WO2014027463A1 - 高周波焼入れ用鋼材 - Google Patents
高周波焼入れ用鋼材 Download PDFInfo
- Publication number
- WO2014027463A1 WO2014027463A1 PCT/JP2013/004855 JP2013004855W WO2014027463A1 WO 2014027463 A1 WO2014027463 A1 WO 2014027463A1 JP 2013004855 W JP2013004855 W JP 2013004855W WO 2014027463 A1 WO2014027463 A1 WO 2014027463A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel
- content
- induction hardening
- steel material
- less
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
- C21D1/09—Surface hardening by direct application of electrical or wave energy; by particle radiation
- C21D1/10—Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/40—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to a steel material, and more particularly to a steel material for induction hardening.
- Induction hardening can cure only the necessary parts. Moreover, when an induction hardening apparatus is arrange
- inclusions non-metallic inclusions in steel (hereinafter also simply referred to as “inclusions”), particularly oxides and sulfides. Therefore, conventionally, the content of O (oxygen) and S (sulfur) in the steel is reduced by a steelmaking process to increase the rolling fatigue life.
- the induction hardening steel used as a component material is required to further improve the rolling fatigue life.
- Patent Document 1 JP-A-11-1749
- the steel for induction hardening disclosed in Patent Document 1 is a linear or rod-shaped rolled steel material. And, in a longitudinal section passing through the axis of the rolled steel material, a virtual line that is parallel to the axis and separated from the axis by (1/4) ⁇ D (“D” represents the diameter of the rolled steel material) is taken as the center line.
- the number of composite inclusions having an average particle diameter of 10 ⁇ m or more, which is made of an oxide and a sulfide, existing in a test area of 100 mm 2 is 20 or less.
- the chemical composition of induction hardened steel of Patent Document 1 is, in mass%, C: more than 0.3% to 0.7% or less, Mn: 0.3 to 2.5%, Si: 2% or less (0 %), P: 0.03% or less (including 0%), S: 0.1% or less (including 0%), Al: 0.015 to 0.05%, and O: 0.002% (Including 0%) below, and if necessary, (a) at least one selected from the group consisting of a specific amount of Cu, Ni, Cr and Mo, (b) a specific amount of V, Nb And at least one selected from the group consisting of Ti and (c) at least one selected from the group consisting of specific amounts of Ca, Pb, Te, Bi and Zr, and (d) specific amounts of B and N It contains an element selected from at least one element group of the four element groups, and the balance consists of Fe and inevitable impurities.
- Patent Document 1 describes the following matters. If the oxide-based and sulfide-based coarse composite inclusions having an average particle diameter of 10 ⁇ m or more are suppressed as much as possible, bending fatigue characteristics and rolling fatigue characteristics are improved. And in order to reduce a coarse composite inclusion, content of Al, S, and O is controlled to an appropriate range, and also the cooling rate of a slab, the heating conditions at the time of rolling, and rolling conditions are controlled.
- the electric resistance welded steel pipe disclosed in Patent Document 2 is, in mass%, C: 0.15 to 0.55%, Si: 0.01 to 0.30%, M n: 0.5 to 1.5%, Ca: 0.0010 to 0.0030%, S: 0.0005 to 0.0050%, O: 0.0005 to 0.0050%. Further, the contents of Ca, O and S in the steel satisfy 0.10 ⁇ [Ca] (1-124 [O]) / 1.25 [S] ⁇ 2.50. Furthermore, the average particle diameter of Ca-based inclusions present in the base material and the ERW weld is 1.0 to 10 ⁇ m, and the density of Ca-based inclusions is 3 to 300 / mm 2 . Furthermore, the difference ⁇ Hv between the maximum hardness of the ERW weld and the average hardness of the base material is 100 to 500.
- Patent Document 2 describes that by satisfying the above formula, the average particle diameter and distribution density of calcium-based oxides (CaO) and sulfides (CaS) are in an appropriate range, and fatigue characteristics are enhanced. Yes.
- Patent Document 1 does not consider the composition control of oxides and sulfides at all. Therefore, even when the content of Al or O is small, coarse oxides may appear and an excellent rolling fatigue life may not be obtained.
- Patent Document 2 originally relates to ERW steel pipes and does not consider rolling fatigue life. Moreover, the ERW steel pipe is not premised on performing hot forging and induction hardening. Furthermore, Patent Document 2 does not consider the composition control of oxides and sulfides.
- An object of the present invention is to provide a steel material for induction hardening that exhibits excellent rolling fatigue life after induction hardening.
- the steel for induction hardening according to the present embodiment is mass%, C: 0.4 to 0.6%, Si: 0.03 to 1.0%, Mn: 0.2 to 2.0%, P: 0.05% or less, S: less than 0.010%, Cr: 0.05 to 0.50%, Al: 0.01 to 0.10%, Ca: 0.0003 to 0.0030%, O: 0 .0030% or less, N: 0.003 to 0.030%, Cu: 0 to 1.0%, Ni: 0 to 3.0%, Mo: 0 to 0.15%, V: 0 to 0.30 %, Nb: 0 to 0.10%, B: 0 to 0.0030%, and Ti: 0 to 0.10%, and the balance is composed of Fe and impurities, and the formulas (1) and (2 ).
- the content (mass%) of the corresponding element is substituted for the element symbols in the formulas (1) and (2).
- the steel for induction hardening according to the present embodiment has an excellent rolling fatigue life.
- FIG. 1 is a diagram for explaining the influence of the amount of Ca / O and S in steel on the formation of coarse oxides and dot-like oxides.
- FIG. 2A is a plan view of a thrust type rolling fatigue test piece used in Examples.
- FIG. 2B is a schematic diagram for explaining the induction hardening process for the test piece shown in FIG. 2A.
- the mechanism of rolling fatigue is understood as follows. Repeated loads are applied to the inclusions present in the steel material, and the steel material cracks due to stress concentration. Thereafter, the crack gradually develops due to repeated loading, and finally a part of the steel material is peeled off.
- the inventors of the present invention have examined the composition and form of inclusions in steel. As a result, the inventors obtained knowledge (A) to (D).
- the sulfide composition can be controlled. Specifically, for example, Ca is added to molten steel to generate (Mn, Ca) S and CaS. Due to the formation of (Mn, Ca) S and CaS, the diameter of the sulfide is reduced and dispersed. Therefore, coarse sulfides that become a stress concentration source of rolling fatigue are reduced.
- the oxide is a chemical composition mainly composed of Al 2 O 3, Al 2 O 3 principal oxides are aggregated and coalesced May exist as coarse inclusions. If a coarse Al 2 O 3 main oxide is formed, a good rolling fatigue life may not be obtained.
- Al killed steel aluminum killed steel
- Al 2 O 3 which is a deoxidation product reacts with Ca to form (Al , Ca) changes to O. Due to this change, the oxide in the molten steel is spheroidized. Therefore, aggregation and coarsening of the oxide are suppressed.
- the present inventors investigated the influence of Ca content on the composition and morphology of oxides and sulfides in steel. As a result, the present inventor further obtained knowledge (E) and (F).
- the composition of oxides in steel depends on the ratio of Ca content to Ca content (Ca / O) in steel.
- Ca / O satisfies the formula (1), many (Al, Ca) O are generated in the steel, and the formation of coarse oxides (oxides mainly composed of Al 2 O 3 and / or CaO) is suppressed. Is done. 0.7 ⁇ Ca / O ⁇ 2.0 (1)
- the steel materials for induction hardening of the present embodiment completed based on the above knowledge are as follows.
- the steel for induction hardening according to the present embodiment is mass%, C: 0.4 to 0.6%, Si: 0.03 to 1.0%, Mn: 0.2 to 2.0%, P: 0 0.05% or less, S: less than 0.010%, Cr: 0.05 to 0.50%, Al: 0.01 to 0.10%, Ca: 0.0003 to 0.0030%, O: 0.0.
- N 0.003 to 0.030%
- Cu 0 to 1.0%
- Ni 0 to 3.0%
- Mo 0 to 0.15%
- V 0 to 0.30%
- Nb 0 to 0.10%
- B 0 to 0.0030%
- Ti 0 to 0.10%
- the balance being Fe and impurities
- the formulas (1) and (2) It has a chemical composition satisfying 0.7 ⁇ Ca / O ⁇ 2.0 (1) Ca / O ⁇ 1250S-5.8 (2)
- the content (mass%) of the corresponding element is substituted for the element symbols in the formulas (1) and (2).
- the chemical composition of the steel for induction hardening may contain C: 0.48 to 0.6%.
- the chemical composition of the steel for induction hardening may contain C: 0.50 to 0.6%.
- the chemical composition of the steel for induction hardening may include N: more than 0.0050% to 0.030%.
- the chemical composition of the steel for induction hardening is selected from the group consisting of Cu: 0.05 to 1.0%, Ni: 0.05 to 3.0%, and Mo: 0.02 to 0.15%. 1 type (s) or 2 or more types may be contained.
- the chemical composition of the steel for induction hardening may include one or two selected from the group consisting of V: 0.01 to 0.30% and Nb: 0.01 to 0.10%. Good.
- the chemical composition of the steel for induction hardening may include B: 0.0005 to 0.0030% and Ti: 0.01 to 0.10%.
- the steel for induction hardening according to this embodiment has good durability against breakage due to rolling fatigue even under the severe usage environment of rolling members in recent years. Therefore, the rolling fatigue life after induction hardening is excellent.
- the steel material for induction hardening according to the present embodiment can be suitably used as a material for parts subjected to induction hardening such as “constant velocity joints” and “hub units” used as automobile parts.
- the chemical composition of the steel for induction hardening according to the present embodiment contains the following elements.
- Carbon (C) increases the hardness of the rolling part of the component after induction hardening. If the C content is too low, the above effect cannot be obtained. On the other hand, if the C content is too high, the hardness of the steel material becomes too high, and the forgeability of the steel material decreases. Furthermore, the tool life for cutting the steel material is reduced. If the C content is too high, the toughness of the induction-quenched portion may further decrease and the rolling fatigue life may decrease. Therefore, the C content is 0.4 to 0.6%.
- the minimum with preferable C content is 0.42%, More preferably, it is 0.48%, More preferably, it is 0.50%.
- the upper limit with preferable C content is 0.58%.
- Si 0.03-1.0%
- Silicon (Si) enhances the hardenability of the steel material and forms a hardened layer in the rolling part after induction hardening. If the Si content is too low, a cured layer having a sufficient depth cannot be formed. On the other hand, if the Si content is too high, the hardness of the steel material becomes too high and the forgeability of the steel material decreases. Furthermore, the tool life for cutting the steel material is reduced. Therefore, the Si content is 0.03 to 1.0%. The minimum with preferable Si content is 0.1%, More preferably, it is 0.12%. The upper limit with preferable Si content is 0.8%.
- Mn 0.2 to 2.0%
- Manganese (Mn) increases the hardenability of the steel material and increases the hardness of the rolling part after induction hardening. If the Mn content is too low, the above effect cannot be obtained. On the other hand, if the Mn content is too high, the hardness of the steel material becomes too high and the forgeability of the steel material decreases. Furthermore, the tool life for cutting the steel material is reduced. Therefore, the Mn content is 0.2 to 2.0%.
- the minimum with preferable Mn content is 0.3%, More preferably, it is 0.5%.
- the upper limit with preferable Mn content is 1.5%, More preferably, it is 1.0%.
- Phosphorus (P) is an impurity. P segregates at the grain boundaries and reduces the rolling fatigue life of the steel material. Therefore, the P content is preferably as low as possible. Therefore, the P content is 0.05% or less. P content is preferably 0.03% or less, more preferably 0.02% or less.
- S Sulfur
- S is an impurity. S forms coarse sulfides and reduces the rolling fatigue life of the steel material. Accordingly, the S content is preferably as low as possible. Therefore, the S content is less than 0.010%.
- the preferable S content is 0.006% or less, and more preferably 0.002% or less. The S content further satisfies the formula (2).
- Chromium (Cr) enhances the hardenability of the steel material and forms a hardened layer in the rolling part after induction hardening. If the Cr content is too low, a cured layer having a sufficient depth cannot be formed. On the other hand, if the Cr content is too high, the hardenability of the steel material is lowered in the case of induction heat treatment. Furthermore, the life of the tool for cutting the steel material is also reduced. Therefore, the Cr content is 0.05 to 0.50%. The minimum with preferable Cr content is 0.10%. The upper limit with preferable Cr content is 0.40%, More preferably, it is 0.30%.
- Al 0.01 to 0.10%
- Aluminum (Al) deoxidizes steel. Further, Al combines with N to form AlN, and suppresses the coarsening of crystal grains in the quenched portion of the steel material. If the Al content is too low, this effect cannot be obtained. On the other hand, if the Al content is too high, the induction hardenability of the steel material decreases. Therefore, the Al content is 0.01 to 0.10%. A preferred lower limit of the Al content is 0.015%. The upper limit with preferable Al content is 0.08%, More preferably, it is 0.050%.
- the Al content means the total Al content.
- Ca 0.0003 to 0.0030% Calcium (Ca) forms an appropriate amount of (Al, Ca) O as an oxide. If (Al, Ca) O is formed, the interfacial energy between the matrix and the inclusions is reduced, and the cohesive strength of the oxide is reduced. Therefore, the coarsening of the oxide in steel is suppressed and the rolling fatigue life is increased. Ca further dissolves in the sulfide to form (Mn, Ca) S and CaS. (Mn, Ca) S and CaS are not easily stretched and are not easily coarsened. Since (Mn, Ca) S and CaS are further crystallized from MnS, these sulfide inclusions are more uniformly dispersed in the steel than MnS. Therefore, the rolling fatigue life is increased.
- the Ca content is 0.0003 to 0.0030%.
- a preferable lower limit of the Ca content is 0.0005%.
- the upper limit with preferable Ca content is 0.0025%.
- the Ca content further satisfies the expressions (1) and (2).
- Oxygen (O) is an impurity. O forms a coarse oxide in the steel and reduces the rolling fatigue life of the steel material. Therefore, it is preferable that the O content is as low as possible.
- the O content is 0.0030% or less.
- a preferable O content is 0.0025% or less, and more preferably 0.0020% or less.
- the O content further satisfies formulas (1) and (2).
- N 0.003 to 0.030% Nitrogen (N) combines with Al in the steel to form AlN and suppresses the coarsening of crystal grains in the quenched portion of the steel material. If the N content is too low, the above effect cannot be obtained. On the other hand, if the N content is too high, coarse nitrides are generated, and the rolling fatigue life of the steel material is reduced. Therefore, the N content is 0.003 to 0.030%. The minimum with preferable N content is 0.0040%, More preferably, it exceeds 0.0050%.
- the preferred lower limit of the N content is 0.005%.
- the upper limit with preferable N content is less than 0.030%, More preferably, it is less than 0.010%, More preferably, it is 0.008%.
- Ca / O is an index of the oxide composition in the steel after adding Ca.
- Ca / O is less than 0.7, Al 2 O 3 does not completely change to (Al, Ca) O, and the specific Al oxide (coarse spinel mainly composed of Al 2 O 3 and / or dots Column-shaped Al 2 O 3 oxide group).
- the specific Al oxide decreases the rolling fatigue life.
- a specific Ca oxide (a high-melting-point coarse oxide and / or dot-line CaO oxide mainly composed of CaO) is formed.
- the specific Ca oxide decreases the rolling fatigue life.
- Ca reacts not only with O in steel but also with S in steel. Therefore, even if Ca / O satisfies the formula (1), the generation of the specific Al oxide may not be suppressed.
- FIG. 1 is a diagram schematically showing the relationship between the aforementioned Ca / O and S content and the range satisfying the formulas (1) and (2).
- the vertical axis in the figure is the ratio of Ca content to O content (Ca / O).
- a horizontal axis is S content (mass%) in steel materials.
- the hatched area A1 in FIG. 1 is surrounded by straight lines L100, L200, and L300.
- (Al, Ca) O is generated, and the generation of characteristic Al oxide and specific Ca oxide is suppressed. Therefore, the rolling fatigue life of the steel material is increased.
- the balance of the steel for induction hardening according to this embodiment is made of Fe and impurities.
- the impurities are mixed from ore as a raw material, scrap, or a manufacturing environment when the steel material is industrially manufactured, and have an adverse effect on the induction hardening steel material of the present embodiment. It means what is allowed in the range.
- the steel for induction hardening according to this embodiment may contain one or more selected from the group consisting of Cu, Ni, and Mo. All of Cu, Ni and Mo further increase the hardness of the rolling part of the component after induction hardening.
- Cu 0 to 1.0% Copper (Cu) is an optional element and may not be contained.
- Cu like C and Mn, increases the hardness of the rolling part of the component after induction hardening.
- the Cu content is 0 to 1.0%.
- the minimum with preferable Cu content for acquiring the said effect more stably is 0.05%, More preferably, it is 0.07%.
- the upper limit with preferable Cu content is 0.5%.
- Nickel (Ni) is an optional element and may not be contained. When contained, Ni increases the hardness of the rolling part of the component after induction hardening, like C and Mn. However, if Ni content is too high, the fall of the fatigue strength of steel materials will fall. Therefore, the Ni content is 0 to 3.0%.
- the preferable lower limit of the Ni content for obtaining the above effect more stably is 0.05%, and more preferably 0.07%.
- the upper limit with preferable Ni content is 2.0%.
- Mo 0 to 0.15%
- Molybdenum (Mo) is an optional element and may not be contained. When contained, Mo increases the hardness of the rolling part of the component after induction hardening, like C and Mn. However, if the Mo content is too high, this effect is saturated and the manufacturing cost increases. Therefore, the Mo content is 0 to 0.15%.
- the minimum with preferable Mo content for acquiring the said effect more stably is 0.02%, More preferably, it is 0.03%.
- the upper limit with preferable Mo content is 0.12%.
- the steel for induction hardening according to the present embodiment can contain one or more selected from the group consisting of Cu, Ni, and Mo.
- the upper limit of the total amount is 4.15%.
- the steel for induction hardening of the present embodiment may further contain one or two selected from the group consisting of V and Nb.
- V and Nb are optional elements.
- the steel material is heated to a high temperature even for a short time.
- V and Nb both suppress the coarsening of crystal grains in the quenched portion of the steel material.
- V Vanadium (V) is an optional element and may not be contained. When contained, V combines with N to form a nitride. The formed nitride suppresses the coarsening of crystal grains in the quenched portion of the steel material. V further combines with C to increase the strength of the steel material. However, if the V content is too high, the effect of suppressing the coarsening of the crystal grains in the quenched portion is saturated. Furthermore, the strength of the steel material becomes too high, and the machinability decreases. Therefore, the V content is 0 to 0.30%. The minimum with preferable V content for acquiring the said effect more stably is 0.01%, More preferably, it is 0.015%. The upper limit with preferable V content is 0.20%.
- Niobium (Nb) is an optional element and may not be contained. When contained, Nb combines with N to form a nitride. The formed nitride suppresses the coarsening of crystal grains in the quenched portion of the steel material. Nb further combines with C to increase the strength of the steel material. However, if the Nb content is too high, the effect of suppressing the coarsening of crystal grains in the quenched portion is saturated. Furthermore, the strength of the steel material becomes too high, and the machinability decreases. Therefore, the Nb content is 0 to 0.10%. The minimum with preferable Nb content for acquiring the said effect more stably is 0.01%, More preferably, it is 0.012%. The upper limit with preferable Nb content is 0.08%.
- the steel for induction hardening according to this embodiment can contain one or two selected from the group consisting of V and Nb.
- the upper limit of the total amount when these elements are contained in combination is 0.40%.
- the steel for induction hardening according to the present embodiment may further contain B and Ti.
- B and Ti are optional elements.
- B 0 to 0.0030%
- B is an optional element and may not be contained.
- B enhances the hardenability of the steel. Therefore, the depth of the hardened layer of the rolling part of the component after induction hardening can be further increased.
- the B content is 0 to 0.0030%.
- the minimum with preferable B content for obtaining the said effect more stably is 0.0005%, More preferably, it is 0.0007%.
- the upper limit with preferable B content is 0.0020%.
- Titanium (Ti) is an optional element and may not be contained.
- the solid solution B improves the hardenability of the steel material.
- BN in which B is combined with N does not increase the hardenability of the steel material. Therefore, when B is contained, Ti also has a higher affinity with N than B and easily forms nitrides.
- the Ti content is 0 to 0.10%.
- the minimum with preferable Ti content for acquiring the said effect more stably is 0.01%, More preferably, it is 0.015%.
- the upper limit with preferable Ti content is 0.05%.
- a method for producing the above-described steel for induction hardening will be described.
- a method for manufacturing a steel bar that is a steel material for induction hardening and a process for manufacturing a hot forged product using a steel material for induction hardening (a steel bar) will be described.
- the hot forged product is, for example, a part used in automobiles, industrial machines, and the like, and more specifically, is a part such as a constant velocity joint or a hub unit.
- a molten steel satisfying the above chemical composition and the formulas (1) and (2) is manufactured.
- a deoxidation process is implemented with Al with respect to molten steel.
- the Ca—Si alloy is contained in the molten steel to adjust the Ca content of the steel material.
- Slabs are made by casting using the produced molten steel. You may make molten steel into an ingot (steel ingot) by the ingot-making method. A billet (steel piece) is manufactured by hot working a slab or an ingot. A billet is hot-worked to produce a steel bar. The hot working may be hot rolling or hot forging. The steel material for induction hardening is manufactured by the above manufacturing process.
- the manufactured steel for induction hardening is hot forged.
- a normalizing treatment is performed on the hot-forged steel for induction hardening as necessary.
- the steel material for induction hardening that has been hot forged is machined into a predetermined shape.
- a tempering treatment may be performed on the machined steel for induction hardening.
- Induction hardening is performed on the steel for induction hardening that has undergone the above processes.
- the steel for induction hardening according to the present embodiment has an excellent rolling fatigue life after induction hardening is performed.
- each steel ingot was heated to a temperature in the temperature range of 1200 to 1300 ° C. according to the chemical composition. And the hot forging was implemented with respect to the heated steel ingot, and the round bar of diameter 80mm was manufactured. The finishing temperature during hot forging was 1000 ° C. or higher. The round bar after hot forging was allowed to cool to room temperature in the atmosphere.
- each round bar was heated at 850 ° C. for 30 minutes and then allowed to cool to room temperature in the atmosphere.
- FIG. 2A is a plan view of a test piece material (test material) 1 used in a rolling fatigue test.
- a disk-shaped test material 1 having a diameter D1 of 60 mm and a thickness of 10 mm was produced from the center of each round bar.
- the central axis of the test material 1 coincided with the central axis of the round bar.
- the inner diameter D2 of the annular region 10 was 35 mm, and the outer diameter D3 was 45 mm.
- Induction hardening was performed on the annular region 10 having a radius of 17.5 to 22.5 mm from the center of the surface of the test material 1.
- the annular coil 2 formed in accordance with the shape of the annular region 10 was disposed immediately above the annular region 10.
- High frequency heating was performed while rotating the test material 1 in the direction of the arrow in FIG. 2B.
- the frequency during high-frequency heating was 30 kHz
- the output was 100 kW
- the heating time was 1.7 seconds.
- the test material 1 after heating was water quenched. Tempering was performed on the test material 1 after quenching. Specifically, the test material 1 was heated at 150 ° C. for 1 hour and then allowed to cool in the air.
- the surface opposite to the surface on which induction hardening was performed was ground. Furthermore, the surface subjected to induction hardening was mirror-finished to produce a rolling fatigue test piece having a thickness of 5.0 mm.
- the rolling fatigue test was carried out with the mirror-finished surface of the surface of the rolling fatigue test piece being the test surface.
- a Mori-type thrust type rolling fatigue tester was used for the rolling fatigue test. The test was performed under the conditions of a maximum contact surface pressure of 5230 MPa and a repetition rate of 1800 cpm (cycle per minute). The test part was an annular region having a radius of 19.25 mm from the center of the test surface. A SUJ2 tempered material specified in JIS G 4805 (2008) was used as a steel ball (counterball). In the rolling fatigue test, the number of stress repetitions until peeling was measured. Table 2 shows the detailed conditions of the rolling fatigue test.
- Table 3 shows the resulting L 10 life in the above test.
- the numerical value in the “L 10 life” column describes the L 10 life ( ⁇ 10 6 ) of each test number.
- the chemical compositions of steels 1 to 18 with test numbers 1 to 18 were appropriate, and Ca / O satisfied the formulas (1) and (2). Therefore, the L 10 life was 5.34 ⁇ 10 6 or more, and an excellent rolling fatigue life was obtained.
- test number 24 the O content of steel 24 was too high at 0.0041%. For this reason, a large amount of coarse oxide was easily generated, and the L 10 life was less than 5.0 ⁇ 10 6 (0.920 ⁇ 10 6 ).
- the S content of steel 25 was too high at 0.0220%. Therefore, a large amount of coarse sulfide is easily generated, and a large amount of Ca and S easily forms CaS, so that the amount of Ca that reacts with Al 2 O 3 tends to be small. Therefore, the L 10 life was less than 5.0 ⁇ 10 6 (0.765 ⁇ 10 6 ).
- the steel material for induction hardening according to the present embodiment has good durability against damage due to rolling fatigue and has an excellent rolling fatigue life even under the severe use environment of rolling members in recent years. For this reason, the steel for induction hardening according to the present embodiment is widely applicable to applications requiring excellent rolling fatigue life, and particularly induction hardening such as “constant velocity joints” and “hub units” used as automobile parts. Can be suitably used as a material of a rolling member on which the above is implemented.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
0.7≦Ca/O≦2.0・・・(1)
Ca/O≧1250S-5.8・・・(2)
ここで、式(1)及び式(2)中の元素記号には、対応する元素の含有量(質量%)が代入される。
0.7≦Ca/O≦2.0・・・(1)
Ca/O≧1250S-5.8・・・(2)
0.7≦Ca/O≦2.0・・・(1)
Ca/O≧1250S-5.8・・・(2)
ここで、式(1)及び式(2)中の元素記号には、対応する元素の含有量(質量%)が代入される。
炭素(C)は、高周波焼入れ後に部品の転動部の硬さを高める。C含有量が低すぎれば、上記効果が得られない。一方、C含有量が高すぎれば、鋼材の硬さが高くなりすぎ、鋼材の鍛造性が低下する。さらに、鋼材を切削する工具の寿命が低下する。C含有量が高すぎればさらに、高周波焼入れ部の靱性が低下し、転動疲労寿命が低下する場合がある。したがって、C含有量は0.4~0.6%である。C含有量の好ましい下限は0.42%であり、さらに好ましくは0.48%であり、さらに好ましくは0.50%である。C含有量の好ましい上限は0.58%である。
シリコン(Si)は、鋼材の焼入れ性を高め、高周波焼入れ後に転動部に硬化層を形成する。Si含有量が低すぎれば、十分な深さの硬化層が形成されない。一方、Si含有量が高すぎれば、鋼材の硬さが高くなりすぎ、鋼材の鍛造性が低下する。さらに、鋼材を切削する工具の寿命が低下する。したがって、Si含有量は0.03~1.0%である。Si含有量の好ましい下限は0.1%であり、さらに好ましくは0.12%である。Si含有量の好ましい上限は0.8%である。
マンガン(Mn)は、鋼材の焼入れ性を高め、高周波焼入れ後に転動部の硬さを高める。Mn含有量が低すぎれば、上記効果が得られない。一方、Mn含有量が高すぎれば、鋼材の硬さが高くなりすぎ、鋼材の鍛造性が低下する。さらに、鋼材を切削する工具の寿命が低下する。したがって、Mn含有量は0.2~2.0%である。Mn含有量の好ましい下限は0.3%であり、さらに好ましくは0.5%である。Mn含有量の好ましい上限は1.5%であり、さらに好ましくは1.0%である。
燐(P)は、不純物である。Pは、結晶粒界に偏析して鋼材の転動疲労寿命を低下する。したがって、P含有量はなるべく低い方が好ましい。したがって、P含有量は0.05%以下である。好ましいP含有量は0.03%以下であり、さらに好ましくは0.02%以下である。
硫黄(S)は、不純物である。Sは、粗大な硫化物を形成して鋼材の転動疲労寿命を低下する。したがって、S含有量はなるべく低い方が好ましい。したがって、Sの含有量は0.010%未満である。好ましいS含有量は0.006%以下であり、さらに好ましくは0.002%以下である。S含有量はさらに、式(2)を満たす。
クロム(Cr)は、鋼材の焼入れ性を高め、高周波焼入れ後に転動部に硬化層を形成する。Cr含有量が低すぎれば、十分な深さの硬化層が形成されない。一方、Cr含有量が高すぎれば、高周波熱処理の場合、鋼材の焼入れ性が低下する。さらに、鋼材を切削する工具の寿命も低下する。したがって、Cr含有量は0.05~0.50%である。Cr含有量の好ましい下限は0.10%である。Cr含有量の好ましい上限は0.40%であり、さらに好ましくは0.30%である。
アルミニウム(Al)は、鋼を脱酸する。Alはさらに、Nと結合してAlNを形成し、鋼材の焼入れ部分の結晶粒の粗大化を抑制する。Al含有量が低すぎれば、この効果が得られない。一方、Al含有量が高すぎれば、鋼材の高周波焼入れ性が低下する。したがって、Al含有量は0.01~0.10%である。Al含有量の好ましい下限は0.015%である。Al含有量の好ましい上限は0.08%であり、さらに好ましくは0.050%である。
カルシウム(Ca)は、酸化物として、適量の(Al、Ca)Oを形成する。(Al、Ca)Oが形成されれば、マトリクスと介在物との間の界面エネルギが低下して酸化物の凝集力が低下する。そのため、鋼中の酸化物の粗大化が抑制され、転動疲労寿命が高まる。Caはさらに、硫化物中に固溶して(Mn、Ca)S及びCaSを形成する。(Mn、Ca)S及びCaSは延伸されにくく、粗大化しにくい。(Mn、Ca)S及びCaSはさらに、MnSとは異なる晶出形態であるため、これらの硫化物系介在物はMnSよりも鋼中に均一に分散する。そのため、転動疲労寿命が高まる。Ca含有量が低すぎれば上記効果は得られない。一方、Ca含有量が高すぎれば、酸化物が粗大化して転動疲労寿命が低下する。したがって、Ca含有量は0.0003~0.0030%である。Ca含有量の好ましい下限は0.0005%である。Ca含有量の好ましい上限は0.0025%である。Ca含有量はさらに、式(1)及び式(2)を満たす。
酸素(O)は不純物である。Oは、鋼中に粗大な酸化物を形成し、鋼材の転動疲労寿命を低下する。したがって、O含有量はなるべく低い方が好ましい。O含有量は、0.0030%以下である。好ましいO含有量は0.0025%以下であり、さらに好ましくは0.0020%以下である。O含有量はさらに式(1)及び式(2)を満たす。
窒素(N)は、鋼中のAlと結合してAlNを形成して、鋼材の焼入れ部分の結晶粒の粗大化を抑制する。N含有量が低すぎれば、上記効果が得られない。一方、N含有量が高すぎれば、粗大な窒化物が生成し、鋼材の転動疲労寿命が低下する。したがって、Nの含有量は0.003~0.030%である。N含有量の好ましい下限は0.0040%であり、さらに好ましくは、0.0050%を超える。
本実施形態の高周波焼入れ用鋼材の化学組成はさらに、O含有量に対するCa含有量の比(Ca/O)が式(1)を満たす。
0.7≦Ca/O≦2.0・・・(1)
ここで、式(1)中の元素記号には、対応する元素の含有量(質量%)が代入される。
本実施形態の高周波焼入れ用鋼材の化学組成はさらに、Ca/Oが式(2)を満たす。
Ca/O≧1250S-5.8・・・(2)
ここで、式(2)中の元素記号には、対応する元素の含有量(質量%)が代入される。
本実施形態の高周波焼入れ用鋼材は、Cu、Ni、及び、Moからなる群から選択される1種又は2種以上を含有してもよい。Cu、Ni及びMoはいずれも、高周波焼入れ後の部品の転動部の硬さをさらに高める。
銅(Cu)は任意元素であり、含有されなくてもよい。含有される場合、Cuは、C及びMnと同様に、高周波焼入れ後の部品の転動部の硬さを高める。しかしながら、Cu含有量が高すぎれば、鋼材の疲労強度が低下し、熱間加工性も低下する。したがって、Cu含有量は、0~1.0%である。上記効果をより安定して得るためのCu含有量の好ましい下限は0.05%であり、さらに好ましくは0.07%である。Cu含有量の好ましい上限は0.5%である。
ニッケル(Ni)は任意元素であり、含有されなくてもよい。含有される場合、NiはCやMnと同様に、高周波焼入れ後の部品の転動部の硬さを高める。しかしながら、Ni含有量が高すぎれば、鋼材の疲労強度の低下が低下する。したがって、Ni含有量は、0~3.0%である。上記効果をより安定して得るためのNi含有量の好ましい下限は0.05%であり、さらに好ましくは0.07%である。Ni含有量の好ましい上限は2.0%である。
モリブデン(Mo)は任意元素であり、含有されなくてもよい。含有される場合、Moは、CやMnと同様に、高周波焼入れ後の部品の転動部の硬さを高める。しかしながら、Mo含有量が高すぎれば、この効果は飽和し、製造コストが高まる。したがって、Mo含有量は0~0.15%である。上記効果をより安定して得られるためのMo含有量の好ましい下限は0.02%であり、さらに好ましくは0.03%である。Mo含有量の好ましい上限は0.12%である。
バナジウム(V)は任意元素であり、含有されなくてもよい。含有される場合、Vは、Nと結合して窒化物を形成する。形成された窒化物は、鋼材の焼入れ部分の結晶粒の粗大化を抑制する。Vはさらに、Cと結合して鋼材の強度を高める。しかしながら、V含有量が高すぎれば、焼入れ部分の結晶粒の粗大化を抑制する効果が飽和する。さらに、鋼材の強度が高くなりすぎて被削性が低下する。したがって、V含有量は0~0.30%である。上記効果をより安定して得るためのV含有量の好ましい下限は、0.01%であり、さらに好ましくは0.015%である。V含有量の好ましい上限は0.20%である。
ニオブ(Nb)は任意元素であり、含有されなくてもよい。含有される場合、Nbは、Nと結合して窒化物を形成する。形成された窒化物は、鋼材の焼入れ部分の結晶粒の粗大化を抑制する。Nbはさらに、Cと結合して鋼材の強度を高める。しかしながら、Nb含有量が高すぎれば、焼入れ部分の結晶粒の粗大化を抑制する効果が飽和する。さらに、鋼材の強度が高くなりすぎて被削性が低下する。したがって、Nb含有量は0~0.10%である。上記効果をより安定して得るためのNb含有量の好ましい下限は0.01%であり、さらに好ましくは0.012%である。Nb含有量の好ましい上限は0.08%である。
ボロン(B)は任意元素であり、含有しなくてもよい。含有される場合、Bは、鋼の焼入れ性を高める。そのため、高周波焼入れ後の部品の転動部の硬化層の深さをさらに大きくすることができる。しかしながら、B含有量が高すぎれば、その効果は飽和する。そのため、B含有量は0~0.0030%である。上記効果をより安定して得るためのB含有量の好ましい下限は0.0005%であり、さらに好ましくは0.0007%である。B含有量の好ましい上限は0.0020%である。
チタン(Ti)は任意元素であり、含有されなくてもよい。固溶したBは鋼材の焼入れ性を高める。しかしながら、BがNと結合したBNは、鋼材の焼入れ性を高めない。したがって、Bを含有する場合、BよりもNとの親和力が大きく窒化物を形成しやすいTiも含有する。しかしながら、Ti含有量が高すぎれば、粗大なTiNが多数生成し、鋼材の転動疲労寿命が低下する。したがって、Ti含有量は0~0.10%である。上記効果をより安定して得るためのTi含有量の好ましい下限は、0.01%であり、さらに好ましくは0.015%である。Ti含有量の好ましい上限は0.05%である。
上述の高周波焼入れ用鋼材の製造方法を説明する。本実施の形態では、一例として、高周波焼入れ用鋼材である棒鋼の製造方法と、高周波焼入れ用鋼材(棒鋼)を用いた熱間鍛造品の製造工程とを説明する。熱間鍛造品は例えば、自動車及び産業機械等に利用される部品であり、より具体的には、例えば、等速ジョイントやハブユニットといった部品である。
表1中の鋼1~18の化学組成は、本実施形態の高周波焼入れ用鋼材の化学組成の範囲内であった。鋼19~鋼30の化学組成は、本実施形態の高周波焼入れ用鋼材の化学組成の範囲から外れていた。
以上の工程で得られた鋼1~30の丸棒を用いて、次に示す転動疲労試験を実施した。
表3に、上記試験で得られたL10寿命を示す。
Claims (7)
- 質量%で、
C:0.4~0.6%、
Si:0.03~1.0%、
Mn:0.2~2.0%、
P:0.05%以下、
S:0.010%未満、
Cr:0.05~0.50%、
Al:0.01~0.10%、
Ca:0.0003~0.0030%、
O:0.0030%以下、
N:0.003~0.030%、
Cu:0~1.0%、
Ni:0~3.0%、
Mo:0~0.15%、
V:0~0.30%、
Nb:0~0.10%、
B:0~0.0030%、及び、
Ti:0~0.10%を含有し、
残部はFeおよび不純物からなり、
式(1)及び式(2)を満たす化学組成を有する、高周波焼入れ用鋼材。
0.7≦Ca/O≦2.0・・・(1)
Ca/O≧1250S-5.8・・・(2)
ここで、式(1)及び式(2)中の元素記号には、対応する元素の含有量(質量%)が代入される。 - 請求項1に記載の高周波焼入れ用鋼材であって、
前記化学組成は、
C:0.48~0.6%を含有する、高周波焼入れ用鋼材。 - 請求項2に記載の高周波焼入れ用鋼材であって、
前記化学組成は、
C:0.50~0.6%を含有する、高周波焼入れ用鋼材。 - 請求項1~請求項3のいずれか1項に記載の高周波焼入れ用鋼材であって、
前記化学組成は、
N:0.0050%超~0.030%を含有する、高周波焼入れ用鋼材。 - 請求項1~請求項4のいずれか1項に記載の高周波焼入れ用鋼材であって、
前記化学組成は、
Cu:0.05~1.0%、
Ni:0.05~3.0%、及び、
Mo:0.02~0.15%からなる群から選択される1種又は2種以上を含有する、高周波焼入れ用鋼材。 - 請求項1~請求項5のいずれか1項に記載の高周波焼入れ用鋼材であって、
前記化学組成は、
V:0.01~0.30%、及び、
Nb:0.01~0.10%からなる群から選択される1種又は2種を含有する、高周波焼入れ用鋼材。 - 請求項1~請求項6のいずれか1項に記載の高周波焼入れ用鋼材であって、
前記化学組成は、
B:0.0005~0.0030%、及び、
Ti:0.01~0.10%を含有する、高周波焼入れ用鋼材。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380041050.8A CN104520459B (zh) | 2012-08-16 | 2013-08-14 | 高频淬火用钢材 |
KR1020157002784A KR101681435B1 (ko) | 2012-08-16 | 2013-08-14 | 고주파 담금질용 강재 |
JP2014530472A JP5700174B2 (ja) | 2012-08-16 | 2013-08-14 | 高周波焼入れ用鋼材 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012180340 | 2012-08-16 | ||
JP2012-180340 | 2012-08-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014027463A1 true WO2014027463A1 (ja) | 2014-02-20 |
Family
ID=50101287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/004855 WO2014027463A1 (ja) | 2012-08-16 | 2013-08-14 | 高周波焼入れ用鋼材 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5700174B2 (ja) |
KR (1) | KR101681435B1 (ja) |
CN (1) | CN104520459B (ja) |
WO (1) | WO2014027463A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015129335A (ja) * | 2014-01-08 | 2015-07-16 | 新日鐵住金株式会社 | 浸炭軸受用鋼 |
JP2020015939A (ja) * | 2018-07-24 | 2020-01-30 | 日本製鉄株式会社 | 表面焼入れ用鋼材および表面焼入れ部品 |
JP2020026538A (ja) * | 2018-08-09 | 2020-02-20 | 日本製鉄株式会社 | 機械構造部品 |
EP4015667A4 (en) * | 2019-12-09 | 2022-09-14 | Jiangyin Xingcheng Special Steel Works Co., Ltd | BALL BEARING STEEL AND METHOD OF MANUFACTURING THEREOF |
US11473161B2 (en) | 2017-11-24 | 2022-10-18 | Grant Prideco, L.P. | Apparatus and methods for heating and quenching tubular members |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6384628B2 (ja) * | 2016-07-19 | 2018-09-05 | 新日鐵住金株式会社 | 高周波焼入れ用鋼 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000328193A (ja) * | 1999-05-21 | 2000-11-28 | Kobe Steel Ltd | 耐摩耗性に優れた熱間鍛造用非調質鋼 |
JP2002069577A (ja) * | 2000-08-30 | 2002-03-08 | Nippon Steel Corp | 鍛造性と製品靭性に優れた冷・温間鍛造用鋼とその製造方法 |
JP2008075177A (ja) * | 2006-08-23 | 2008-04-03 | Kobe Steel Ltd | 高周波焼入れ軸部品用鋼及び軸部品 |
JP2008133530A (ja) * | 2006-10-31 | 2008-06-12 | Jfe Steel Kk | 軸受鋼部品およびその製造方法並びに軸受 |
JP2010001525A (ja) * | 2008-06-19 | 2010-01-07 | Kobe Steel Ltd | 熱処理用鋼 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4014042B2 (ja) * | 2002-11-29 | 2007-11-28 | 住友金属工業株式会社 | 高周波焼入れ用棒鋼 |
-
2013
- 2013-08-14 CN CN201380041050.8A patent/CN104520459B/zh active Active
- 2013-08-14 WO PCT/JP2013/004855 patent/WO2014027463A1/ja active Application Filing
- 2013-08-14 KR KR1020157002784A patent/KR101681435B1/ko active IP Right Grant
- 2013-08-14 JP JP2014530472A patent/JP5700174B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000328193A (ja) * | 1999-05-21 | 2000-11-28 | Kobe Steel Ltd | 耐摩耗性に優れた熱間鍛造用非調質鋼 |
JP2002069577A (ja) * | 2000-08-30 | 2002-03-08 | Nippon Steel Corp | 鍛造性と製品靭性に優れた冷・温間鍛造用鋼とその製造方法 |
JP2008075177A (ja) * | 2006-08-23 | 2008-04-03 | Kobe Steel Ltd | 高周波焼入れ軸部品用鋼及び軸部品 |
JP2008133530A (ja) * | 2006-10-31 | 2008-06-12 | Jfe Steel Kk | 軸受鋼部品およびその製造方法並びに軸受 |
JP2010001525A (ja) * | 2008-06-19 | 2010-01-07 | Kobe Steel Ltd | 熱処理用鋼 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015129335A (ja) * | 2014-01-08 | 2015-07-16 | 新日鐵住金株式会社 | 浸炭軸受用鋼 |
US11473161B2 (en) | 2017-11-24 | 2022-10-18 | Grant Prideco, L.P. | Apparatus and methods for heating and quenching tubular members |
JP2020015939A (ja) * | 2018-07-24 | 2020-01-30 | 日本製鉄株式会社 | 表面焼入れ用鋼材および表面焼入れ部品 |
JP7119697B2 (ja) | 2018-07-24 | 2022-08-17 | 日本製鉄株式会社 | 表面焼入れ用鋼材および表面焼入れ部品 |
JP2020026538A (ja) * | 2018-08-09 | 2020-02-20 | 日本製鉄株式会社 | 機械構造部品 |
JP7124545B2 (ja) | 2018-08-09 | 2022-08-24 | 日本製鉄株式会社 | 機械構造部品 |
EP4015667A4 (en) * | 2019-12-09 | 2022-09-14 | Jiangyin Xingcheng Special Steel Works Co., Ltd | BALL BEARING STEEL AND METHOD OF MANUFACTURING THEREOF |
Also Published As
Publication number | Publication date |
---|---|
KR101681435B1 (ko) | 2016-11-30 |
KR20150028341A (ko) | 2015-03-13 |
JPWO2014027463A1 (ja) | 2016-07-25 |
CN104520459A (zh) | 2015-04-15 |
JP5700174B2 (ja) | 2015-04-15 |
CN104520459B (zh) | 2017-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5332646B2 (ja) | 冷間鍛造性に優れた浸炭用鋼の製造方法 | |
US9890446B2 (en) | Steel for induction hardening roughly shaped material for induction hardening | |
JP5700174B2 (ja) | 高周波焼入れ用鋼材 | |
JP6794012B2 (ja) | 耐結晶粒粗大化特性、耐曲げ疲労強度および耐衝撃強度に優れた機械構造用鋼 | |
CN107587079A (zh) | 含氮微合金化弹簧钢及其制备方法 | |
JP7152832B2 (ja) | 機械部品 | |
JP6628014B1 (ja) | 浸炭処理が行われる部品用の鋼材 | |
WO2020145325A1 (ja) | 鋼材 | |
JP2009299148A (ja) | 高強度浸炭部品の製造方法 | |
JP2012214832A (ja) | 機械構造用鋼およびその製造方法 | |
JP2010007120A (ja) | 高強度浸炭部品の製造方法 | |
JPH0953149A (ja) | 高強度高靭性肌焼き用鋼 | |
JP6295665B2 (ja) | 浸炭軸受用鋼 | |
JP4488228B2 (ja) | 高周波焼入れ用鋼材 | |
JPH11302727A (ja) | 高強度シャフトの製造方法 | |
JP2015017288A (ja) | コイルばね、およびその製造方法 | |
JP2009299165A (ja) | 高強度浸炭部品の高周波焼入れによる製造方法 | |
JP2009299147A (ja) | 高強度浸炭部品の製造方法 | |
JP4640101B2 (ja) | 熱間鍛造部品 | |
JP6825605B2 (ja) | 浸炭部材 | |
JPH08260039A (ja) | 浸炭肌焼鋼の製造方法 | |
JP2010007117A (ja) | 高強度浸炭部品の製造方法 | |
JP5668882B1 (ja) | Mo無添加の浸炭用電炉鋼の製造方法 | |
JPH0483848A (ja) | 高疲労強度を有する浸炭歯車用鋼 | |
JP2009299146A (ja) | 高強度浸炭部品の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13829447 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014530472 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157002784 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13829447 Country of ref document: EP Kind code of ref document: A1 |