aggregate particles is set outside the upper limit specified value or lower limit specified value range, ii) Even if the Blaine specific surface area of the limestone fine powder changes within the specified value range, Clarify that the inventive effect of this cementitious matrix is maintained. Iii) Even if the Blaine specific surface area of the blast furnace slag fine powder changes within the specified range, the inventive effect of this cementitious matrix is maintained. It is to clarify that.
  • test results are shown in Table 5 and Table 6, respectively, for comparison with the blending conditions shown in Table 3 and Table 4.
  • the values of compressive strength, bending strength, and split tensile strength are all average strengths obtained from three specimens.
  • the conditions of primary curing and secondary curing are as described in the above [Test Items and Test Methods].
  • the shrinkage strain is divided into strain generated during the primary curing and strain generated during the secondary curing, and the total strain of these is used as the final strain.
  • the reason can be considered as follows with respect to 100 parts by weight of cement. i) When the weight part of silica fume is larger than the upper limit value (Experiment No. 3-24), the balance between fine blast furnace slag powder and fly ash (pozzolana material) is lost in the powder blending, and the particle size distribution of the powder It is considered that the fresh properties deteriorated due to the bias. On the other hand, if it is smaller than the lower limit specified value of silica fume (Experiment Nos. 3-27, 3-28), too little silica fume is dispersed in the voids between the cement particles and the pozzolanic material particles, and the bearing effect may be exhibited. Can not.
  • the weight part of aggregate particles is 67-155 with respect to 100 parts by weight of cement.
  • the final shrinkage strains were 900 ⁇ m and 1259 ⁇ m. Further, in Experiment No. 3-7 (134 parts by weight of aggregate particles) and Experiment No. 3-3 (118 parts by weight of aggregate particles) of the examples, the final shrinkage strains were 895 ⁇ m and 1120 ⁇ m. Further, in Experiment No. 1-1 (128 parts by weight of aggregate particles) and Experiment No. 3-5 (118 parts by weight of aggregate particles) of the examples, the final shrinkage strains were 1041 ⁇ and 1269 ⁇ .
  • 1-8 and 2-8, 1-1 and 2-1, 1-3 and 2-3, 1-10 and 2-10 pairs are blended with specific surface area of Blaine blast furnace slag powder They are respectively set to 8,470cm 2 / g and 6,130cm 2 / g, almost identical to the blending formulation parts by weight of the other powder materials.
  • the combination of the experiment numbers 3-13 and 3-14, 3-32 and 3-31, 3-29 and 3-30, the branes specific surface area of the blast furnace slag fine powder is 8,470 cm 2 / g, respectively.
  • the formulation is 4,590 cm 2 / g.
  • FIG. 1 shows a case where 20 parts by weight of limestone fine powder (LS) having a specific surface area of 5,110 cm 2 / g is blended with 100 parts by weight of cement (C) (Experiment No. 3-12: solid line).
  • LS limestone fine powder
  • C cement
  • FIG. 2 shows the result of calculating the amount of heat insulation temperature from the center temperature obtained by a simple heat insulation temperature increase test and the temperature change outside the mold, assuming that the heat dissipation coefficient is 0.015.
  • blending which added the limestone fine powder has a quick timing of temperature rise compared with the case where it does not. However, the temperature rise is reversed halfway, and the heat insulation temperature rise is higher when the limestone fine powder is not added. The reason why the temperature rises earlier is considered to be because the limestone fine powder promoted the initial hydration of alite (C 3 S) in the cement.
  • Example 2 the results of tests performed to confirm the performance of the ultrahigh strength fiber reinforced concrete described in the above embodiment will be described. Note that the description of the same or equivalent parts as those described in the above embodiment or Example 1 will be described using the same terms.
  • [Use materials and blending conditions] Using the powder material shown in Table 1 of Example 1 and the aggregate particles shown in Table 2, a cement-based matrix having the blending conditions shown in Table 7 below is prepared. Then, the fiber shown in Table 8 was mixed into the cement matrix of each blending condition to prepare a specimen of an ultra-high strength fiber reinforced cement mixture, and a comparative test using this was performed. The effectiveness of the ultra-high-strength fiber reinforced concrete described in the form of is confirmed.
  • Bending strength and bending toughness coefficient A square in which the inner space is ⁇ 10 ⁇ 10 ⁇ 40cm in accordance with “JSCE-G 552-2010 (Bending strength and bending toughness test method for steel fiber reinforced concrete)” A kneaded material of fiber-reinforced cement-based mixed material is placed in a cylindrical formwork, and after the above-mentioned primary curing, the temperature is raised to 90 ° C as a secondary curing at a rate of + 10 ° C / hour. After holding at 90 ° C for 48 hours and performing a temperature decrease to 20 ° C at a temperature decrease rate of -5 ° C / hour, the cured body was tested to determine the bending strength (bending strength after secondary curing). is there.
  • the flexural toughness coefficient was obtained by measuring “load-deflection of the center point” and obtaining the flexural toughness coefficient according to the above test method. [Test results] Table 9 shows the test results obtained by mixing the steel fibers shown in Table 8 into the cement matrix shown in Table 7.
  • the estimated values of tensile strength shown in Table 9 are estimated from the bending strength ( ⁇ 10 ⁇ 10 ⁇ 40 cm square columnar specimen).
  • the tensile strength can be estimated by a direct tensile test or by inverse analysis from the load-crack width of a bending test using a notch specimen. It is known that there is a strong positive correlation between the bending strength and the tensile strength, and this time, the bending strength and the tensile strength were obtained from the correlation equation obtained in advance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

 フレッシュ時の流動性を保持しながら、初期強度発現が早いうえに水和発熱量が少なく、養生中の収縮量が少ないセメント系マトリックスを提供する。 ポルトランドセメント100重量部と、シリカフューム5-30重量部と、石灰石微粉末5-25重量部と、高炉スラグ微粉末又はフライアッシュの少なくとも一種類を30-80重量部と、少なくとも一種類の混和剤と、水と、最大骨材粒径が1.2-3.5mmである骨材粒子70-150重量部とを含有することを特徴とするセメント系マトリックスである。

Description

セメント系マトリックス及び繊維補強セメント系混合物
 本発明は、粗骨材を含まない強度が高いセメント系マトリックス及び繊維補強セメント系混合物に関するものである。
 コンクリートには、その使用目的に応じて土木・建築構造物に適用する通常のコンクリートから高流動コンクリート、高強度コンクリート、マスコンクリート、水中コンクリートなどがあるが、基本的には鉄筋による補強を前提とした材料である。しかし、近年、これらのコンクリートに、鉄筋補強の補助的役割、部材の角欠け防止、乾燥収縮によるひび割れ防止などの目的で短繊維を混入した、いわゆる繊維補強鉄筋コンクリート(Fiber Reinforced Concrete、以下、「FRC」と略す場合もある。)が適用される傾向にある。
 これらのコンクリートの配合における骨材粒子は、細骨材と粗骨材とから構成されている。一般的なコンクリートでは、コンクリート単位体積中に含まれる骨材の単位重量が、粉体の単位重量(=セメントの単位重量+混和材の単位重量)に比べて大きい。例えば、骨材単位重量/粉体単位重量の比率で示すと、最も一般的に使用されるコンクリートでは、400-700%であり、粉体を多く含むとされる粉体系の高流動コンクリートでさえも250-300%程度である。
 また、コンクリートに使用する粗骨材の最大粒径は、一般の構造物への適用では、20mmや25mmに限定される場合が最も多く、ダムなどの適用では40mmや80mmに限定される。従って、従来の繊維補強鉄筋コンクリートにおける繊維とコンクリートとの付着機構は、コンクリートに配合された骨材を介した機械的付着力に期待するものではなく、コンクリート水和物(セメントペースト)と繊維との化学的付着力や摩擦力に期待するものである。
 これに対して、最大骨材粒径が1-2mm程度の骨材粒子にセメントとポゾラン反応粒子(ポゾラン材)とを混合したセメント系マトリックスに、金属繊維や有機繊維などの補強繊維を混入した超高強度繊維補強コンクリート(Ultra High Strength Fiber Reinforced Concrete、以下、「UFC」と略す場合もある。)が知られている。
 UFCは、緻密で超高強度なセメント系マトリックスに引張強度の高い繊維を組み合わせることにより、ひび割れ発生後においても引張強度とじん性(ねばり強さ)をある程度確保できるという特性を有している。すなわち、材料に引張応力が作用してセメント系マトリックスにひび割れが発生した際に、セメント系マトリックスに代わって繊維が引張力を負担する、いわゆる架橋効果が発揮されるためと考えられている。
 このためUFCは、通常の鉄筋コンクリートとは異なり、鉄筋による補強が不要となる。そして、UFCを使って構築されるコンクリート構造物は、部材を薄肉化、軽量化することができる。
 一方、UFCは、80℃から90℃の高温熱養生することにより、セメント系マトリックスに含まれるセメントや、シリカフュームやフライアッシュや高炉スラグ微粉末などのポゾラン材などの結合材の水和反応を効率的、かつ短時間に終了させることができるため、多くの場合に熱養生される。
 そして、セメント系マトリックスが熱養生される際の水和反応過程において常温養生される場合に比べて更なる緻密な水和組織が短時間に形成されるので、耐久性を大幅に向上させることができる。また熱養生後には乾燥収縮がほぼゼロになり、クリープ係数が大幅に減少するなどの特徴を有する(特許文献5-11など参照)。
 特許文献1は、低熱ポルトランドセメントとシリカフュームのセメント組成物に、高炉スラグ、フライアッシュ又は石灰石微粉末の少なくとも一種類からなる無機混和材を混合することにより、水セメント比12-30%程度で流動性、施工性及び強度発現性に優れた高強度コンクリートを得ることができることが開示されている。しかし、実施例で示された無機混和材は、すべて一種類の無機混和材を適用した事例のみで、これらの組合せの作用効果については記載も示唆もされていない。
 一方、特許文献2は、高流動吹付けコンクリート用セメントに関するもので、ポルトランドセメントとシリカフュームの混合物に、補助粉末と称する石灰石微粉末、珪石粉末、高炉スラグ又はフライアッシュから選ばれる1種類以上の補助粉末を添加することが開示されている。この文献にも、石灰石微粉末と他の補助粉末との組合せの実施例や作用効果についての記載や示唆はない。また、特許文献2に示された作用効果は、リバウンド率の低下についてのみである。
 特許文献3と特許文献4に開示されているセメント組成物は、セメントの種類を除けばほぼ同じ構成である。この2つの相違点は、セメント組成物のセメントの種類が、特許文献3では普通ポルトランドセメントであるのに対して、特許文献4では高ビーライト系ポルトランドセメントである点にある。これらの文献では、セメント、シリカフューム及び特定の粒度分布を有する石灰石微粉末のそれぞれが規定された重量部を有するセメント組成物を用いることにより、流動性の向上効果、及び一定のコンクリートの流動性を得るために必要な高性能減水剤量の低減効果を示している。また、特許文献3,4では、セメント、シリカフューム及び石灰石微粉末を有するセメント組成物を適用したモルタル及びコンクリートの流動性についての作用効果は示しているが、上記セメント組成物と高炉スラグ微粉末やフライアッシュとの組合せに関する実施例や作用効果についての記述や示唆はない。また、強度発現やセメント水和に伴う収縮や水和熱に関する作用効果についての開示もない。
 特許文献5と特許文献6は、ともに超高強度繊維補強コンクリートに関する文献である。特許文献5の水硬性組成物に含まれる繊維は有機繊維や炭素繊維であり、特許文献6の繊維が金属繊維である点で双方は相違しているが、セメント系マトリックスに関しては共通している。これらの文献に開示されたセメント系マトリックスは、それぞれの材料に対して比表面積と重量部が規定されたセメントと、シリカヒュームなどの微粒子と、2種類の無機粒子A,Bとから構成されている。無機粒子A及び無機粒子Bは、比表面積の範囲が異なることが特徴であり、これらに適用可能な材料として、スラグ、石灰石粉末、長石類、ムライト類、アルミナ粉末、石英粉末、フライアッシュ、火山灰、シリカゾル、炭化物粉末、窒化物粉末などが挙げられている。したがって、これらの文献によれば、セメント、シリカフューム、石灰石微粉末、高炉スラグ微粉末又はフライアッシュなどの構成材料を含有する配合も可能となる。しかしながら、特許文献5,6は、硬化前の自己充填性と機械的特性(圧縮強度、曲げ強度)の向上のみに着目したものであり、例えば初期強度の発現性や、養生段階における自己収縮量及び水和熱の低減などに着目した示唆や記述はない。また、無機粉末である石灰石微粉末の含有を特定して、これに対する化学的作用効果や、石灰石微粉末と高炉スラグ微粉末やフライアッシュとの組み合わせによる作用効果について示唆や記述をしているものでもない。
 ここで、超高強度セメント系マトリックスの曲げ強度/圧縮強度の比率を向上させるという点について開示された文献として、特許文献7,8,11などが挙げられる。特許文献7は、セメント、ポゾラン質微粉末、細骨材などの構成材料に対して収縮低減剤を含有することを特徴としたもので、収縮低減剤の収縮低減効果により曲げ強度/圧縮強度の比率が向上することを記載している。また、特許文献8には、収縮低減剤の他に膨張材を含有させることで、曲げ強度/圧縮強度の比率が向上することが開示されている。
 一方、特許文献11では、収縮低減剤と膨張材を含有させることなく、セメントにシリカフューム、石炭ガス化フライアッシュ及び石膏を特定の範囲で組み合わせたセメント組成物によって、曲げ強度/圧縮強度の比率が向上することが示されている。ここで、特許文献8と特許文献11に共通している構成材料は、石炭ガス化フライアッシュと石膏である。石膏は、水和反応により針状結晶のエトリンガイトを生成させ、これがセメント硬化体中の空隙を充填して密実化を促し、高強度化を可能にすると記載されている。また、シリカフュームと石炭ガス化フライアッシュを特定の割合で配合することにより、セメント硬化体の曲げ強度を高めることが可能であることが開示されている。
 また、特許文献9,10には、セメントとポゾラン反応粒子と砂粒子とから構成されるセメント系マトリックスの組成が開示されている。さらに、これらのセメント系マトリックスの曲げ強度を補強する繊維として、金属繊維、有機繊維、又は有機繊維と金属繊維とを組み合わせた複合繊維などが含有されている。そして、ポゾラン反応粒子としては、シリカフューム、フライアッシュ、高炉スラグなどが挙げられており、熱養生によりポゾラン反応粒子が長期的な力学性状の向上に寄与することが開示されている。
 また、特許文献12には、常温養生のみで早期に高いじん性、高い圧縮強度、高い引張強度を発現させることができる、高じん性・高強度モルタル組成物が開示されている。この特許文献12に開示されたUFCは、特定の比率を有するC3SとC3Aを有する特殊なセメントと、シリカフュームと、特定の粒度分布を有する細骨材とを組み合わせることを特徴としている。そして、ポゾラン反応粒子としては、シリカフュームが唯一の適用材料となっている。
特開2007-119257号公報 特開2000-72518号公報 特開平08-26793号公報 特開平08-239249号公報 特開2002-348166号公報 特開2002-338323号公報 特開2001-181004号公報 特開2009-84095号公報 特表平9-500352号公報 特開2006-213550号公報 特開2006-298679号公報 特開2011-42534号公報
 しかしながら、従来の超高強度繊維補強コンクリートは、i)単位セメント量が多い、ii)水/(セメント+シリカフューム)比が小さい(すなわち、材料費が高いセメント及びシリカフュームの使用量が多い。)、iii)骨材/粉体比が小さい、などの理由から養生期間中の収縮量が大きい。超高強度繊維補強コンクリート材料の総収縮量は、i)初期養生の段階、つまり凝結開始から型枠を脱型するまでの段階における一次養生中に生ずる自己収縮と水和反応により生ずる水和収縮と、ii)型枠脱型後から最終強度発生までに熱養生を行う二次養生中に発生する自己収縮、水和収縮及び乾燥収縮との総和で表せる。なお、二次養生として80℃-90℃で36時間-48時間の熱養生を行う理由は、i)短期間に最終の所定強度を得るため、ii)二次養生中に高熱と充分な水分を与えることで、短期間に水和反応を促進させて水和反応中に生ずる自己収縮、水和収縮及び乾燥収縮を早期に終わらせるため、iii)高温の熱養生を行うことによりセメント系マトリックス中の空隙構造のキャピラリー空隙をゲル空隙に移行させて耐久性に優れた緻密な水和物構造にするため、である。
 また、超高強度繊維補強コンクリート材料を適用して、プレテンション部材を製作するような場合には、一次養生後の型枠脱型後にプレストレスを導入することになる。ここで、一次養生中に発生する自己収縮と水和収縮が大きいと、型枠が収縮を拘束するためにセメント系マトリックスに引張応力が発生してひび割れが発生するリスクが増大する。これを回避するために、型枠の拘束を緩和する方策が採られている。例えば、材料の収縮変形を吸収できるような発泡スチロールやゴムなどの変形しやすい材料を型枠材料として適用する方法である。この場合、従来の鋼製や木製の型枠よりも製作手間がかかり、また高価な材料を使用することによりコストが増加する。さらに、これらの型枠材料は、型枠の転用効率が非常に悪く、型枠費用の大幅な増大が大きな問題となる。
 さらに、二次養生中に発生する自己収縮、乾燥収縮及び水和収縮などが大きいと、プレテンションによる部材を製作するような場合には、二次養生の前にプレストレスを導入するので、プレストレスの導入効果(有効プレストレス率)が低下する。つまり二次養生中の収縮量が大きいと構造部材が縮むために、導入した緊張力を損失することになる。このように有効プレストレス率が低下することになるので、緊張ロスを見込んだ余分の緊張材を配置する必要があった。
 一方、従来の超高強度繊維補強コンクリートは、小さな水セメント比を維持しながらも流動性を向上させる必要があるために、多量の混和剤(例えば、高性能減水剤)を添加する必要がある。多量の混和剤を混入した場合、凝結開始時間が遅延して、所定の初期強度が発生するまでの養生時間が長くなる問題を生じていた。
 また、従来の超高強度繊維補強コンクリートは、高価な高性能減水剤などの混和剤の使用量を削減し、少ない高性能減水剤で効率的に流動性を向上させるために、高性能減水剤の吸着効率の悪いセメント成分中のエーライト(CS)成分やアルミネート相(CA)を少なくして、高性能減水剤の吸着効率が良いビーライト(CS)成分を多くした、低熱ポルトランドセメントを配合する傾向にある。低熱ポルトランドセメントを使用した場合には、高性能減水剤の添加量を低減することができるものの、初期強度の発現に寄与するエーライト(CS)成分やアルミネート相(CA)が少なくなるために、初期強度発現が遅く、一次養生の養生時間が長くなる結果となっていた。
 これに対して、プレテンション部材の場合は、脱型後にプレストレスを導入するために所定の強度が必要となる。初期強度発現が遅いことによる問題としては、型枠脱型やプレストレスを導入する作業ステップまでの一次養生の養生時間が長くなるので、この種の材料を適用した構造部材を製造するサイクルタイムが長くなり、製造効率が低下することにある。すなわち、一日あたりの生産量が予定されている計画に対して、初期強度が遅くなることへの対応としては、型枠基数の増加や製造ラインの増設などの設備投資を拡大する必要があり、結果として製造コストが増加することになる。
 また、この種の材料は、二次養生として80℃-90℃で36時間-48時間の熱養生を行うことが多い。二次養生において熱を供給するのは、上述のように、必要な生産プロセスである。しかし、長時間にわたり高温を維持するためには、多量の燃料が必要となり、生産コストに占める燃料費用の割合が大きいことも問題になる。
 従来の超高強度繊維補強コンクリートは、セメント系マトリックスの圧縮強度や引張強度を超高強度にするために、結合材であるセメントを多量に配合していた。そのために、セメント水和反応による水和発熱量が大きくなる問題があった。
 発熱量を低減する一般的な方法には、使用するセメントの種類を低熱ポルトランドセメントにする方法がある。しかし、低熱ポルトランドセメントにすることにより、上述したように初期強度の発現が遅くなることによる問題が生ずる。この種の超高強度繊維補強コンクリートを適用して部材を製作する際において、水和発熱量が多いことによる問題点を以下に示す。
(1)養生初期において水和熱が大きい場合、部材の内部と外部との間で空間的に温度差が発生し、温度差による温度ひずみが生じることによる温度ひび割れの発生リスクが増大する。特に養生初期の場合は、超高強度繊維補強コンクリートの強度が充分に発現していないので、温度ひび割れの発生リスクが高くなる。
(2)部材が厚肉断面と薄肉断面とから構成されている場合に、水和発熱によって部材間に温度差が発生して、温度ひび割れのリスクが増大する。
(3)この種の材料を使うことによって薄肉断面に成形できることが特徴であるが、大型構造物を計画する場合には、厚肉断面の部材も必要とされることがある。例えば、緊張端部のプレキャストブロックは厚肉断面となるため、温度ひび割れの発生リスクが高くなる。
 従来の超高強度繊維補強コンクリートの圧縮強度は、この種の材料を適用した実際の設計において、多くの場合で余裕を示し、問題となることはなかった。一方、この種の材料は、鉄筋補強せずに構造部材として適用することのメリットが大きいために、超高強度繊維補強コンクリート自体が曲げ引張強度部材や曲げじん性補強部材として適用される。しかしながら、従来の超高強度繊維補強コンクリートの曲げ引張強度や曲げじん性性能には限界があり、さらなる性能の向上が望まれている。
 そこで、本発明は、フレッシュ時の流動性を保持しながら、初期強度発現が早いうえに水和発熱量が少なく、養生中の収縮量が少ないセメント系マトリックス、及びこれに繊維を含有させることにより得られる高い引張強度と高い曲げ強度と高い曲げじん性性能を有する繊維補強セメント系混合物を提供することを目的としている。
 前記目的を達成するために、本発明のセメント系マトリックスは、ポルトランドセメント100重量部と、シリカフューム5-30重量部と、石灰石微粉末5-25重量部と、高炉スラグ微粉末又はフライアッシュの少なくとも一種類を30-80重量部と、少なくとも一種類の混和剤と、水と、最大骨材粒径が1.2-3.5mmである骨材粒子70-150重量部とを含有することを特徴とする。
 また、本発明の繊維補強セメント系混合物は、上記のセメント系マトリックスと、全容積の0.7-8.0容積%の繊維とを含有することを特徴とする。
 このように構成された本発明のセメント系マトリックスは、流動性を保持したフレッシュ性状が維持された状態で、一次養生中及び二次養生中の収縮量が少なく、一次養生後の初期強度が高く、一次養生中及び二次養生中の水和反応による水和発熱量が小さく、さらに二次養生後の圧縮、引張及び曲げ強度が高いという特徴を有する。
 また、本発明のセメント系マトリックスに補強用の繊維を混入して得られる超高強度の繊維補強セメント系混合物は、流動性を保持したフレッシュ性状が維持された状態で、圧縮強度をはじめとして、高い引張強度、高い曲げ強度、さらに高いじん性性能を示すことができる。
石灰石微粉末を配合する影響を説明するために、材齢と収縮ひずみとの関係を示したグラフである。 石灰石微粉末を配合する影響を説明するために、材齢と断熱温度上昇量との関係を示したグラフである。
 以下、本発明の実施の形態について説明する。本実施の形態のセメント系マトリックスは、セメントと、シリカフュームと、石灰石微粉末と、高炉スラグ微粉末又はフライアッシュの少なくとも一種類と、少なくとも一種類の混和剤と、水と、骨材粒子とを含有した超高強度セメント系マトリックスである。
 また、本実施の形態の繊維補強セメント系混合物は、上記超高強度セメント系マトリックスに補強繊維を混入した超高強度繊維補強セメント系混合物である。
<セメント>
 セメントには、ポルトランドセメント(普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメントなど)が使用できる。
 特に初期強度発現を早期に得たい場合には、普通ポルトランドセメントや早強ポルトランドセメントの使用が好ましい。また、流動性の向上や水和発熱量を低減したい場合には、中庸熱ポルトランドセメントや低熱ポルトランドセメントの使用が好ましい。
 本セメント系マトリックスは、これらの要求に対して、後述するようにセメントの種類のみで対応するのではなく、シリカフューム、石灰石微粉末及び高炉スラグ微粉末若しくはフライアッシュの少なくとも一種類の配合により対応する。すなわち、混和材には、シリカフュームと、石灰石微粉末と、高炉スラグ微粉末又はフライアッシュの少なくとも一種類とを使用する。
<シリカフューム>
 シリカフュームのBET比表面積(BET法によって測定される比表面積)は、15m2/g以上であることが望ましい。シリカフュームのBET比表面積が15m2/g未満の場合には、ポゾラン反応性が低くなり強度性能の向上効果が低減する。またシリカフュームの粒径も大きくなるために、後述するマイクロフィラー効果やベアリング効果が低減し、流動性への効果が低下することになる。
 また、シリカフュームの粒径が大きくなると、セメント粒子間の間隙にシリカフューム粒子の最密充填が充分に行われなくなるので、セメント系マトリックスの緻密性が低下して高耐久性の向上効果が小さくなる。これに対して、BET比表面積が15m2/g以上のシリカフュームの場合には、強度の向上、流動性の向上、高耐久性の向上などの効果が期待できる。
 シリカフュームは、シリコンメタル、フェロシリコン、シリコン合金、ジリコニュウムなどを製造する際に発生する排ガス中のダストを捕集することによって得られる超微粒子状の材料である。使用するシリカフュームの製品形態としては、運搬効率を上げるために機械的に凝集(densification)させて、単位容積質量を大きくしたものでもよい。また、シリカフュームを水に懸濁させたシリカフュームスラリーという形態で使用することもできる。
 シリカフュームの化学組成の主成分は、非結晶質の二酸化珪素(SiO2)である。二酸化珪素(SiO2)の含有率が高いシリカフュームは、ポゾラン反応性が高まり、さらにガラス質系の水和物が生成されるので、セメント系マトリックスの強度性能の向上や、より緻密になることによる高耐久性の向上に寄与する。また、BET比表面積が大きくなれば、やはりポゾラン反応性が高まり、セメント系マトリックスの強度性能の向上や、マトリックスの最密充填が向上するために高耐久性の向上に寄与する。
 シリカフュームの粒径は、セメント粒子の1/40-1/100と非常に微細であるために、セメント硬化体の空隙を充填するマイクロフィラー効果を期待することができ、硬化体組織の大幅な緻密化の向上を図ることができる。高緻密な組織は、塩化物イオンや二酸化炭素、水などの浸入を防止するので、セメント系マトリックス中に存在する補強繊維をはじめPC鋼材や鋼製補強物などの錆などに影響を及ぼすこれらの物質や化学物質の浸入も抑制する効果が高く、構造体としても高耐久性な組織となる。
 また、シリカフュームの粒径は非常に微細であり、球形に近い形状をしているために、セメント系マトリックスを練混ぜる際において、セメント粒子や高炉スラグ微粉末やフライアッシュなどの空隙に分散するように配置される。このために、これらの粒子間のベアリング効果を期待することができる。そしてこのベアリング効果は、セメント系マトリックスの流動性の大幅な向上に効果を発揮することになる。
 シリカフュームは、セメント100重量部に対して5-30重量部が好ましい。シリカフュームが5重量部未満の場合には、本来シリカフュームが示すことができる、強度性能の向上、高耐久性の向上、流動性の向上などの性能向上効果が大きく減少する。特に、流動性の低下は著しく、強制的に流動性を得ようとすると高性能AE減水剤を添加する必要があり、合理的ではなくなる。また、養生中の収縮量も大きくなる傾向にある。そして、シリカフュームの重量部が30を超えるような場合には、セメント系マトリックスの粘性が増大するために、所定の流動性を得ることはできない。無理やりに流動性を得るためには、高性能AE減水剤をさらに過剰添加して、水を加える必要がある。高性能AE減水剤の過剰添加は、材料単価を上げるだけでなく、セメント系マトリックスの初期強度の発現を遅延させる。
 また、シリカフュームの配合が30重量部を超えると、自己収縮及びプラスチック収縮が増大し、ひび割れ発生のリスクが増大する。一般的に、単位セメント量が多いと自己収縮が多くなるように、単位シリカフューム量が多いと同様に自己収縮が多くなることが知られている。これに対して、本セメント系マトリックスでは、単位セメント量を小さくすると同時に、シリカフュームの混入量を、セメント重量部に対して5-30重量部と小さく設定している。このように単位シリカフューム量が低減された結果、自己収縮量を低減することができる。より好ましいシリカフュームの配合は、セメント100重量部に対して7-25重量部である。
<石灰石微粉末>
 本セメント系マトリックスには、混和材として石灰石微粉末を使用する。石灰石微粉末は、混和材ではあるがポゾラン反応はしないのでポゾラン反応粒子(ポゾラン材)ではない。すなわち、本セメント系マトリックスは、セメントのほかに混和材としてシリカフュームと、石灰石微粉末と、高炉スラグ微粉末又はフライアッシュの少なくとも一種類とを配合することにより、単位セメント量を低減させて、単位セメント量の減少により生ずる強度の低減や初期強度発現の遅延などの損失をカバーするとともに、養生中の収縮量の低減及び水和発熱の低減に寄与する。
 特に、本セメント系マトリックスは、ポゾラン反応しない石灰石微粉末と高炉スラグ微粉末やフライアッシュなどのポゾラン材とを配合することによって、ポゾラン材のみの配合により得られていた収縮低減の効果よりも、さらに優れた収縮低減効果を得ることができる。すなわち、i)セメントの配合量を石灰石微粉末に置き換えることによって単位セメント量が低減されて全体の収縮を低減できる、ii)ポゾラン材(高炉スラグ微粉末やフライアッシュ)の配合量を石灰石微粉末に置き換えることによってポゾラン反応による収縮に比較して収縮の小さい石灰石微粉末に置換されるので全体としての収縮を低減できる、からである。
 ところで、早期に初期強度を発現させるには、使用するポルトランドセメントの種類を早強ポルトランドセメントにするなど、セメントの種類を変更することが考えられる。しかし、早強ポルトランドセメントにした場合、その鉱物相としてエーライト(CS)やアルミネート相(CA)が多く含まれているために、収縮量と水和発熱量が増大する問題が発生する。
 そこで、本セメント系マトリックスは、セメントの種類を早強ポルトランドセメントに変更しなくても、石灰石微粉末をセメント重量部に対して5-25重量部の量で配合することにより、収縮量と水和発熱量を増大させることなく、早期の初期強度発現を可能とした。このような効果が得られる理由は、i)石灰石微粉末がセメント中のエーライト(CS)の初期水和を促進してセメント系マトリックスの初期強度を向上させ、さらに、ii)石灰石微粉末がセメント中のカルシュームアルミネート(CA)と反応してモノカーボ・アルミネート(CACaCO・11HO)などの水和物を生成して初期強度の発現に寄与するためと考えられる。
 ここで、ポゾラン材の高炉スラグ微粉末やフライアッシュも、セメント中のエーライト(CS)の初期水和を促進してセメント系マトリックスの初期強度を向上させることができるので、本セメント系マトリックスではこれらのポゾラン材料を配合している。しかし、石灰石微粉末の初期強度発現効果は、高炉スラグ微粉末やフライアッシュなどの初期強度発現効果に比較して大きいために、石灰石微粉末を配合することにより効率的に初期強度を発現させることができる。
 他方、石灰石微粉末は初期強度の発現には効果を発揮するが、長期強度に対しては、その効果が期待できない。そのために、ポゾラン材であるフライアッシュを配合することにより、長期的に強度発現するポゾラン反応が期待できるようになり、二次養生中におけるポゾラン反応による長期強度の増進が実現できる。あるいは、高炉スラグ微粉末を配合することにより、その潜在的水硬性の水和反応を期待して二次養生後の長期強度の増進が実現できる。
 また、ポゾラン材の高炉スラグ微粉末やフライアッシュを配合することにより、石灰石微粉末の効果よりも低いものの、セメントの鉱物相の中で、最も発熱量の大きいアルミネート相(CA)の初期水和を抑制することができるので、セメントの種類を変更することなく水和発熱量の低減が実現できる。さらに、早期に初期強度を発現させることができる。
 本セメント系マトリックスは、上述したように単位セメント量が低減されるので、セメントによる水和反応量が低減して水和発熱量を低減する効果を得ることができる。そして、単位セメント量が減少しても圧縮強度や引張強度などの強度特性を低下させないようにするために、高炉スラグ微粉末やフライアッシュなどのポゾラン材のほかにブレーン比表面積(ブレーン空気透過測定装置で測定した比表面積)が5,000-18,000 cm2/gの石灰石微粉末をセメント100重量部に対して5-25重量部配合する。このようにすることにより、ポゾラン材のみの配合により得られる水和熱低減の効果よりも更なる効果の向上を図ることができる。つまり、i)セメントの配合量を石灰石微粉末に置き換えることができるので、単位セメント量を更に低減することができ、水和発熱量が低減する、ii)ポゾラン材(高炉スラグ微粉末やフライアッシュ)の配合量を石灰石微粉末と置き換えることができるので、ポゾラン反応による発熱よりも低い石灰石微粉末への置換によって全体としての発熱が低減できる、ためである。
 ちなみに、セメントの鉱物相の水和発熱に関するデータ(エントロピー)を示すと、アルミネート相(CA)=8.41(cal/mol deg)、フェライト相(CAF)=6.31(cal/mol deg)、エーライト(C3S)=1.8(cal/mol deg)、ビーライト(C2S)=1.5(cal/mol deg)となる。これらのデータは、アルミネート相(CA)による水和抑制は効率的であることを示している。
 本セメント系マトリックスでは、石灰石微粉末がセメントの鉱物相の中で、最も発熱量の大きいアルミネート相(CA)の初期水和を、ポゾラン材(高炉スラグ微粉末やフライアッシュ)よりも効率的に抑制することができるため、水和発熱量の低減が効果的に実現できる。このため、例えば低熱ポルトランドセメントに変更するなど、セメントの種類を変更することなく水和発熱量の低減が実現できる。また、初期の水和発熱量を低減した状態で、早期に初期強度を発現させることができる。
 このようにセメント系マトリックスに石灰石微粉末を混入することによって、収縮量の低減、早期の初期強度の発現、水和発熱量の低減などに効率的な効果をあげることができる。さらに、石灰石微粉末は、セメント系マトリックス及びそれを使用して製造される繊維補強セメント系混合物の流動性の向上にも効果をあげることができる。
 ここで、後述する高性能減水剤(例えば、ポリカルボン酸系など)による減水効果は、粉体に吸着した減水剤のポリマーの「立体障害効果」による分散作用であると考えられている。この吸着量の測定によれば、石灰石微粉末は、セメントや高炉スラグ微粉末などよりも優れた分散性能を保有しており、石灰石微粉末を使用することによって少ない高性能減水剤で大きな分散効果が得られるようになる。
 また、石灰石微粉末の粒径は、セメント粒子よりも小さいので、シリカフューム又はフライアッシュ若しくは高炉スラグ微粉末などのポゾラン材と同様に、セメント間隙を埋めるマイクロフィラー効果があり、最密充填の材料として最適である。また、石灰石微粉末の粒状形状は球体に近く、ベアリング効果により、少ない水と高性能減水剤の下で、フライアッシュや高炉スラグ微粉末よりも効率的に流動性の向上を図ることができる。
 石灰石微粉末のブレーン比表面積が5,000 cm2/g未満の場合には、石灰石微粉末としての活性度が低下するために、収縮低減効果をはじめ早期強度の実現、水和発熱量の低減などの効果が期待できなくなる。さらに、セメント間隙を埋めるマイクロフィラー効果やベアリング効果が充分に期待できなくなるので、流動性の向上が望めなくなる。他方、石灰石微粉末のブレーン比表面積が18,000 cm2/gより大きくなると、石灰石微粉末としての活性度が向上するために、上記の効果は満足できるものとなるが、高いブレーン比表面積の石灰石微粉末を製造するための分級や分級粉砕の処理設備が必要となり材料入手が経済的でなくなる。より好ましい石灰石微粉末のブレーン比表面積は、7,000-15,000 cm2/gである。
 セメントの100重量部に対して、石灰石微粉末が5重量部未満であるような場合に、石灰石微粉末に期待している収縮低減、早期強度、水和熱量の低減などの効果が充分に期待できなくなる。特に重要な初期収縮の低減には、石灰石微粉末が5重量部以上必要である。他方、石灰石微粉末が25重量部より大きくなるような場合には、単位セメント量を変更しなければ高炉スラグ微粉末やフライアッシュなどのポゾラン材やシリカフュームの配合比率が低下するために、流動性が著しく低下する。逆にポゾラン材やシリカフュームを変更しなければ、単位セメント量を低下させる必要があり、そのために強度特性が低下する結果となる。セメントの100重量部に対して、より好ましい石灰石微粉末の重量部は、7-22重量部である。
<高炉スラグ微粉末・フライアッシュ(ポゾラン材)>
 本セメント系マトリックスに配合される高炉スラグ微粉末には、高炉水砕スラグ微粉末と高炉徐冷スラグ微粉末とがあるが、高炉水砕微粉末のほうが望ましい。また、フライアッシュには、通常のフライアッシュのほかに、分級フライアッシュや石炭ガス化フライアッシュがあるが、いずれのフライアッシュも適用することができる。
 高炉スラグ微粉末のブレーン比表面積は、3,000cm2/g以上であることが好ましい。また、フライアッシュのブレーン比表面積は、2,500cm2/g以上であることが望ましい。
 本セメント系マトリックスにおいて、混和材として高炉スラグ微粉末あるいはフライアッシュを適用する役目としては、i)高炉スラグ微粉末および/またはフライアッシュをセメント置換することにより単位セメント量を低減して、水和発熱量の低減に寄与する、ii)セメント中のエーライト(C3S)の初期水和を促進して、セメント系マトリックスの初期強度を向上させる、iii)潜在水硬性および/またはポゾラン反応による中期強度から長期強度の発現に寄与する、iv)セメント中のアルミネート相(C3A)の初期水和を抑制して水和の発熱量の低減に寄与する、v)ベアリング効果により少ない水に対してもセメント系マトリックスの流動性を向上させる、vi)セメント間隙を埋める高炉スラグ微粉末および/またはフライアッシュのマイクロフィラー効果によりセメント系マトリックスをより緻密な組織とする、などがある。
 ここで、高炉スラグ微粉末のブレーン比表面積が3,000cm2/g未満の場合は、粉末度が低下するので高炉スラグ微粉末のもつ潜在水硬性の反応率が低下する。そのために、i)セメント中のエーライト(C3S)の初期水和を促進する効果が低下して初期強度の向上効果が低減する、ii)潜在水硬性による中期強度発現効果が低減、特に熱養生下における強度発現が低下する、iii)セメント中のアルミネート相(C3A)の初期水和の抑制効果が低減する、などの影響がでる。高炉スラグ微粉末のブレーン比表面積が10,000cm2/g以上の場合は、粉末度が著しく向上するために、水和熱低減、高流動化、高強度化、耐硫酸塩や海水に対する抵抗性の増大などに効果的に寄与する。しかし、高いブレーン比表面積の高炉スラグ微粉末を製造するための分級や分級粉砕の処理設備が必要となり材料入手が経済的でなくなる。より好ましい高炉スラグ微粉末のブレーン比表面積としては、4,000-9,000cm2/gである。
 一方、フライアッシュのブレーン比表面積が2,500cm2/g未満の場合は、ポゾラン材の平均粒径が大きくなるので、ベアリング効果やマイクロフィラー効果が低下して、流動性や緻密性の確保が困難となる。また、ポゾラン反応活性が低下するので、長期強度の向上に影響するポゾラン反応相が充分に形成されなくなるために、長期強度の向上が期待できなくなる。他方、シリカフュームを除くポゾラン材のブレーン比表面積が20,000 cm2/gより大きくなる場合は、ポゾラン反応性が著しく増大して、長期強度の増進をはじめ、水和熱の低減、マトリックスの緻密化による耐久性能の向上などが期待できる。しかし、分級又は粉砕分級による処理工程が必要となり材料入手が経済的でなくなる。より好ましい、フライアッシュのブレーン比表面積は、3,500-18,000 cm2/gである。
 また、本セメント系マトリックス中の高炉スラグ微粉末とフライアッシュの少なくとも一種類の混和材は、セメント100重量部に対して30-80重量部が好ましい。高炉スラグ微粉末および/またはフライアッシュが30重量部未満の場合には、高炉スラグ微粉末および/またはフライアッシュが保有する潜在水硬性および/またはポゾラン反応による中長強度の発現、水和熱の低減、高流動化、耐久性の向上などの役目を果たすことが充分にできない。特に流動性に関しては、シリカフュームを適量混入させても、粉体全体の粒度分布の偏りなどが影響して、所定の水が含有されていても、流動性を得ることができない。これに対して高炉スラグ微粉末および/またはフライアッシュが80重量部を超えるような場合には、単位セメント量を減少させたり、骨材粒子の配合量を減少させたりするなどの必要性が出てくるので、強度の低減を招いたり、流動性を確保できなくなったり、あるいは収縮量が増大したりするなどの問題が発生する。より好ましい高炉スラグ微粉末および/またはフライアッシュの配合は、セメント100重量部に対して、40-75重量部である。
<混和剤>
 本セメント系マトリックスに配合される混和剤は、流動性や強度発現性の向上、凝結コントロール、耐久性の向上などの多くの目的で使用される添加剤で、少なくとも1種類を使用する。この混和剤には、高性能減水剤、高性能AE減水剤、流動化剤、消泡剤、凝結促進剤、凝結遅延剤、増粘剤、収縮低減剤、急結剤、発泡剤、防錆剤などを単独で使用したり、複数の組み合せで使用したりすることができる。
 少ない単位水量で流動性の向上を目指すためには、高性能減水剤又は高性能AE減水剤が使用される。高性能減水剤としては、ポリカルボン酸塩系高性能減水剤、ポリアルキルアリルスルホン酸塩系高性能減水剤、芳香族アミノスルホン酸塩系高性能減水剤、メラミンホルマリン樹脂スルホン酸塩系高性能減水剤などがある。高性能AE減水剤としては、アルキルアリルスルホン酸塩系高性能AE減水剤、芳香族アミノスルホン酸塩系高性能AE減水剤、メラミンホルマリン樹脂スルホン酸塩系高性能AE減水剤、ポリカルボン酸塩系高性能AE減水剤などがある。これらの高性能減水剤は限定されるものではないが、使用量としてはセメント100重量部に対して3-5重量部であれば良好な流動性を得ることができる。また、混練り時に連行した空気を消泡するために、消泡剤を高性能減水剤と組み合わせて使用してもよい。
<水>
 本セメント系マトリックスに配合される水は、水道水など不純物を含まないものであれば制限はない。使用する高性能減水剤や高性能AE減水剤、あるいは単位セメント量に依存するが、水の使用量としてはセメント100重量部に対して、21-26重量部であれば良好な流動性と強度特性を得ることができる。
<骨材粒子>
 本セメント系マトリックスに配合される骨材粒子には、川砂、海砂、珪砂、砕砂、石灰岩を粉砕した砂、再生骨材の砂、焼成ボーキサイトを粉砕した砂、鉄鉱石を粉砕した砂、石英へん岩を粉砕した砂、高炉スラグを粉砕した砂、石英微粉末、硅石微粉末、岩石微粉末などを単独で使用したり、あるいは複数の組み合わせで使用したりすることができる。
 本セメント系マトリックスでは、骨材粒子の最大粒径Dmax、すなわち最大骨材粒径が1.2-3.5 mmの骨材粒子を、セメント100重量部に対して70-150重量部配合する。ここで、最大粒径Dmaxとは、骨材粒子の粒径加積曲線において、通過重量百分率(あるいは通過率)の重量比が100%にあたる粒径(直径)であり、D100に相当する。
 最大骨材粒径を1.2 mm未満にすると、セメント系マトリックスの収縮を低減するための骨材による骨格が充分に形成されず、収縮を抑制する効果が低減する。他方、最大骨材粒径を3.5 mmよりも大きくすると、骨材粒子の表面とセメントペーストとの境界面積が大きくなるために、この境界部における剥離強度あるいは付着強度の低下割合が、セメント系マトリックス全体に占める割合の中で大きくなる。この結果、セメント系マトリックスの曲げ強度や引張強度の低下が著しくなる。より好ましい最大骨材粒径D100は、1.5-2.5 mmである。
 本セメント系マトリックスでは、骨材粒子の平均粒径D50が0.17-0.80mmであることが好ましい。なお、骨材粒子の平均粒径D50とは、骨材粒子の粒径加積曲線において、通過重量百分率(あるいは通過率)の重量比が50%にあたる粒径(直径)であり、いわゆるD50に相当する。骨材粒子の平均粒径を0.17mm未満にすると、セメント系マトリックスの収縮を抑制する働きのある骨材粒子の骨格が形成されないために、収縮が増大する。また、粉体と水、混和剤の混練りに際して、骨材粒子は混練り効率を向上させる役割があるが、骨材粒子の平均粒径が0.17mm未満の場合には、その混練り効率が低下する。一方、平均粒径が0.80mmより大きい場合には、セメント系マトリックスの収縮を抑制する骨材粒子の骨格は充分に形成されるものの、骨材粒子の表面とセメントペーストとの境界面積が大きくなる確率が増大し、この境界部における剥離強度あるいは付着強度の低下割合が、セメント系マトリックス全体に占める割合の中で大きくなる。この結果、セメント系マトリックスの曲げ強度や引張強度の低下が著しくなる。より好ましい骨材粒子の平均粒径D50は、0.20-0.40mmである。
 最大骨材粒径D100が1.2-3.5 mmである骨材粒子の構成は、セメント100重量部に対して骨材粒子70-150重量部であることが好ましい。従来の超高強度繊維補強コンクリートに比較すると、本セメント系マトリックスは、骨材重量部が30-50重量部ほど多い。特許文献5-11に示されているような最大骨材粒径に比べると大きな最大骨材粒径から構成される骨材粒子が、多量にセメント系マトリックス中に混入されることにより、セメント系マトリックス中にしっかりとした骨材粒子による骨格が形成される。このような骨材粒子による骨格は、自己収縮若しくは水和収縮、又は乾燥収縮などの収縮に対して、局所的ではなくマクロ空間的に収縮抵抗の骨格として作用するので、結果として、収縮によるひび割れを発生させることなく収縮量を低減させることができる。
 骨材粒子が70重量部未満になった場合、相対的に粉体量が多くなるために骨材粒子の骨格が減少することになり、収縮量の増大、粉体が多くなりすぎることによる粘性の増大、粘性を低下させるための過剰な高性能減水剤の必要性、セメント水和熱の増大、骨材粒子量の低下によるセメント系マトリックス相互間のせん断伝達力の低下などの問題が生ずることになる。他方、骨格粒子が150重量部より大きくなった場合、相対的に粉体量が少なくなるので収縮を低減する効果は充分になるが、結合材が減少することによる圧縮強度、曲げ強度、引張強度などの低下が発生する。セメント系マトリックスにおける骨材粒子のより好ましい構成は、80-135重量部である。
 このように構成された本実施の形態のセメント系マトリックスは、流動性を保持したフレッシュ性状が維持された状態で、養生中の収縮量が少なく、一次養生中の初期強度発現が早く、水和反応による水和発熱量が小さいという特徴を有する。また、二次養生中においても収縮量を少なくできるので、プレテンション部材の緊張ロスの見込み量を減らすことができ、緊張材料の費用や緊張材料の配置手間を節約することができる。
 さらに、本セメント系マトリックスは、単位セメント量を低減することが可能であり、従来の超高強度繊維補強コンクリートと比較すると、少なくとも単位セメント量で100-250kg/m3程度低減することができる。
 また、シリカフュームがセメント100重量部に対して5-30重量部であれば、シリカフュームの配合重量は、従来の材料に比較して低減された量である。すなわち、従来の超高強度繊維補強コンクリートを構成するセメント系マトリックスは、多量のセメントが配合されているうえに、シリカフュームなどの高価な原材料を多量に使用することで、超高強度な圧縮強度や引張高度などの強度を得るとともに、高緻密で耐久性の高い材料を実現してきた。しかし、材料単価が一番高いのはシリカフュームであり、従来の超高強度繊維補強コンクリートが非常に高価な材料であった一つの理由である。
 このため、シリカフュームの使用量を低減できれば、経済的な材料にしやすくなる。本セメント系マトリックスは、シリカフュームの混入量が低減されても、シリカフューム以外の規定されたブレーン比表面積を有する石灰石微粉末と高炉スラグ微粉末および/またはフライアッシュとを規定の重量部だけ配合するため、収縮量の低減、早期の初期強度発現、水和熱の低減が可能となる。このような理由で、本セメント系マトリックスは材料費が削減できる。
<繊維>
 本実施の形態の超高強度の繊維補強セメント系混合物(超高強度繊維補強コンクリート)は、上述した本セメント系マトリックスに、金属繊維、有機繊維、又は有機繊維と金属繊維とを混ぜ合わせた複合(ハイブリッド)繊維のいずれかを混入することにより得られる。すなわち、本実施の形態の繊維補強セメント系混合物は、混入する繊維の材質に依存することはない。
 混入可能な金属繊維としては、鋼繊維、高張力鋼繊維、ステンレス繊維、チタン繊維、アルミニューム繊維などが挙げられる。また、有機繊維としては、ポリプロピレン(PP)繊維、ポリビニールアルコール(PVA)繊維、アラミド繊維、ポリエチレン繊維、超高強力ポリエチレン繊維、ポリエチレンテレフタラート(PET)繊維、レーヨン繊維、ナイロン繊維、ポリ塩化ビニール繊維、ポリエステル繊維、アクリル繊維、耐アルカリガラス繊維などが使用できる。
 また、金属繊維に有機繊維を混入した複合繊維を使用することもできる。複合繊維を使用するメリットは、剛性と引張強度が高い金属繊維による引張補強により、引張ひずみの小さい領域(例えば、ひび割れ発生直後のひび割れ幅が小さい状態)において、金属繊維の補強効果が大きく期待できる。他方、ひび割れ幅が増大した、引張ひずみが大きい領域においては、有機繊維による引張補強効果が大きく期待できる。このように、繊維を複合化することにより、引張ひずみの幅広い領域において、繊維補強効果を有効に期待することが可能となる。
 また、混入する繊維の合計量(繊維混入量)は、超高強度繊維補強セメント系混合物の全容積に対する混入率(容積混入率)が0.7-8.0容積%となるように調整するのが好ましい。すなわち、0.7容積%の繊維の容積混入率があれば、超高強度繊維補強セメント系混合物として繊維の架橋効果は小さいものの期待できる量である。一方、容積混入率8.0容積%は繊維の架橋効果を充分に期待できる量であるが、これより多くの量の繊維をセメント系マトリックスに混入すると、練り上がりのフレッシュ性状が保てなくなって自己充填が難しくなり、実質的に構造材として適用することができないおそれがある。混入する繊維の合計量は、より好ましくは1.0-5.5容積%の容積混入率とすることができる。
 以下、この実施例1では、前記した実施の形態で説明したセメント系マトリックスの性能を確認するためにおこなった試験の結果について説明する。なお、前記実施の形態で説明した内容と同一乃至均等な部分の説明については、同一用語を使って説明する。
[使用材料]
 表1,2に、実施例1の試験で使用した材料の諸元を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[試験項目と試験方法]
(1)フロー値:「JIS R 5201(セメントの物理試験方法)」に準じた方法で、15回の落下運動を行わないで、さらにフロー試験開始から90秒経過した状態で測定した静置フロー値(mm)である。
(2)フロー時間:上記フロー値が200mmに達するまでに要する時間である。
(3)圧縮強度:「土木学会規準JSCE-F 506(モルタルまたはセメントペーストの圧縮強度試験用円柱供試体の作り方)」及び「土木学会規準JSCE-G 505(円柱供試体を用いたモルタルまたはセメントペーストの圧縮強度試験方法)」に準じた方法で、内空がφ5×10cmの型枠内に混練り材料を打設し、一次養生として20℃で48時間の養生を実施した後に、その硬化体を試験して測定された圧縮強度(一次養生後の圧縮強度)と、その後、二次養生として85℃までの昇温を+15℃/時間の昇温速度で行い、85℃で40時間保持し、20℃までの降温を-5℃/時間の降温速度で行った後に、その硬化体を試験して測定された圧縮強度(二次養生後の圧縮強度)である。なお、試験においては3体の供試体を作製し、強度試験の平均値を圧縮強度とした。
(4)曲げ強度:「JIS R 5201(セメントの物理試験方法)」に準じた方法で、内空が□4×4×16cmの四角筒状の型枠内に混練り材料を打設し、一次養生として20℃で48時間の養生を実施した後に、その硬化体を試験して測定された曲げ強度(一次養生後の曲げ強度)と、その後、二次養生として85℃までの昇温を+15℃/時間の昇温速度で行い、85℃で40時間保持し、20℃までの降温を-5℃/時間の降温速度で行った後に、その硬化体を試験して測定された曲げ強度(二次養生後の曲げ強度)である。なお、試験においては3体の供試体を作製し、曲げ試験の平均値を曲げ強度とした。
(5)割裂引張強度:「JIS A 1113 (コンクリートの割裂引張強度試験方法)」に準じた方法で、内空がφ10×20cmの型枠内に混練り材料を打設し、前述の一次養生後に続いて二次養生として85℃までの昇温を+15℃/時間の昇温速度で行い、85℃で40時間保持し、20℃までの降温を-5℃/時間の降温速度で行った後に、その硬化体を試験して測定された割裂引張強度(二次養生後の割裂引張強度)である。
(6)長さ変化:材料収縮時の型枠による拘束を避けるためのテフロンシート(登録商標)を内面に貼った内空が□10×10×40cmの四角筒状の型枠内において、型枠の中央部に標点距離100mmの埋め込み型ひずみ計(東京測器研究所製 KH-100HB)と熱電対を綿糸により宙づりに固定し、混練り材料を打設する。打設直後からひずみと温度の測定データをデータロガーにより記録し、材料の凝結終了後からのひずみ(長さ変化)を求める。なお、埋め込み型ひずみ計の測定データには、材料の温度変化(水和反応による熱や養生による熱)による長さ変化も含まれるので、温度記録から熱による長さ変化の値を補正して、20℃における長さ変化の値として求める。
(7)断熱温度上昇試験:断熱温度上昇量を求めるための試験で、内空が□20×20×20cmの型枠内の中央部と型枠外面に熱電対型センサーを取り付け、型枠内部に混練り材料を打設する。型枠の外側には、断熱状態を保持できるように発泡スチロールによる断熱材で覆う。断熱材で覆われた供試体は、20℃の恒温室において、打設直後から温度変化を測定する。この断熱試験方法では、完全な断熱状態を維持することはできないために、供試体中心部の温度や型枠外側の温度時系列から、放熱係数を0.015と仮定して、理想的な断熱温度上昇量を求める。
[配合条件]
 表3に、本実施の形態(実施例)のセメント系マトリックスと比較例の20ケースの配合条件(数値は重量部を示す。)を示す。
Figure JPOXMLDOC01-appb-T000003
 この表3のように配合条件を設定した目的は、i)中庸熱ポルトランドセメント(実験番号1-1から1-10)と普通ポルトランドセメント(実験番号2-1から2-10)とのセメント種類の違いが試験結果に及ぼす影響を明らかにする、ii)セメント100重量部に対する石灰石微粉末の重量部を、0-30重量部の間で変化させた場合の試験結果への影響を明らかにする、iii)高炉スラグ微粉末とフライアッシュのいずれか一方、又は両方を組み合わせた場合でも、本セメント系マトリックスの発明効果が保持されることを明らかにする、iv)高炉スラグ微粉末のブレーン比表面積が規定値の範囲内で変化しても、本セメント系マトリックスの発明効果が保持されることを明らかにする、ことにある。
 一方、表4には、別の観点から設定した本セメント系マトリックス(実施例)と比較例の34ケースの配合条件(数値は重量部を示す。)を示す。
Figure JPOXMLDOC01-appb-T000004
 この表4のように配合条件を設定した目的は、i)セメントの種類を中庸熱ポルトランドセメントに固定して、セメント100重量部に対するシリカフューム、石灰石微粉末、高炉スラグ微粉末および/またはフライアッシュ、骨材粒子の重量部を上限規定値又は下限規定値の範囲外に設定した場合の影響評価を明らかにする、ii)石灰石微粉末のブレーン比表面積が規定値の範囲内で変化しても、本セメント系マトリックスの発明効果が保持されることを明らかにする、iii) 高炉スラグ微粉末のブレーン比表面積が規定値の範囲内で変化しても、本セメント系マトリックスの発明効果が保持されることを明らかにする、ことにある。
[試験結果]
 表3と表4に示した配合条件と対比するように、試験結果を表5と表6にそれぞれ示す。ここで、圧縮強度、曲げ強度及び割裂引張強度(「割裂強度」と表示)の値は、すべて3体の供試体から求めた平均強度である。一次養生と二次養生の条件は、上記[試験項目と試験方法]において記述した通りである。収縮ひずみは、一次養生中に発生したひずみと二次養生中に発生したひずみに分けて、これらの合計のひずみを最終ひずみとしている。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 以下に、試験結果の考察を記述する。
(1)表3に示した実験番号1-1から1-10の中庸熱ポルトランドセメントを適用したシリーズ(実験番号1-* シリーズ)と、実験番号2-1から2-10の普通ポルトランドセメントを適用したシリーズ(実験番号2-* シリーズ)の実施例と比較例とを比較すると、フレッシュ性状、圧縮強度や曲げ強度などの力学特性、及び収縮特性について、セメントの種類に依存した結果の相違は顕著に認められなかった。
(2)表3及び表4に示す配合条件により実施した、全54ケースの実験結果から、実施例で示された33ケースについては、フレッシュ性状を示すフロー時間やフロー値は良好であった。他方、比較例の21ケースのうち、10ケース(実験番号1-10、2-10、3-22から3-28、3-33)のフレッシュ性状は悪かった。
 その理由は、セメント100重量部に対する以下の点が考えられる。
i)シリカフュームの重量部が上限規定値よりも大きい場合(実験番号3-24)では、粉体配合において高炉スラグ微粉末とフライアッシュ(ポゾラン材)とのバランスが崩れて、粉体の粒度分布が偏ることにより、フレッシュ性状が悪化したと考えられる。一方、シリカフュームの下限規定値よりも小さい場合(実験番号3-27、3-28)には、セメント粒子とポゾラン材粒子の空隙に分散されるシリカフュームが少なすぎて、ベアリング効果を発揮することができない。
ii)石灰石微粉末の重量部が上限規定値よりも大きい場合(実験番号1-10、2-10)では、シリカフュームやポゾラン材との配合比率悪化による粒度分布の偏りの影響で流動性が低下する。一方、石灰石微粉末の重量部が下限規定値よりも小さい場合(実験番号3-26)にも、流動性が低下する。しかし他のケースで、石灰石微粉末の重量部が下限規定値よりも小さい場合で、流動性を満足しているケースもある。これは、シリカフュームとポゾラン材の配合比率とのバランスが、流動性を左右しているものと考えられる。
iii)高炉スラグ微粉末および/またはフライアッシュの重量部が上限規定値よりも大きい場合(実験番号3-22、3-23)、並びに下限規定値よりも小さい場合(実験番号3-25)の両方でフレッシュ性状が低下している。これは、前述の説明と同様に、粉体の粒度分布のバランスが崩れることによる流動性の低下であると考えられる。
iv)骨材粒子の重量部が下限規定値よりも小さい場合(実験番号3-33)に、フレッシュ性状が低下する。これは粉体成分が多くなりすぎて、粘性が増大して流動性が悪化したものと考えられる。
(3)セメント100重量部に対する石灰石微粉末の重量部が5-25の実施例の場合(実験番号1-1から1-6、2-1から2-6、3-1から3-21)の養生中の収縮量(ひずみ)は、石灰石微粉末の重量部が0の配合条件で示された比較例の場合(実験番号1-7から1-9、2-7から2-9、3-26、3-29から3-32)と比較すると、少ない値になっていることがわかる。これは、本セメント系マトリックスの特徴である、ポゾラン材のほかにポゾラン反応しない石灰石微粉末を適量配合したことによるもので、ポゾラン材のみの配合により得られていた収縮低減の効果よりも、さらに優れた収縮低減効果が得られることが確認できた。収縮低減効果の理由は、石灰石微粉末は、水和反応初期の段階においてアルミネート相(CA)やフェライト相(CAF)の初期水和抑制をするためであると考えられる。
(4)セメント100重量部に対する石灰石微粉末の重量部を30とした比較例の場合(実験番号1-10と2-10)の結果は、さらに収縮量の低減が顕著となった。しかし、これらの比較例である実験番号1-10と実験番号2-10は、ともにフロー時間、フロー値の結果からフレッシュ性状が悪いといえる。また、割裂引張強度をはじめとする力学的特性も低下することがわかる。この理由としては、石灰石微粉末は、養生の最終段階(二次養生後)においては、結合材としての役割はないことが考えられる。
(5)セメント100重量部に対する石灰石微粉末の重量部が5-25の実施例の場合(実験番号1-1から1-6、2-1から2-6、3-1から3-21)に適用した石灰石微粉末のブレーン比表面積は、表1に示すように4種類である。多くの実験番号は、石灰石微粉末B(ブレーン比表面積が9,550cm2/g)を使用している。実験番号3-9、3-11、3-12、3-20、3-21の異なるブレーン比表面積に対する実施例の試験結果をみると、粉体配合及び骨材粒子配合の上限・下限規定値が満足されている限り、ブレーン比表面積が5,000cm2/g以上であれば、試験結果に大きな影響を与えるものではないことがわかる。
(6)表3と表4に示した配合条件では、セメント100重量部に対する骨材粒子重量部は、67-155である。比較例の実験番号1-7(骨材粒子128重量部)と実験番号3-26(骨材粒子109重量部)では、最終の収縮ひずみが1467μ(=×10-6)と1632μとなった。これに対して実施例の実験番号1-3(骨材粒子128重量部)と実験番号3-2(骨材粒子109重量部)では、最終の収縮ひずみが900μと1259μであった。また、実施例の実験番号3-7(骨材粒子134重量部)と実験番号3-3(骨材粒子118重量部)では、最終の収縮ひずみが895μと1120μであった。さらに、実施例の実験番号1-1(骨材粒子128重量部)と実験番号3-5(骨材粒子118重量部)では、最終の収縮ひずみが1041μと1269μであった。これらの結果から、骨材粒子の重量部を大きくすることにより、収縮量が低減できることが明らかになった。
(7)セメント100重量部に対する骨材粒子67重量部の実験番号3-33の試験結果では、最終の収縮ひずみが1303μと大きいばかりか、粉体量が多すぎるために粘性が高すぎてフレッシュ性状もよくない。一方、骨材粒子155重量部の実験番号3-34では、最終の収縮ひずみは952μと小さくなるものの、結合材が少なすぎて、一次養生後の力学強度や二次養生後の割裂強度、曲げ強度が低下する。実験番号3-20(骨材粒子72重量部)と実験番号3-21(骨材粒子145重量部)の試験結果が、骨材粒子の下限と上限を与えている。そこで本セメント系マトリックスでは、最大骨材粒径となる最大粒径Dmax(D100)が1.2-3.5 mmの骨材粒子を、セメント100重量部に対して70-150重量部配合することにより収縮を低減させ、良好なフレッシュ性状と力学特性を得ることができる。
(8)セメント100重量部に対するシリカフュームの重量部が35となる比較例の実験番号3-24では、フレッシュ性状が悪い。その理由としては、比表面積の非常に大きなシリカフュームを多く配合することにより、高炉スラグ微粉末および/またはフライアッシュの重量部が少なくなり、その結果、シリカフューム粒子径とセメント粒子径の中間に位置する中間粒子径の材料が欠落して、最密充填が適用できなくなるためであると考えられる。さらに一次養生中の収縮量(ひずみ)が大きくなることがわかった。これは、水和初期の段階で水和反応が促進されるためであると考えられる。
(9)一方、セメント100重量部に対するシリカフュームの重量部が0や4となる比較例の実験番号3-27や実験番号3-28においても、フレッシュ性状が悪い。その理由としては、粒子径の小さいシリカフュームが適量配合されないことにより、高炉スラグ微粉末および/またはフライアッシュの重量部が多くなり、その結果、セメント粒子や高炉スラグ微粉末、フライアッシュ粒子間の空隙に充填するマイクロフィラー効果による最密充填の原理が適用できなくなるためであると考えられる。
(10)セメント100重量部に対する高炉スラグ微粉末および/またはフライアッシュ(ポゾラン材)の重量部が85となる比較例の実験番号3-22や、ポゾラン材の重量部が99となる実験番号3-23では、いずれもフレッシュ性状が悪い。この理由としては、前項(8)で述べた理由と同様に、高炉スラグ微粉末および/またはフライアッシュ(ポゾラン材)の重量部が大きすぎると、中間粒子の粉体が多くなりすぎて、最密充填が適用できなくなったためであると考えられる。さらに収縮量(ひずみ)も大きくなった。また、割裂引張強度も実施例に比較すると小さい値にしかならなかった。
(11)セメント100重量部に対して高炉スラグ微粉末および/またはフライアッシュ(ポゾラン材)の重量部が24と小さい比較例の実験番号3-25の場合において、フレッシュ性状は悪く、さらに一次養生後、及び二次養生後の曲げ強度並びに二次養生後の割裂引張強度が実施例に比べて小さいことがわかる。フレッシュ性状が悪いのは、前項(8)や(9)の理由と同じである。割裂引張強度が低下した理由としては、ポゾラン材の重量部低下によりセメントを除く結合材の量が減少して引張強度低下を招いたと考えられる。
(12)実験番号1-8と2-8、1-1と2-1、1-3と2-3、1-10と2-10のペアの配合は、高炉スラグ微粉末のブレーン比表面積をそれぞれ8,470cm2/gと6,130cm2/gとし、他の粉体材料の配合重量部をほぼ同一にした配合である。同様に、実験番号3-13と3-14、3-32と3-31、3-29と3-30のペアの配合は、高炉スラグ微粉末のブレーン比表面積をそれぞれ8,470cm2/gと4,590cm2/gとした配合である。これらペアのフレッシュ性状や力学特性、収縮量の比較から、高炉スラグ微粉末のブレーン比表面積が本実施の形態で示した好ましい範囲内であれば、フレッシュ性状や力学特性、収縮量の結果に影響を与えないことがわかる。
(13)実験番号3-11、3-10、3-21、3-9の配合は、石灰石微粉末のブレーン比表面積をそれぞれ、15,220cm2/g、9,550cm2/g、7,330cm2/g、5,110cm2/gとして、セメント100重量部に対する粉体、骨材粒子の配合をほぼ同一にした比較である。石灰石微粉末のブレーン比表面積を影響要因とした表6に示したこれらの試験結果から、石灰石微粉末のブレーン比表面積が好ましい範囲であれば、フレッシュ性状や力学特性、収縮量の結果に影響を与えないことがわかる。
[収縮ひずみの経時変化について]
 セメント100重量部に対して石灰石微粉末を20重量部配合した場合と配合しない場合について、本実施の形態のセメント系マトリックスの一次養生中や二次養生中において、収縮ひずみに与える影響を明らかにする。さらに、石灰石微粉末のブレーン比表面積の違いが、収縮ひずみに与える影響を調べるために、ブレーン比表面積を5,110 cm2/gと9,550 cm2/gとした場合で比較した。
 図1は、セメント(C)100重量部に対して、ブレーン比表面積が5,110 cm2/gの石灰石微粉末(LS)を20重量部配合した場合(実験番号3-12:実線)と、ブレーン比表面積が9,550 cm2/gの石灰石微粉末を20重量部配合した場合(実験番号3-13:一点鎖線)と、石灰石微粉末を配合せずに(石灰石微粉末0重量部)これをセメントで置換した場合(実験番号3-29:破線)との比較である。
 図1の結果から、石灰石微粉末を配合することにより、一次養生中や二次養生中における収縮ひずみが減少することがわかる。特に、一次養生中における収縮ひずみの低減効果の方が大きい。石灰石微粉末におけるブレーン比表面積の影響については、顕著な差がない。しかし、しいていえばブレーン比表面積が大きいブレーン比表面積9,550 cm2/gの収縮低減効果の方が、ブレーン比表面積5,110 cm2/gの収縮低減効果よりも大きいといえる。
[断熱温度上昇の経時変化について]
 図2に示すように、石灰石微粉末による水和熱温度上昇への低減効果を明らかにするために、図1の場合と同じ配合の組み合せに対して、簡易の断熱温度上昇試験を行った。簡易の断熱温度上昇試験により求められた中心温度や型枠外側の温度変化から、放熱係数を0.015と仮定して、断熱温度上昇量を求めた結果を、図2に示す。
 図2に示す結果から、石灰石微粉末を配合することにより、断熱温度上昇量が低減することがわかる。これは、石灰石微粉末の配合により水和反応時における発熱主体である単位セメント量を低減できることが理由と考えられる。
 また、石灰石微粉末を添加した配合は、しない場合に比べ温度上昇のタイミングが早い。しかし途中から温度上昇は逆転して、石灰石微粉末を添加しない方が、断熱温度上昇が高くなる。温度上昇のタイミングが早まった理由としては、石灰石微粉末がセメント中のエーライト(CS)の初期水和を促進したためであると考えられる。
 以上の結果から、石灰石微粉末のブレーン比表面積の相違による断熱温度上昇量に対する影響は、顕著ではないといえる。しかし、しいていえば、ブレーン比表面積が9,550 cm2/gの方が5,110 cm2/gよりも、断熱温度上昇量への低減効果が低いことがわかる。
 以下、この実施例2では、前記した実施の形態で説明した超高強度繊維補強コンクリートの性能を確認するためにおこなった試験の結果について説明する。なお、前記実施の形態又は実施例1で説明した内容と同一乃至均等な部分の説明については、同一用語を使って説明する。
[使用材料及び配合条件]
 実施例1の表1に示した粉体材料と表2に示した骨材粒子とを使用し、以下の表7に示した配合条件のセメント系マトリックスを用意する。そして、各配合条件のセメント系マトリックスに、表8に示した繊維を混入して超高強度の繊維補強セメント系混合物の供試体を作製し、これを用いた比較試験を行うことにより、本実施の形態で説明した超高強度繊維補強コンクリートの有効性を確認する。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表7に示したマトリックス符号M-1からM-7までの7種類のセメント系マトリックスには、すべて中庸熱ポルトランドセメントを適用した。また、これらの配合は、すべて本実施の形態のセメント系マトリックスの規定範囲内である。
 表8に示した鋼繊維Aから鋼繊維Eは、すべて鋼繊維であり、容積混入率、繊維の長さ又はアスペクト比AR(=Li/d)を変化させている。
[試験項目と試験方法]
(1)フロー値とフロー時間については、実施例1と同じであるため説明を省略する。
(2)圧縮強度:「JIS R 1108(コンクリートの圧縮強度試験方法)」に準じた方法で、内空がφ10×20cmの型枠内に繊維補強セメント系混合材料の混練り材料を打設し、一次養生として35℃までの昇温を+10℃/時間の昇温速度で行い、35℃で16時間保持し、20℃までの降温を-5℃/時間の降温速度で行った後に、二次養生として90℃までの昇温を+10℃/時間の昇温速度で行い、90℃で48時間保持し、20℃までの降温を-5℃/時間の降温速度で行った後に、その硬化体を試験して測定された圧縮強度(二次養生後の圧縮強度)である。なお、試験においては3体の供試体を作製し、強度試験の平均値を圧縮強度とした。
(3)割裂引張強度:「JIS A 1113 (コンクリートの割裂引張強度試験方法)」に準じた方法で、内空がφ10×20cmの型枠内に繊維補強セメント系混合物の混練り材料を打設し、前述の一次養生後に続いて二次養生として90℃までの昇温を+10℃/時間の昇温速度で行い、90℃で48時間保持し、20℃までの降温を-5℃/時間の降温速度で行った後に、その硬化体を試験して測定された割裂引張強度(二次養生後の割裂引張強度)である。
(4)曲げ強度及び曲げじん性係数:「JSCE-G 552-2010(鋼繊維補強コンクリートの曲げ強度および曲げタフネス試験方法)」に準じた方法で、内空が□10×10×40cmの四角筒状の型枠内に繊維補強セメント系混合材料の混練り材料を打設し、前述の一次養生後に続いて二次養生として90℃までの昇温を+10℃/時間の昇温速度で行い、90℃で48時間保持し、20℃までの降温を-5℃/時間の降温速度で行った後に、その硬化体を試験して測定された曲げ強度(二次養生後の曲げ強度)である。なお、曲げじん性係数は、「荷重-中央点のたわみ」測定を行い、上記試験方法に準じて曲げじん性係数を求めたものである。
[試験結果]
 表7に示したセメント系マトリックスに、表8に示した鋼繊維を混入して得られた試験結果を、表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9に示した引張強度の推定値は、曲げ強度(□10×10×40cmの四角柱状供試体)から推定したものである。引張強度は、直接引張試験によるか、切り欠き試験体による曲げ試験の荷重―ひび割れ幅から逆解析により推定することができる。曲げ強度と引張強度とは強い正の相関があることがわかっており、今回は、事前に求めた曲げ強度と引張強度の相関関係式から求めた。
 以下に、試験結果の比較から得られた本実施の形態の超高強度繊維補強コンクリートの効果を箇条書きにする。
(1)表9に示したフレッシュ性状の試験結果から、本実施の形態及び実施例で提示された粉体配合と骨材粒子の配合に対して、所定範囲内の繊維量が混入された場合、良好なフレッシュ性状を示すことがわかった。繊維が混入された超高強度繊維補強コンクリートのフロー時間はいずれの場合も10秒以上であり、繊維を適度に分散できる粘性を有していることがわかる。
(2)実験番号F-1からF-7は、同じ鋼繊維Aに対する異なるセメント系マトリックスの組み合せである。表9の結果から、二次養生後の割裂強度、圧縮強度及び曲げ強度のいずれもが、少ない繊維の混入量(容積混入率1.75%)にもかかわらず、この種の材料としては高い強度特性を示している。また、曲げじん性係数も高い数値を示していることがわかる。
(3)実験番号F-7からF-11は、同じセメント系マトリックス(マトリックス符号M-7)に対する異なる繊維(鋼繊維Aから鋼繊維E)の組み合せである。試験の結果は、いずれも満足のいく力学数値を示した。アスペクト比ARが82の鋼繊維A,Bを使用した場合よりは、アスペクト比ARが91の鋼繊維C,Dを使用した場合の方が若干曲げ強度の増加が見込まれる。
 以上、図面を参照して、本発明の実施の形態及び実施例を詳述してきたが、具体的な構成は、この実施の形態又は実施例に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。
[関連出願への相互参照]
 本出願は、2012年8月21日に日本国特許庁に出願された特願2012-182080に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。

Claims (6)

  1.  ポルトランドセメント100重量部と、
     シリカフューム5-30重量部と、
     石灰石微粉末5-25重量部と、
     高炉スラグ微粉末又はフライアッシュの少なくとも一種類を30-80重量部と、
     少なくとも一種類の混和剤と、
     水と、
     最大骨材粒径が1.2-3.5mmである骨材粒子70-150重量部とを含有することを特徴とするセメント系マトリックス。
  2.  前記骨材粒子の平均粒径を0.17-0.8mmとしたことを特徴とする請求項1に記載のセメント系マトリックス。
  3.  前記石灰石微粉末のブレーン比表面積が5,000 cm2/g以上であることを特徴とする請求項1又は2に記載のセメント系マトリックス。
  4.  前記高炉スラグ微粉末であればブレーン比表面積が3,000 cm2/g以上であり、前記フライアッシュであればブレーン比表面積が2,500 cm2/g以上であることを特徴とする請求項1乃至3のいずれか一項に記載のセメント系マトリックス。
  5.  前記骨材粒子は、最大粒径D100が1.2-2.5mmであり、平均粒径D50が0.2-0.4mmであることを特徴とする請求項1乃至4のいずれか一項に記載のセメント系マトリックス。
  6.  請求項1乃至5のいずれか一項に記載のセメント系マトリックスと、
     全容積の0.7-8.0容積%の繊維とを含有することを特徴とする繊維補強セメント系混合物。
PCT/JP2013/072085 2012-08-21 2013-08-19 セメント系マトリックス及び繊維補強セメント系混合物 WO2014030610A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014531617A JP5623679B2 (ja) 2012-08-21 2013-08-19 セメント系マトリックス及び繊維補強セメント系混合物
US14/404,234 US9115026B2 (en) 2012-08-21 2013-08-19 Cementitious matrix and fiber reinforced cement based mixture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-182080 2012-08-21
JP2012182080 2012-08-21

Publications (1)

Publication Number Publication Date
WO2014030610A1 true WO2014030610A1 (ja) 2014-02-27

Family

ID=50149919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072085 WO2014030610A1 (ja) 2012-08-21 2013-08-19 セメント系マトリックス及び繊維補強セメント系混合物

Country Status (3)

Country Link
US (1) US9115026B2 (ja)
JP (1) JP5623679B2 (ja)
WO (1) WO2014030610A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922671A (zh) * 2014-03-31 2014-07-16 江苏扬建集团有限公司 用于超大面积地下室结构的高性能、低收缩混凝土
JP2016011246A (ja) * 2014-06-05 2016-01-21 太平洋セメント株式会社 水硬性組成物
JP2016023129A (ja) * 2014-07-24 2016-02-08 株式会社安部日鋼工業 プレストレストコンクリート部材
JP2016175817A (ja) * 2015-03-23 2016-10-06 宇部興産株式会社 フレッシュコンクリートの配合決定方法
JP6185682B1 (ja) * 2017-02-08 2017-08-23 株式会社デイ・シイ 高炉スラグ微粉末およびセメント組成物
JP6185681B1 (ja) * 2017-02-08 2017-08-23 株式会社デイ・シイ 高炉スラグ微粉末およびセメント組成物
CN108069632A (zh) * 2017-12-25 2018-05-25 济南大学 一种适用于海工工程的抗冲蚀磷铝酸盐水泥基凝胶材料
CN108585573A (zh) * 2018-05-15 2018-09-28 北京建筑材料科学研究总院有限公司 用于混凝土的复合活性掺合料制备方法
CN109266320A (zh) * 2018-11-06 2019-01-25 中国海洋石油集团有限公司 一种低水化热水泥浆
JP2019131416A (ja) * 2018-01-29 2019-08-08 太平洋セメント株式会社 セメント組成物及びその製造方法
JP2019172497A (ja) * 2018-03-28 2019-10-10 太平洋セメント株式会社 セメント組成物及びその製造方法
JP2019210170A (ja) * 2018-06-01 2019-12-12 大成建設株式会社 吹付け材料
CN111039616A (zh) * 2019-12-06 2020-04-21 中国矿业大学(北京) 一种混凝土组合物及其制备方法与应用
CN113354345A (zh) * 2021-07-09 2021-09-07 吉林建筑大学 一种分步法制备地铁混凝土的方法
JP2021187730A (ja) * 2020-06-04 2021-12-13 エスシージー セメント カンパニー リミテッド 押出成形3dプリンティングに適したフレッシュ性状及び機械的特性を有する結合材料
KR102525169B1 (ko) * 2021-10-21 2023-04-24 문보경 시멘트 강도 강화제 및 그 조성물

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10590039B2 (en) * 2015-12-07 2020-03-17 Cementos Argos S.A. Formulation and method for producing ultra-high-performance concretes
US10071934B1 (en) * 2017-02-22 2018-09-11 Nano And Advanced Materials Institute Limited High performance fire resistant concrete containing hybrid fibers and nano particles
US10981831B2 (en) 2017-09-21 2021-04-20 Crown Products & Services, Inc. Dry mix and concrete composition containing bed ash and related methods
CN111517718B (zh) * 2020-04-26 2021-11-12 上海兆捷实业发展有限公司 一种钢纤维高强度混凝土及其制备方法
KR102414695B1 (ko) * 2020-11-03 2022-07-01 한국건설기술연구원 초고성능 콘크리트를 사용한 초고속 이동체계용 콘크리트 진공튜브 세그먼트 및 그 제작 방법
CN112551965A (zh) * 2021-01-20 2021-03-26 广东新奔达建材实业有限公司 一种高可靠性混凝土
CN112939537A (zh) * 2021-03-12 2021-06-11 湖北工业大学 含有复合纤维的再生混凝土及其制备方法
CN113149536A (zh) * 2021-05-27 2021-07-23 金华职业技术学院 一种再生微粉混凝土及其制备方法
CN114044635A (zh) * 2021-11-15 2022-02-15 中建西部建设湖南有限公司 一种复合水泥、水泥预制件及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209159A (ja) * 1998-01-26 1999-08-03 Mitsubishi Materials Corp セメントコンクリート製品およびその製造方法
JP2002137952A (ja) * 2000-10-25 2002-05-14 Taiheiyo Cement Corp 水硬性組成物
JP2002514567A (ja) * 1998-05-14 2002-05-21 ボイゲ セメントマトリックス中に分散された有機繊維を含むコンクリート、コンクリートセメントマトリックスおよび予備混合物
JP2006219333A (ja) * 2005-02-09 2006-08-24 Mitsubishi Materials Corp 耐硫酸性セメントおよびそれを用いたセメントペースト、モルタル、コンクリートならびにセメント硬化体
JP2007119291A (ja) * 2005-10-27 2007-05-17 Grace Chemicals Kk セメント組成物
JP2009227549A (ja) * 2008-03-25 2009-10-08 Taiheiyo Cement Corp セメント添加材及びセメント組成物
WO2011142003A1 (ja) * 2010-05-12 2011-11-17 株式会社大林組 コンクリート

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2708263B1 (fr) 1993-07-01 1995-10-20 Bouygues Sa Composition de béton de fibres métalliques pour mouler un élément en béton, éléments obtenus et procédé de cure thermique.
JP3230378B2 (ja) 1994-07-12 2001-11-19 三菱マテリアル株式会社 セメント組成物
JP3267091B2 (ja) 1995-03-02 2002-03-18 三菱マテリアル株式会社 セメント組成物
JP2000072518A (ja) 1998-08-26 2000-03-07 Taiheiyo Cement Corp 高流動吹付けコンクリート用セメント
JP4374106B2 (ja) 1999-12-28 2009-12-02 太平洋セメント株式会社 高強度モルタル及び高強度コンクリート
JP2002047050A (ja) * 2000-08-03 2002-02-12 Taiheiyo Cement Corp 高流動コンクリート
JP3397775B2 (ja) 2001-03-08 2003-04-21 太平洋セメント株式会社 水硬性組成物
CN1275895C (zh) 2001-05-29 2006-09-20 太平洋水泥株式会社 水固化性组合物
JP3397774B2 (ja) 2001-05-29 2003-04-21 太平洋セメント株式会社 水硬性組成物
JP3762780B1 (ja) 2005-02-02 2006-04-05 大成建設株式会社 繊維補強コンクリートと繊維補強コンクリート部材の製造方法
JP4558569B2 (ja) 2005-04-18 2010-10-06 電気化学工業株式会社 超高強度繊維補強セメント組成物、超高強度繊維補強モルタル又はコンクリート、並びに超高強度セメント混和材
JP2007119257A (ja) 2005-10-24 2007-05-17 Mitsubishi Materials Corp 高強度コンクリート用材料および高強度硬化体の製造方法
US20080066654A1 (en) * 2006-09-14 2008-03-20 Bj Services Company Low density cements for use in cementing operations
JP4607161B2 (ja) 2007-09-28 2011-01-05 電気化学工業株式会社 低収縮超高強度繊維補強セメント組成物、低収縮超高強度繊維補強モルタル又はコンクリート、並びに低収縮超高強度セメント混和材
JP5336300B2 (ja) 2009-08-21 2013-11-06 株式会社大林組 高じん性・高強度モルタル組成物
US20120041087A1 (en) * 2010-08-12 2012-02-16 Evgeniy Nikolaevich Yastremskiy Dry mixture for manufacturing cellular fibro concrete and method thereof
JP5807322B2 (ja) * 2010-08-26 2015-11-10 株式会社大林組 セメント組成物
AU2011294528B2 (en) * 2010-08-26 2015-05-21 Obayashi Corporation Cement composition, method for producing mixed material and method for producing cement composition
BR112014008312A2 (pt) * 2011-10-06 2017-04-11 Cement Innovations Llc aditivos para cimento e métodos relacionados de uso

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209159A (ja) * 1998-01-26 1999-08-03 Mitsubishi Materials Corp セメントコンクリート製品およびその製造方法
JP2002514567A (ja) * 1998-05-14 2002-05-21 ボイゲ セメントマトリックス中に分散された有機繊維を含むコンクリート、コンクリートセメントマトリックスおよび予備混合物
JP2002137952A (ja) * 2000-10-25 2002-05-14 Taiheiyo Cement Corp 水硬性組成物
JP2006219333A (ja) * 2005-02-09 2006-08-24 Mitsubishi Materials Corp 耐硫酸性セメントおよびそれを用いたセメントペースト、モルタル、コンクリートならびにセメント硬化体
JP2007119291A (ja) * 2005-10-27 2007-05-17 Grace Chemicals Kk セメント組成物
JP2009227549A (ja) * 2008-03-25 2009-10-08 Taiheiyo Cement Corp セメント添加材及びセメント組成物
WO2011142003A1 (ja) * 2010-05-12 2011-11-17 株式会社大林組 コンクリート

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922671A (zh) * 2014-03-31 2014-07-16 江苏扬建集团有限公司 用于超大面积地下室结构的高性能、低收缩混凝土
JP2016011246A (ja) * 2014-06-05 2016-01-21 太平洋セメント株式会社 水硬性組成物
JP2016023129A (ja) * 2014-07-24 2016-02-08 株式会社安部日鋼工業 プレストレストコンクリート部材
JP2016175817A (ja) * 2015-03-23 2016-10-06 宇部興産株式会社 フレッシュコンクリートの配合決定方法
JP6185682B1 (ja) * 2017-02-08 2017-08-23 株式会社デイ・シイ 高炉スラグ微粉末およびセメント組成物
JP6185681B1 (ja) * 2017-02-08 2017-08-23 株式会社デイ・シイ 高炉スラグ微粉末およびセメント組成物
JP2018127374A (ja) * 2017-02-08 2018-08-16 株式会社デイ・シイ 高炉スラグ微粉末およびセメント組成物
JP2018127375A (ja) * 2017-02-08 2018-08-16 株式会社デイ・シイ 高炉スラグ微粉末およびセメント組成物
CN108069632A (zh) * 2017-12-25 2018-05-25 济南大学 一种适用于海工工程的抗冲蚀磷铝酸盐水泥基凝胶材料
CN108069632B (zh) * 2017-12-25 2020-10-30 济南大学 一种适用于海工工程的抗冲蚀磷铝酸盐水泥基凝胶材料
JP7231980B2 (ja) 2018-01-29 2023-03-02 太平洋セメント株式会社 セメント組成物及びその製造方法
JP2019131416A (ja) * 2018-01-29 2019-08-08 太平洋セメント株式会社 セメント組成物及びその製造方法
JP2019172497A (ja) * 2018-03-28 2019-10-10 太平洋セメント株式会社 セメント組成物及びその製造方法
JP7341366B2 (ja) 2018-03-28 2023-09-08 太平洋セメント株式会社 セメント組成物及びその製造方法
JP7231987B2 (ja) 2018-03-28 2023-03-02 太平洋セメント株式会社 セメント組成物及びその製造方法
JP2023053404A (ja) * 2018-03-28 2023-04-12 太平洋セメント株式会社 セメント組成物及びその製造方法
CN108585573A (zh) * 2018-05-15 2018-09-28 北京建筑材料科学研究总院有限公司 用于混凝土的复合活性掺合料制备方法
JP2019210170A (ja) * 2018-06-01 2019-12-12 大成建設株式会社 吹付け材料
CN109266320A (zh) * 2018-11-06 2019-01-25 中国海洋石油集团有限公司 一种低水化热水泥浆
CN111039616A (zh) * 2019-12-06 2020-04-21 中国矿业大学(北京) 一种混凝土组合物及其制备方法与应用
CN111039616B (zh) * 2019-12-06 2021-10-29 中国矿业大学(北京) 一种混凝土组合物及其制备方法与应用
JP7323256B2 (ja) 2020-06-04 2023-08-08 エスシージー セメント カンパニー リミテッド 押出成形3dプリンティングに適したフレッシュ性状及び機械的特性を有する結合材料
JP2021187730A (ja) * 2020-06-04 2021-12-13 エスシージー セメント カンパニー リミテッド 押出成形3dプリンティングに適したフレッシュ性状及び機械的特性を有する結合材料
CN113354345A (zh) * 2021-07-09 2021-09-07 吉林建筑大学 一种分步法制备地铁混凝土的方法
CN113354345B (zh) * 2021-07-09 2022-07-26 吉林建筑大学 一种分步法制备地铁混凝土的方法
KR102525169B1 (ko) * 2021-10-21 2023-04-24 문보경 시멘트 강도 강화제 및 그 조성물

Also Published As

Publication number Publication date
JPWO2014030610A1 (ja) 2016-07-28
JP5623679B2 (ja) 2014-11-12
US20150166414A1 (en) 2015-06-18
US9115026B2 (en) 2015-08-25

Similar Documents

Publication Publication Date Title
JP5623679B2 (ja) セメント系マトリックス及び繊維補強セメント系混合物
JP5620014B2 (ja) 繊維補強セメント系混合材料
JP5681676B2 (ja) セメント組成物、セメント系マトリックス、繊維補強セメント系混合物及びセメント混和材
Yazıcı et al. The effect of autoclave pressure, temperature and duration time on mechanical properties of reactive powder concrete
Yazıcı et al. Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes
US10604449B2 (en) Self-prestressed reinforced concrete elements
KR100893495B1 (ko) 자기충전용 저발열 고강도 콘크리트 조성물 및 그 제조방법
Yuksel et al. Properties of concrete containing nonground ash and slag as fine aggregate
KR100877026B1 (ko) 수경성 조성물
Meleka et al. Ultra high strength concrete using economical materials
Amin et al. Properties and microstructure of high strength concrete incorporating different supplementary cementitious materials
Cai et al. Development of high-early-strength low-carbon engineered cementitious composites with calcium sulfoaluminate cement incorporating high-volume fly ash
Gesoglu et al. Properties of ultra-high performance fiber reinforced cementitious composites made with gypsum-contaminated aggregates and cured at normal and elevated temperatures
Gayathiri et al. Retaining the Particle packing approach and its application in developing the cement composites towards sustainability
Vivek Performance of ternary blend SCC with ground granulated blast furnace slag and metakaolin
JP4298247B2 (ja) 高流動コンクリート
JP4519252B2 (ja) 耐震補強パネル
Abou Rachied et al. Structural behavior of beams cast using normal and high strength concrete containing blends of ceramic waste powder and blast furnace slag
JP5863296B2 (ja) 超高強度セメント系硬化体の製造方法
Demirhan Effect of different nanosized limestone formations on fiber‐matrix interface properties of engineered cementitious composites
Sha et al. Development of a fast-hardening retarding high-early-strength concrete with low-alkalinity sulphoaluminate cement and practical application
RU2782653C1 (ru) Бетонная смесь
JP4781303B2 (ja) 調整リング
Weyers Optimised Mix Composition and Structural Behaviour of Ultra-High-Performance Fibre Reinforced Concrete
Fan et al. High Stiffness Concrete for Tall Buildings under Severe Conditions: Mix Design and Structural Member Test

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014531617

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14404234

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831604

Country of ref document: EP

Kind code of ref document: A1